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1 INTRODUCTION

ABSTRACT

Using three-dimensional stellar kinematic data from simulated galaxies, we examine the
efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including
the dark matter, at the ‘Solar’ radius. Our simulation data set includes galaxies formed in a
cosmological context using state-of-the-art high-resolution cosmological zoom simulations,
and other idealized models. The cosmologically formed galaxies have been demonstrated to
lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting
surrogate for real galaxies with the obvious advantage that all the kinematical data are known
perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic
quantity in the analysis, and that the traditional method of using only the vertical force is
reasonably effective at low heights above the disk plane. At higher heights the inclusion of
the radial force becomes increasingly important. We also show that the method is sensitive
to uncertainties in the measured disk parameters, particularly the scalelengths of the assumed
double exponential density distribution, and the scalelength of the radial velocity dispersion.
In addition, we show that disk structure and low number statistics can lead to significant errors
in the calculated surface densities. Finally, we examine the implications of our results for
previous studies of this sort, suggesting that more accurate measurements of the scalelengths
may help reconcile conflicting estimates of the local dark matter density in the literature.

Key words: gravitation — methods: numerical — galaxies: kinematics and dynamics.

These kinds of studies are restricted to near the plane of the
Galaxy, i.e. the thin disk region, and have been undertaken using

Attempting to determine the density of the material near the plane
of the galactic disk in the solar neighbourhood is an old endeavour,
dating back to the pioneering work of Kapteyn (1922) and Oort
(1932), with many subsequent studies over the years (e.g. Kuijken &
Gilmore 1989; Crézé et al. 1998; Korchagin et al. 2003; Holmberg
& Flynn 2004; de Jong et al. 2010; Salucci et al. 2010; Nesti &
Salucci 2013). The most direct method that may be employed is one
dimensional (i.e. itignores the radial force) with the vertical velocity
dispersion used in the Jeans equation to determine the vertical force
acting on the stars. This is typically justified by arguing for the
dominance of these terms over all the other terms, including the
so-called ‘tilt’ term in the vertical force expression, which depends
on UW (the mean product of the radial and vertical velocities).
Then, using the Poisson equation, one is able to recover the matter
density.

* E-mail: gcandlish@das.uchile.cl

ever more complete data sets with varying estimates for the dark
matter density in the Solar neighbourhood. As the stellar surface
density near the Galactic plane may be ascertained by direct obser-
vations, any mass discrepancy with the dynamical estimate using
the tracer stellar populations is attributed to the presence of dark
matter. While there is considerable uncertainty, both from observa-
tional errors, as well as difficulties in separating the dynamically
old stellar populations, generally the estimates' are on the order
of ppm ~ 0.01 M pc_3. Such measurements of the Galactic disk
surface density therefore offer a means of constraining the proper-
ties of dark matter. For a very recent discussion of observational
difficulties related to these kinds of studies, see Hessman (2015).
As the data available for the stellar dynamics in the Milky Way
continue to improve, it is interesting to contemplate going beyond

! For comparison, the estimated total volume density within £50 pc is ap-
proximately 0.1-0.11 M pc—3, using old red giant stars from the Hipparcos
catalogue in the disk (Korchagin et al. 2003).
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the thin disk, inferring both vertical and radial forces from the Jeans
equation and using the full Poisson equation, without restricting to
the vertical dynamics alone. A recent study along these lines was
undertaken by (Moni Bidin et al. 2012b, hereafter referred to as
MB12), where the dark matter density was determined to be sig-
nificantly lower than previous estimates (opm ~ 0-1 mMg pe™),
with the caveat that multiple approximations and assumptions were
required in the analysis. Subsequent to this, the study by (Bovy &
Tremaine 2012, hereafter referred to as BT12) proposed that this re-
sult could be explained by modifying one of the assumptions made
by MB12 concerning the dependence of the average azimuthal ve-
locity on the radius. In BT12, the assumption of 9 rV =0, as used
in MB12, was discarded as unphysical, and the radial force term
was assumed negligible, leading to a lower limit on the local dark
matter density from a purely vertical analysis. This apparently re-
stored ppy to a value similar to those previously reported in the
literature.

The analysis of BT12 has, however, been shown to be incorrect in
(Moni Bidin et al. 2015, hereafter referred to as MB15), as a vanish-
ing radial force term (using the MB 12 data) requires that the vertical
gradient of 3z V is too steep, disagreeing with observations both of
the Milky Way and of external galaxies. Furthermore, although the
assumption about V used in MB12 is indeed unphysical, relaxing
this assumption and using the sparse observational data available
in the analysis results in a negligible change in the calculated dark
matter density, as demonstrated in MB15. Hence, further investi-
gation is needed to determine the reason for the unusual results of
MB12.

In this work, we will use the full three-dimensional kinematic
data from simulations in an attempt to demonstrate the efficacy or
otherwise of this approach, to analyse which parameters are most
crucial to the analysis, and to provide some insight into possible
reasons for the results of MB12. A study investigating the one-
dimensional method using simulations was undertaken in Garbari,
Read & Lake (2011), using a thin disk galaxy model. Here, we will
be concerned with the full three-dimensional formulation, consid-
ering model data of galaxies with thick disks. We will also utilize
state-of-the-art simulations in which disk galaxies are formed in
a cosmological context, including many associated physical pro-
cesses, both environmental and secular, rather than limiting our-
selves only to idealized simulations.

The structure of the paper is as follows: in Section 2, we derive
the form of the Jeans equation that we will use, carefully stating
the assumptions used to simplify the terms; in Section 3, we will
summarize the simulated data that we use for this work and how
we measure the various quantities required for the Jeans equation;
in Section 4, we show the surface densities calculated from the
kinematics of our various simulation data sets to test how well the
method works in an ideal case of perfect information and investigate
which parameters are most crucial to an accurate measurement, as
well as discussing the potential impact of our results on previous ob-
servational studies of this sort; and finally we conclude in Section 5.

2 THE JEANS EQUATION

The Jeans equations, in cylindrical coordinates (R, z, ¢), for a tracer
stellar population of an axisymmetric system in a steady state are
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where Fr = —0x®, F, = —0,P and @ is the roral gravitational
potential, p, is the stellar density distribution, and U, V and W
are the radial, azimuthal and vertical velocities, respectively. All
these kinematic quantities refer to the kinematics of the test stellar
sample used to probe the Galactic potential. The surface density X
is then calculated from the kinematics by using these expressions
for the forces in the Poisson equation, integrated in the vertical
direction:

+z 29 +z
/0 —Ea—R(RFR)dz —2F; LT 4nGX(2), 2)
where X(z) is the surface density as a function of height. As all
terms in the expression for the forces are assumed symmetric in
z (which makes physical sense for a disk galaxy), we integrate
over half the symmetric interval of integration and multiply by 2
all terms on the left-hand side. Note that we will evaluate these
terms at the radius R = 8.2 kpc, roughly corresponding to the solar
Galactocentric radius. In what follows, we will refer to a directly
‘measured’ surface density in a simulation as the ‘true’ surface
density, denoted X.(z) and the surface density calculated via the
Jeans and Poisson equations as X€(z).

2.1 Simplifying the equation
2.1.1 The density

At this stage we begin to make some assumptions regarding the
form of the terms in the Jeans equation, in a similar manner to
those made in MB12. Note that, in general, it is only the test tracer
population that need satisfy the following assumptions, not the disk
as a whole. The disks of our simulated galaxies, however, have only
a single component, thus we apply these assumptions to the whole
disk.

Assumption 1. The density has an exponential drop-off in
both the vertical and radial directions: p(R, z) ~ exp( — R/hg)
exp (—|z|/h;). We furthermore assume that hgz and h, are con-
stants, i.e. there is no dependence on height or radius for these
values.

Checking the density profiles of the simulation data directly this
assumption is seen to be generally valid, with the caveat that the
radial scalelength /i (and that of the radial velocity dispersion /)
typically increases somewhat with height, violating the second part
of assumption 1. We will limit ourselves to the kind of analysis
utilized in MB12 and so we choose to measure the radial density
profile at a single height given by the vertical bin closest to the plane
of the disk.

Given this assumption for the density, we can rewrite equation
(1) as

o (L D g, 20V 1m+aﬁ @
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for the vertical force and
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where we have written the left-hand side as it appears in equa-
tion (2), the vertical integration of the Poisson equation. This
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integral over z means we need not calculate the derivatives with
respect to z appearing in equation (4), but the z derivative in the
fourth term of equation (3) remains. These expressions are strictly
only valid for positive values of z. The more general expression,
valid for positive and negative z, would include occurrences of the
sgn(z) function which arises due to taking a derivative of |z| in
PR, 2).

Note that in MB12 the authors incorrectly assumed that the fourth
and fifth terms on the right-hand side of equation (4) would vanish
from the integration over z due to the antisymmetry of UW. To see
that this is not true, we can restore the sgn function to those terms:

ROR K

_ loww (2) &)
h oR sgn(z) . ..

4

The antisymmetry in z of UW (and 93U W) combined with the
antisymmetry of sgn(z) ensure that these terms are symmetric and
thus do not vanish upon integration over a symmetric interval in z.
This is also to be expected based on the symmetry in z of the radial
force, as we now demonstrate. The second term in the expression for
Fg in equation (1) gives rise to the two terms highlighted in equation
(5). The symmetry of p.(R, z) in z due to the dependence on |z|
combined with the antisymmetry of UW(z) means the function
within the derivative is antisymmetric in z. When differentiated
with respect to z this function becomes symmetric in z, and thus
this whole term is symmetric in z as anticipated for the radial force.

2.1.2 The velocity dispersions

The analysis in MB12 used the radial and vertical velocity disper-
sions rather than the mean squared radial velocities. The two are of
course related by

ajzﬁ—ﬁz, agv:W—Wz. (6)
Both U and W are assumed in MB12 to be zero, as expected for
a system in a steady-state equilibrium, and so ¢ = U? and 0, =
W?2. We can then replace all occurrences of the mean squared radial
and vertical velocities with the velocity dispersion. The simulation
data allow us to work directly with the mean squared velocities,
although we have checked that, in all simulations, the assumption
of zero mean radial and vertical motions is a very accurate one, and
we could just as easily have worked with the dispersions instead.
For the azimuthal velocities, we will replace V2 in equation (4)
using

Vieol+V . %)

Assumption 2. The squared mean radial velocity (or the squared
radial velocity dispersion) is assumed to have an exponential drop-
off with radius: U2 ~ o2 ~ exp(—R/hy).

Assumption 3. The squared azimuthal velocity dispersion is
assumed to have an exponential drop-off with radius: o ~
exp(—=R/hy).

Again, these assumptions have been verified by checking with
the simulations and shown to be in excellent agreement with the
data.

Note that we do not restrict either Ay or iy to be equal to Ay, as
done in MB12. We will see later that imposing &y = hg can lead to
significant problems for some parameter sets, potentially resulting
in a large negative X¢(z) at large heights, an unphysical result.

With assumptions 2 and 3, we may now write the terms contribut-
ing to the surface density as follows. We start with the terms that
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where we have used equation (7).

2.2 Summary of the equation

At this stage it is useful to enumerate the terms in the equation for the
surface density. We will refer to these numbers when we compare
with plots of the simulation data. The total list of terms, where
we have made our three additional assumptions beyond reflection
symmetry in the z-axis (exponential drop-off with radius and height
for p, and exponential drop-off with radius for U2 and o'3), is given
below:

(i) ﬁ JyUwdz

(i) —2°0F (v) - [y 20rdz

2 41 1 _ 1 217245
) (RhU t Rig T hohe h%,> Jo Urdz
: 1 T 29 3 /
(vi) — R jo o}dz (vil) % jo e d
(viii) Lw? (ix) —9°
- . <,

Summing all these terms, and multiplying the result by 1/2nG,
gives the surface density X¢(z) at radius R. As discussed earlier
terms (ii) and (iv) were incorrectly omitted from the analysis of
MB12.

2.3 Analytic exponential disk models

In simplifying the Jeans equation, we have assumed that the density
distribution of the stellar disk is that of a double exponential profile:

pa(R, z) =

22;1, exp(—R/h ) exp(—|zl/h.), (10)
where X, is the central surface density and hx and h, are the
scalelength and scaleheight of the disk. To give us some guid-
ance in the expected behaviour of the Jeans equation terms, we
will now calculate the radial and vertical forces for the density dis-
tribution of equation (10), using the Poisson solver of the RAMSES
N-body/hydrodynamics code (Teyssier 2002). Thus we are simply
numerically solving the Poisson equation using a specified analytic
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Figure 1. The left-hand panel shows the radial force term of equation (2) divided by the total surface density, and the right-hand panel shows the vertical force

term of equation (2) divided by the total surface density.

density distribution. Note that MB15 provides examples of analytic
Miyamoto—Nagai disk models and an NFW halo, and considers the
contribution of the radial force term in these cases. Our choice of an
exponential disk allows a more direct comparison with the analysis
undertaken in this study.

To demonstrate the effect of a dark matter halo on the vertical and
radial forces, we also add a logarithmic halo density distribution:

v, (¢*+ DR2+R*+(2—q )2

= 11
4nGq> (R2+ R* + 22q 2y (b

Ln

where R. = 12 kpc, vy = 200 km s~! and ¢ is the halo flattening,
with ¢ = 1 for a spherical halo, and ¢ = 0.7 for a very flattened
halo. After numerically determining the vertical and radial forces,
we can then use these directly in equation (2) to recover the surface
density at a specific radius R. Doing this at R = 8 kpc, we find the
dependence on height z for the radial and vertical terms in equation
(2) for various choices of disk parameters. We choose stellar disks
with scalelengths of 1.25, 2, 3.8 and 5 kpc. We also add a ¢ = 1
dark matter halo to the disks with scalelengths 2 and 3.8 kpc, and a
g = 0.7 dark matter halo to the disk with R; = 3.8 kpc, for a total
of seven models. All disks have h, = 0.9 kpc, i.e. they are all thick
disk models.

In the left-hand panel of Fig. 1, we show the radial force term of
equation (2) divided by the total surface density in order to assess
their relative importance. Clearly the scalelength controls the size
of the contribution from the radial term, which may be considerable
and is also not guaranteed to be positive. In fact, we can only
distinguish the lines associated with the models with very short
scalelengths, i.e. Ry = 1.25 kpc and R; = 2 kpc. All other models are
essentially indistinguishable in these plots. The ratio of the vertical
force term to the total surface density is shown in the right-hand
panel of Fig. 1. Again, only for the small scalelength disks (small
relative to the scaleheight) can we distinguish different behaviour.
Although the vertical term is always a larger contribution to the
calculated surface density than the radial term, we can see that for
very short scalelength disks the radial term is important, especially
at higher heights. For larger scalelengths, the radial term becomes
increasingly positive, again contributing more at higher heights, but
it is always dominated by the contribution of the vertical term. The
inclusion of a dark matter halo similarly increases both radial and
vertical terms (although this is not evident in Fig. 1 as the change
is too small) with more weighting on the vertical term for the case
of the flattened ¢ = 0.7 halo. Note that a logarithmic halo always
increases both the radial and vertical contributions to the surface
density, regardless of the parameter choices.

MB15 reached similar conclusions when looking at the force
terms for an analytic Miyamoto—Nagai disk: for a longer scale-
length disk the contribution of the radial term becomes increasingly
positive. The inclusion of an NFW dark matter halo also leads to an
increased positive contribution from the radial term.

We thus see that, if the total stellar distribution is well described
by an exponential disk, only for a short scalelength disk with neg-
ligible dark matter? at R = 8 kpc do we expect to see a negative
contribution from the radial force term. Furthermore, only in this
case do the radial and vertical terms become comparable: all other
models show that the radial term is subdominant, except at large
heights above the disk.

The stellar disks of our simulation data sets are all well described
by a single-component exponential disk mass distribution (except
for the dark-matter-free model). Thus, these results provide us with
some intuition regarding our Jeans equation analysis applied to the
simulations, independent of the details of the stellar kinematics.
It is important to remember, however, that when applied to our
Galaxy, only the tracer stellar distribution need satisfy the double
exponential distribution, not the whole disk. As such, our analytic
results here do not imply that the radial force term for measurements
at the solar radius in our Galaxy must be negligible or positive.

3 SIMULATION DATA

Now, we will investigate the behaviour of the terms in the Jeans
equation using a total of eight simulated disk galaxies, four of which
were recently utilized in Gibson et al. (2013). Two of these are based
on g1536 and g15784 from the McMaster Unbiased Galaxy Simula-
tions (MUGS) project (Stinson et al. 2010), using the star formation
and feedback recipes described in Stinson et al. (2010) and Pilking-
ton et al. (2012b), while the other two use the same merger histo-
ries as the MUGS galaxies, but instead use the star formation and
feedback recipes of the Making Galaxies In a Cosmological Con-
text (MaGICC) project (Brook et al. 2011, 2012a,b,c; Pilkington
et al. 2012a; Stinson et al. 2012, 2013). We also use one simulated
galaxy from the ramses Disc Environment Survey (RaDES) (Few
et al. 2012), for a total of five cosmologically formed disk galaxy
models.

2 One could choose a dark matter halo distribution such that the circular
velocity decreases with radius, accentuating the negative contribution to the
surface density coming from the radial force term in equation (2). Such
a dark matter configuration is, of course, at odds with expectations from
observations and simulations.

MNRAS 456, 3456-3474 (2016)

9T0Z ‘0 YyoLe |\ uo ||nH Jo Al!SJS/\!Uﬂ r /6JO'S|EU.II’]O [pJO;XO'SQJUUJ//ZdnL] wiol} papeojumod


http://mnras.oxfordjournals.org/

3460

G. N. Candlish et al.

Table 1. Basic physical properties of the simulated galaxies. All these values are calculated within the region
R <20 kpc, 0 < z < 5 kpc for the cosmological and idealized models, while the GD1 and GD2 models use a
vertical range of 0 < z < 1.75 kpc and 0 < z < 2.5 kpc, respectively. M, denotes the total stellar mass within this
region, M, is the total gas mass, while Mpy is the mass in dark matter. We also note the disk vertical scaleheight
h;: these are all single thick disk models except for the GD1 and GD2 models, which are single thin disks. The
halo mass for the GD1 and GD2 models is quoted as the Mpgo (in solar masses) of the analytic NFW halo used.
The model without a DM halo thickens substantially and behaves more as an isothermal slab distribution, hence

the very large ‘scaleheight’ in this case.

Model M, M, Mpm h; (kpec)
Cosmological

MUGS gl1536 5.5 x 100 9.7 x 10° 9.3 x 10'° 2.1
MUGS g15784 8.6 x 1010 6.3 x 107 1.5 x 10" 1.7
MaGICC g1536 2.3 x 10'0 1.5 x 10'0 8.9 x 1010 13
MaGICC g15784 8.2 x 1010 2.3 x 1010 1.6 x 10" 0.9
RaDES ‘Selene’ 6.1 x 10'° 1.2 x 10'0 1.0 x 10" 15
Idealized

GD1 (smooth) 3 x 1010 - 1.75 x 10'2(Mag0) 0.2
GD2 (barred) 5% 1010 - 2 x 102 (M) 0.4
Idealized dark-matter-free disk 1.24 x 101 - - 7.8

The last three simulated disks are idealized models. These are
the models GD1 and GD2, drawn from the suite described by Hunt,
Kawata & Martel (2013), each realized with the smoothed particle
hydrodynamics code ccp+ (Kawata & Gibson 2003)? and one more
simulation performed for this study using the RAMSES adaptive mesh
refinement code.

3.1 Cosmological simulations

Our simulated galaxy sample from the cosmological simulations
are those referred to as MUGS g1536, MUGS g15784, MaGICC
21536, MaGICC g15784 and the ‘Selene’ simulation from RaDES.
The stellar disks of all these galaxies are single thick disks. The
only differences between the MUGS and MaGICC galaxies are the
star formation and feedback recipes employed. The main galaxy
properties are summarized in Table 1.

The MUGS and MaGICC galaxies were run using the N-
body/SPH code GasoLINE, while the RaDES galaxy was simulated
with the AMR grid code ramsEs. All these galaxies are dark matter
dominated. The MUGS and MaGICC merger histories are consid-
ered to be ‘quiet’, given that their last major merger takes place
prior to z = 3 (Stinson et al. 2010), allowing them to form large
disks. The RaDES ‘Selene’ model is a field galaxy that undergoes
only a few minor merger events at high redshift (i.e. at a lookback
time of 2> 10 Gyr) and therefore also has a largely uneventful star
formation history.

In all cases, the lack of any recent merger activity ensures that the
disks in these models are not strongly disrupted and therefore are
more likely to be dynamically settled, consistent with the steady-
state assumption used for the Jeans equation analysis of this study.

3.2 Idealized models

The smooth GD1 and barred GD2 idealized disks are live galaxy
models inside analytic NFW dark matter halo profiles. It is clear
from the vertical scaleheights given in Table 1 that these disks are
single-component thin disk models, rather than thick disks as in the
cosmologically simulated galaxies.

3 http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php
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To test the Jeans equation analysis in the absence of dark matter
we also model, using RAMSES, a single-component stellar disk (no
bulge, no gas and no dark matter) which is set up using the GALACTICS
initial conditions generation code (Kuijken & Dubinski 1995). This
code generates a dark matter halo as well (albeit chosen to have a
negligible mass) which we remove before running the model. The
initial conditions have Q > 1.92 at all radii, where Q is the Toomre
stability parameter. We then reset w = 0 for all particles, i.e. there
are no vertical motions at the start of the simulation. The model is
then evolved for a long period of time in an attempt to equilibrate
the stellar dynamics: slightly more than 11.1 Gyr. The absence of a
dark matter halo causes the disk to thicken substantially over time,
until it more closely resembles an isothermal slab distribution, with
very low rotation velocity at all radii. Thus this evolution time-scale
corresponds to roughly six full rotations of the disk.

3.3 Determining the kinematical quantities from the
simulations

We consider the particles (stars for all the models, plus dark matter
and gas for the non-idealized models) within a radius of 20 kpc in
the galactic plane and a height (above and below the disk) of 5 kpc
for the cosmological and dark-matter-free models, 1.75 kpc for the
GD1 model and 2.5 kpc for the GD2 model. Only the star particles
are used to determine the kinematics in the disk. The dark matter
and gas particles are only used to determine the total disk density.

This region is then binned into 50 bins in the z and R directions.
The bin width in the R direction is 0.2 kpc for all models, and in
the z direction it is 0.2 kpc for the cosmological models, 0.07 kpc
for the GD1 model, and 0.1 kpc for the GD2 model. The following
quantities are determined in each bin:

(i) U2, oy: the mean squared radial velocity and the radial ve-
locity dispersion of the star particles.

(ii) V, oy : the mean azimuthal velocity and the azimuthal veloc-
ity dispersion of the star particles.

(iii) W2, ow: the mean squared vertical velocity and the vertical
velocity dispersion of the star particles.

(iv) UW: the mean product of the radial and vertical velocities
of the star particles.
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(v) p.: the stellar density (the total star particle mass divided by
the bin volume).

(vi) p,: the gas density (the total gas particle mass, or gas densi-
ties in all the grid cells within our bin, divided by the bin volume).

(vii) ppm: the dark matter density (the total DM particle mass
divided by the bin volume).

These quantities, as functions of R and z, are then used in the
Jeans equation to calculate the surface density and to compare with
the true surface density determined by direct measurement in the
simulation. Note that, for now, we consider all particles within an
annulus at a specific radius and height, in order to use as many
particles as possible, we do not select only particles from particular
wedges in the disk. In Section 4.4, we will see how the results vary
for each disk quadrant. Clearly at very high heights above the disk
the number of star particles becomes low, introducing noise into
the results. In addition, the low particle resolution at these heights
in the GasoLINE SPH simulations implies a large hydrodynamical
smoothing length, and correspondingly poor resolution limiting the
ability to accurately capture drag effects in the gas. This will then
have an impact on the kinematics of any thick disk stars formed in
situ at high heights. In the RAMSES simulations, a low-resolution grid
at high heights implies poor sampling of the gravitational potential,
also leading to inaccurate stellar dynamics. These concerns do not
apply at lower heights where the particle and grid resolution is high.

The various radial scalelengths &g, hy and hy are measured at a
single height close to the disk plane: z = 0.1 kpc for the cosmo-
logical models and the dark-matter-free disk; z = 0.05 kpc and z =
0.035 kpc for the thin disk GD1 and GD2 models, respectively. The
vertical scaleheight /4, is measured for the radial bin at R = 8.2 kpc
for all models.

3.4 Vertical velocity dispersions

In Fig. 2, the vertical velocity dispersion as a function of height
0 ,,(2) is shown for each model. The blue lines in the various panels
are the values obtained for that model in the vertical bins above the
disk plane at a radius of R = 8.2 kpc. The error in each bin €(z) is
calculated as follows (Evans, Hastings & Peacock 1993):

Gu;(Z)
€(2) NGO =D (12)

where N(z) is the number of star particles in that z-bin. The length
of each symmetric error bar is then 2¢(z). We smooth the values of
o, with a five-point running average (extrapolating at low and high
z) which is shown as a thick blue line in Fig. 2. Our calculation
of the surface density uses the smoothed o, and so all future
references to the vertical velocity dispersion refer to the smoothed
values. The thick green line in these plots is the ‘predicted’ vertical
velocity dispersion from the true surface density of the model (see
Section 4.3).

3.5 Applying the equation to the simulation data

We must decide how to numerically evaluate the derivatives ap-
pearing in the equation for the surface density. One approach would
be to try using the data directly, by calculating derivatives with a
finite difference approximation. The results with this approach are,
however, extremely noisy due to the non-smoothness of the data.
An alternative procedure is utilized in Garbari et al. (2011) where
an spH-style smoothing kernel is applied to the particle data, and
then a polynomial reconstruction at each point in the particle ‘fluid’
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is used to determine gradients. Our strategy is to employ a simpler
approach, more along the lines of the analysis undertaken in MB12,
where we use function fitting for those terms that involve a deriva-
tive. Note that we do not use these fits for terms that do not involve
a derivative, only for terms (iii), (iv), (vii) and (ix). Terms (i), (ii),
(v), (vi) and (viii) will use the binned simulation data.

To proceed with our function fitting, we therefore apply further
assumptions.

Assumption 4. The squared mean azimuthal velocity is assumed

to have a linear dependence on radius: V2 ~ ay R + By, with ay
the slope of the fit line and By the intercept, at least within a cho-
sen range in R (given later) that includes our ‘solar radius’ of R
= 8.2 kpc. Although it is a fit parameter, the intercept By is never
needed in our analysis. We fit the slope at all heights, due to the
vertical dependence of this term (see BT12 and MB15). This term
was ignored in MB12, equivalent to setting oy = 0. It is demon-
strated in MB15 that this assumption, while incorrect, makes little
difference to their final value of ¥,.(z). The integral of the slope
values over z required for term (vii) is then calculated numerically.

Assumption 5. The mean product of the radial and vertical
velocities is assumed to have a linear dependence on radius:
UW ~ aywR + Buw, with apy the slope of the fit line and Byw
the intercept, again within a chosen range in R. The intercept value,
although fitted, is unnecessary for our analysis. For this quantity,
we fit the slope at the height z = 0.1 kpc only. Adding a height
dependence makes a negligible difference to our results. This linear
fit shows that U W has a very weak dependence on R (although it is
noisy) for all of our models. Contrary to our assumption, in MB12
this quantity was assumed to have an exponential dependence on R,
with a scalelength equal to the density. If we calculate the surface
density using the terms in Section 2.2 (including terms (ii) and (iv)
that were incorrectly omitted from the analysis of MB12) with the
data used in MB12 using an exponential radial dependence in U W
we find a negative X.,c(z). It is none the less generally assumed
in the literature, based on analytical approximations, that UW has
an exponential dependence on R, although the scalelength may not
be equal to hg. A linear fit may therefore be taken as a reasonable
assumption, at least locally, if the scalelength is substantially larger
than Ag. In any case, the simulation data are in reasonable agreement
with a linear fit, given the noise, and we will see that the U W terms
are subdominant in the analysis.

Assumption 6. The vertical velocity dispersion has a linear de-
pendence on z: oy = awz + Bw. This assumption is also used in
MB12, given the data of Moni Bidin, Carraro & Méndez (2012a),
and in Fig. 2 we can see that it is approximately true for our simula-
tion data. For large heights above the disk, beyond the region where
the mass density changes significantly with height, this is a well-
motivated assumption. As one approaches the disk plane, however,
the height dependence of o will vary from linearity, bending down
towards zero. Thus this assumption leads to poor estimates of the
surface density close to the disk plane.

Our use of the simulation data in the Jeans equation therefore
begins with determining the radial and vertical scalelengths of the
density, and the radial scalelengths of U2 and 0. We use a linear
regression routine in NUMPY to calculate linear fits to log p(R, z),
log UZ(R), log J‘%(R), 72(R), UW(R) and oy(z), where R =
8.2 kpc when the z-dependence is being considered, and in the
z-bin closest to the disk plane when the R-dependence is being
considered, except for the measurements of VZ(R) which we make
at all heights. For these fits we use data in a radial range 4.6 < R
< 11.8 kpc, roughly centred on our chosen ‘Galactocentric solar
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Figure 2. ¢, as a function of z at R = 8.2 kpc. The thin blue line denotes the values determined in each vertical bin, while the error bars are derived from the
sample size in each bin (see text). The thick blue line is the five-point moving average, extrapolated for low and high z. Clearly the noise and error increases
as we move further from the disk, where there are fewer stars. Note that the idealized models exhibit low number statistics at lower z than the cosmological
models, hence the lower cut-off in height in these plots. The thick green line in all plots is the ‘predicted’ vertical velocity dispersion from the actual surface

density in the model (see text).

radius’ of 8.2 kpc, for most of the models. For the MUGS g1536
model we restrict the radius range used to measure Ay to 4.6 <R <
9.4 due to substantial noise in the data at larger R leading to a poor
fit. For the GD2 model the radial range is restricted to 6.2 < R <
11.8 kpc due to complications arising from the bar in this galaxy.
The vertical range used for measuring the fits of all models except
the idealized models is 0.1 < z < 4.7 kpc. The thin disks of the GD1
and GD2 models limit our useful vertical range to 0.05 < z < 1.0
and 0.035 < z < 1.225 kpc, respectively. For the dark-matter-free
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model low number statistics force us to restrict the vertical range to
0.1 <z <3.1kpc.

The integrals in the terms in Section 2.2 are performed numer-
ically by summing up values in each bin, multiplying by the bin
width. We reiterate that terms (i), (ii), (v), (vi) and (viii) use sim-
ulation data, while terms (iii), (iv), (vii) and (ix) use the function
fits, with the term (vii) fits calculated at each height. The slope
of V" has considerable variation across models (and for different
heights for each model) but, as we will see later, the azimuthal
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Table 2. Fit parameters used in evaluation of the Jeans equation (with R? value for fit). The slope and intercept of the linear fit to oy are aw and By,
respectively, and the slope of the linear fit to U W is «yw. The final column is the value of the coefficient to the integral in term (v), discussed in Section

4.6
Model hr h; hy aw, Bw hav aygw Cs( % 1072)
MUGS g1536 2.1 (0.99) 2.0 (0.98) 14.6 (0.80) 6.0, 52.1(0.93) 14.4 (0.65) 54.2 (0.27) 3.9
MUGS g15784 2.5 (0.995) 1.7 (0.97) 8.5(0.93) 11.2,55.8 (0.98) 8.3 (0.82) 93.2 (0.40) 1.9
MaGICC g1536 2.5 (0.99) 1.3 (0.97) 11.2 (0.87) 5.3,32.3(0.93) 6.6 (0.85) 6.7 (0.02) 2.9
MaGICC g15784 2.4 (0.999) 0.9 (0.99) 9.2 (0.98) 11.0, 36.2 (0.99) 28.1 (0.65) —3.7(0.02) 2.2
RaDES ‘Selene’ 3.2(0.98) 1.5 (0.94) 5.1 (0.91) 8.5,51.7 (0.84) 5.4 (0.83) —18.6 (0.02) —-1.2
GD1 (smooth) 3.0 (0.999) 0.2 (0.96) 3.7 (0.99) 5.2,13.3(0.95) 3.8 (0.98) —2.1(0.15) 5.4
GD2 (barred) 8.2(0.97) 0.3 (0.99) 26.6 (0.73) 6.1,17.4 (0.93) 10.4 (0.94) —5.2(0.35) 1.9

No DM halo 3.3 (0.98) 7.8 (0.58) 13.5 (0.79) 0.3, 56.3 (0.05) 5.2 (0.93) 32.7(0.02) 2.8

velocity term is a subdominant contribution to the calculated sur-
face density.

It is important to note that all function fits are, of course, checked
against the simulation data and are not arbitrary assumptions purely
to simplify the Jeans equation. In particular, p(R, z), U2(R) and
a‘% (R) all show very clear exponential behaviour, as shown by the
generally high R? values of the fits in Table 2.

We will also consider two simplified forms of the equation for
the surface density. The first one uses only the vertical terms (viii)

and (ix):

1 2 — ‘
20 =——{ w2 . 13
Vert 47TG{h<. 0} 13

The other includes all terms in the expression for the vertical force,
i.e. equation (8). These simplified forms correspond respectively to:
(1) the traditional method of using only the vertical kinematics to
determine the surface density at the solar radius, assuming that the
“tilt’ term (1/(Rp,))0 (R p.U W) is negligible, and (2) the method
employed in BT12 that includes this term.

co_ow?
-2
0 0z

4 RESULTS AND ANALYSIS

The fit parameters for each model are given in Table 2, along with
the R? value of each fit (in parenthesis). It is clear that most fits are
good, except for those of the UW parameter and some parameters
of the model without dark matter. There is substantial scatter around
the value UW = 0 in all of our models, and the fact that the best-
fitting line is close to flat leads to very low R? values. We have
considered variations of this parameter by determining 1o values
for the slope and checking the effect on the final calculated surface
density of using these values, which is negligible (the maximum
change at high z is typically less than 10 per cent).

The scaleheight and vertical velocity dispersion fit parameters
for the dark-matter-free model are also poor fits. Given that the
model more closely resembles an isothermal slab model, we should
not expect the assumption of an exponential profile in the vertical
direction to be a good fit, but we will use this assumption in keeping
with the approach employed for all other models. In the case of the
vertical velocity dispersion, the flatness of this quantity in height
leads to a low R? value for the fit line.

We also see that several assumptions of MB12 are not respected
by our models, most notably the radial scalelengths of the velocity
dispersions are all larger than that of the density, i.e. hy > hg and
hy > hy, for all models, and the radial dependence of U W is weak.

4.1 Calculated surface density

The calculated surface density is plotted along with the actual mea-
sured surface density in Fig. 3. The stellar surface density (and gas
if present) is also shown. In addition, we show the one-dimensional
calculation of the surface density using only the vertical terms (viii)
and (ix), as well as the full vertical force of equation (8) which
includes the dependence on U W, as utilized in BT12. For the cos-
mological models and the GD1 and GD2 thin disk models we show
the effect of imposing the condition 4y = hg on the resulting calcu-
lated surface density, to be discussed further in Section 4.6.

Due to the noise in the calculated curves, it is difficult to ascertain
how well the analysis recovers the true surface density of the model.
Therefore we have chosen to fit the following function to the %€,
T{eq and TF lines of Fig. 3:

f@=avz+b (14)

where a, b are adjustable parameters. This function, although an
arbitrary choice, has the general behaviour expected of the surface
density as a function of z: it bends down for small values of z
(although we allow for a vertical offset by including a non-zero
intercept, b) and it flattens out for large values of z. To account for
the noise arising due to low number statistics at high heights, we
only choose to fit the function using z-bins for which the particle
number is at least >1 percent of the total particle number in a
vertical slice at the radius R = 8.2 kpc (i.e. the sum of particle
numbers in all z-bins at that radius). We will refer to this as our
‘particle number’ condition. These fit lines are plotted in Fig. 3 as
a dotted line for £, a thin dashed purple line for £, and a thick
dashed black line for £§ . The 1o range on the fit parameters a, b
for X€ are shown with the light grey bands. We label the fit line to
¢ as X, to distinguish the two quantities.

Our function fit may be interpreted as an indication of how high
above the disk plane the method may be considered reliable in each
model. For the case of the MaGICC models, the particle number
condition includes all z-bins up to 2.5k, (3.3 kpc) for MaGICC
1536, and 3h, (2.7 kpc) for MaGICC 15784. The fit line shows a
good match to the measured surface density, including when ex-
trapolated beyond the region of the fit itself. Similarly the RaDES
fit is within 1o of the true surface density, using data up to 2.7h,
(4.1 kpe) in this case. The thin GD1 and GD?2 disks also show rea-
sonable fits, again extrapolating beyond the actual fit regions, which
are all z-bins within 34, (0.6 kpc) and 2.94. (0.9 kpc), respectively.
The result for the model with no DM halo is rather unusual, owing
to the near-isothermal distribution of the particles, leading to an
almost linear surface density curve. As such our choice of func-
tion is inappropriate in this case. Nevertheless the fit corresponds
roughly to the trend of the true surface density, particularly at higher
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Figure 3. Total surface density calculation compared to actual surface density. The £ € line includes all terms, the E\C,m is the vertical-only version, and the
Egz line uses the full vertical force of equation (8) including the ‘tilt’ terms that depend on U W. The EhC line (where shown) uses the 4y = hg condition. The
total surface density (including gas if present) in the simulation is X, the stellar surface density is X, and the gas surface density is X,. The dotted line and
grey bands are the result of the function fit described in the text. The idealized dark-matter-free model only contains stars, and so the total surface density in
this case is the stellar surface density. Note that for the GD2 (barred) model the calculated surface density using the measured Ay and that using the hy = hg

condition are coincident.

heights. The MUGS galaxies exhibit a more substantial overesti-
mate at higher heights than in the other models, and so our fits must
be constrained to no more than %, (2.0 kpc) and 1.5k, (2.6 kpc) for
the g1536 and g15784 models, respectively, well below the height
corresponding to our particle number condition. As the MaGICC
models use a higher density threshold for star formation, this results
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in stars being born out of kinematically colder gas, which may con-
tribute to the differences seen here. Furthermore, the haloes of the
MUGS galaxies have more substructure than the MaGICC galaxies,
as the stronger feedback in the latter models decreases the number
of satellites significantly. This additional substructure may lead to
more external kinematic heating, and therefore less equilibrated
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Figure 4. Contributions of each term to the total surface density calculation, as enumerated in Section 2.2.

disks. The assumption of a steady-state equilibrium test stellar pop-
ulation is of course central to the entire analysis, and so any sources
of kinematic heating will introduce error. Further investigation of
such effects is, however, beyond the scope of this paper.

4.2 Relative importance of the terms in the Jeans equation

The contribution of the various terms listed in Section 2.2 (multi-
plied by 1/(27tG)) is plotted in Fig. 4 as a function of z, taking into
account the overall sign of the term. This is calculated by dividing

each term by the total calculated surface density. Due to the presence
of negative contributions this leads to some terms contributing more
than 100 per cent of the total surface density at some heights, with
the total contribution at each height summed over all terms being
100 per cent. In all cases the vertical velocity component contributes
by far the largest positive percentage of the total surface density,
while the slope of the vertical velocity in z, term (ix), generally
makes the largest negative contribution. In the MUGS models term
(v) makes an appreciable positive contribution at higher z, and an
especially large positive contribution in the dark-matter-free model.
It is also comparable to the (minor) contribution of term (vii), the
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mean azimuthal velocity term, in MaGICC g1536. In general, term
(vii) is of only minor significance in all models, except the GD1
thin disk.

From the plots in Fig. 4 we see that terms (i), (ii), (iii), (iv) and
(vi) generally make only small contributions to the surface density
calculation, increasing slightly for increasing z, but still contributing
less than ~10 per cent of the total at high z. This shows that for
higher z the vertical-only and full three-dimensional treatments do
tend to diverge, as can be seen in the calculated surface densities
of Fig. 3. As noted earlier, terms (iii) and (iv) do not appear in
the analysis of MB12 as they were incorrectly neglected in the
derivation. These terms use the radial behaviour of UW, which is
very close to flat for all of our models, thus these terms provide
a negligible contribution to the surface density and may, in fact,
be safely ignored. Term (vi) involves the radial behaviour of the
azimuthal velocity dispersion. Again, for all models, this term is
small, partly due to the fact that the radial scalelength of oy is
rather large, sometimes as much as ~10 times larger than the radial
scalelength of the density. Imposing the 4y = hy condition reduces
the surface density, by as much as ~30 per cent at high z, and so
this parameter must be reasonably well constrained for the analysis.
The effect is less significant than for the /4 parameter, however, so
we will not focus on this quantity here.

The last two terms, (viii) and (ix), are those depending on the
vertical velocity dispersion. In all models these are the dominant
terms, particularly term (viii), as may be seen in Fig. 4. The slope of
o, (z) controls the contribution of term (ix), and indeed one aspect
of this analysis is that the vertical force does not vanish in the plane
of the disk, due to the linear fit to o, being a poor approximation at
low z. This results in overestimates of the surface density for most
models at very low z.

This would suggest that, apart from the vertical terms (viii and
ix), the radial velocity dispersion term (v) and the mean azimuthal
velocity term (vi), all the other terms in the full three-dimensional
approach are of minor significance. Term (vii) is obviously only of
particular relevance in the case of a dark matter-dominated disk with
an associated increasing rotation curve (as for the GD1 model), or
a massive dark-matter-free disk with a steeply decreasing rotation
curve, neither of which appear to be true for the Milky Way. Term
(v) is of significance only because of the sensitivity on Ay (and hg)
as discussed in detail in Section 4.6.

4.3 Comparison of the one-dimensional and
three-dimensional approaches

The vertical-only and complete vertical force formulations (i.e. £,
and %€ ) are very similar in most models, due to the negligible
contribution of the “tilt’ term, as we have already seen. The only
model showing a significant disagreement between the two is the
dark-matter-free model, where the contribution of the first term in
equation (8) is sufficiently large to lead to notable differences in the
fit lines for the ‘vertical’ formulations of the surface density.
Therefore, given our results in Section 4.2 for the relative contri-
butions of all terms, we see that in general the vertical formulations
are competitive with the full three-dimensional approach. There
is, however, some disagreement for the MaGICC g1536 model,
and significant differences for the dark-matter-free model. We can
understand these results when we look at the contributions from
the various terms shown in Fig. 4. The two MUGS models and
MaGICC g1536 have somewhat larger contributions arising from
term (v), which depends on the radial velocity dispersion. In all
these models this term contributes more at higher heights, with a
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particularly large contribution in MUGS g1536. This term therefore
lifts the € curve relative to the others. Note that the vertical-only
and full formulation fit lines for the MUGS models, using data
within approximately one scaleheight, do not differ a great deal,
showing that the radial velocity dispersion is only relevant at higher
heights. The large deviation of the %€ line for z > 2.5 kpc in the
MaGICC g15784 model is likely due to low number statistics (re-
call that our particle number condition has been applied to the fit
lines). The importance of obtaining accurate measurements of the
parameters that enter term (v) (i.e. hg and hy) will be discussed in
Section 4.6.

The reasonable performance of the one-dimensional formulations
may also be seen in Fig. 2 where the thick green line is the verti-
cal velocity dispersion derived from the true surface density under
the assumption that only term (viii) in equation (2.2) contributes
to the surface density. This is an even less accurate approximation
than the ‘vertical-only’ formulation we have used, as we are now
neglecting the derivative term (ix), which will act as a constant
negative offset to the surface density in the case of a positive lin-
ear slope to the vertical velocity dispersion, as we have assumed
earlier and is the case in almost all models. The thick green lines
in Fig. 2 roughly correspond at least to the slope of the measured
vertical velocity dispersion for almost all models. In the case of the
stellar disk with no dark matter, our reconstruction of the velocity
dispersion using only term (viii) leads to a vertically increasing o ,,,,
rather than the flat velocity dispersion measured in the model. This
is because a vertically isothermal distribution implies a density dis-
tribution that goes like sech’(z) rather than an exponential. Thus
the assumption of an exponential distribution, which leads to the
expression given in equation (2.2) for term (viii), is a poor approx-
imation in this case. Therefore, simply inverting equation (2), by
using F, = —(1/h,)W?2, to find o, from the surface density leads
to an erroneous result.

To compare with the discussion in Section 2.3 we show the radial
and vertical terms of equation (2) calculated for each model using
the stellar kinematics in Fig. 5. Almost all models exhibit a clearly
dominant vertical term and flat or positive lines for the radial force
term. The only model with an appreciable negative radial force
term is the RaDES ‘Selene’ model. For this model the fourth term
in the curly brackets of equation (9), involving an integral over z of
UW, is the only significant positive contribution to the total radial
force term, with all other terms (except for the radial derivatives of
UW which are negligible) being negative contributions of similar
magnitude. The large hy values for the MUGS models (especially
g1536), MaGICC g1536 and the dark-matter-free models lead to
significant positive radial force terms. It is important to note, how-
ever, that although the GD2 model has an even larger value of Ay,
the iy value is also large, and so the contribution of term (v) to the
radial force is smaller than for the MUGS models.

The subdominance of the radial force term for almost all models
is consistent with the demonstrated efficacy of the vertical-only
formulation, especially for heights of order the scaleheight or lower.
Furthermore, in all cases except RaDES ‘Selene’ the contribution
from the radial force term is positive, so the vertical-only treatment
provides an underestimate of the surface density, as is also seen in
Fig. 3.

Therefore, in almost all cases studied here, the one-dimensional
approach is a reasonable approximation, especially at heights below
the thick disk scaleheight. Far from the disk plane the effects of the
additional terms can indeed become important, as demonstrated by
the disagreements between the vertical-only and three-dimensional
formulations at heights of order the vertical scaleheight in most
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Figure 5. The radial and vertical force terms of equation (2) as a function of height z, calculated using the stellar kinematics. The large radial terms in the
MUGS models and MaGICC g1536 are primarily due to the large measured Ay values relative to the hg values in these models.

models (see Fig. 3), primarily due to the effect of term (v), that
depends on the radial velocity dispersion. One must, however, keep
in mind that low number statistics introduces noise at very high
heights above the disk. The analytic results in Section 2.3 are also
supportive of the general applicability of the one-dimensional ap-

proach at heights up to the thick disk scaleheight, and even some-
what beyond.

We now combine the results across all models to try to find a
consistent picture of which approach is better. To do so, we calculate
the percentage error of the calculated surface densities using the full
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Figure 6. The left-hand panel shows the percentage error of the calculated surface densities at a height of /., i.e. the vertical scaleheight, and the right-hand
panel shows the same at a height of 3/,. The dashed horizontal lines are the mean percentage errors for each formulation across all models.

three-dimensional equation, the vertical force only (including the
‘tilt’ term), and the vertical-only formulation (no ‘tilt’ term): %€,
¢ and £, The error is calculated with respect to the true surface
derisity in the model ¥, for example

AY = |EC - Etrue|/21rue' (15)

We perform this calculation at two heights: one scaleheight above
the disk (i.e. &,) and three scaleheights above the disk (i.e. 34;). For
those models for which 34, is beyond 4.7 kpc we choose the second
height to be 4.7 kpc. For the model without DM, we choose the two
heights as 1.1 kpc and 4.7 kpc due to the very large value of 4, in
this case. The results are shown in Fig. 6, where it is clear that there
is considerable variation across models. In Fig. 6, we also show the
mean percentage error of each formulation as a horizontal dashed
line. Although the differences are rather small, we can nevertheless
see that the vertical force formulation, =& performs the best at
one scaleheight above the disk, while the full three-dimensional
formulation performs better at three scaleheights above the disk.
This result, while not robust given the number of models considered,
is expected: the one-dimensional formulation provides reasonably
good results when considering the kinematics of stars that are close
to the disk plane, while the corrections from the additional terms
in the three-dimensional formulation are needed for data at higher
heights. Such measurements are preferred for constraining the dark
matter density as the halo becomes increasingly dominant at higher
heights.

4.4 Azimuthal dependence and low number statistics

To better compare our results with observations, we will now briefly
consider how our calculated surface density (i.e. the fit line using
equation 14) compares with the true surface density using data that
are restricted to lie within specific quadrants of the disk. There-
fore, we create four subsets of the full data by selecting only the
stars that lie in the following intervals of the azimuthal coordinate
¢: [—n, —(1/2)x], [-(1/2)7, 0], [0, (1/2)x] and [(1/2)7, w]. We
then follow through with our analysis as described above, using
each subset, until we derive a surface density curve using the three-
dimensional formulation. Note that, when determining the various
function fits necessary for calculating derivatives, we exclude all
vertical bins where the particle number is less than approximately
10 (the exact value varies between models due to differing particle
numbers). This is to limit the impact of low number statistics on
the fit parameters. The results for each quadrant in each model are
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shown in Fig. 7. The variation of the measured (true) surface density
is shown in this plot as a grey band around the surface density mea-
sured using all stars. It is clear that the true surface density changes
little as one moves around the disk, whereas the calculated surface
density shows wider variation. The MUGS g15784 and MaGICC
galaxies show reasonable agreement in all four quadrants. The GD1
model also shows good agreement in all four quadrants, albeit with
a systematic underestimate of the surface density. The remaining
models all show larger spreads. For the RaDES ‘Selene’ model and
the disk without dark matter this may be partly related to noise
arising from low number statistics, as the total number of particles
used in the analysis (after restriction to the ‘Solar’ radius) in each
quadrant is of the order of 700, whereas all other models (except
MaGICC g1536) use at least 1200 particles. It is also worth noting
that the RaDES model disk exhibits some weak spiral structure. The
dark-matter-free disk presents particular problems for our analysis
due to the assumption of an exponential vertical distribution being
a poor fit to the data. This introduces errors in the estimation of 4,
which has a large impact on the final calculated surface density. In
the case of the GD2 model, the presence of a bar and weak spiral
arms is likely to be the source of the azimuthal variation. Finally, the
problematic MUGS g1536 model may exhibit azimuthal variation
due to the increased substructure in the halo, as discussed earlier.
It should be noted, however, that in most models the calculated
surface density lines all track the trend of the true surface density
reasonably well, with errors in an overall offset. Thus the volume
density inferred by integrating these lines between two heights will
be similar in all cases. This is clearly less true for the MUGS g1536
and the GD2 model, which show more variation in the slopes of the
lines.

In Fig. 8, we perform a similar experiment as shown in Fig. 7,
but this time we consider smaller regions of the disk to examine
the effect of using fewer particles in the analysis. We have chosen
the MaGICC g1536 model, as the calculated surface density when
averaged around the whole disk is a good match for the true surface
density. The number of star particles used in the analysis of each
wedge region is shown in the plot, as well as the associated range
of the azimuthal coordinate showing the size of each region (27
is the whole disk, v is half the disk, and so on). It is clear that
the error increases substantially as we reduce the number of star
particles. Note that, in order to fit the slope of the vertical velocity
dispersion and the vertical scaleheight, we have only used bins that
contain at least 20 particles, otherwise the fits are heavily affected by
noise.
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Figure 7. Azimuthal dependence of the calculated and true surface densities, determined by considering each quadrant of the disk separately. The variation
in the true surface density is illustrated by the grey band around the solid blue line (the surface density measured using the whole disk). The blue dashed line
shows the calculated surface density using the whole disk, as in Fig. 3. The other dashed lines show the results of the analysis in each quadrant. All calculated

surface densities use the three-dimensional formulation.

The results of Figs 7 and 8 illustrate the challenge of correctly
inferring the surface density using this method with more realistic
data. Observations tend to probe a far smaller wedge of the disk than
we are considering, and often do so with fewer stars, introducing
two important sources of noise.

Returning to the specific terms of equation (2.2), we now examine
terms (vii) and (v) in more detail.

4.5 Mean azimuthal velocity

Term (vii) involves the mean azimuthal velocity V in the disk.
This term was the focus of BT12 where 0z V, poorly constrained

by observations, was inferred from the requirement that the radial
term of equation (2) vanishes, at least close to the plane of the
disk. It was argued that one can safely ignore the radial term in
equation (2) as this will be a subdominant correction to the vertical
term, and that any deviation from this behaviour is argued to be
in the form of a positive radial term, leading to no more than a
20 per cent underestimate of the local dark matter density when
using the vertical term alone. As discussed extensively in MB15, and
in Section 2.3, this is not consistent with all mass models, although
an exponential disk requires a very short scalelength to provide a
negative radial contribution (with either a negligible amount of dark
matter or a highly unlikely halo distribution that implies a radially
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Figure 8. The percentage error in the calculated surface densities for MaG-
ICC g1536 as a function of height when compared with the true surface
density (determined by azimuthally averaging around the whole disk). Each
calculated surface density line is determined from a wedge region of the
disk, with the size of the wedge and the associated number of star particles
used in the analysis indicated in the legend.

decreasing rotation curve). In our simulations most of the models
do indeed have subdominant positive contributions from the radial
term of equation (2), consistent with the results in Section 2.3 for
exponential disks embedded in dark matter haloes.

In BT12, it was suggested that neglecting term (vii) in MB12 led
directly to the low dark matter density estimate. In MB15, this is
shown to be incorrect, as the required positive slope in z of 9z V
term is far too steep to be accommodated by the observational data.
We will revisit this in Section 4.7.1. The only models for which
term (vii) is significant (but still subdominant) are the GD1 thin
disk and the MaGICC g1536 disk. The GD1 thin disk model shows
the largest contribution from term (vii), although this is reduced by
the negative contribution of term (v) to give a radial term in equation
(2) that is small and only slightly increasing with height, as shown
in Fig. 5. The MaGICC g1536 disk shows a similar contribution
from both term (vii) and term (v).

In all of our models term (vii) is therefore of only minor impor-
tance for the calculation of the surface density.

4.6 Radial velocity dispersion

We now turn to term (v). This term involves the radial velocity
dispersion o . From Fig. 4 it is clear that term (v) is most important
for the MUGS models and particularly the model without a DM
halo. As stated earlier, MaGICC g1536 also has an appreciable
contribution from this term. Let us try to understand the importance
of this term by looking at the coefficient of the integral shown in
Section 2.2:

2 1 1 1

= Rhy | Rhp W, huhg

Cs (16)
Setting R = 8 kpc and hy = ahg, the function Cs(«) is plotted in Fig.
9 for various choices of disk scalelength Ag. In our simulations 1 < «
< 8. We can see in Fig. 9 that for larger scalelengths the dependence
of the coefficient on o becomes weak for a wide range of « values,
and therefore for a wide range of hy values. This illustrates that,
for large hg, a large uncertainty in the value of « (or equivalently
hy) does not significantly affect the contribution of term (v). This
behaviour is clearly exhibited by the GD2 model, where sz = 8.2
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Figure 9. Dependence of the coefficient of term (v) on varying values of
«, where hy = ahg, for different disk scalelengths.

and hy = 26.6. Setting hy = hg in this model has almost no effect
on the contribution from term (v), as seen in the coincidence of the
> and Z/,CU lines for this model in Fig. 3. For a smaller scalelength
disk, however, the dependence of the coefficient on « is stronger,
especially for @ ~ 1 or less. It becomes possible to have a large
negative contribution from term (v) with the imposition of iy = hg.
This may be seen for the MUGS models in Fig. 3, where the E,ZCU
line rapidly decreases with z becoming large and negative, which
is unphysical. These models have small /g but large sy, and so a
significant reduction of & leads to a large change in the contribution
of term (v). For the MaGICC models the difference between iz and
hy is smaller, so the effect of imposing &, = hy is less pronounced,
but it still leads to a negative calculated surface density.

The values of the coefficient of term (v), Cs, are given in Table 2.
For the MUGS and MaGICC models the contribution from term (v)
is positive, and large in the case of the MUGS models. The RaDES
‘Selene’ model has a slight negative contribution from term (v), as
hg = 3.2 kpc and hy = 5.1 kpe, within the negative range of Cs in
Fig. 9. The GD1 value of Cs is much more negative than all other
models, but this is cancelled by the positive contribution of term
(vii) to give the almost flat radial force term of Fig. 5. Therefore,
we can characterize the discrepancies between the vertical-only and
three-dimensional formulation results in Fig. 3 by considering the
coefficient of term (v) alone, except for the GD1 model.

We now use equation (16) to determine what scalelength of disk
leads to Cs = 0, for a given value of «. Inthe case of @ = 1,1.e. hy =
hg, then the density scalelength must be iz = 5.3 kpc to ensure that
term (v) does not give a negative contribution to the surface density
(or the radial force term). For a larger radial velocity dispersion
scalelength, i.e. « = 2, we find a minimum density scalelength of
hi = 3.0 to ensure a non-negative term (v) contribution. A positive
contribution from term (vii) will, of course, counteract any negative
contribution from term (v), thus we do not strictly require Cs =
0 to have a non-negative radial force term, and so lower values of
hg would in that case be acceptable. For our Galaxy, the results of
MBI15 make it clear that the observations are not compatible with
very large contributions from term (vii). Therefore, if the radial force
term is to be non-negative (or only slightly negative), these estimates
suggest that either the density scalelength of the test population is
longer than the iz = 3.8 kpc choice of MB12 (and certainly far larger
than the value hg = 2.0 kpc of BT12) or Ay is significantly larger
than /Ag. It is important to remember, however, that the radial force
term in the Milky Way may well be more negative than exhibited
by our models.
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These results also suggest an approximate anticorrelation be-
tween hi and hy whereby a shorter disk scalelength would imply
a larger minimum value for the velocity dispersion scalelengths.
For our models this is approximately true, with lower values of hg
generally associated to larger values of Ay .

It is therefore necessary to measure these scalelengths as accu-
rately as possible, especially given that the Milky Way density
scalelength appears to be in the region where a significant de-
viation in the value of Ay leads to a large negative contribution
from term (v) in the Jeans equation. Given the sensitivity of X,
on this parameter, it is certainly possible that inaccurate choices for
the scalelengths have contributed to the result of MB12, where a
surprisingly low dark matter density was reported.

4.7 Revisiting MB12

The lessons from the simulations are that the most crucial extra
terms in the three-dimensional formulation are those involving the
radial velocity dispersion and the azimuthal velocity, although both
are still subdominant. Furthermore, all models have dxUW =~ 0.
We will now investigate what these lessons may imply for the
analysis of MB12.

4.7.1 Consequences for the mean azimuthal velocity

To begin with, UW was assumed in MB12 to have a radial ex-
ponential dependence as for the squared velocity dispersions. Our
simulation data do not respect this assumption, with the radial de-
pendence of U W being remarkably flat in all models, at least at the
solar radius. The analysis in MB12 also incorrectly neglected terms
(i) and (iv). When we include these extra terms using the parameter
set of MB12 we find the surface density quickly becomes negative
for increasing height. We can, however, restore the surface density
to the result of MB12 by imposing 0xUW = 0, a condition that
is respected by all of our models. One further consequence of this
condition is to imply that 3z V has only a weak dependence on z.
To see this, we follow the logic employed by BT12 in arguing for
the behaviour of term (vii) by appealing to the flatness of the Milky
Way’s circular velocity curve (ignoring the minor deviation from
flatness at higher z), 9x V. = 0. The expression for the asymmetric
drift may be derived from the radial Jeans equation (see BT12) as

v Voot o2 (e L) o]« Row o gOYW
¢ v hr  hy h. oz
a7

One may now differentiate this expression with respect to R to find

AUW R ’UW

0z 0ROz
where we have used the exponential dependence on R of the squared
velocity dispersions, as assumed throughout this study, and 0V, =
0. In BT12, using equations (17) and (18) with the MB12 data, the
vertical gradient of 3 ; V that is consistent with a flat circular velocity
curve was found to be positive and significant: from 7 km s~! kpc™!
at z = 0 kpc up to 40 km s~ kpc™!' at z = 3.5 kpc. This was

(18)
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Figure 10. The surface density calculated using the observational data and
parameter choices of MB12, with the Jeans equation formulation of that
work (green dashed line) and the current study (blue dashed line). These
curves omit terms (ii) and (iv), and are without errors. The solid lines use
hy = 2hg in the formulation of MB12 (green solid line) and of the current
study (blue solid line). The blue lines use dgUW = 0, as is approximately
true in the simulation data.

then shown in MB15 to be inconsistent with the few observations
available for the Milky Way, and for external galaxies.

Let us now impose the alternative condition of 3;UW =0 in
equation (18). When we now include the MB12 data values we
find that 9z V is much reduced, at all heights. Specifically, we find
that it is equal to 5.4 km s~! kpc™' at z = 0 kpc, and increases to
just 14.5 km s~! kpc™! at z = 3.5 kpc. Imposing a longer radial
velocity dispersion, i.e. hy = 2hg, reduces further the values of
0z V and the vertical gradient: 3.2 km s~! kpc™! at z = 0 and
3.5km s~ ! kpc~! at z = 3.5 kpc. As stated in MB15 it is therefore
only an approximation to set 9zV = 0, but we find that it is a
reasonable approximation given a very weak radial dependence in
UW, and we have also shown that it is roughly consistent with a
flat circular velocity curve.

4.7.2 Consequences for the surface density

For the purposes of comparison we plot X,.(z) in Fig. 10 (as the
dashed green line) using the data of MB12 and the Jeans equation
of that work. Therefore we neglect terms (ii), (iv) and (vii), and we
impose an exponential dependence on R in UW with scalelength
equal to the density, so that term (iii) becomes

z Z
5

p— 2
teem3 = —UW| = —Ouwz+Suw) (19)
hR hR

0 0

with yyw and §yw the slope and intercept of the linear fit line to
UW(z). Note that the fit line used in MB12 for the U W data includes
anon-zero intercept4 Syw. The central data values of MB12 are used
and we ignore errors.

Now we employ the Jeans equation terms given in Section 2.2,
with the exception of term (vii). The inclusion of terms (ii) and
(iv), neglected in MB12, along with the imposition of UW(R) ~
exp(—R/hg) leads to a negative surface density using the data of
MB12, as stated earlier. Therefore we proceed as in Section 4.7.1,
taking guidance from the simulation data, by setting 9 UW = 0.

4 The condition F, = 0 in the plane of the disk implies that U W (z) must
be an antisymmetric function of z, which is violated by the presence of a
non-zero intercept term in the linear fit to the data. Presumably sufficiently
accurate data would be consistent with an approximately zero intercept.
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Figure 11. Contributions to the calculated surface density from the vertical
and radial force terms using the MB 12 data, with the formulation of the Jeans
equation used in this study and 0gUW = 0. The radial force contribution
is made positive with a rescaling of the &y parameter.

While this is not precisely true for our simulations, we have seen
in Section 4 that it is a good approximation. Thus, of the terms that
depend on UW, terms (iii) and (iv) do not contribute to the final
result, leaving only term (ii):

1 R 1 1
UW = ~ 245 . 20
ha/o Rh. (ZVUWZ + UWZ) (20)

The resulting ¥,.(z) is plotted in Fig. 10 as the dashed blue line.
The loss of term (iii) from the Jeans equation means that we no
longer have the contribution from &y at z = 0, causing the X,
line to drop by approximately 10M¢ pc~>. Clearly the surface
density still barely increases with height, apparently indicating the
presence of very little dark matter.

If we now relax the assumption that &, = hg, and instead choose
hy = 2hg (i.e. @ = 2 in the context of Section 4.6, a value that is
still considerably lower than that measured in all of the simulations
except RaDES and the idealized GD1 model) we find the solid green
and blue lines in Fig. 10, where the solid green line corresponds
to the original MB12 treatment of the d U W term, while the solid
blue line corresponds to our treatment of this term. As can be seen,
the surface density is now an increasing function of z, with no
flattening.

This increase of the surface density is, of course, entirely due to
a change in the contribution from the radial force term of equation
(2), from negative to slightly positive, as can be seen in Fig. 11.
This modified radial force curve is also more in line with the results
of Section 2.3 which demonstrated that even a dark-matter-free
exponential disk with a scalelength of hg = 3.8 kpc should have a
positive radial force contribution to the surface density.

Let us now obtain the local dark matter volume density from
these X curves by calculating

ppom = (2(z = 4kpe) — X(z = 1.5kpc))/(2 x 2.5kpe) 21

where we assume that the stellar surface density is constant at z
= 1.5 kpc and above. The additional factor of 2 in the denomina-
tor arises due to the symmetric integral interval. For the original
data in the original formulation of MB12 we obtain ppy = 4.7 X
10~* Mg pc~?, ignoring errors. Setting &y = 2hg in the original
MB 12 formulation we find instead that ppy = 7.3 x 1072 M pc 2,
fifteen times larger than the original estimate. Using our new for-
mulation, with hy = hg, we find ppy = 1.1 x 107 Mg pc™, a
low estimate, as would be expected from the flat dashed blue line in
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Fig. 10, although this is over twice the estimate of the original for-
mulation of MB12. Setting iy = 2hg in our new formulation we find
oom = 7.9 x 1073 Mo pc_3, seven times larger than the estimate
with hy = hg. All of this strongly suggests that changes to the value
of hy used in this method may well result in an estimate for the local
dark matter volume density that, while somewhat lower than other
estimates, is approximately consistent with the standard halo model
value of ppy = 8.0 x 107° M pc~* (Jungman, Kamionkowski &
Griest 1996).

For a lower value of A the estimated density decreases, possibly
becoming negative and unphysical. For example, using iz = 2 kpc
and hy = 3.5 kpc, as suggested by BT12, we find a negative density
using either the formulation of MB12 or our new formulation. This
is to be expected given the dependence of the contribution of term
(v) on the scalelengths discussed in Section 4.6. By scaling Ay by a
factor of 2 the estimated dark matter density becomes positive: ppm
~ 8 x 1073 M pc>. While this scaling is arbitrary, it none the less
suggests that, if this method is to reproduce other estimates of the
local dark matter volume density, we would perhaps expect larger
measured values of /&y than used in either MB12 or BT12 (and a
larger Ay than that used in BT12), possibly values more consistent
with those of our simulation data.

Furthermore, the value of « that is required to reproduce typical
estimates of ppy would be reduced by the inclusion of the mean
azimuthal velocity term, as the positive contribution from this term,
discussed in Section 4.5, further increases the surface density.

4.8 Comparisons with the Milky Way

A central conclusion of our work, discussed in Section 4.6 is that the
scalelengths of the velocity dispersions, and particularly that of the
radial velocity dispersion, must be very carefully measured if the
full three-dimensional approach is to give a sensible result. We have
demonstrated that all of our simulations show 4, > hi (and also hy
> hg) and that simply assuming 4y = hg can lead to a catastrophic
failure of the method and a completely unphysical result when
calculating the surface mass density, especially for disks with a
small scalelength. Using the data of MB12, we have demonstrated
(in Section 4.7) that tension between the result of MB12 and other
studies can be removed if the assumed value of A in the analysis
is scaled up by a factor entirely consistent with those measured in
these simulations. Alternatively, if the condition iz = hy is to be
imposed, then the density scalelength /;z must be larger, possibly
on the order of hg = 5 kpc. Moreover, such a scaling would also
modify the results of MB15: if we wish to impose a negligible radial
force term, then a less negative contribution from the radial velocity
dispersion implies a less positive gradient in z of 3 V, bringing this
quantity in line with observations.

Our scaling of Ay is, however, completely arbitrary as it stands.
Without some observational constraint we cannot say that this def-
initely resolves the puzzle presented by the results of MB12. High-
quality observational data for the scalelengths /g, iy and, to a lesser
extent, hy, are therefore crucial for the robustness of this method.
Observational studies have so far been unable to tightly constrain
these scalelengths, although Lewis & Freeman (1989) have deter-
mined the radial velocity dispersions to have an exponential profile
in R, justifying assumptions 2 and 3 discussed earlier, and also
reflected in our simulation data.

In fig. 3 of MB12 several estimates for the vertical and radial disk
scalelengths are shown. The spread in & is large, with values from
1.5 to 6 kpc being within the errors. As we have seen, values at the
upper end of this range would lead to a significant increase in the
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local dark matter density volume measured from the MB 12 data set,
even with iy = hg. In Bovy & Rix (2013) the favoured value is /g
=2.15 £ 0.14 kpc, considerably shorter than the iz = 3.8 kpc used
by MB12. If this value is accurate then our analysis would strongly
suggest that the scalelength of the radial velocity dispersion is likely
to be much larger than the density, in order to avoid an unphysical
surface density when the full three-dimensional Poisson equation is
applied, using the Jeans equation to determine the forces.

Of course all of our conclusions must be counterbalanced with the
caveat that none of the models that we have analysed are intended
to reproduce our Galaxy. Therefore, there may well be significant
differences between the properties of these models, particularly
in the behaviour of the velocity dispersions, and the Milky Way.
In particular, UW is proportional to the tilt angle (the inclina-
tion of the dispersion ellipsoids with respect to the Galactic axes).
Measurements of the tilt angle indicate that the ellipsoid axis
roughly points to the Galactic centre at any height, i.e. the tilt
increases with z. One would expect that this is roughly the same in
the radial direction, the tilt slowly decreasing with R, and therefore
uw decreasing also. The 9 rUW =~ 0 behaviour of our models is
therefore rather unexpected for the Milky Way. Furthermore, the
scant observations of the scalelengths that are available suggest that
hy and hy are roughly comparable with hg. If these statements are
confirmed with further observations, then it appears very difficult
to reconcile the results of MB12 with those of other studies.

4.9 What of the other terms in the Jeans equation?

If instead we assume that all data and parameters, including the
scalelengths, of MB12 are correct, what does our analysis imply?
Is it possible that term (v) is not the culprit, and we must look
elsewhere?

Let us consider the ‘tilt’ term UW. All of our models have
0xUW ~ 0 and a negligible contribution from the UW(z) terms
in the Jeans equation. The observational situation with regards to
the radial gradient of UW in our Galaxy is, unfortunately, rather
uncertain. Again, accurate measurements of this quantity will al-
low us to conclusively determine whether this term can indeed be
safely neglected in a Jeans equation analysis. For the MB12 data
set, a linear slope of —65 km? s=2 kpc™! (assumed constant with
height) would lead to a negative contribution from the sum® of terms
(iii) and (iv) of no more than 10 per cent of term (viii), the domi-
nant vertical velocity dispersion term. For comparison, the MUGS
21536 model has the largest slope of —53.4 km? s=2 kpc~!. Note
that the assumption of MB12 that the UW term has an exponential
dependence on radius with the same scalelength as the density cor-
responds to a slope in R (at the disk plane) of —159.7 km? s~2 kpc ™',
explaining why the surface density becomes negative if we use our
formulation of the Jeans equation, including terms (ii) and (iv), with
all the assumptions of MB12.

It therefore seems that we would require a steep positive radial
gradient in UW in order to substantially increase the radial force
contribution to the surface density with this term, something not
exhibited by any of our models or the MB12 observational data set.
It is none the less conceivable that different galactic evolutionary
histories will lead to different behaviour for the UW ‘tilt’ term, and
its radial gradient. Until more accurate data are available, however,
the observations utilized in MB12 support the assertion that UW

5 Term (iii) is a negative contribution to the surface density while term (iv)
is positive, so they must be counted together.
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is not a significant contribution to the surface density, as do all of
our models, provided the radial gradient is much less steep than for
the density or velocity dispersions. The results in Section 4.7.1 also
suggest that the dxUW = 0 condition is consistent with both the
observed low values of d;V and a flat circular velocity curve.

Finally, we have had rather little to say about term (vi), the
azimuthal velocity dispersion. This term gives a negative contribu-
tion to the surface density, that becomes increasingly significant at
higher heights. In all simulations &y > hg, very roughly tracking
the behaviour of Ay. For the MB12 data term (vi) is a negative
contribution of approximately 25 percent of the vertical velocity
term at z = 5 kpc. Increasing the radial scalelength to hy = 2hg,
in a similar manner to that discussed for the radial velocity disper-
sion, we find a negative contribution of 14 percent at z = 5 kpc.
For comparison, setting iy = 2hg changes term (v) from a nega-
tive contribution of 50 per cent of the vertical velocity term at z =
5 kpc, to a positive contribution of 20 per cent at the same height.
Therefore, while /2y must also be observationally constrained for an
accurate application of the three-dimensional method, uncertainties
in this parameter do not lead to such drastic differences as in the
case of the radial velocity dispersion.

5 CONCLUSIONS

In this work, we have applied a fully three-dimensional method of
reconstructing the disk surface density to data from simulated disk
galaxies, formed in high-resolution cosmological simulations that
included state-of-the-art physics recipes for the various astrophysi-
cal feedback processes and star formation. These galaxies are known
to satisfy many observed scaling relations and thus provide a realis-
tic data set for the purpose of attempting to reconstruct the surface
mass density of the disk in the region of R = 8 kpc. While we do not
claim that these galaxies are simulated versions of our Milky Way,
the fact that they have formed through cosmological processes, un-
dergoing various secular and environmental effects throughout their
evolution, provides a somewhat more realistic testing ground for the
Jeans equation method, using dark matter dominated galaxies. In
addition we have studied idealized thin disk galaxies embedded in
analytic dark matter haloes, and a dark-matter-free model. We then
revisited the results of MB12, applying the lessons learned from
the simulations to determine possible consequences for the Jeans
equation analysis applied to our Galaxy.

As shown in Sections 4.2 and 4.3, applying the full three-
dimensional analysis to our simulated data, we find that the radial
force term is usually subdominant at lower heights, and that the
traditional vertical-only formulation is a good approximation, es-
pecially for vertical heights of order the thick disk scaleheight and
below. Whenever there is more significant disagreement between
the vertical-only and the full three-dimensional formulations, how-
ever, (such as for the MUGS 1536 model or the dark-matter-free
model) the main term responsible for this disagreement is the radial
velocity dispersion, while the mean azimuthal velocity term is only
a minor contribution in all models (see Sections 4.5 and 4.6). At
higher heights, however, the three-dimensional method is more ac-
curate than the one-dimensional approximation. In Section 4.4, we
have shown that restricting the analysis to a smaller subset of the
data (as done in observational studies) by considering each quadrant
of the disk separately leads to slightly more variation in the calcu-
lated surface densities than is present in the true surface density for
some models, with more significant spread for those models with
lower numbers of particles and /or structure in the disk. Thus low

MNRAS 456, 3456-3474 (2016)

9T0Z ‘0 Yyose |\ uo ||nH jo Al!SJS/\!Uﬂ r /6JO'S|EUJI’]O [pJO;XO'SQJUUJ//ZdnL] wiol} papeojumod


http://mnras.oxfordjournals.org/

3474  G. N. Candlish et al.

number statistics and disk structure will contribute further sources
of error for this kind of analysis.

The quantity U W, poorly constrained observationally, is a sub-
dominant term in all models, and 0xUW = 0 in all models, with
no evidence for a strong dependence on radius. The use of the
condition dxUW = 0, and imposing a flat circular velocity curve,
implies small values of 9 &V and a weak dependence on z, con-
sistent with observations and the discussion of MB15, as shown in
Section 4.7.1. This further demonstrates that this term alone cannot
account for the ‘missing dark matter’ result of MB12.

Taking guidance from the results of the simulations, we have
therefore excluded the UW and d;V terms as being capable of
restoring the local dark matter volume density to results found
elsewhere in the literature. Assuming that the kinematical data set
of MB12 is accurate, the results from the simulations lead us to the
conclusion that the only mechanism for restoration of ppy to values
seen in other studies is by increasing the radial scalelength of o,
and possibly oy and p (see Section 4.7.2). The increase of iy (and
hy) would also lead to a flat (or slightly positive) radial force term
(as a function of z) in equation (2), bringing the kinematical data
set of MB12 into line with the expectations (even in the absence of
dark matter) for an exponential disk of scalelength hx = 3.8 kpc,
as discussed in Section 2.3. Furthermore, if the scalelength of the
density is as low as iz = 2.15, as claimed in Bovy & Rix (2013), our
analysis suggests we require an even larger value for the scalelengths
of the velocity dispersions to reconcile 0z V., = 0 with the kinematic
data of MB12.

It must, however, be kept in mind that the entire analysis rests
on the assumption that the test stellar population is indeed in equi-
librium with the Galactic potential. Although we do not investigate
this issue further in this study, it is worth noting that any kinematic
heating of the stars will disrupt this equilibrium, leading to errors
when using this method.

The use of the three-dimensional formulation for our Galaxy re-
quires very accurate measurements of all parameters. Simplifying
assumptions, such as hgx = hy, are likely to lead to considerable
error in estimates of the local dark matter volume density. Until
accurate measurements are available, however, our study strongly
suggests that the vertical-only formulation is as effective as the
three-dimensional formulation up to the thick disk scaleheight.
Using data at higher heights, where the gravitational potential of
the dark matter halo begins to dominate, requires the inclusion of
the radial force for an accurate result, and thus is subject to more
sources of error. All approaches, however, require accurate mea-
surements of all scalelengths, and accurate kinematics of at least
several hundred stars at a range of heights in order to minimize
errors, especially in the measurements of the vertical velocity dis-
persions. With more precise observations in the future, however,
the use of this kind of three dimensional analysis will be helpful
in constraining the local dark matter density and the kinematical
properties of the Galactic disk.
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