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Abstract. Fault tree analysis (FTA) has been modified in different ways to 
make it capable of performing quantitative and qualitative safety analysis with 
temporal gates, thereby overcoming its limitation in capturing sequential failure 
behaviour. However, for many systems, it is often very difficult to have exact 
failure rates of components due to increased complexity of systems, scarcity of 
necessary statistical data etc. To overcome this problem, this paper presents a 
methodology based on fuzzy set theory to quantify temporal fault trees. This 
makes the imprecision in available failure data more explicit and helps to obtain 
a range of most probable values for the top event probability. 
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1 Introduction 

FTA is a widely used method for evaluating system reliability of safety-critical sys-
tems, and supports both qualitative as well as quantitative analysis. Fault trees show 
logical connections between faults and their causes [1] and thus make it possible to 
understand how combinations of failures of different components can lead to system 
failure. After construction of a fault tree, qualitative analysis is performed using 
Boolean logic by reducing it to minimal cut sets (MCSs), which show the smallest 
combinations of failure events that are necessary and sufficient to cause the top event. 
Quantitative analysis of a fault tree can estimate the probability of the top event oc-
curring from the given failure rates of basic failure modes of the system [1].  

Even though FTA is a powerful technique widely used in reliability engineering, 
conventional fault tree analysis has some limitations, e.g. in expressing time- or se-
quence-dependent dynamic behaviour [2–4] or in handling uncertainties and integrat-
ing human error in failure logic [5]. FTA has gone through different modifications to 
overcome these limitations, e.g. one recent modification is Pandora, which extends 
fault trees with temporal gates and provides temporal laws to allow qualitative analy-
sis of dynamic systems [6]. Pandora can be used to determine the minimal cut se-
quences (MCSQs) that cause the top event.  



The outcome of any quantitative analysis largely depends on the accuracy of the 
failure rates used in the analysis. In conventional FTA, failure rates of components are 
typically considered to be constant. However, for many complex systems, it is often 
very difficult to estimate a precise failure rate of components from past occurrences 
due to lack of knowledge, scarcity of statistical data, and changes in operating envi-
ronments of the systems etc. [5, 7]. This situation is especially relevant in the early 
design stages because at that time we may have to consider failure rates of new or 
undetermined components which have no available quantitative failure data, and thus 
precise failure rates could not possibly be known. Therefore, human judgment by 
linguistic expressions, such as ‘very low, low, high, very high’ can be used to define 
failure rates. In order to allow the conventional FTA to use linguistic variables and 
capture uncertainty, different modifications and improvements based on fuzzy logic 
have been proposed by different researchers [5, 7–11]. Fuzzy Logic is a branch of 
mathematics that deals with linguistic variables and provides an efficient way to draw 
conclusions from imprecise and vague information [12].  

Recently, attempts have been made to quantify temporal gates in Pandora temporal 
fault trees [13, 14], but all of them are based on constant failure rates. These ap-
proaches do not consider inclusion of a degree of uncertainty in the failure rates of the 
basic events. However, if uncertainties are left unresolved, then even the most sophis-
ticated and well-defined quantitative model may produce misleading results [5]. 
Therefore, in this paper, a fuzzy set theory based methodology is introduced to quanti-
fy Pandora temporal fault trees, overcoming the limitations in handling uncertainties 
in failure probabilities and allowing the use of linguistic variables. The failure rates of 
basic events / components are defined as fuzzy numbers, and then top events proba-
bilities are calculated based on these numbers.  

2 Preliminaries on Fuzzy Set Theory 

2.1 Fuzzy Numbers and Fuzzy Sets 

Fuzzy set theory has been developed to deal with imprecise, vague or partially true 
information [15]. A fuzzy number ܣ can be thought of as a set of real numbers where 
each possible value has a weight between 0 and 1 which is referred to as the degree of 
membership defined by a membership function. Among different forms of fuzzy 
numbers, triangular fuzzy number (TFN) and trapezoidal fuzzy number (TZFN) are 
widely used in reliability analysis. Let	ݔ, ܽ,ܾ, ܿ,݀ ∈ ℝ, and ߤ୅(ݔ):ℝ	 → [0,1] repre-
sents a membership function. Then, a trapezoidal fuzzy number ܣ = (ܽ,ܾ, ܿ,݀	) is 
defined by the membership function as: 
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where ܽ < ܾ < ܿ < ݀ . 



A fuzzy set ܣሚ of a fuzzy number ܣ is defined by ordered pairs, in a binary relation: 

 Ã = ൛൫ߤ,ݔ஺(ݔ)൯	ห	ݔ ∈ ,ܣ (ݔ)஺ߤ ∈ [0,1]}  (2) 

where the membership function ߤ୅(ݔ) specifies the degree to which any element ݔ in 
 indicate a higher degree (ݔ)୅ߤ satisfies the predefined property ܲ. Large values of ܣ
of membership.  

Different methods are available to generate fuzzy numbers when no statistical data 
are available to estimate exact failure rates of components, e.g. 3σσ expression or 
expert knowledge elicitation [16]. The principle of the 3σσ method is described in [5]. 
The expert elicitation method has two basic forms: linguistic variables and interval 
values. The concept of linguistic variables is useful when little statistical data are 
available to estimate the failure rates of components of a system. The values of lin-
guistic variables are words or sentences in natural languages. For example, we can 
consider “failure rate of component” as a linguistic variable consisting of fuzzy sets 
like very low, low, fairly low, medium, fairly high, high, very high. Linguistic varia-
bles play an important role in dealing with situations which are too complex or vague 
in nature, i.e., very difficult to describe using conventional quantitative expressions. 
Basic events can be assessed in a natural way and failure rates of the events can be 
estimated by suitable membership functions e.g., triangular or trapezoidal member-
ship functions. Lower and upper bounds of a membership function can be obtained 
either from the point median value and an error factor or by direct assignment based 
on expert opinion.  

2.2 Fuzzy Operators for Boolean Gates 

Analogous to conventional FTA, the following fuzzy operators can be defined for the 
AND and OR gates of the temporal fault tree analysis (TFTA) [11].  
 
AND gate fuzzy operator: 

In TFTA, for all statistically independent events, the AND gate fuzzy operator is 
஺ܲே஽ = ∏ ௜ܲ

௡
௜ୀଵ ݅)(ݐ)where ௜ܲ ,(ݐ) = 1,2,3 … ݊) is the failure probability of event i at 

time t. If the failure probability of event i is presented by a fuzzy number as ௜ܲ(ݐ) =
(ܽ௜(ݐ),ܾ௜(ݐ), ܿ௜(ݐ),݀௜(ݐ)), then the AND gate fuzzy operator is: 

  
஺ܲே஽ = ∏ ௜ܲ(ݐ)௡

௜ୀଵ 	= (	∏ ܽ௜(ݐ)௡
௜ୀଵ ,∏ ܾ௜(ݐ)௡

௜ୀଵ ,∏ ܿ௜(ݐ)௡
௜ୀଵ ,∏ ݀௜(ݐ)௡

௜ୀଵ )		 (3) 

OR gate fuzzy operator: 
In TFTA, for all statistically independent events, the OR gate fuzzy operator is 

ைܲோ = 1−∏ (1− ௜ܲ
௡
௜ୀଵ ݅)(ݐ)where ௜ܲ ,((ݐ) = 1,2,3 …݊) is the failure probability of 

event i at time t. If the failure probability of event i is presented by a fuzzy number as 
௜ܲ(ݐ) = (ܽ௜(ݐ), ܾ௜(ݐ), ܿ௜(ݐ), ݀௜(ݐ)), then the OR gate fuzzy operator is: 

  



ைܲோ = 1 −ෑ(1 − ௜ܲ

௡

௜ୀଵ

 ((ݐ)

= (	1 −∏ (1 − ܽ௜(ݐ))௡
௜ୀଵ , 1	 − ∏ (1 − ܾ௜(ݐ))௡
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						∏ (1 − ݀௜(ݐ))௡
௜ୀଵ )  (4) 

3 Pandora Temporal Fault Tree Analysis 

3.1 Pandora Temporal Gates and Logic 

Pandora defines three temporal gates: Priority-AND, Priority-OR, and Simultaneous-
AND [13, 14]. These gates allow analysts to represent sequences or simultaneous 
occurrence of events as part of a fault tree.  

The Priority-AND (PAND) gate is used to represent a particular sequence of events 
and is defined as being true only if: 1) all input events occur; 2) input events occur in 
sequence from left to right; and 3) no input events occur simultaneously. The symbol 
'< ' is used to represent the PAND gate in logical expressions, i.e. X < Y means 
(X PAND Y). 

The Priority-OR (POR) gate is used to indicate that one input event has priority 
and must occur first for the POR to be true, but does not require all other input events 
to occur as well. It can be used to represent trigger conditions where the occurrence of 
the priority event means that subsequent events may have no effect. The POR is true 
only if: 1) its left-most (priority) input event occurs; 2) no other input event occurs 
before the left-most input event; and 3) no other input event occurs at the same time 
as the left-most input event. The symbol ' | ' is used to represent the POR gate in logi-
cal expressions, thus X|Y means (X POR Y). 

The Simultaneous-AND (SAND)  gate is used to define situations where an out-
come is only triggered if two or more events occur approximately simultaneously, e.g. 
because of a common cause, or because the events have a different effect if they occur 
approximately simultaneously as opposed to in a sequence. It is true only if: 1) all 
input events occur; and 2) all events occur at the same time. The symbol '&' is used to 
represent the SAND gate in logical expressions.  

Note that the priority of the gates is as follows: SAND is highest, then PAND, 
POR, AND, and OR. Thus e.g. A+B&C<D is equivalent to A + ((B&C) <D). '+' is 
used here to represent OR and '.' is used to represent AND. It is also important to note 
that in Pandora it is not possible for an event to occur both at the same time and be-
fore/after another event, as this would be a contradiction; therefore, PAND and 
SAND are mutually exclusive, as are POR and SAND. Thus if X.Y is true, then ex-
actly one of X<Y, X&Y, and Y<X must also be true. Furthermore, the structure func-
tion of a Pandora fault tree is monotonic, i.e. no event or gate can ever go from an 
occurred to non-occurred state [6]. In this paper, events are assumed to be non-
repairable, to be statistically independent, and to have failure rates with exponential 
distributions — all common assumptions in FTA. Under these assumptions, the prob-
ability of two events occurring exactly at the same time is 0, therefore any MCSQs 



containing SAND gates will not be considered for evaluation (as the full MCSQ 
would also evaluate to 0). 

3.2 Fuzzy Probabilities of Temporal Gates 

Fuzzy operators for PAND and POR can be derived from formulae in [13] and [17].  

1. Fuzzy probability of the PAND gate   

In a minimal cut sequence (MCSQ), if there are N statistically independent input 
events in a PAND gate and they occur sequentially, i.e., event 1 occurs first, then 
event 2,… N–1, and finally event N, then the probability of that PAND gate can be 
defined as: 

 	 ௉ܲ஺ே஽ = ∏ ௜ߣ ∑ ቎ ௘൫ೠೖ೟൯
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ே
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where ݑ଴ = 0 and ݑ௠ = −∑ ௜௠ߣ
௝ୀଵ 	for	݉ > 0. 

If the failure rate of event i is represented by a fuzzy number as ߣ௜ = (ܽ௜ , ܾ௜ ,ܿ௜ , ݀௜), 
then the fuzzy probability of the PAND gate expression is: 
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If there are 2 input events in the PAND gate, then according to [17], equation (6) 
reduces to: 

 ௉ܲ஺ே஽ = 	 ఒమ
(ఒభାఒమ)

− ݁(ିఒభ௧) + ఒభ
(ఒభାఒమ) ݁

[ି(ఒభାఒమ)௧] (7) 

2. Fuzzy probability of the POR gate  

For any minimal cut sequence of N statistically independent events in a POR gate 
with the expression E1|E2|…|EN-1|EN, and failure rates ߣଵ,ߣଶ, … ,  ,ே respectivelyߣ,ேିଵߣ
then the probability of the POR gate can be defined as: 

 										 ௉ܲைோ = 	
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 (8) 

If the failure rate of event i is represented by a fuzzy number as ݅ߣ = (ܽ௜ ,ܾ௜ , ܿ௜ ,݀௜), 
then the fuzzy probability of that POR gate expression is: 
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3.3 Fuzzy top-event probability and most likely failure probability 

Quantitative analysis of a temporal fault tree provides a way to estimate the probabil-
ity of the top event occurring from the given failure rates of basic components. All the 
basic event failure rates are considered as fuzzy numbers to minimize error due to 
vagueness or uncertainty in the data. The fuzzy probability of MCSQs consisting of 
AND, PAND and POR gates are estimated by using (3), (6) and (9) respectively. On 
getting the fuzzy probabilities of all MCSQs, the fuzzy top-event probability can be 
obtained by (4). As failure rates are considered as fuzzy numbers, all results obtained 
are also fuzzy numbers with a membership function. We can represent fuzzy set of 
fuzzy top-event probabilities ்ܲ ≜ ( ௔்ܲ , ௕்ܲ , ௖்ܲ , ௗ்ܲ) as: 
 

 ෨்ܲ ≜ ൛൫ ௔்ܲ )ߤ, ௔்ܲ)൯, ൫ ௕்ܲ )ߤ, ௕்ܲ)൯, ൫ ௖்ܲ )ߤ, ௖்ܲ)൯, ൫ ௗ்ܲ )ߤ, ௗ்ܲ)൯ൟ 

where ௔்ܲ , ௕்ܲ , ௖்ܲ	ܽ݊݀	 ௗ்ܲ are elements of the fuzzy number ்ܲ and 
)ߤ ௔்ܲ),ߤ( ௕்ܲ), )ߤ ௖்ܲ)	and	ߤ( ௗ்ܲ)	are membership values of those elements. 

This may be one of the intended outcomes of the TFTA, but if required, the most 
likely top-event (failure) probability can be obtained from a fuzzy top-event probabil-
ity via defuzzification; a process of mapping values from a fuzzy domain into a crisp 
domain. Although several other methods also exist, the weighted average method can 
be used to obtain the most likely top-event probability as follows: 

்ܲ)ܯ  ) = ௉ೌ೅×ఓ(௉ೌ೅)ା௉್೅×ఓ(௉್೅)ା௉೎೅×	ఓ(௉೎೅)ା௉೏೅×	ఓ(௉೏೅)
ఓ(௉ೌ೅)ାఓ(௉್೅)ାఓ(௉೎೅)ା	ఓ(௉೏೅) 		 (10) 

4 Case Study 

For the purposes of illustrating the application of fuzzy logic in quantitative temporal 
analysis, we use the fuel system first presented in [13], shown in Fig.1. The system is 
a redundant fuel distribution system for a ship. Under ordinary operation, there are 
two primary fuel flows, one for each engine: Pump1 delivers fuel from Tank1 to En-
gine1, and Pump2 delivers fuel from Tank2 to Engine2. Flowmeters monitor the rate 
of flow to each engine and provide sensor information to the Controller. 

 



 
Fig. 1. Fuel distribution system 

The Controller introduces dynamic behaviour to this system, allowing it to adapt to 
possible failures. If either flowmeter detects insufficient flow, the Controller can acti-
vate the standby Pump3 and redirects fuel flow accordingly using the valves. For 
example, if there is a problem with the flow to Engine1, the Controller can switch 
Valve1 and open Valve3 so that fuel flows from Tank1 to Engine1 via Pump3. How-
ever, Pump3 can only be used to replace either Pump1 or Pump2, but not both. A 
failure of both Pump1 and Pump2 will result in at least one engine being starved of 
fuel; for example, if Pump1 fails and Pump3 replaces it, Pump3 is then no longer 
available to replace Pump2 if that pump also fails. This results in degraded propulsion 
functionality for the vessel, as speed and maneuverability will be reduced. 

Temporal gates can be used to model the dynamic behaviour in this scenario and 
helps to correctly capture the sequences of events that lead to failure. At the top level, 
the causes of omission of fuel to Engine1 can be expressed using temporal gates as 
follows (Engine2 is symmetrical, but with the order of events reversed): 

 
O-Engine1= ((O-Pump1 | O-Pump2).O-Valve3) 
   + (O-Pump2 < O-Pump1) 
   + (O-Pump2 & O-Pump1) 
 
Thus omission of fuel to Engine1 (O-Engine1) has three possible causes, de-

pending on the sequence of events: 

 If there is no fuel from Pump1 (O-Pump1), then Pump3 replaces it, as long as 
Pump2 has not failed first; this precondition can be represented using the POR 
gate. Thus in this situation, an omission of fuel can be caused by omission of fuel 
from both Pump1 and Pump3 (via Valve3). 

 If Pump2 fails first, then Pump3 replaces it and will be unavailable to replace 
Pump1 if it also fails. Thus sequential failure of Pump2 and then Pump1 will lead 
to an omission of fuel to Engine1 (represented using the PAND gate). 

 If both Pump2 and Pump1 fail at the same time (represented with the SAND gate), 
then Pump3 can only replace one of them. Behaviour in this situation is non-



deterministic (as Pump3 may replace either Pump1 or Pump2, but not both), and 
thus as a pessimistic estimation, simultaneous failure of Pump1 and Pump2 is giv-
en as a cause of failure for both engines. 

After performing a qualitative analysis on this system, the resulting minimal cut se-
quences are as follows: 
  
E1 = (P1|P2).P3 + (P1|P2).V1 + (P1|P2).V3 + (S1<P1)|P2  
   + (S1&P1)|P2 + (CF<P1)|P2 + (CF&P1)|P2 + P2<P1 + P1&P2 
E2 = (P2|P1).P3 + (P2|P1).V2 + (P2|P1).V4 + (S2<P2)|P1  
   + (S2&P2)|P1 + (CF<P2)|P1 + (CF&P2)|P1 + P1<P2 + P1&P2 
 
The failure events of MCQS are: 

 P1/P2/P3   = Failure of Pump1/2/3 (e.g. blockage or mechanical failure) 
 V1/V2/V3/V4 = Failure of Valve 1/2/3/4 (e.g. blockage or stuck closed) 
 S1/S2  = Failure of Flowmeter1/2 (e.g. sensor readings stuck high) 
 CF   = Failure of the Controller 

As O-Engine1 and O-Engine2 are caused by the same events in the opposite se-
quences, the fuzzy probability of these two top events are same. As mentioned earlier, 
we assume that all events are independent and the probability of two independent 
events occurring at the same time is effectively 0, therefore we will not consider any 
MCSQ consisting of SAND gate. Thus for this example system, we will not consider 
S1&P1|P2, CF&P1|P2 and P1&P2 during quantification of the fuzzy probability of 
the top event. 

In this paper, we have used a trapezoidal membership function to convert basic 
event failure data to a trapezoidal fuzzy number. Fuzzy failure rate information for the 
example system is shown in Table 1. Results of the fuzzy quantitative evaluation of 
each minimal cut sequence of top event are shown in Tables 2 and 3 respectively. The 
results are obtained by considering that the system is operating at 10000 hours of its 
life cycle, i.e. t=10000 hours. 

Table 1. Fuzzy failure rates of components for fuel system 

Component 
Failure rate/hour(“Around”) 

(Point median value,	ߣ௣ ) 

Trapezoidal representations 

λA λB λC λD 

Tanks 1.5E-5 7.5E-6 1.125E-5 1.875E-5 2.25E-5 
Valve1 & Valve2 1E-5 5E-6 7.5E-6 1.25E-5 1.5E-5 
Valve3 & Valve4 6E-6 3E-6 4.5E-6 7.5E-6 9E-6 

Pump1 & Pump2 & Pump3 3.2E-5 1.6E-5 2.4E-5 4E-5 4.8E-5 
Flowmeter Sensor 2.5E-6 1.25E-6 1.875E-6 3.125E-6 3.75E-6 

Controller 5E-7 2.5E-7 3.75E-7 6.25E-7 7.5E-7 



Table 2. Fuzzy probability of first four MCSQs for top event O-Engine1 
Failure Rate Pr ((P1 | P2).P3) Pr ((P1 | P2).V1) Pr ((P1 | P2) .V3) Pr ((S1 < P1) | P2) 

λA 2.025E-2 6.677E-3 4.045E-3 8.696E-4 
λB 4.067E-2 1.377E-2 8.386E-3 1.827E-3 
λC 9.077E-2 3.235E-2 1.989E-2 4.437E-3 
λD 1.176E-1 4.299E-2 2.656E-2 5.983E-3 

Table 3. Fuzzy probability of remaining two MCSQs for top event O-Engine1 

Failure Rate Pr ((CF < P1) | P2) Pr (P2 < P1) 
λA 1.751E-4 1.093E-2 
λB 3.69E-4 2.276E-2 
λC 9.02E-4 5.434E-2 
λD 1.22E-3 7.266E-2 

 

Using (4) the fuzzy probability of the top event is obtained as follows:  
 
்ܲ  = (4.232E–2, 8.518E–2, 1.889E–1, 2.432E–1). 
 
According to the results, the interval [8.518E–2, 1.889E–1] is the most likely range 

of values for the top event probability, whilst 4.232E–2 and 2.432E–1 are the lower 
and upper bound of the top event probability respectively. To verify the accuracy of 
the result the same case study was modelled in Isograph Reliability Workbench 11.0 
(IRW) [18] and using the point median value of the failure rate, the top event proba-
bility was 1.497E-1, which lies within the range of most likely values obtained by the 
proposed method. The fuzzy top event probability can also be mapped into a single 
value by defuzzification using (10); if the fuzzy top event probability is as follows:  

 
෨்ܲ  = {(4.232E–2, 0.75), (8.518E–2, 1), (1.889E–1, 1), (2.432E–1, 0.75)}. 
 
Then using (10), the most likely top event probability is 1.395E–1 which is rela-

tively close to the value obtained using Isograph Reliability Workbench. 

5 Conclusion 

In this paper, we showed how uncertainty can be incorporated in TFTA by applying 
fuzzy set theory to Pandora temporal fault trees. Adopting a fuzzy methodology may 
help to model situations where limited quantitative information is available and often 
only with a wide range of uncertainty. The method we present is capable of handling 
the linguistic variables and the imprecision of the uncertainties associated with the 
modelling of failures and their dependencies, and can more explicitly highlight areas 
of uncertainty in the data. This can lead to a more effective quantification of uncertain 
failure data in dynamic systems, producing more realistic and robust results that help 



to avoid mistaken assumptions and potential over/under estimations of system relia-
bility. However, it is important to emphasise that the results can only be as reliable as 
the input data, and the inclusion of fuzzy data cannot create accuracy where none 
previously existed. In future, we hope to extend this work by looking at how temporal 
FTA approaches like Pandora could be extended to include fuzzy logic operators, as 
well as to further develop practices for performing uncertainty analysis. 
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