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Abstract. Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of

knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation ham-

pers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material prop-

erties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our

understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the

landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow pat-

terns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim

to improve the understanding of the formation of entire valley landscapes through seepage processes from dif-

ferent groundwater sources that will provide a framework of landscape metrics for the interpretation of such

systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local pre-

cipitation in a series of sandbox experiments and combine our results with previous experiments and observations

of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater

source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys

fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition,

valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in

a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider

these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of

groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from

Tharsis.

1 Introduction

Valleys with theater-shaped heads exist in the landscapes

of Earth and Mars. On Mars, examples of such valleys

are Louros Valles (Fig. 1a) and Nirgal Vallis (Harrison and

Grimm, 2005). Terrestrial examples can be found in the Ata-

cama Desert in Chile (Irwin et al., 2014; Fig. 1b), on the Can-

terbury Plains in New Zealand, on the Colorado Plateau and

on Hawaii (Schumm and Phillips, 1986; Howard and Kochel,

1988; Kochel and Piper, 1986; Craddock et al., 2012). Fur-

thermore, much smaller examples that are similar in shape

are valleys that emerge in eroding riverbanks (Fig. 1c) or

those on the beach that develop during a receding tide (Hig-

gins, 1982; Otvos, 1999; Fox and Wilson, 2010; Hagerty,

1991).

Such theater-headed valleys can form by the seepage

of groundwater in erodible sediment (e.g., Howard and

McLane, 1988). These valleys form due to headward erosion

that is produced by mass-wasting processes where ground-

water seeps to the surface (Fig. 2a). In this paper we define
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Figure 1. Examples of theater-headed valleys. (a) Louros Valles on Mars (perspective view); (b) valleys on the coast of the Atacama Desert,

Chile (oblique photo, human for scale); (c) a riverbank (oblique photo); (d) side valleys of Snake River, Idaho, USA (orthorectified image);

(e) valleys on the coast of the Atacama Desert, where the star indicates position of viewpoint of (b) (orthorectified image); (f) Apalachicola

Bluffs near Bristol, Florida, USA (orthorectified image). Image credits: (a) Google Earth (NASA/USGS, ESA/DLR/FU Berlin), (b) Tjalling

de Haas, (c) Wouter Marra, (d, f) Bing Maps Imagery, (e) courtesy of GFZ Potsdam.

seepage as the hydrological process of groundwater emerg-

ing at the surface and groundwater sapping as the geomor-

phological process of erosion by undercutting which is trig-

gered by seepage, although not all erosion by seepage of

groundwater results in undercutting. A channel is a body of

flowing water, i.e., an active fluvial feature. A valley is an

eroding (active) or eroded (inactive) depression in the land-

scape, usually linear, elongated or sinuous. Persistent fluvial

erosion by a channel results in the formation of a valley larger

than the channel, but other processes (glacial, mass wasting)

can result in the formation of valleys as well. The morphol-

ogy of former channel that did not result in the formation

of a larger valley are referred to as channel remnants. Con-

fusingly, in Martian geomorphology, large valleys formed by

catastrophic floods are referred to as outflow channels; we

conform to this definition for the outflow channels.

Valley formation by seepage (Fig. 2a) is different from

valley formation by overland flow. In the former, headward

progression is the result of knickpoint retreat and fluvial in-

cision (Fig. 2b). However, overland flow can also produce

similar theater-headed valleys when incising into a substrate

with an erosion resistant top layer (Lamb et al., 2006). This

process is a likely candidate for the formation of the theater-

headed valleys next to the Snake River in Idaho (Fig. 1d).

The ambiguity in the mechanism of formation of the val-

leys hampers the interpretation of their origin based on their

theater-shaped morphology alone. This ambiguity is particu-

larly problematic for the explanation of theater-shaped valley

heads on Mars, where direct field observations and material

properties are lacking and a long period of weathering ob-

scures morphological details.

The morphological properties of entire landscapes with

multiple valleys may help in the interpretation of these Mar-

tian valleys when single entities have an ambiguous origin.

An important mechanism for the landscape formation by

groundwater seepage is groundwater flow piracy: since val-

leys are topographic depressions, they attract more ground-

water from their surroundings, resulting in a decrease in dis-

charge to nearby valleys (Howard and McLane, 1988). As

a result, smaller valleys cease to develop in favor of larger

valleys. Landscape metrics may show the presence of this

feedback mechanism. Furthermore, splitting of valleys dur-

ing their headward development (headward bifurcation) pro-

duces typical angles between valley segments (Devauchelle

et al., 2012; Glines and Fassett, 2013). In the case of valley

formation by seepage from uniform precipitation, the the-

oretical angle between valley segments becomes 72◦ (De-

vauchelle et al., 2012). Such properties as well as the orien-

tation of valleys (Jaumann and Reiss, 2002) can be extracted

from the landscape and indicate the responsible hydrological

system.

Our knowledge of groundwater seepage processes and

their relation to landscape evolution is limited, particularly

as systems with only groundwater processes are absent on

Earth and previous studies have mostly been limited to

the same boundary conditions of groundwater from an up-

stream constant-head tank (e.g., Howard and McLane, 1988;

Lobkovsky et al., 2004; Schorghofer et al., 2004; Pornprom-
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Figure 2. Fundamental processes at valley heads for overland flow and groundwater seepage. (a) Valleys formed by groundwater seepage

extend in a headward direction by mass-wasting processes. (b) Valleys by overland flow deepen by fluvial incision and extend in a headward

direction by knickpoint retreat.

min et al., 2010; Marra et al., 2014a). These experiments

simulated a distant groundwater source and showed the ba-

sic morphology of valleys formed by groundwater seepage

and also revealed the importance of groundwater flow piracy

as a key process for valley evolution. However, alternate hy-

drological systems exist where other processes are signifi-

cant and result in a different landscape evolution. In con-

trast to a distant groundwater source, groundwater seepage

could come from nearby infiltration of precipitation. Such

systems exist on Earth (Abrams et al., 2009; Fig. 1f) and

have been studied in experiments to some extent (Berhanu

et al., 2012), but require more attention in terms of their mor-

phological impact on landscape dynamics. We hypothesize

that a local groundwater source, e.g., as result of locally in-

filtrated precipitation, results in less groundwater flow piracy

compared to groundwater that first travels some distance be-

fore seepage to the surface, because seepage from a nearby

source is less influenced by the topographic gradient respon-

sible for flow piracy. Since flow piracy is an important mech-

anism in the formation of valleys by groundwater seepage,

we expect different and distinct morphological development

for valleys formed by seepage from a local source compared

to those produced by distally fed systems. Specifically, dis-

tant sources of groundwater produces landscapes with many

small valleys that ceased developing early, whereas in land-

scapes produced by local sources of groundwater, valleys

have similar lengths as most valleys developed continuously.

In this paper, we aim to improve our understanding of

groundwater seepage processes, specifically on the result-

ing valley formation at a landscape scale using morphologi-

cal experiments. We specifically study the difference in mor-

phological development of valleys that result from a distant

groundwater source (simulated with an upstream constant-

head tank) and a local groundwater source (simulated by

infiltrating precipitation). Furthermore, we combine our ex-

perimental insight with previous studies in order to show

a complete range of landscapes formed by groundwater seep-

age under different conditions. The objective is to provide

a framework that shows the arrangement of multiple valleys,

i.e., the orientation and length distribution that results from

different hydrological boundary conditions. These proper-

ties will aid in the identification of the formative processes

when the single-valley morphology is ambiguous, and will

constrain the underlying hydrological conditions. To demon-

strate the application of this framework for landscape inter-

pretation, we use two frequently cited cases of groundwater

seepage on Mars, Nirgal Vallis and Louros Valles, and relate

their landscape metrics to the possible sources of groundwa-

ter.

2 Methods

2.1 Experimental design

We conducted a series of flume experiments in the To-

tal Environmental Simulator (TES) facility at the Univer-

sity of Hull to investigate the morphological development

of theater-headed valleys by groundwater seepage. More-

over, with these experiments we simulated the difference be-

tween groundwater seepage generated by a distant source of

groundwater, using a constant groundwater level at the up-

stream end of the experimental setup, and groundwater seep-

age produced by infiltration of precipitation applied over the

entire experimental domain. We repeated both experiments

with an idealized initial morphology and with a heteroge-

neous initial morphology that was the result of a previous

experiment. In this section, we present the setup, the initial
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topography and applied boundary conditions across the ex-

perimental set.

The initial idealized morphology consisted of a volume of

sand with a median grain size of 0.7 mm, which comprised

(1) a flat area of 1.7 m upstream and (2) a slope of 0.22 mm−1

for 3.5 m (Fig. 3), which was uniform over a width of 4 m.

We used natural, moderately angular sand to mimic natu-

ral groundwater and surface flow processes. The grain size

was such that groundwater flow was neither too rapid nor too

slow for the formation of valleys within a reasonable period

of time. The sloping section ensured seepage of groundwater

from a hydrostatic groundwater level, that is, without apply-

ing extra pressure to the groundwater.

The sediment was placed on top of a partially sloping im-

permeable floor to increase groundwater flow in the down-

stream half of the setup and to reduce the amount of sed-

iment required. This floor was flat for 2.6 m and the slope

was 0.11 mm−1 for 2.6 m. Pond liner ensured the imperme-

ability of the floor and walls. A rough cloth on top of the

pond liner prevented the entire block of sediment from slid-

ing down the smooth pond liner surface. The total sediment

depth was 0.5 m in the upstream flat part, sloping towards

the downstream end. At the downstream end, a row of 6 cm

high bricks truncated the wedging slope to prevent the sed-

iment from sliding down. In addition, the small spaces be-

tween these 10 cm wide bricks acted as initial surface pertur-

bations. This ensured the initiation of channels was evenly

distributed over the entire width of the sediment surface.

The constant-head tank was designed to simulate a dis-

tant groundwater source and was constructed opposite of the

sloping wedge of sediment. It spanned the entire width and

depth of the sediment fill with a 0.6 mm mesh fabric, braced

with chicken wire and steel gratings at the water side to re-

tain the sediment and avoid collapse into the reservoir under

the weight of the sand. This setup enabled water from the

constant-head tank to enter the body of sediment over the en-

tire width and depth at the upstream side of the flat section of

the sediment fill.

For the experiment with precipitation as the water source,

we used an array of spray nozzles above the setup to sup-

ply water over the sediment surface. These nozzles were fed

with a discharge such that the water spray infiltrated in the

flat area and seeped out on the sloping wedge. The discharge

feed was slightly lower than the infiltration capacity of the

sediment. A rising groundwater table induced seepage, but,

in contrast to the constant-head tank, the seepage areas were

fed by nearby infiltrated groundwater. Twelve spray nozzles

with square spray patterns were used to ensure uniform spray

distribution and pressurized water was fed from a ring main

to ensure equal spray rates for all nozzles.

We carried out five experiments with the above-described

boundary condition combinations (Table 1) under terrestrial

conditions. The experiment labeled distant source was car-

ried out with the constant-head tank throughout as the bound-

ary condition using the initial topography described above.

The final surface morphology from the distant source ex-

periment was used as initial morphology of the experiment

labeled local after distant, which was run with water input

from the spray nozzles. The experiment labeled local pre-

cipitation was run with water input from the spray nozzles

on the above-described initial topography. The experiment

labeled local precipitation 2 was run to generate an initial

morphology with the same conditions as local precipitation

and this experiment was ceased early. The final morphology

of local precipitation 2 was the initial morphology of distant

after local, which was subject to groundwater flow generated

by the constant-head tank.

2.2 Experimental imagery and elevation models

We captured the morphological development of the experi-

ments using time-lapse photography. These images enabled

us to study the experiments in detail from different angles.

Moreover, we derived valley dimensions from orthorecti-

fied time-lapse images. The time-lapse setup consisted of six

cameras (Canon PowerShot A640), mounted around the ex-

perimental setup (see C1–C6 in Fig. 3), which were triggered

synchronously at set intervals. These intervals ranged from

30 s to 5 min, based on the rate of morphological develop-

ment during the ongoing experiment (values in Table 1).

For each experiment, time-lapse imagery from four cam-

eras (C1, C2, C4 and C5) was processed to construct a sin-

gle orthorectified photograph (Fig. 3). Orthorectification was

implemented using the “Image Processing” and the “Camera

Calibration” toolboxes in the MATLAB software suite. Or-

thorectification was performed using the initial surface eleva-

tion model, due to absence of elevation data at each time step.

This method resulted in warped imagery in areas with eleva-

tion change, i.e., within the valleys. However, these images

were used to extract valley lengths and widths which are cal-

culated from the distances between non-eroded valley walls.

The outside edges of these walls form in the original surface

and are therefore correctly represented in the orthorectified

photograph using this method.

For detailed morphological analysis, we generated digi-

tal elevation models (DEMs) and orthorectified images at

the end of each experiment using a large set of images

and a structure-from-motion (SfM) algorithm (Forsyth and

Ponce, 2011). In addition, we also acquired these data every

day during the distant source and distant after local exper-

iment at irregular intervals (Table 1). Each DEM and asso-

ciated orthorectified image was derived from 70 to 100 dig-

ital images with about 80 % overlap. We took these images

by hand, allowing us to capture the area of interest. Twenty-

four targets with known coordinates within the experimental

setup enabled referencing of the images. Camera positions

and orientations were solved using these known target coor-

dinates and matched features between images. To improve

the quality of the result, we removed features in wet areas

to eliminate faulty matches in reflective areas due to differ-
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Figure 3. Setup of the experiments. (a) Oblique photo from downstream end of the flume, showing the initial sediment surface, gutter and

constant-head tank in the back. The rain simulators and cameras are above the photographed area; their approximate locations (C1–C6) are

shown. (b) Cross section showing setup with impermeable floor, constant-head tank (ch), gutter, approximate location of spray nozzles (sn)

and brickwork. (c) Plan view showing the locations of the rain simulators (x), camera locations (C1–C6) and positions of the laser scanner

(LS1, LS2).

Table 1. Experimental runs, their duration, discharge setting and data acquisition intervals; video number corresponds with videos in the

Supplement. Abbreviation used: d – days; h – hours; min – minutes.

Experiment Duration Mean Q

(Lmin−1)

CumulativeQ

(m3)

Time-lapse

interval

SfM interval Video

Distant source 3 d 3 h 2.4 10 5 min 1 d 3 h

2 d 2 h

2 d 22 h

3 d 3h

video 1

Local precipitation 1 h 50 min 11.9 0.95 30 s end of exp. video 2

Local precipitation 2 40 min

Local after distant 3 h 10 min 10.5 1.9 30 s end of exp. video 3

Distant after local 3 d 16 h 2 10 5 min 0 d 2 h

0 d 21 h

2 d 0 h

2 d 20 h

3 d 16 h

video 4

ent lightning angles between images. Elevation models were

generated for each set of images, which were processed to

a gridded elevation model with 1 mm cell size and a 0.5 mm

orthorectified images. We used a Canon 550D DSLR camera

with an 18–55 mm f/2.8 lens to take the photos, which we

processed in RAW format to 16 bit TIF images to eliminate

compression artifacts. We used Agisoft PhotoScan for SfM

processing (Agisoft, 2014).

A laser scanner was also used to obtain DEMs at the end

of each experiment. Point-cloud elevation data of the final

morphology were scanned from two different angles in or-

der to eliminate data shadows outside the line of sight of the

laser scanner (see Fig. 3). These point clouds were oriented

and merged using fixed targets in the experimental setup to

produce a combined scan gridded onto a DEM with a 2 mm

cell size. We used a Leica ScanStation 2 laser scanner for

data acquisition, CloudCompare for point-cloud orientation

and ArcGIS for gridding of the point-cloud data.

2.3 Valley development and erosion rates

To quantify the morphological development, we measured

valley widths, lengths and depths during the experiments.

Based on these data, we calculated valley shapes, and erosion

rates and compared the latter to measured sediment output.

The length L (m) and width W (m) of each valley that

formed during the experiments were determined for each

time-lapse interval from the orthorectified time-lapse im-

ages. The valley width was taken just downstream of the val-

ley head where the valley walls were parallel. Valley depth
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D (m) was defined as the deepest point of each valley, i.e.,

the largest elevation difference between the original surface

and the eroded surface. Valley depth was measured at each

SfM interval. The final valley floor slope Sf (mm−1) was ex-

tracted from the final DEM. We defined the valley floor as

the lowest point in each valley cross section. We estimated

the erosion rates of each valley during the experiments by

combining the valley dimensions and valley shapes.

First, the eroded volume V (m3) was estimated as

V =W ×L×D×SIc× 0.5, (1)

for which W and L were taken at each time-lapse interval,

D (m) is the valley depth that was interpolated between SfM

measurements for each time-lapse interval. SIc is the shape

index of the valley cross section, which is the average ratio of

the actual valley cross section to the square cross section of

W ×D. The factor 0.5 corrects for the longitudinal profile of

the valley, which is in all cases approximately triangular. Val-

ley volume was transformed into an erosion rate E (g s−1):

E =
1Vρs(1− n)× 10−3

1T
, (2)

where 1V is the change in volume, ρs is the density of

sand (2300 kgm−3), n the porosity of the sediment (0.3) and

1T (s) is the time over which the change in volume occurred.

Cumulative erosion was compared to sediment output mea-

surements collected from bucket traps.

2.4 Martian landscape metrics

We constructed elevation profiles and extracted the orienta-

tion in degrees from north (i.e., azimuth) of valley segments,

the angles between converging valleys and valley lengths of

Louros Valles and Nirgal Vallis. Elevation profiles were ex-

tracted from HRSC image H0380_0001 (125 m resolution

DEM) for Louros Valles; valleys of Nirgal Vallis were too

small to produce elevation profiles. Valley segments for both

systems were digitized from THEMIS daytime infrared mo-

saic (Fergason et al., 2013) and HRSC (Jaumann et al., 2007)

imagery. We distinguished different stream orders, based on

the Hack stream-ordering number (Hack, 1957). In this sys-

tem, the first order is the main, downstream, valley; the first

tributary is the second order and so on. We choose this sys-

tem since it represents the chronology of valley formation by

headward erosion.

The data set of valley segments was transformed to a net-

work topology to distinguish between upstream and down-

stream directions, using logical operators based on the meth-

ods described in Marra et al. (2014b) using ArcGIS and

MATLAB. In this data set, we identified converging val-

ley segments, valley heads and outlets based on the net-

work topology. Building upon the work of Jaumann and

Reiss (2002), the orientation relative to north of each val-

ley segment was extracted for each stream order identified in

the data set. Orientation distributions were normalized per

stream order to clearly show the differences between val-

ley orientations of different stream orders. At each node of

converging valleys, we calculated the angle between the up-

stream valley segments (following Glines and Fassett, 2013).

Such a converging valley is referred to as headward bifur-

cation; this definition relates to the chronological order of

events in valley formation. In active rivers, the term bifurca-

tion is used for a fluvial channel that splits into two in the

downstream direction, which relates to the direction of water

movement. Furthermore, for each valley head in the network,

we calculated the distance to the first lower-order valley seg-

ment.

3 Experimental results

In the following section, we first describe the observed mor-

phological development during the experiments, and then we

link this morphological development to the acting processes.

Time-lapse imagery and elevation models support these ob-

servations (time-lapse movies are available in the Supple-

ment).

3.1 Distant source

The experiment with seepage from a distant constant-head

tank was characterized by slowly developing valleys. This

experiment took over 3 days to complete and was carried out

with a constant discharge of 2.4 L min−1 (Table 1).

The sediment saturated in the first hours of the experiment.

During this stage, a visible wetting front at the surface pro-

gressed from the upstream constant-head tank in the down-

stream direction. The sediment became fully saturated at the

foot of the slope where seepage occurred after 2.5 h over

the full width of the sediment surface (Fig. 4a–i). The ini-

tial seepage pattern remained roughly the same, though the

seepage area extended upslope to about 1 m from the foot of

the slope. Initially, the seepage was too low for fluvial trans-

port to occur. As the seepage rate increased, fluvial transport

started after 4 h and the first channels started to form at the

foot of the slope within the seepage area.

The initial channels at the foot of the slope featured a com-

bination of mass-wasting and fluvial processes. Mass wasting

of saturated sediment at the head caused headward erosion,

and fluvial processes in the channel resulted in incision and

the formation of valleys (Fig. 4a–iii). As the valleys devel-

oped in the upstream direction, the seepage area retreated

and seepage focused within the valleys as shown by drying of

the sediment between the valleys and a concurrent increase

in discharge within the valleys (Fig. 4a–iii). Seepage was

limited to a declining number of valleys, as the valleys that

reached most upstream progressively attracted more ground-

water. From the 10 valleys that started to form in the initial

stage of the experiment, only 6 remained active after a few
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Figure 4. Stills from time lapses of the experiments showing the main morphological development. Full time-lapse movies are available in

the Supplement.
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hours (Fig. 4a–iv), and only 3 remained active for several

days (Fig. 4a–v).

The decreasing number of actively developing valleys il-

lustrates the process of groundwater flow piracy as the largest

valleys attract most of the groundwater flow since these are

the deepest point in the landscape. As a result, more ground-

water is directed to those largest valleys, which are therefore

more active and smaller valleys cease developing. This feed-

back resulted in a final morphology with a few large and sev-

eral small valleys (Fig. 5).

The remaining valleys grew and as they became deeper,

the head- and side walls gained strength by cohesion as the

sediment was moist. As a result, the headwall retreat was

governed by collapse due to undercutting at the toe, in con-

trast to the slumping of the entire valley head before the

development of this cohesive top layer. In this process, the

toe of the head wall was destabilized by fluvial erosion, re-

sulting in collapse of the headwall. The collapsed material

spread over a distance of 0.1 to 0.2 m into the valleys. Flu-

vial transport removed this material from the upstream end

to the downstream end of the experimental setup. These pro-

cesses showed a cyclic behavior: head collapse only occurred

after a destabilization of the head due to the removal of the

sediment by fluvial transport. This cycle is essential for the

continuation of the process as the valley head would stabi-

lize without such erosion and sediment transport. The final

morphology shows the former presence of these various pro-

cesses. In the three most developed valleys, the upstream

end had a steeper slope than the downstream sections with

a break in slope separating the two (Fig. 6a). This change in

slope is the result of the transition of mass-wasting processes

upstream to fluvial processes downstream.

The collapse of unsaturated material at the valley heads

resulted in steep head walls (Fig. 5). The step-wise increase

in valley width and length shows distinct peaks of collapse

(Fig. 7a and b) and erosion rates (Fig. 7d). Steps in width

and depth of the valleys are not simultaneous, which shows

that collapse of the head- and side walls occurs at different

moments. Although erosion takes place in distinct peaks of

activity, these valleys show a linear trend in valley length and

width during the most part of their development. Interest-

ingly, the width-to-length ratio of the three main valleys is

the same during the entire experiment (Fig. 8a).

3.2 Local precipitation

The local precipitation experiment took 1 h and 50 min with

an average discharge of 11.9 Lmin−1. This discharge is

higher than in the distal source experiment. A part of the pre-

cipitation fell directly into the valleys since the precipitation

was distributed evenly over the experimental domain. Fur-

thermore, the groundwater table in the local precipitation ex-

periment was close to the surface compared to a relative deep

groundwater table in the distal source experiment. As a result

this setup allowed for more seepage due to the higher seepage

area, explaining the higher discharge and shorter run of this

experiment. In this experiment we distinguished two stages

in valley development. In roughly the first half of the experi-

ment, overland flow was the main source of water feeding the

channels. In the second half, groundwater fed the channels.

In the first stage of the experiment, the sediment in the

downstream part of the slope saturated rapidly due to the

limited sediment thickness (Fig. 4b–i). On this saturated sed-

iment, precipitation transformed directly into runoff, result-

ing in channels that formed valleys by fluvial incision. These

valleys formed over the entire width of the sediment and had

valley heads with a V-shaped planform (Fig. 4b–ii). During

this stage, valleys developed in a headward direction by flu-

vial erosion and valley heads were within the area of satu-

rated sediment. Seepage inherently occurred in the valleys

due to the setup of the experiment. However, the overland

flow processes dominated the seepage processes.

As the groundwater table rose during the experiment, the

boundary of saturated sediment moved upslope. This pro-

gression of the saturated area slowed down as it progressed.

In the first stage, valley development did not keep up with

this moving front. However, the valleys caught up and devel-

oped upstream of the saturated area as the experiment pro-

gressed (Fig. 4b–iii). This marks the second stage in valley

development wherein groundwater seepage rather than sur-

face runoff fed the valley heads. From the moment the valley

heads were fed by groundwater, their planform changed from

V-shaped to theater-shaped (Fig. 4b–iv and b–v). This change

indicates a change from fluvial flow to mass-wasting pro-

cesses at the headwall. The headward growth showed similar

characteristics to that in the experiment with seepage from

a distant source: growth governed by failure of the headwall

and fluvial transport that removed the failed material. Sim-

ilar to the distant source experiments, there was also a dis-

tinguishable difference in slope in the upstream and down-

stream half of the valleys (Fig. 6), although this difference

was less pronounced.

The valleys in the local precipitation experiment were

shallow compared to the valleys in the distant source experi-

ment. In both cases, the valleys developed around the ground-

water table, which was close to the surface in the local pre-

cipitation experiments. The limited depth was presumably

the result of the high groundwater table; there was no zone of

unsaturated sediment resulting in valleys without steep walls

(Figs. 5b and 6a).

The valleys in the local precipitation experiment became

longer and slightly wider by lateral erosion during the experi-

ment (Fig. 7f and g). An important difference with the distant

source case was that all valleys continued to develop and had

similar sizes during the experiment (Fig. 7i). This is due to

the absence of groundwater flow piracy since each valley was

fed by locally infiltrated groundwater (Fig. 5). In contrast to

the valleys from a distant source, the relation between valley

length and width in the locally fed valleys is not linear and

different valleys do not have the same ratio (Fig. 8b).
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Figure 5. Erosion maps/final morphology of the experiments showing valley letters used in subsequent figures. (a) Distant source experiment,

(b) local precipitation experiment (c) distant after local experiment and (d) local after distant experiment.

3.3 Effect of initial morphology on seepage from a

distant source

We studied the effect of an initial morphology on the valley

development in experiment distant after local by repeating

the experiment on an initial morphology. This initial mor-

phology was the result of experiment local precipitation 2,

which consists of multiple parallel shallow valleys created

by overland flow (Fig. 9).

Experiment distant after local showed the same general

characteristics and development as the distant source exper-

iment; the main difference is where valleys started to form.

In the distant after local experiment, initial seepage at the

downstream end focused within the valleys of the initial

morphology. However, due to groundwater flow piracy, only

a limited number of these valleys fully developed. Six val-

leys started to form, but only two valleys fully developed

(Fig. 5c). Development in the two remaining valleys was the

same as described for the distant experiment. In the early

stages of valley development, the valleys followed the path

of the existing valleys in the initial morphology. When they

became larger, they still followed the path of the initial val-

leys, although these were straight and the new valleys were

much wider than the initial valleys. In our view, these ma-

ture valleys seemed to develop independently from the initial

morphology.

3.4 Effect of initial morphology on local precipitation

experiment

In the local after distant experiment, the final morphology of

the distant source experiment acted as the initial morphology

of this run (Fig. 5a). The same processes acted in this experi-

ment, though the initial morphology had a much larger effect

on the final morphology in this case.

In the first stage of the local after distant experiment, the

existing valleys reactivated as the sediment saturated. Due to

the rising groundwater level, the steep side- and headwalls of

the previous valleys became unstable and collapsed. This re-

sulted in a decreasing valley depth and increasing width. The

valleys that were abandoned in the distant source experiment
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due to groundwater flow piracy reactivated as they were fed

by local precipitation and subsequently infiltrated groundwa-

ter, resulting in a smaller difference in valley size (Fig. 5d)

compared to the initial situation (Fig. 5a). Collapse of the

headwall caused headward erosion and lateral erosion caused

widening of the valleys. These are the same processes as in

the local precipitation experiment with no initial morphol-

ogy, but the final morphology showed much wider valleys.

The initially present valleys were relatively deep in compar-

ison to the final valleys. The reduction in depth of these val-

leys corresponded with this widening.

At the end of the local after distant experiment, water

ponded at the upstream flat section of the experimental setup.

This ponding seemed to be the result of the sediment becom-

ing fully saturated towards the end of the experiment. The

headward developing valleys tapped into this shallow reser-

voir, resulting in a final slightly catastrophic stage of erosion

due to the breach of this reservoir (Fig. 5d). This stage is not

representative of the main objectives of this paper and there-

fore not further considered here.

4 Examples of Martian valley systems

In this section, we show the morphology of Louros Valles and

Nirgal Vallis (Figs. 10 and 11), two Martian valley systems

that were previously attributed to a groundwater seepage ori-

gin (e.g., Jaumann and Reiss, 2002; Harrison and Grimm,

2005; Glines and Fassett, 2013). These two system serve as

an example of how to apply our experimental results and

have received much attention in recent literature. Further-

more, these systems show branching valleys, which also aids

the interpretation of these systems. In this section, we de-

scribe Louros Valles and Nirgal Vallis; their interpretation is

part of the discussion.

4.1 Louros Valles

Louros Valles is located at the north and south flanks of

Valles Marineris. These valleys have circular valley heads

cutting into flat plains. The valleys have a total relief of

several kilometers and are between 10 and 100 km long

(Fig. 10b and c). Upstream of the valley heads, there are no

visible tributaries or depressions in the elevation data or im-

agery. Downstream of the valleys, in Valles Marineris, there

are no clear deposits associated with these valleys. Sediment

output in this case could be spread over a large area on the

floor of Ius Chasma as a thin veneer and not recognizable as

fluvial deposits. The valleys on the northern flank are shorter

than the valleys at the south. Of the southern valleys, there

are two larger valleys in the west; all other valleys are ap-

proximately equal in size. The valleys are closely spaced

and several valleys touch or intersect, resulting in a relatively

densely dissected plain (Fig. 10c and d).

As an example, we show an elevation profile of the largest

valley of Louros Valles (Fig. 10e). These and other elevation

data show a rough, irregular profile, likely related to post-

valley formation wall collapse or tectonism. At the down-

stream end of the valley, the elevation quickly drops, which

shows the onset of Valles Marineris. Based on a 10 km mov-

ing average, we show the valley has a change in slope about
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Figure 9. Final morphology of experiment local precipitation 2,

which is the initial morphology of experiment distant after local.

halfway to a lower slope than the upstream part (Fig. 10e).

However, the irregular elevation data limit the interpretation

of these observations.

All valleys show headward bifurcations. For the north-

ern valleys, the orientation of the first-order valleys varies

from northwest to northeast, with most valleys oriented to

the north-northeast (Fig. 12). The first tributaries, or sec-

ond order (Hack, 1957) valleys, have a similar spread in ori-

entation, but most are oriented to the west-northwest. For

the southern valleys, most first-order valleys are oriented to-

wards the southwest, while higher-order valleys are directed

towards the south-southwest or towards the west-southwest

(Fig. 12b). Interestingly, a few third- and fourth-order seg-

ments are oriented in the opposite direction (180◦) to the

first-order valleys (e.g., Fig. 10d).

The lengths of the tributaries range between 5 and 15 km

(the main valleys are longer, but most are outside the graph),

with no specific trend in the distribution of valley length

(Fig. 12d). Mean headward bifurcation angles of the different

stream orders are between 70 and 90◦ (Fig. 12f).

4.2 Nirgal Vallis

Nirgal Vallis consists of a > 500 km long main valley and

several sparsely distributed side valleys of various sizes

(Fig. 11). Valley depths range from several tens to several

hundreds of meters. The valley cuts into the plateau through

several north–south-oriented wrinkle ridges, which are in

places the highest points in the landscape. Several side val-

leys align with these wrinkle ridges (Glines and Fassett,

2013).

The orientation of the main valley is dominantly west-

northwest; the first-order tributaries have the same dominant

orientation, but a large part is deflected north- and southward

(Fig. 12c). This tendency of dominantly westward-oriented

valleys is shown in the landscape (Figs. 11d and 12c). There

are a few larger side valleys, but most side valleys are very

short (Figs. 11d and 12e). This results in the sparsely dis-

sected landscape. The mean headward bifurcation angle be-

tween valleys is 70.7◦ with a standard deviation of 18.6

(Fig. 12g), similar but slightly less than the results of Glines

and Fassett (2013) for the same valley network but with less

measured junctions. Headward bifurcation angles are similar

for different stream orders.

5 Discussion

5.1 Valley morphology related to groundwater source

The valleys in our experiments with a distant source of

groundwater have semi-circular, theater-shaped valley heads

with a sharp transition to the upstream, uneroded surface.

These are similar to those found in previous studies on

valleys formed by groundwater seepage (e.g., Howard and

McLane, 1988; Hagerty, 1991; Dunne, 1980; Fox et al.,

2006; Pornprommin et al., 2010). Valleys in our experiment

fed from nearby infiltrated precipitation also featured semi-

circular valley heads but lacked the steep theater-shaped head

wall. The valleys from both boundary conditions developed

in a headward direction by destabilization of the valley head

due to either undercutting or slumping. The eroded material

is transported along the valley by fluvial processes. These

two main processes showed a cyclic behavior as the fluvial

erosion in the valley was the trigger for collapse at the val-

ley head. Furthermore, in both experiments, the slope in the

upstream section of the valley floor was steeper than in the

downstream valley floor (Fig. 6), which relates to the transi-

tion from mass-wasted material released at the valley head to

the fluvial transport of material downstream.

The morphological similarity between theater-headed val-

leys in groundwater sapping features (undercutting and fail-

ure by groundwater seepage erosion) at the beach (Higgins,

1982), in sandbox experiments (Howard and McLane, 1988),

on the Colorado Plateau (Laity and Malin, 1985) and on Mars

is often used as an argument for a groundwater origin of the

Martian valleys (e.g., Schumm and Phillips, 1986; Mangold

and Ansan, 2006; Harrison et al., 2013). A complication in

the study of such morphology on Mars is that different pro-

cesses yield a similar morphology. For example, waterfall

erosion (Lamb et al., 2006) or groundwater weathering (Pel-

letier and Baker, 2011) can also produce theater-headed val-

leys. We do not solve this controversy in this paper since the

experiments here do not explore the morphological differ-

ences between all these possible processes. Here, we focus

on morphology related to groundwater flow processes and

subsequent erosion in further detail and provide metrics of

entire landscapes to aid the interpretation of Martian land-

scapes.

In the following discussion, we start by considering the

applicability of our experiments. Then, we propose different

end-member landscapes based on knowledge from our ex-
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Figure 10. Maps and profile of Louros Valles. (a) Overview map showing location of (b) (MOLA shaded relief). (b) THEMIS daytime

infrared mosaic with color-coded MOLA DEM, showing location of (c) and (d). (c) Valley centerlines, color-coded by stream order on

THEMIS daytime infrared mosaic. (d) Detail of the network showing a densely dissected landscape and bifurcating valleys. (e) Elevation

profile based on HRSC data, moving average using a 10 km window (plotted with 1000 m vertical offset) and slopes of two segments.

Location of this profile is the first order valley indicated in (c).

periments combined with previous experimental work, mod-

eling results and theoretical considerations. The main land-

scape properties are the distribution of valley lengths, valley

order, valley orientation and the angle between valley seg-

ments. We close the discussion with an interpretation of the

Martian valleys described using the proposed landscape met-

rics framework.

5.2 Scalability of experimental results

The experiments described in this paper are not dimension-

ally scaled or direct analogues to the Martian case studies. In-

stead, the experiments provide insights into the fundamental

processes that result from groundwater seepage and the re-

sultant morphology. These experiments were devised to con-

trast distinct sources of groundwater and complement previ-

ous work. The experimental setup was designed to be sim-

ple in order to show clearly the effect of different hydro-

logical boundary conditions. Different initial conditions will

produce different landscapes, but again, our work is focused

on the essential underlying processes and representative mor-

phological features.

The experiments presented in this paper, and previous

work on seepage erosion, applies to landscapes formed by

groundwater and thus landscapes that form in porous and

erodible material. The overall patterns are expected to be

similar on different scales and for different materials that

meet these conditions, but details will differ. Our analyses are

therefore limited to the large-scale patterns in the landscapes

and not expected to explain details. Below we point out the

scale effects in our experiments and how we take these into

account.

An important difference between the distant source and lo-

cal precipitation experiments was the steepness of the valley

heads and side walls, which were much steeper in the distant

source case. In the distant source experiment, the groundwa-

ter table was deeper, resulting in an unsaturated (moist) top
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Figure 11. Maps of Nirgal Vallis. (a) Overview map showing location of (b) (MOLA shaded relief). (b) THEMIS daytime infrared mosaic

with color-coded MOLA DEM, showing location of (c) and (d). (c) Valley centerlines, color-coded by stream order on THEMIS daytime

infrared mosaic. (d) Detail of the network showing a sparsely dissected landscape with many small and a few large valleys.

layer above the groundwater table, which has more apparent

cohesion than the saturated (wet) top layer in the local pre-

cipitation experiment. In natural systems, such contrasts in

material strength arise from differences in soil or substrate

properties rather than formative processes. The depth of the

unsaturated layer relates to capillary forces, which are scale-

independent and thus relatively small for large experimen-

tal valleys (see discussion in Marra et al., 2014a). Neverthe-

less, theater-head formation took place in both cases with and

without an unsaturated top layer, which indicates that this

process takes place under both conditions and is not the re-

sult of this scale effect.

Destabilization of the headwall is a necessary condition

for the development of valleys by seepage. This only takes

place if sufficient sediment is removed from the toe of the

headwall, which requires channels with enough discharge for

sediment erosion and transport along the entire valley length.

In previous smaller-scale experiments, Marra et al. (2014a)

report on experiments in a 1× 3m flume with sand where

the channels clogged and valleys ceased developing due to

the absence of downstream sediment removal. Their solution

to sustain upstream processes and valley formation was to

flush away sediment at the downstream end. In that same

setup, valleys from groundwater seepage did develop when

lightweight plastic sediment was used, which enabled suffi-

cient sediment transport due to the lower material density.

In other words, sufficient downstream erosion by fluvial pro-

cesses is essential to keep the formation of valleys by seepage

going. In the experiments described in this paper, sediment

was not flushed at the downstream end, which shows that the

scale effect of having a insufficient discharge for sediment

erosion and transport was overcome in our setup.

Additional work is required to understand the morphologi-

cal details of valleys formed by groundwater seepage. In par-

ticular, we expect important effects on valley shapes to result

from layered substrates with alternations in material erodi-

bility. These effects can be studied experimentally, but to

model erosion rates on larger scales than can be represented

in the laboratory, numerical modeling will be more informa-

tive about the formative timescales of such systems and may

elucidate on terraces found in Martian valley systems. Fur-

thermore, using such models, Martian scenarios with a thick

layer of permafrost can be simulated which are unpractical

to recreate in most laboratories.
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Figure 12. Landscape metrics of Louros Valles and Nirgal Vallis.

(a–c) Valley orientation for valleys on the north (a) and south flank

(d) of Louros Valles and Nirgal Vallis (c). (d–e) Valley length (dis-

tance to lower-order valley) distribution for different stream orders,

most main valleys (order 1) plot far outside the shown window for

(d) Louros Valles and (e) Nirgal Vallis. (f–g) Distribution of bifurca-

tion orientation and box plots per stream order for (f) Louros Valles

and (g) Nirgal Vallis.

5.3 Groundwater flow piracy, valley spacing and length

distribution

The morphology of the entire landscape shows important dif-

ferences that are related to subsurface groundwater flow pro-

cesses. In the distant source experiment, a decreasing num-

ber of valleys remained active when smaller valleys ceased

to develop. This behavior relates to groundwater flow piracy

by the larger valleys, since these depressions attract ground-

water. Due to the travel distance and direction of the ground-

water, areas downstream of large valleys receive less or even

no groundwater as shown by surfacing drying. The resulting

landscape consists of several small valleys with a terminated

groundwater supply (Fig. 5a) in between a few large active

valleys oriented towards the groundwater source (Fig. 13a).

In contrast, the local precipitation experiments did not fea-

ture groundwater flow piracy since the groundwater source is

distributed everywhere and therefore cannot be captured by

nearby valleys. The resulting landscape is densely dissected

with valleys of similar size in close proximity to each other

(Figs. 5b and 13b).

An important parameter for groundwater flow piracy is

the fraction of the groundwater flow that a valley captures.

This is controlled by the ratio of cross-stream to downstream

groundwater flux (Pelletier, 2003; Schorghofer et al., 2004),

which is proportional to the groundwater gradient in isotropic

conditions. In the case of valleys formed by groundwater

seepage, the emerging valley itself leads to a topographic

low that introduces a cross-stream groundwater slope, which

increases the flow towards that valley. This morphological

feedback causes flow piracy when a valley attracts enough

groundwater to cease the flow to other valleys. This feed-

back and tendency for flow piracy is stronger for flat surfaces

in contrast to valley formation on a slope, since a depres-

sion in a flat surface has a larger effect on the convergence of

groundwater flow (Pornprommin et al., 2010).

Our experiments show that the valley width-to-length ratio

is similar for valleys formed by a distant source of ground-

water (Fig. 8a), but this is not the case for valleys fed by a

local groundwater source (Fig. 8a). The similarity in the de-

velopment of several distally fed valleys is indicative of val-

ley formation by the same source of groundwater. The size of

the valley is the dominant control on the amount of water de-

livered to that valley since a larger and deeper valley yields

more groundwater seepage. In turn, the amount of erosion

relates to the size of the valley, and hence the morphological

development is similar for the different valleys. The amount

of water delivered to the valleys fed by local precipitation is

only partly controlled by this mechanism. In this case, the

amount of groundwater delivered to the valley head also de-

pends on upstream area and local watersheds.

Initial conditions may affect the location where channels

emerge and valleys start to form, and thereby the spacing of

valleys in the final landscape. In our distant after local exper-

iment with minor initial morphology and a distant groundwa-

ter source, the initiation of valleys was related to the initial

perturbation of the surface, but the resulting processes and

the final landscape was similar to the experiment with no ini-

tial perturbations. This shows that seepage is robustly driven

by the subsurface flow pattern and agrees with the observa-

tions of Schumm and Phillips (1986) that valleys of a com-

posite origin dominantly reflect the last process. In contrast,

in the local after distant experiment, there was a significant

effect of the initial morphology as old valleys reactivated. Im-

portantly, the valley patterns in the distant after local exper-

iment are similar to those in the distant source experiment;

thus, they are hardly influenced by the initial morphology.

An implication is that the location and orientation of valleys

fed from a distant source strongly relates to the responsible

hydrology and, to a lesser extent, to initial condition. There-

fore, the morphology is a reliable indicator for the source of

groundwater that shaped such landscapes.
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Figure 13. Landscape end members formed by groundwater seepage as result from a distant source or local precipitation, and steep or

horizontal surface. Each panel shows a schematic diagram (upper left), an Martian case showing a similar morphology (upper right) as an

example, and the expected valley length distribution and valley orientation (bottom). A distant source (a, c) results in valley abandonment due

to upstream capture of groundwater, whereas a local groundwater source (b, d) is less prone to flow piracy. Horizontal surfaces (c, d) have a

strong tendency to form valley bifurcations in contrast to steep slopes (a, b). Valleys emerging from a distant groundwater source result in an

open landscape as no valleys develop downstream of large valleys. Similar Martian landscapes in (a) Noctis Labyrinthus (THEMIS image),

(b) Gale Crater (CTX image), (c) Nirgal Vallis (THEMIS image) and (d) Louros Valles (THEMIS image).

5.4 Headward bifurcations

Our experimental valleys did not bifurcate at their valley

head, which is considered a typical property for valleys fed

by groundwater seepage (e.g., Howard and McLane, 1988).

The absence of headward bifurcations in our experiments is

the result of the steep slope in the downstream half of the

setup. Pornprommin et al. (2010) showed that valleys that

formed in a flat surface result in more seepage at the flanks of

the valley head, which increased the tendency of the valleys

to split when growing in a headward direction. Our results

show that seepage on a steep slope suppresses the tendency

to form such headward bifurcations, compared with similar

experiments on horizontal surfaces, which do show headward

bifurcations (Fig. 13a and c; e.g., Berhanu et al., 2012).

Besides the initial slope, Berhanu et al. (2012) showed

that valleys fed from a local source have a higher tendency

to bifurcate in a headward direction. This tendency relates

to the groundwater flow that enters the valley head from

a wide range of directions and not mainly from upstream

or the direction of the groundwater source. As a result, val-

leys formed by seepage from a local source on a flat to-

pography have many headward bifurcations, which results in

a densely dissected landscape (Fig. 13d). This pattern is sim-

ilar to the Apalachicola Bluffs (Florida), which have been

shown to be formed by seepage of locally infiltrated precipi-

tation (Abrams et al., 2009).

The flow field that results from local infiltration into a flat

substrate results in headward bifurcation angles of 72◦ (De-

vauchelle et al., 2012). This value has been considered as

evidence for a groundwater origin of Nirgal Vallis by Glines

and Fassett (2013), but this value is only characteristic for

seepage from uniform precipitation on a flat surface and is

therefore not universally applicable. Furthermore, structural

controls from tectonics may also dictate the angles between

valleys (Luo et al., 1997), which is also likely the case for

Nirgal Vallis (Glines and Fassett, 2013).

The combined occurrence of developing headward bifur-

cations and groundwater flow piracy results in the formation

of typically stubby tributaries. When a valley bifurcates in
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a headward direction, there are two valley heads close to

each other, which will in result in abandonment of one of

these (Fig. 13c) due to the presence of groundwater flow

piracy. This behavior and the resulting morphology is indica-

tive of valley formation by seepage from a distant groundwa-

ter source.

5.5 Origin of Martian examples

We analyzed the landscape of Louros Valles and Nirgal Val-

lis, two valley systems often attributed to groundwater seep-

age. Two additional examples are shown in Fig. 13a and b,

and these examples are described below to serve as an illus-

tration of how the morphology can appear but are not ana-

lyzed further. The valleys in Noctis Labyrinthus (Fig. 13a)

show valleys with no headward bifurcations and a few small

valleys in between larger valleys. Although the plateau where

these valleys cut into is flat, there is a strong gradient between

valley head and outflow point, which illustrates our con-

tention that a steep slope suppresses the tendency for head-

ward bifurcation to form. The small valleys in Gale Crater

(Fig. 13b) are similar in size and shallow, and there is a re-

gional slope.

Alternate hypotheses for similar valley formations are

bedrock erosion by catastrophic release of surface water

(Lamb et al., 2006) or bedrock weathering and erosion by

groundwater (Pelletier and Baker, 2011), which would result

in the same combination of boundary conditions and mor-

phology as seepage in unconsolidated materials. Another hy-

pothesis for the formation of Louros Valles is focused ero-

sion by meltwater in between patches protected from erosion

by the presence of an ice cover (“glacial selective linear ero-

sion”; Lee, 2000).

The evidence in favor of a groundwater origin over surface

flow in both Nirgal Vallis and Louros Valles is the absence of

remnants of channels feeding the main valleys. However, bil-

lions of years of weathering and a dust cover could have ob-

scured such small morphological features. The elevation pro-

file of one of the valleys in Louros Valles is bumpy (Fig. 10e),

likely due to later activity. Consequently, the interpretation

of such a profile in comparison to elevation profiles of the

experiments (Fig. 6) is limited. Therefore, we use the prop-

erties of multiple valleys and valley segments in the entire

landscape rather than single-valley morphology for our in-

terpretation.

The orientation of valley segments of Louros Valles is di-

verse and has a broad range of valley lengths, resulting in

a densely dissected landscape (Fig. 10). Such a landscape is

typical for a local groundwater source (Fig. 13d). Further-

more, in Louros Valles, some higher-order valley segments

are oriented in the downstream direction with respect of the

main valleys (Fig. 10d), which can be the result of a local

source of groundwater and not groundwater coming from

greater distances. Additionally, the presence of valleys on

both sides of Valles Marineris suggests a local groundwater

source and not groundwater coming from a great distance.

A possible local source of groundwater for Louros Valles

is precipitation; melt of snow, ice or permafrost; or upwelling

groundwater from a cryosphere-confined aquifer (e.g., Clif-

ford, 1993). The presence of this type of aquifer in this region

may also have been the source of water for the outflow chan-

nels further northeast which are likely to have formed by the

release of pressurized groundwater from a confined aquifer.

The timing of events here is crucial since the presence of

Valles Marineris, and the clear formation of Louros Valles af-

ter the opening of Valles Marineris, suggests that this aquifer

was at that point cut off and split between the north and south.

Seepage at Louros Valles rather than the formation of an out-

flow channel could represent low aquifer pressure, which fits

a trend of lower groundwater pressures at higher elevations

in Ophir and Lunae Plana (Marra et al., 2015). Furthermore,

the subsidence of Valles Marineris into the aquifer may have

been a trigger for outflow or upwelling of groundwater. This

hypothesis could be further explored and the asymmetry be-

tween the valleys on the north and south flank may provide

additional insight into the nature of such an aquifer.

The landscape of Nirgal Vallis is an example of valley

formation by seepage from a distant source, given the large

number of small valleys typical for groundwater flow piracy

(Figs. 11, 5a, 13a and c). The groundwater source was likely

to have been west of the valley due to the orientation of most

valleys towards that direction. A possible source of ground-

water flow from the west could be recharge in the Tharsis

region (Harrison and Grimm, 2004). Seepage of groundwa-

ter likely took place before the formation of a global confin-

ing cryosphere, which is considered a requirement for aquifer

pressurization for Martian outflow channels in the Hesperian

(Clifford, 1993; Marra et al., 2014b). Alternatively, a regional

discontinuity may be the reason for seepage at Nirgal Vallis.

In that case, seepage took place during an early stage in the

formation of the cryosphere. The climatic implications are

the presence of precipitation in the source region which could

be aqueous or icy (Wordsworth et al., 2013), but widespread

precipitation is not required and a groundwater system as the

dominant element of the hydrology shows that these valleys

could form in the absence of a long-lived hydrological cycle

at the surface.

Based on our and previous experiments, this study now

provides a framework that links landscape properties to the

groundwater source location. The two Martian examples

shown further illustrate this link. Although different pro-

cesses could produce similar valley morphologies, the strong

correspondence of the landscape metrics of these examples

and those produced by seepage points towards a groundwa-

ter origin. In particular the distant groundwater source of Nir-

gal Vallis implies a well-developed groundwater system. Per-

haps most significantly, outflow of groundwater and resulting

valley formation of such a system could have taken place re-
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gardless of climate conditions being optimal for the sustained

presence of liquid water on the surface.

6 Conclusions

We studied groundwater seepage processes and subsequent

valley formation using a series of large sandbox experiments.

Our experiments focused on the difference between val-

leys fed from groundwater originating from a distant source

or from infiltrated local precipitation. In both cases, valley

heads developed in a headward direction by mass-wasting

processes triggered by steepening due to fluvial sediment

transport through active channels out of the valley.

Combined with previous experimental work, we provide

a framework of driving processes and resulting landscape

metrics for valleys fed by a distant source and local precipita-

tion, and for a steep and flat topography. Their main charac-

teristics are as follows. (1) Due to groundwater flow piracy,

seepage erosion from a distant groundwater source results in

a sparsely dissected landscape with a few large and many

small valleys. Valleys fed from a local source of groundwa-

ter, e.g., precipitation, are not characterized by flow piracy

and have a range sizes, resulting in a densely dissected land-

scape. (2) Valley formation in horizontal surfaces promotes

the development of headward bifurcations in contrast to steep

surfaces where this tendency is suppressed. For valleys fed

by a distant source of groundwater, the combined occurrence

of bifurcating valleys and flow piracy results in valley sys-

tems with stubby tributaries. Valleys fed by locally infiltrated

groundwater on horizontal surfaces grow in a wide range of

directions due to the development of many headward bifur-

cations which remain morphologically active.

As an example, we applied these characteristics to two

Martian systems. Firstly, Louros Valles shows a densely dis-

sected landscape with a broad range of valley orientations

and valley lengths. This landscape is typical for a local

groundwater source. Such a local source could relate to an

aquifer that fed the outflow channels, but is more likely re-

lated to local precipitation or melt of ice or snow. Secondly,

Nirgal Vallis illustrates a sparsely dissected landscape with

many small, and only a few large, valleys with a single dom-

inant orientation. This indicates a distant groundwater source

in the west, which is likely produced from recharge at Thar-

sis. Further study of similar landscape properties as a result

of overland flow is required to advance the ambiguous inter-

pretation of these valleys.
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development in the Keanakāko’i tephra, Kı̄lauea Volcano,

Hawai’i: implications for fluvial erosion and valley net-

work formation on early Mars, J. Geophys. Res., 117, 1–19,

doi:10.1029/2012JE004074, 2012.

Devauchelle, O., Petroff, A. P., Lobkovsky, A. E., and Roth-

man, D. H.: Longitudinal profile of channels cut by springs, J.

Fluid Mech., 667, 38–47, doi:10.1017/S0022112010005264,

2011.

Devauchelle, O., Petroff, A. P., Seybold, H. F., and Rothman, D. H.:

Ramification of stream networks., P. Natl. Acad. Sci. USA, 109,

20832–20836, doi:10.1073/pnas.1215218109, 2012.

Dunne, T.: Formation and controls of channel networks, Prog. Phys.

Geog., 4, 211–239, doi:10.1177/030913338000400204, 1980.

Fergason, R., Lee, E. M., and Weller, L.: Themis geodetically con-

trolled mosiacs of Mars, Lunar Planet. Sci. Conf., XLIV, 18–22

March 2013, abstract 1642, The Woodlands, Texas, 2013.

Forsyth, D. A. and Ponce, J.: Computer Vision: a Modern Ap-

proach, 2nd Edn., Prentice Hall, Upper Saddle River, New Jersey,

762 pp., 2011.

Earth Surf. Dynam., 3, 389–408, 2015 www.earth-surf-dynam.net/3/389/2015/

http://dx.doi.org/10.5194/esurf-3-389-2015-supplement
http://dx.doi.org/10.1038/ngeo432
http://www.agisoft.com/
http://dx.doi.org/10.1103/PhysRevE.86.041304
http://dx.doi.org/10.1029/93JE00225
http://dx.doi.org/10.1029/2012JE004074
http://dx.doi.org/10.1017/S0022112010005264
http://dx.doi.org/10.1073/pnas.1215218109
http://dx.doi.org/10.1177/030913338000400204


W. A. Marra et al.: Groundwater seepage landscape experiments 407

Fox, G. A. and Wilson, G. V.: The role of subsurface flow in hills-

lope and stream bank erosion: a review, Soil Sci. Soc. Am. J., 74,

717–733, doi:10.2136/sssaj2009.0319, 2010.

Fox, G. A., Wilson, G. V., Periketi, R. K., and Cul-

lum, R. F.: Sediment transport model for seepage erosion of

streambank sediment, J. Hydraul. Eng.-ASCE, 11, 603–611,

doi:10.1061/(ASCE)1084-0699(2006)11:6(603), 2006.

Glines, N. and Fassett, C. I.: Evidence for Groundwater Sapping on

Mars from Junction Angles of Nirgal Vallis Tributaries, in: Lu-

nar Planet. Sci. Conf., Vol. XLIV, 18–22 March 2013, p. abstract

2011, The Woodlands, Texas, 2013.

Hack, J. T.: Studies of Longitudinal Stream Profiles in Virginia and

Maryland, US Geol. Suvey Prof. Pap., 294-B, Washington DC,

45–95, 1957.

Hagerty, D. J.: Piping/sapping erosion. I: Basic con-

siderations, J. Hydraul. Eng.-ASCE, 117, 991–1008,

doi:10.1061/(ASCE)0733-9429(1991)117:8(991), 1991.

Harrison, K. P. and Grimm, R. E.: Tharsis recharge: A source of

groundwater for Martian outflow channels, Geophys. Res. Lett.,

31, L14,703, doi:10.1029/2004GL020502, 2004.

Harrison, K. P. and Grimm, R. E.: Groundwater-controlled valley

networks and the decline of surface runoff on early Mars, J. Geo-

phys. Res., 110, E12S16, doi:10.1029/2005JE002455, 2005.

Harrison, S., Balme, M., Hagermann, A., Murray, J., Muller, J.-

P., and Wilson, A.: A branching, positive relief network in the

middle member of the Medusae Fossae Formation, equatorial

Mars-Evidence for sapping?, Planet. Space Sci., 85, 142–163,

doi:10.1016/j.pss.2013.06.004, 2013.

Higgins, C. G.: Drainage systems developed by sapping on

Earth and Mars, Geology, 10, 147–152, doi:10.1130/0091-

7613(1982)10<147:DSDBSO>2.0.CO;2, 1982.

Howard, A. D. and Kochel, R. C.: Introduction to Cuesta landforms

and sapping processes on the Colorado Plateau, in: Sapping Fea-

tur. Color. Plateau, edited by: Howard, A. D., Kochel, R. C., and

Holt, H. R., chap. 2, 6–56, NASA Spec. Publ. 491, Washington

DC, 1988.

Howard, A. D. and McLane, C. F.: Erosion of cohesionless sed-

iment by groundwater seepage, Water Resour. Res., 24, 1659–

1674, doi:10.1029/WR024i010p01659, 1988.

Irwin, R. P., Tooth, S., Craddock, R. A., Howard, A. D., and

de Latour, A. B.: Origin and development of theater-headed

valleys in the Atacama Desert, northern Chile: morphologi-

cal analogs to Martian valley networks, Icarus, 243, 296–310,

doi:10.1016/j.icarus.2014.08.012, 2014.

Jaumann, R. and Reiss, D.: Nirgal Vallis: evidence for Extensive

Sapping, in: Lunar Planet. Sci. Conf., 11–15 March 2002, p. ab-

stract 1579, The Woodlands, Texas, 2002.

Jaumann, R., Neukum, G., Behnke, T., Duxbury, T., Eichentopf, K.,

Flohrer, J., Gasselt, S., Giese, B., Gwinner, K., Hauber, E.,

Hoffmann, H., Hoffmeister, a., Köhler, U., Matz, K.-D., Mc-

Cord, T., Mertens, V., Oberst, J., Pischel, R., Reiss, D., Ress, E.,

Roatsch, T., Saiger, P., Scholten, F., Schwarz, G., Stephan, K.,

and Wählisch, M.: The high-resolution stereo camera (HRSC)

experiment on Mars Express: instrument aspects and experiment

conduct from interplanetary cruise through the nominal mission,

Planet. Space Sci., 55, 928–952, doi:10.1016/j.pss.2006.12.003,

2007.

Kochel, R. C. and Piper, J. F.: Morphology of large val-

leys on Hawaii: evidence for groundwater sapping and com-

parisons with Martian valleys, J. Geophys. Res., 91, E175,

doi:10.1029/JB091iB13p0E175, 1986.

Laity, J. E. and Malin, M. C.: Sapping processes and the de-

velopment of theater-headed valley networks on the Colorado

Plateau, Geol. Soc. Am. Bull., 96, 203–217, doi:10.1130/0016-

7606(1985)96%3C203:SPATDO%3E2.0.CO;2, 1985.

Lamb, M. P., Howard, A. D., Johnson, J., Whipple, K. X., Diet-

rich, W. E., and Perron, J. T.: Can springs cut canyons into rock, J.

Geophys. Res., 111, 7002, doi:10.1029/2005JE002663, 2006.

Lee, P.: Selective fluvial erosion on mars: glacial selective linear

erosion on Devon island, Nunavut, arctic Canada, as a possible

analog, Lunar Planet. Sci. Conf., XXXI, 13–17 March 2000, ab-

stract 2080, The Woodlands, Texas, 2000.

Lobkovsky, A. E., Jensen, B., Kudrolli, A., and Rothman, D. H.:

Threshold phenomena in erosion driven by subsurface flow, J.

Geophys. Res., 109, 1–10, doi:10.1029/2004JF000172, 2004.

Luo, W., Arvidson, R. E., Sultan, M., Becker, R., Katherine Crom-

bie, M., Sturchio, N., and El Alfy, Z.: Ground-water sapping pro-

cesses, Western Desert, Egypt, Geol. Soc. Am. Bull., 109, 43–62,

doi:10.1130/0016-7606(1997)109<0043:GWSPWD>2.3.CO;2,

1997.

Mangold, N. and Ansan, V.: Detailed study of an hy-

drological system of valleys, a delta and lakes in the

Southwest Thaumasia region, Mars, Icarus, 180, 75–87,

doi:10.1016/j.icarus.2005.08.017, 2006.

Marra, W. A., Braat, L., Baar, A. W., and Kleinhans, M. G.:

Valley formation by groundwater seepage, pressurized ground-

water outbursts and crater-lake overflow in flume exper-

iments with implications for Mars, Icarus, 232, 97–117,

doi:10.1016/j.icarus.2013.12.026, 2014a.

Marra, W. A., Hauber, E., McLelland, S. J., Murphy, B. J.,

Parsons, D. R., Conway, S. J., Roda, M., Govers, R.,

and Kleinhans, M. G.: Pressurized groundwater outflow

experiments and numerical modeling for outflow chan-

nels on Mars, J. Geophys. Res.-Planet., 119, 2668–2693,

doi:10.1002/2014JE004701, 2014b.

Marra, W. A., Kleinhans, M. G., and Addink, E. A.: Network con-

cepts to describe channel importance and change in multichan-

nel systems: test results for the Jamuna River, Bangladesh, Earth

Surf. Proc. Land., 39, 766–778, doi:10.1002/esp.3482, 2014c.

Marra, W. A., Hauber, E., de Jong, S. M., and Kleinhans, M.

G.: Pressurized groundwater systems in Lunae and Ophir Plana

(Mars): insights from small-scale morphology and experiments,

in: Martian groundwater outflow processes and morphology: re-

construction of paleohydrology using landscape evolution exper-

iments, Utrecht Studies in Earth Sciences, 81, Chapter 5, PhD

Thesis by: Marra, W. A., available at: http://dspace.library.uu.nl/

handle/1874/311674, ISBN978-90-6266-393-4, 2015.

Otvos, E. G.: Rain-induced beach processes; landforms of ground

water sapping and surface runoff, J. Coastal Res., 15, 1040–1054,

1999.

Pelletier, J. D.: Drainage basin evolution in the Rainfall Erosion

Facility: dependence on initial conditions, Geomorphology, 53,

183–196, doi:10.1016/S0169-555X(02)00353-7, 2003.

Pelletier, J. D. and Baker, V. R.: The role of weathering in

the formation of bedrock valleys on Earth and Mars: a nu-

merical modeling investigation, J. Geophys. Res., 116, 1–13,

doi:10.1029/2011JE003821, 2011.

www.earth-surf-dynam.net/3/389/2015/ Earth Surf. Dynam., 3, 389–408, 2015

http://dx.doi.org/10.2136/sssaj2009.0319
http://dx.doi.org/10.1061/(ASCE)1084-0699(2006)11:6(603)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1991)117:8(991)
http://dx.doi.org/10.1029/2004GL020502
http://dx.doi.org/10.1029/2005JE002455
http://dx.doi.org/10.1016/j.pss.2013.06.004
http://dx.doi.org/10.1130/0091-7613(1982)10<147:DSDBSO>2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(1982)10<147:DSDBSO>2.0.CO;2
http://dx.doi.org/10.1029/WR024i010p01659
http://dx.doi.org/10.1016/j.icarus.2014.08.012
http://dx.doi.org/10.1016/j.pss.2006.12.003
http://dx.doi.org/10.1029/JB091iB13p0E175
http://dx.doi.org/10.1130/0016-7606(1985)96%3C203:SPATDO%3E2.0.CO;2
http://dx.doi.org/10.1130/0016-7606(1985)96%3C203:SPATDO%3E2.0.CO;2
http://dx.doi.org/10.1029/2005JE002663
http://dx.doi.org/10.1029/2004JF000172
http://dx.doi.org/10.1130/0016-7606(1997)109<0043:GWSPWD>2.3.CO;2
http://dx.doi.org/10.1016/j.icarus.2005.08.017
http://dx.doi.org/10.1016/j.icarus.2013.12.026
http://dx.doi.org/10.1002/2014JE004701
http://dx.doi.org/10.1002/esp.3482
http://dspace.library.uu.nl/handle/1874/311674
http://dspace.library.uu.nl/handle/1874/311674
http://dx.doi.org/10.1016/S0169-555X(02)00353-7
http://dx.doi.org/10.1029/2011JE003821


408 W. A. Marra et al.: Groundwater seepage landscape experiments

Pornprommin, A., Takei, Y., Wubneh, A. M., and Izumi, N.: Chan-

nel inception in cohesionless sediment by seepage erosion, J.

Hydro-Env. Res., 3, 232–238, doi:10.1016/j.jher.2009.10.011,

2010.

Schorghofer, N., Jensen, B., Kudrolli, A., and Rothman, D. H.:

Spontaneous channelization in permeable ground: theory, ex-

periment, and observation, J. Fluid Mech., 503, 357–374,

doi:10.1017/S0022112004007931, 2004.

Schumm, S. A. and Phillips, L.: Composite channels of the Can-

terbury Plain, New Zealand: a Martian analog?, Geology, 14,

326, doi:10.1130/0091-7613(1986)14<326:CCOTCP>2.0.CO;2,

1986.

Wordsworth, R., Forget, F., Millour, E., Head, J. W., Madeleine, J.-

B. Charnay, B.: Global modelling of the early martian climate

under a denser CO2 atmosphere: Water cycle and ice evolution,

Icarus, 222, 1–19, doi:10.1016/j.icarus.2012.09.036, 2013.

Earth Surf. Dynam., 3, 389–408, 2015 www.earth-surf-dynam.net/3/389/2015/

http://dx.doi.org/10.1016/j.jher.2009.10.011
http://dx.doi.org/10.1017/S0022112004007931
http://dx.doi.org/10.1130/0091-7613(1986)14<326:CCOTCP>2.0.CO;2
http://dx.doi.org/10.1016/j.icarus.2012.09.036

	Abstract
	Introduction
	Methods
	Experimental design
	Experimental imagery and elevation models
	Valley development and erosion rates
	Martian landscape metrics

	Experimental results
	Distant source
	Local precipitation
	Effect of initial morphology on seepage from a distant source
	Effect of initial morphology on local precipitation experiment

	Examples of Martian valley systems
	Louros Valles
	Nirgal Vallis

	Discussion
	Valley morphology related to groundwater source
	Scalability of experimental results
	Groundwater flow piracy, valley spacing and length distribution
	Headward bifurcations
	Origin of Martian examples

	Conclusions
	Author contributions
	Acknowledgements
	References

