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Abstract

Macroalgal mats of Ulva intestinalis are becoming increasingly common in

many coastal and estuarine intertidal habitats, thus it is important to determine

whether they increase flow resistance, promote bed stability and therefore re-

duce the risk of erosion favoring tidal flooding or degradation of coastal lagoons.

Venier et al. (2012) studied the impact of macroalgal mats of Ulva intestinalis

on flow dynamics and sediment stability for uniform flow. Here we extend their

experimental work to the case of vegetation under the combined action of waves

and currents. These hydrodynamic conditions are very common in many shal-

low coastal environments and lagoons. The experimental facility employed in

the present study and the series of flow runs are the same as that used by

Venier et al. (2012). However, waves have been superposed to uniform current

flowing firstly over a mobile sediment bed covered with U. intestinalis, then over

a bare sediment surface. For the depth, wave and current conditions considered

in the experiments, the time-averaged vertical profile of horizontal velocity for

the case of coexisting waves and current turns out to be very close to that ob-

served for a pure current, both with and without vegetation. However, contrary
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to what was observed in the case of a unidirectional current, in the presence of

waves the time averaged velocity profile is only weakly influenced by the vege-

tation, whose main effect is to attenuate velocity oscillations induced by waves

and to slightly increase the overall bed roughness.

Keywords: Ulva intestinalis, wave-current interaction, shear stresses,

sediment transport

1. Introduction

Due to the observed increase of macroalgal mats in many coastal and estu-

arine intertidal habitats [Bolam et al. (2000), Silva et al. (2004)], the scientific

community has been recently tasked with improving the present state of knowl-

edge on role of macroalgae in shallow coastal ecosystems. From a hydrodynam-5

ical and morphodynamical point of view the issue has recently been addressed

by Venier et al. (2012). This experimental study provided an overview of how

Ulva intestinalis affects unidirectional flow over a sandy bed. The data col-

lected for a range of flow depths that is typical of tidal environments suggest

that macroalgae exert a significant stabilizing effect even when the algal cover10

is sparse. As documented by direct observations and bed elevation measure-

ments, and unlike most of the plants used in other laboratory flume studies

[Augustin et al. (2009), Bouma et al. (2009)], this species of macroalgae

tend to lie flat over the bed, moving sinusoidally with the current. The interac-

tion of the macroalgae with the flow results in a decreased bedform amplitude,15

with small bedforms forming around the macroalgae strands. In other words,

Ulva intestinalis provides shelter to sediment grains on the bed, changing the

morphology and migration rate of bedforms. Moreover, the interaction of the

fronds and bedforms results in an upward shift of the roughness sublayer, where

shear stress is more intense. The resulting vertical distributions of the longitu-20

dinal velocity and of shear stress suggest that macroalgae lead to a decrease of

the near bed mean velocity and an increase of the overall flow resistance. The

total friction velocity is generally greater over macroalgae than over bare bed.
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The presence of macroalgae, however, also contributes to a reduction in the

effective bed shear stress associated with skin friction, responsible for sediment25

motion. The overall sediment mobility, and hence the amount of transported

sediment, are thus reduced. Note that the study of Venier et al. (2012) focused

on macroalgal mat interactions with steady unidirectional flow conditions. Nev-

ertheless, both temporal and spatial flow dynamics are crucial to fully under-

stand the momentum transfer mechanisms and their influence on flow resistance30

[Nikora et al. (2001), Nikora et al. (2004)]. Here, we complement the above

analyses by assessing the influence of macroalgal mats on sediment transport

in wave-current induced flows. Most of previous studies, conducted in the field

or in the laboratory to understand the interaction between hydrodynamics and

vegetation, considered the case of flow driven by an uniform current or by regular35

waves [e.g., Stratigaki et al. (2011), Asano et al. (1998), Romano et al. (2003),

Stephan and Gutknecht (2002), Wang et al. (2009), Ghisalberti and Nepf (2004)].

Few observations have been performed including both the effects of currents and

waves over a vegetated bottom [Paul et al. (2010), Hu et al. (2014)].

On the other hand, many efforts have been carried out by the scientific com-40

munity with the purpose of analyzing wave-current non linear interactions in the

simplest case of an unvegetated bottom. Laboratory experiments [Kemp and Simons

(1982), Kemp and Simons (1983), Visser (1986), Klopman (1994), Klopman

(1997), Umeyama (2005); Musumeci et al. (2006); Simons et al. (1996) among

others] showed that when waves and currents coexist, the steady profile of lon-45

gitudinal velocity changes the logarithmic shape observed for pure current con-

ditions. In particular, Kemp and Simons (1982) showed that mean longitudinal

velocities close to a smooth bed increase in the presence of waves, whereas

they reduce near a rough bed. Furthermore, when waves propagate in an op-

posite direction with respect to the current, the longitudinal current intensity50

reduces near to the bed. Musumeci et al. (2006) showed that if the bed is

smooth, an increase of the near bottom velocities occurs when waves are per-

pendicular to the current. The opposite happens when the bottom is rough.

Moreover, observed current profiles suggest that wave-current interaction ef-
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fects are not restricted to the near bottom region, but influence the entire water55

column [Kemp and Simons (1982), Kemp and Simons (1983), Klopman (1994),

Umeyama (2005)]. These effects mainly depend on the propagation directions of

waves and currents. While for parallel and perpendicular cases a reduction of the

current intensity is observed in the region below the wave trough, the contrary

occurs for opposing waves and currents. As suggested by Kemp and Simons60

(1983), variations of steady current profile also depend on wave amplitude and

on water depth. In addition to experimental studies, various analytical and nu-

merical models have been developed to describe the bottom boundary layer flow

under waves and currents. Here we mention the models of Grant and Madsen

(1979), Fredsoe (1984) and Davies et al. (1988). We refer the interested reader65

to Olabarrieta et al. (2010) and Tambroni et al. (2015) for an overview of more

recent contributions to the mathematical study of wave-current interactions.

The combination of wave characteristics and current speed investigated here,

are those typically found in intertidal areas, supporting macroalgae growth

within coastal lagoons dominated by tidal action. In particular, we focus on70

flow fields that are characterised by relatively low values of the ratio between

the amplitude of horizontal orbital velocity and the current velocity (i.e., strong

current - weak wave). The main aim of this paper is to compare the behaviors of

a bare sediment bottom and of a sediment bottom covered by macroalgae under

the combined action of waves and currents through the analysis of the vertical75

distribution of stationary velocity profiles and turbulent Reynolds stresses.

The body of the paper is organised as follows. In Section 2 we briefly describe

the experimental apparatus and the test configuration. Section 3 is devoted to

the analysis of velocity data collected in the tests, with particular reference

to the characteristics of turbulence observed with and without waves. Finally,80

Section 4 reports some conclusions and suggestions for future research.
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2. Materials and methods

2.1. Experimental facility

Experiments were carried out in the Total Environment Simulator (TES)

recirculating flume at the University of Hull (UK), equipped both with pumps85

to generate flow and paddles to generate waves. The experimental facility is the

same described in detail by Venier et al. (2012), therefore we will just briefly

summarise the main characteristics of the experimental setup. Length and width

of the flume tank were 11 m and 2 m, respectively. Experiments were conducted

over a mobile bed, with and without vegetation, in the presence of both waves90

and currents. In particular, sediment chosen for the experiments was a non-

cohesive, unimodal and well-sorted fine sand, characterized by a median grain

size of 0.135mm, which is similar to that of the sediments covering the tidal flats

of Budle Bay (NE, England), where strands of Ulva intestinalis were collected for

the present tests. This is a common macroalga which can be very abundant in95

nutrient enriched coastal systems. The algae was planted, following the regular

pattern shown in Figure 1, in a 20 cm thick sediment bed that was leveled before

the start of the experiments. The density of the plantings (12 plants per m2)

intended to represent a sparse algal mat cover (∼ 30 %) and was characterised by

a lateral and longitudinal spacing equal to 20 cm and 40 cm, respectively. The100

large number of fronds attached to each strand generated a fan shape covering

up to 20 by 10 cm of the sandy bed.

Velocity measurements were collected in a 2 m wide and 2 m long sam-

pling volume placed approximately at the centre of the flume [see Figure 1 of

Venier et al. (2012)]. This measuring area was located 6 m downstream of the105

flume inlet, to ensure fully developed, uniform flow conditions and to enable

wave form development. The longitudinal, lateral and vertical velocity compo-

nents, (ux, uy, uz), were measured at a set of selected points by means of four

Nortek laboratory ADVs, denoted as ADV0, ADV1, ADV2, ADV3 in Figure 2.

These devices were located 1.2, 1.1, 1.0 and 0.9 m from the flume wall and were110

moved longitudinally to monitor the along-flow positions X1, X2, X3, X4 lo-
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Figure 1: Example of the typical bed pattern observed in the present experiments.

cated 0.8, 1.0, 1.2 and 1.4 m from the upstream limit of the measuring area. Up

to 10 different points, depending on the flow depth, were sampled at each given

vertical and velocities were sampled at a frequency of 25 Hz for an acquisition

time of 120 s. The ADV sampling volume was approximately 350 mm3.115

Figure 2: Picture of the measuring area

The total mass of sediment transported along the flume as bedload was

measured at the end of each run by weighing sediment collected within a series
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of pit-type traps located across the downstream end of the flume.

2.2. Experimental programme

As reported in Table 1, the experimental programme involved three runs120

(hereafter denoted by the subscript ’wc’ to indicate the combined wave-current

conditions) conducted for three different water depths in the presence of both

a unidirectional flow and a monochromatic, regular train of waves. The water

depths and pumping discharges imposed in the experiments were selected in

order to ensure the same mean flow conditions employed in the experiments125

of Venier et al. (2012), typical of micro-tidal environments. The wave height

and period were chosen to represent fully developed wind wave conditions for

each of the considered water depth. For comparison, Table 1 includes also

data in the previous set of experiments performed by Venier et al. (2012) under

unidirectional flow conditions. We will refer to this latter set of experiments130

using the same notation, with the only difference that the subscript ’c’ will be

used to denote pure current conditions in the absence of waves.

A first series of experiments (denoted as M) were conducted with the sandy

bed covered with Ulva intestinalis and salt water (density ρ = 1027 kg/m3).

The macroalgae were then removed from the flume, the salt water was replaced135

with fresh water (ρ=999 kg/m3) and, after flattening the bed, a second series of

tests (denoted as B) was carried out under the same initial hydraulic conditions

of the M runs. The experiments were run for the minimum time needed to

develop stable bedforms along the flume, before beginning measurements.

3. Data analysis140

The Acustic Doppler Velocimeter (ADV ) time series were firstly filtered, re-

moving erroneous values and correcting for tilt and misalignment of the probes.

In particular, the data removed consisted of i) measurements closer than 0.5 cm

to the bed and ii) measurements containing more than 5% of bad data, namely

points for which the mean and the minimum correlation were < 70 and < 50,145
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Table 1: Summary of the experimental tests, carried out for three different water depths

under either unidirectional current (subscript c) (Venier et al. 2012) or waves superposed to

a uniform flow (subscript wc), and a sandy bed either bare (B tests) or covered with macro

algae (M tests). Notations are as follows: D: depth of the still water initially filling the

flume; Q: water discharge used to obtain a uniform unidirectional flow; Hw: wave height;

Tw: wave amplitude; Lth: wave length according to the dispersion relation provided by the

linear Stokes theory; Ux: depth averaged value of the spatially and time averaged longitudinal

velocity; Lbf : observed bedform wavelength; Qs: measured mass sediment flow rate per unit

width transported as bedload.

Run M1c M1wc M2c M2wc M3c M3wc Bed

B1c B1wc B2c B2wc B3c B3wc

D (m) 0.22 0.22 0.25 0.25 0.31 0.31

Q (ls−1) 90 90 102 102 124 124

Hw (m) - 0.09 - 0.10 - 0.12

Tw (s) - 1.0 - 1.0 - 1.1

Lth (m) - 1.25 - 1.30 - 1.60

Ux 0.22 0.24 0.26 0.254 0.26 0.23 M

(ms−1) 0.23 0.26 0.28 0.23 0.27 0.27 B

Lbf 10.4 6.6 11.7 6.8 10.2 6.8 M

(cm) 9.8 7.3 / 8.2 12.4 8.5 B

Qs - 8.11 0.60 13.00 0.06 9.80 M

(10−4 kgm−1s−1) 0.67 9.90 / 12.00 0.50 12.0 B
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while the mean and the minimum signal to noise ratio (SNR) were < 15 and

< 5, respectively. A detection routine was used to remove high velocity spikes

from the time series. The corrections for probe tilt and misalignment involved

rotating the velocity vectors in the horizontal and vertical planes such that the

average lateral and vertical velocities within the entire fluid volume spanned by150

ADV measurements were zero (thus ensuring one dimensional bulk flow con-

ditions). Generally, the tilt and misalignment correction angles were so small

as to render the corresponding corrections negligible. After these preliminary

operations, the time averaged velocity vector ~̄u was calculated at each sampling

point, by averaging over the total acquisition time. The instantaneous velocity155

vector ~u was then decomposed as:

~u = ~̄u+ ~̃u+ ~u′ (1)

where ~u′ is the vector of the turbulent velocity fluctuations and ~̃u is the

wave induced orbital velocity. The wave induced velocity possesses a periodic

nature and may be determined by phase-averaging the instantaneous velocity,

detrended by the time average ~̄u:160

~̃u = lim
N→∞

1

N

N
∑

n=0

[~u(t+ nT )− ~̄u] (2)

where T is the wave period, n is the number of the wave cycle and N the

total number of wave cycles.

Before analysing in detail the specific features emerging from the temporal

and spatial distributions of ~u, it is worthwhile discussing the overall structure

of the sediment bed resulting from direct observations. In all the experiments,165

the bed was rapidly covered by bedforms with sinuous crest-lines (Figure 1). As

reported in Table 1, in the experiments characterised by the presence of both

waves and currents, bedforms were generally shorter (wavelength Lbf in the

range 6.6-8.5 cm) than in the pure current case (Lbf in the range 9.8-12.4 cm).

In the presence of Ulva intestinalis the flow meandered around the algal strands,170

generating slightly smaller linguoid bedforms, migrating around the points of
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attachment of the algal strands (see Figure 1). In some cases bedform migration

caused a partial burial of algal strands. Visual observations also highlighted that

algal filaments oscillated sinusoidally both in the lateral and vertical directions,

with the meandering of near bed flow. This behaviour was observed both in the175

presence and in absence of waves and is very different from that of the majority

of plants analysed in laboratory experiments, in which the vegetation occupied

a significant portion of the water column [Shi et al. (1995), Augustin et al.

(2009)].

3.0.1. Vertical distribution of the longitudinal velocity180

The first analysis carried out on the velocity data concerned the vertical

distribution of the stationary (i.e., averaged over the total sampling time) com-

ponent of the longitudinal velocity, ūx.

First of all, it was preliminary verified that the vertical ūx profile does not

undergo any significant change in the direction of motion. To verify this, for each185

experiment in the presence of waves, a graph has been constructed comparing

the vertical profiles of ūx, averaged laterally, 〈ūx〉 (hereafter 〈. . .〉 will denote

lateral averaging), and measured at different locations along the flow direction,

x. Figure 3 shows that the variations between these profiles are very small.

In order to obtain a macroscopic description of the flow features within190

the study area, the vertical profiles of the stationary longitudinal velocity have

been averaged laterally and along x (we will denote by 〈〈ūx〉〉 this spatial double

averaging in horizontal planes parallel to the bed). Each plot of Figure 4 shows

a comparison between the dimensionless double averaged stationary velocity

profiles observed with and without waves.195

It should be noted, when interpreting the results, that both waves and cur-

rents propagate in the positive x direction. Previous experiments considering

combined waves-current motion [see, among others, Kemp and Simons (1982),

Kemp and Simons (1983), Klopman (1994), Klopman (1997), Umeyama (2005)],

show that the vertical profile of the stationary component of the longitudinal200

velocity experiences a significant reduction near the free surface when the waves
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Figure 3: Vertical profiles of the stationary (averaged over the total sampling time) component

of the longitudinal velocity, averaged laterally, 〈ūx〉, and measured at different locations Xi

along the flow direction, in the presence of waves superposed to a unidirectional uniform flow.

The elevation with respect to the initial flat bed, z, has been normalised by the mean flow

depth D. Symbols are as follows: blue circles, X2 = 100 cm; green circles, X3 = 120 cm; red

circles, X4 = 140 cm; magenta: along x average value.

propagate in the same direction of the current, and an increase of the current ve-

locity near the free surface when the waves propagate in the opposite direction.

In particular, the experiments of Umeyama (2005) suggest that when waves and

currents propagate in the same direction, a local maximum of the longitudinal205

velocity ūx, exits at an elevation of roughly 0.5 times the mean water depth

from the bottom for wave periods of roughly 1 s, and that an increase in the

wave period lowers this point of maximum.

Comparison reported in Figure 4 suggests that in the present experiments

waves weakly influence the shape of the mean current profile. The lack of data210

in the upper region of the water column, due to the intrinsic limitations of ADV

measurements, makes it difficult to detect the typical reduction of the current
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Figure 4: Upper plots: spatially and laterally averaged profiles of the time averaged longitu-

dinal velocity ūx for the non-vegetated experiments (B). Lower plots: spatially and laterally

averaged profiles of the time averaged longitudinal velocity ūx for the vegetated case (M).

The dimensionless comparison is produced for the vertical coordinate by scaling z with the

flow depth while the double averaged longitudinal velocity, 〈〈ūx〉〉, has been normalized with

its depth averaged value, Ux. The values assumed by Ux for the different experiments are

reported in Table 1. Crosses indicate pure current experiments (c) and dots indicate waves

plus current experiments (wc).

velocity near the free surface, as observed by Umeyama (2005). In any case

it is worth comparing the observed 〈〈ūx〉〉 profiles with the typical logarithmic

profile which better fits the experimental data.215

Figure 5 indicates that the steady component of the longitudinal velocity

begins to slightly deviate from the logarithmic law at approximately 50% of

the mean water depth above the bed. The presence of a local maximum in the

velocity profile is more evident in experiment B3wc, which is characterized by

greater flow depth and wave period. Similar to observations made by Umeyama220
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(2005), in experiments B1wc and B2wc, the point of velocity maximum likely

occurs at a higher elevation above the bed, since in these experiments the wave

period is smaller than in experiment B3wc. Comparison with the profiles ob-

served in experiment B3wc and M3wc suggests that the presence of vegetation

may cause an increase in the height of the local maximum of the velocity profile.225

The weak influence of the waves on the stationary velocity profiles character-

izing the present experiments can also be explained by the fact that non-linear

effects arising from wave and current interaction are only evident if the wave

component and the current component are comparable in magnitude. However,

comparison between the results shown in Figures 3 and 6 suggests that in the230

present experiments the current velocity (Figure 3) is almost twice the amplitude

of the velocity oscillations induced by wave propagation (Figure 6). Therefore,

the waves are too weak or the currents are too strong to enable the nonlinear

effects to become dominant. Hence, under the condition of a weaker current or

stronger waves, not covered in the present experiments, the wave effect may be-235

come more apparent and the computed time-averaged vertical profile may more

clearly deviate from that for pure current, in accordance with the observations

of Umeyama (2005). Note that the ratio between the amplitude of the velocity

oscillations induced by wave propagation and the current velocity investigated

by Umeyama (2005) is in the range 0.7-0.87 and, hence, typically 50% greater240

than the ratio employed in our experiments. From this analysis it is not sur-

prisingly that the effect of waves is more evident in experiment B3wc which is

characterized by the higher amplitudes of the velocity oscillations induced by

wave propagation.

Figure 6 also suggests that the presence of macroalgae slightly reduces the245

amplitudes of velocity oscillations induced by waves, further weakening the influ-

ence of the waves on the stationary velocity profiles. This result is in agreement

with both the physical experiments and numerical simulations of Li and Yan

(2007), suggesting that the interaction of waves and current leads to a greater

attenuation of waves in the presence of vegetation.250

Finally, it must be noted that wave reflection may have partially impacted
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on the observed stationary velocity profiles. In fact, despite the placement of

an absorber device at the end section of the experimental flume opposite to

that where the waves were generated, owing to the physical constraint of the

experimental apparatus, waves were not completely dissipated but underwent a255

partial, not quantificable reflection at this boundary.

3.0.2. Shear velocity and Nikuradse roughness

It is well known that in fully developed turbulent flows occurring over a

rough bed the vertical distribution of ūx is well approximated by a logarithmic

law of the form:260

ūx

u∗

= 5.75log(
z

es
) + 8.5 (3)

where u∗ is the friction velocity, es is the Nikuradse roughness parameter

and z is the elevation over the mean bed surface.

In order to quantify the differences/similarities between the vertical distribu-

tions of the time averaged velocity, ūx, resulting in the cases with and without

waves, we have assumed that Eq. 3 also holds in the presence of waves, at least265

outside the bottom and surface boundary layers. We have thus determined u∗

and es from Figure 7, plotting the term 5.75 log10(z) versus the temporally and

spatially averaged longitudinal velocity 〈〈ūx〉〉. In particular, a linear fitting of

the experimental data has been performed and the correlation coefficient mea-

suring the reliability of the fitting has been estimated. In conditions both with270

and without waves, the velocity measurements are well represented by Eq. 3,

although some larger deviations occur near to the bed and to the free-surface in

the presence of waves. The slope m and the intercept b of the straight lines in

Figure 7 allow estimation of the friction velocity u∗ = 1/m and the roughness

coefficient es = 10(b+8.5)/5.75.275

A graphic summary of all the values of u∗ and es provided by this analysis

is reported in Figure 8, while the representative values of these parameters are

summarised in Table 2.
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uniform flow experiments, while filled circles refer to the waves plus current cases. Solid lines
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Table 2: Values of friction velocity, u∗, and of roughness parameter, es, resulting from the

linear interpolations of Figure 7.

Run M1c M1wc M2c M2wc M3c M3wc Bed

B1c B1wc B2c B2wc B3c B3wc

u∗ 0.021 0.024 0.026 0.033 0.023 0.025 M

(m/s) 0.027 0.026 0.021 0.032 0.017 0.027 B

es 0.012 0.039 0.043 0.114 0.034 0.061 M

(m) 0.031 0.045 0.006 0.092 0.004 0.041 B
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Figure 8: Summary of the friction velocity, u∗, and of the roughness parameter, es estimated

for the various tests.
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It appears that the friction velocity generally attains larger values in the

presence of waves than in the unidirectional uniform flow case. This is partic-280

ularly evident in run 2, where the reference value of u∗ of run B2wc is 0.032

m/s, while that referring to experiment B2c is 0.021 m/s. The influence of

waves is even more marked in the case of the roughness parameter. The values

of es in run B2wc are indeed much greater than those estimated without waves,

the reference values in experiments B2wc and B2c being 0.092 m and 0.006 m,285

respectively. Run 3 provides analogous results, while for the set of run 1, both

friction velocity and roughness parameter attain almost the same values in the

absence and in the presence of waves. As far as the effect of the vegetation is

concerned, with exception of run 1, the values of es in the presence of macroal-

gae are generally greater than those for a bare bed, although in the presence290

of waves, the difference between the values of es observed with and without

macroalgae is smaller. Finally, while in the case of a unidirectional current the

friction velocity u∗ is on average slightly larger over macroalgae than over bare

bed (runs 2 and 3), in the presence of waves, macroalgae do not seem to alter

significantly the value of u∗ observed over bare bed. Therefore, for the algal295

mat density considered in the present experiments (reproducing a sparse cover

∼ 30%), the global effect on the flow field induced by the superposition of regu-

lar waves to a unidirectional current consists only of a moderate increase of the

roughness parameter while the friction velocity remains almost unaltered.

Despite its complexity, the problem of wave-current interaction has also been300

tackled theoretically [see, among others, Grant and Madsen (1979), Fredsoe

(1984), Davies et al. (1988), Olabarrieta et al. (2010) and Tambroni et al. (2015)].

The most recent theories appear to provide a reliable description of the flow field

not only in the wave-current boundary layer but also along the entire water col-

umn. However, these mathematical models still require a numerical solution of305

the problem and hence, do not entail a straightforward application. For the sake

of simplicity, in order to check if our results are consistent with the existing the-

oretical predictions, the simple approach of Grant and Madsen (1979) has been

applied to estimate analytically the values of es in the case of coexisting waves
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Table 3: Summary of the main experimental parameters, and comparison between the typical

roughness values measured in the experiments and the values suggested by the theory of

Grant and Madsen (1979). Values of the skin component of the total shear stresses τ ′
b
have

been evaluated from equation (6), while estimate of the mass sediment flow rate per unit

width, Qscalc, have been obtained by applying the Meyer-Peter and Muller (1948) formula.

Run B1wc M1wc B2wc M2wc B3wc M3wc

D (m) 0.22 0.22 0.25 0.25 0.31 0.31

Hw (m) 0.09 0.09 0.10 0.10 0.12 0.12

Tw (s) 1.0 1.0 1.0 1.0 1.1 1.1

u∗c (ms−1) exp 0.027 0.021 0.021 0.026 0.017 0.023

esc (m) exp 0.031 0.012 0.006 0.043 0.004 0.034

eswc (m)exp 0.045 0.039 0.092 0.114 0.041 0.061

eswc (m) theory 0.077 0.035 0.024 0.106 0.015 0.084

τ ′b (Pa) 0.178 0.165 0.205 0.202 0.211 0.163

Qs (10−4 kgm−1s−1) 9.90 8.11 12.00 13.00 12.0 9.80

Qscalc (10−4 kgm−1s−1) 8.60 6.37 13.47 12.96 14.8 6.12
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and currents. The results, shown in Table 3, demonstrate that the roughness310

values predicted by the theory of Grant and Madsen (1979) reproduce reason-

ably those resulting from our flume measurements.

3.0.3. Vertical Distribution of Shear Stresses

The vertical distribution of the Reynolds stresses through the flow depth is

usually calculated from the values of the measured fluctuating velocities. How-315

ever, in the presence of waves, the variance associated with waves is often much

larger than that associated with turbulence. Some form of wave-turbulence de-

composition must then be used. In a flow with both waves and currents, the

instantaneous velocity can be decomposed as described by Eq. 1. After averag-

ing the mean momentum equations over the turbulence (Reynolds averaging),320

the Reynolds stress becomes:

−
τt
ρ

= ũxũz + ũxu′

z + u′

xũz + u′

xu
′

z (4)

where u′

x and u′

z are the fluctuating velocity along the longitudinal and the

vertical direction, and an overbar denotes turbulence averaging.

For irrotational, progressive waves [Dean and Dalrymple (1991)], the first

term on the right hand side (rhs) of equation 4 is zero. Furthermore, when325

waves and turbulence coexist, the latter is defined as motions that do not corre-

late with waves [Jiang and Street (1991), Thais and Magnaudet (1995)]. As a

consequence, the second and third terms on the rhs of equation 4 are also zero.

Under these conditions, the Reynolds stresses take the same form characterizing

steady flows:330

−
τt
ρ

= u′

xu
′

z (5)

However, as shown by Trowbridge (1998), small uncertainties in instrument

orientation or a gently sloping bed can bias velocity measurements such that

in practice ũxũz may not be exactly zero. Various methods of wave-turbulence

decomposition can be used to remove this wave contamination from a turbulence
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dataset. Here we employ the ’phase’ method introduced by Bricker and Monismith335

(2007), where the phase lag between the instantaneous velocity components ux

and uz of surface waves is used to interpolate the magnitude of turbulence under

the wave peak within the inertial subrange of the spectral domain.

Figure 9 reports the resulting vertical profiles of turbulent shear stresses

calculated under uniform flow conditions and in the case of combined waves340

and currents. First of all, it immediately appears that in the presence of waves

the turbulent shear stresses are more intense and attain a maximum at a higher

elevation from the bed with respect to the uniform flow case. Similar to the

analysis of the mean velocity profiles, the shear stress profiles have been also

spatially averaged in horizontal planes parallel to the bed. The resulting profiles345

are reported in Figure 10. The plots confirm that, as expected, shear stresses

are enhanced by the presence of waves. Some peculiar results, however, arise

in experiment 3, where, as the elevation above the bed increases, the wave-

current Reynolds stresses decrease more rapidly than in the other experiments

and change sign, becoming negative at z >∼ 0.05. Similar profiles have been350

observed by Umeyama (2005) in the case of waves following a current. Umeyama

(2005) also found that the elevation characterized by vanishing Reynolds stresses

decreases as the amplitude of the wave induced velocity oscillations increases.

Hence, as already discussed when analysing the spatially averaged stationary

velocity profiles, it is possible that in runs 1 and 2 the intensity of the wave355

induced velocity is too small to allow nonlinear effects due to wave-current

interaction to become significant and, consequently, shear stresses do not become

negative. Finally, note that the presence of macroalgae lying nearly parallel to

the bed and oscillating with the flow does not seem to significantly alter the

distribution of turbulent Reynolds stresses both in the presence and in the360

absence of waves. Nevertheless, macroalgal mats invariably reduce the near bed

peak of the turbulent shear stress, while the overall bed shear stress acting just

above the narrow layer occupied by macroalgae tends to increase, owing to the

form drag related to the presence of both vegetation and bedforms.

In conclusion, despite the formation of shorter bedforms, in the experiments365
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Figure 9: Vertical profiles of turbulent Reynolds stresses, τt = − ρu′

zu
′

x for the ADV mea-

surements carried out in: upper plots) experiments 1, middle plots) experiments 2 and lower

plots) experiments 3. Crosses identify the experiments carried out with unidirectional flow

conditions (Venier et al., 2012); red circles and green circles refer to bare and vegetated bed,

respectively, under the action of both waves and an unidirectional current.
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with waves it has been observed an increase of the bed shear stresses associated

with skin roughness, and consequently a significant (one-two orders of magni-

tude) increase of the intensity of the sediment transport rate (see Table 1). On

the contrary, although to a lesser extent with respect to the case of unidirec-

tional flow conditions, the presence of a sparse macroalgae cover contributes370

to a reduction in the effective bed shear stress associated with grain roughness

responsible for sediment motion.

These findings are supported by the estimates of sediment transport reported

in Table 3 and obtained by using the classic Meyer-Peter and Muller (1948)

bedload formula. For a steady current, the skin component, τ ′b, (i.e., related to375

grain roughness) of the total shear stresses suggested by Meyer-Peter and Muller

(1948) to be used in the bedload formula is the following:

τ ′b = µτb µ =

(

C

C′

)1.5

(6)

where τb is the total shear stress, µ is a bed form factor, C and C′ are

the overall and grain-related Chezy coefficient, respectively. Note that in the

presence of vegetation the values of the skin component of the total shear stresses380

are typically smaller than for a bare bottom.

The estimated sediment transport rates, reported in Table 3, are quite close

to those measured in the experiments. Overall, under the combined action of

current and waves, the skin friction and amount of transported sediment turn

out to be reduced by the presence of a sparse algal cover, at least for the range385

of hydrodynamic conditions here investigated. Hence, by reducing the rate

of the sediment erosion, algal mats may significantly influence the

morphodynamic behavior of a given coastal wetland. These results

suggest that Algal mats (in the present case Ulva Intestinalis) basi-

cally act as ecosystem-engineer organisms [Jones et al. (1994)] which390

contribute to modify and to help the maintenance of the habitat they

live.
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Figure 10: Spatial average over planes parallel to the bed of the turbulent Reynolds stresses,

<< τt >>= − ρ << u′
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′

x >> for the ADV measurements carried out in: upper plots)

experiments 1, middle plots) experiments 2 and lower plots) experiments 3. Grey crosses

identify the experiments carried out with unidirectional flow conditions (Venier et al., 2012);

black circles refer to bare and vegetated bed, respectively, under the action of both waves and
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4. Conclusion

The results of the present research can be summarized as follows.

1. When relatively weak waves are superposed with a strong unidirectional395

current, as investigated here, the time-averaged vertical profile of hori-

zontal velocity is very close to that observed in the presence of a purely

unidirectional current;

2. In the presence of a non-vegetated bed, the global effect of waves on the

stationary velocity profile consists of a slight increase of friction velocity400

and a more significant increase of the corresponding roughness parameter;

3. In the case of waves combined with currents over macroalgae (Ulva In-

testinalis), the most significant effect of an algal mat is to damp velocity

oscillations induced by waves, while the friction velocity remains essen-

tially unchanged and the roughness parameter tends to increase slightly;405

4. The presence of waves implies more intense turbulent shear stresses, which

attain a maximum at an higher elevation from the bed with respect to pure

uniform flow conditions;

5. In the experiment characterized by the higher value of the ratio between

the amplitude of horizontal orbital velocity and the current velocity (Run410

3), moving away from the bed, the wave-current Reynolds stresses change

sign, becoming negative and displaying the typical behavior observed by

Umeyama (2005) in the case of waves traveling in the same direction as

the current;

6. The presence of macroalgae lying nearly parallel to the bed in the case415

of a unidirectional flow and waves superposed to a uniform current, does

not seem to significantly alter distribution of turbulent Reynolds stresses

along the flow depth; nevertheless, macroalgal mats are found to slightly

reduce the near bed peak of the turbulent shear stress.

7. The presence of macroalgae generally tends to reduce the effective bed420

shear stress associated with grain roughness responsible for sediment mo-

tion. As a consequence, the amount of sediment transported under the
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combined action of current and waves turn out to be reduced even in

the presence of a sparse (∼ 30%) algal cover, at least for the range of

hydrodynamic conditions here investigated.425

Algal mats thus act as ecosystem-engineer organisms [Jones et al. (1994)]

that alter the local hydrodynamics near the bottom, affect the rate at which

sediment are eroded and, hence, contribute to affect the overall morphodynamic

behavior of a given coastal wetland. Algal filaments, aligned nearly horizontally

in a narrow layer close to the bed, provide sheltering for sediment from direct430

flow drag exerted by the combined action of waves and currents. For hydraulic

conditions (flow depth and velocity) typical of those encountered in tidal envi-

ronments under ordinary weather conditions, and realistic macroalgal features

(length and width of each individual) this dynamic behaviour has significant

consequences even in the presence of a relatively sparse (∼ 30%) algal mat435

cover. As algal density increases, the sheltering action produced by the algal

cover likely leads to a stronger stabilization of the bed [Romano et al. (2003)].

Quantitative scenarios of the response of estuarine environments to both cli-

mate changes (e.g., sea level rise, changes in storminess) and planned human

interventions (e.g., creation of new defence schemes, either engineered, ecosys-440

tem based or hybrid) then require a coupled description of morphodynamic

processes and of the feedbacks with biotic communities therein. The present

study can help in developing subgrid models (i.e., at a scale smaller that that

of the computational grid) describing these feedbacks. To this aim further ex-

perimental work is surely needed to assess how sediment transport rates are445

affected by macroalgal density and by a flow field with higher amplitudes of the

horizontal orbital velocity with respect to the current velocity.
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