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Abstract
Problems such as data compression, pattern recognition and artificial intelligence often deal with a large data sample as

observations of an unknown object. An effective method is proposed to fit hyperplanes to data points in each hypercubic

subregion of the original data sample. Corresponding to a set of affine linear manifolds, the locally fitted hyperplanes

optimally approximate the object in the sense of least squares of their perpendicular distances to the sample points. Its

effectiveness and versatility are illustrated through approximation of nonlinear manifolds Möbius strip and Swiss roll,

handwritten digit recognition, dimensionality reduction in a cosmological application, inter/extrapolation for a social and

economic data set, and prediction of recidivism of criminal defendants. Based on two essential concepts of hyperplane

fitting and spatial data segmentation, this general method for unsupervised learning is rigorously derived. The proposed

method requires no assumptions on the underlying object and its data sample. Also, it has only two parameters, namely the

size of segmenting hypercubes and the number of fitted hyperplanes for user to choose. These make the proposed method

considerably accessible when applied to solving various problems in real applications.

1 Introduction

In many applications of scientific disciplines, it is often

important to discover interrelationships among a set of

variables and the patterns in them. These variables repre-

sent an unknown object, and their measurements are con-

sidered a data sample of the object. A data-driven learning

mechanism is an automated process of extracting infor-

mation on interrelationships of these variables from their

measurements.

In an algebro-geometric framework, the data-driven

unsupervised learning problem is investigated in this work.

The problem is solved by fitting hyperplane patches to

observed points of an object in each exclusive subset of the

data sample. These exclusive subsets are obtained by

subdividing the data range into hypercubic subregions of

equal size and associating data points with the hypercubes.

These fitted hyperplane patches intersect forming an affine

linear manifold. The set of all linear manifolds form an

approximation of the object. The approximation is optimal

in the sense of least squares of the perpendicular distances

of the data points to the fitted affine linear manifolds.

As an approximate model of the underlying unknown

object, analytic expressions of the affine linear manifolds

can be used for pattern recognition, dimensionality reduc-

tion, and component predictions of high-dimensional data

points through inter- or extrapolation.

2 Related work

Linear approximation of an unknown nonlinear relation-

ship is a general problem which has been investigated

intensively from various perspectives. Directly used for

classification in [1], one hyperplane is fitted to the data

points in one class, and simultaneously furthest from the

remaining data points. For dimensionality reduction, the

local linear embedding [2–4] and its variation [5] firstly fit

a set of weights to each subset of high-dimensional data

points to reproduce one point within the subset. In a similar

manner, a low-dimensional dataset is then obtained by

fitting its data points to the determined weights. The phi-

losophy of carrying certain geometric features to a low-

dimensional space led to another intuitive method called

Isomap [6]. It first determines a matrix containing the
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shortest path distance between each pair of data points in a

neighbourhood of a given data point, and then, by using the

classical multidimensional scaling, low-dimensional points

best retaining the distances are obtained. A low-dimen-

sional sequence produced in [2–6] reveals some intrinsic

geometric properties of the unknown object, but does not

indicate the extent to which it approximates the underlying

object.

A largely overlooked study [7] solved the problem of

fitting a linear manifold to data points in a high-dimen-

sional space by the Eckart-Young-Mirsky theorem [8].

This also forms the basis of the method of local tangent

spaces in [9] for learning nonlinear manifolds. By assum-

ing sufficient smoothness of the underlying manifold, a

tangent subspace is determined with respect to each data

point and its neighbours. The subspaces associated with all

data points are used to approximate the unknown nonlinear

manifold. Nevertheless, the approximation uses more

floating-point numbers than those needed for representing

the original high-dimensional data.

Specifically addressed for the problem of linear mani-

fold approximation of a nonlinear manifold, a sophisticated

method was developed in [10] for determination of clusters

of data points based on local tangent spaces. A local linear

manifold called a flat was then fitted to data points in each

cluster. The calculations of tangent spaces and flats were

based on the Eckart–Young–Mirsky theorem. In the current

study, the underlying object is not assumed to be a non-

linear manifold, and the natural hypercubic segmentation

of data points is non-iterative and effective. As shown in

the current work, hyperplane fitting is conceptually simple

with an elementary derivation immediately leading to the

linear manifold fitting [7] and the classical principal

component analysis [11] through the singular value

decomposition of a matrix formed by data points.

The polynomial approach [12] to the problem of sub-

space segmentation is a different way of grouping data

points drawn from an unknown object. The subspace seg-

mentation method is most effective when the data points of

an object approximately belong to linear subspaces of an

unknown number and unknown dimensions because once

the segmentation is completed, each subspace can be well

represented by a linear manifold. In comparison, grouping

of data points in the current work is a method of spatial

segmentation. When the size of the segmenting hypercubes

is sufficiently small, linear subspaces can be discovered by

fitting hyperplanes to data points in hypercubes.

A different and promising line of research is use of a

multiple-layer neural network such as the autoencoder

proposed in [13] to achieve dimensionality reduction and

approximate recovery of original data. Along with deter-

mination of architecture of a neural network, initialisation

and optimisation of the weights and biases associated with

its neurons are normally a challenging task in applications.

The novelty of this work lies in the development of a

general method for unsupervised learning of an unknown

object on which no particular assumptions are made. As

illustrated by several examples, the method is readily

applicable to a range of non-linear approximation prob-

lems. An advantage of using least squares of perpendicular

distances rather than other distance measures [14] between

the hyperplanes and given points is that hyperplane fitting

can be solved by the numerically reliable singular value

decomposition of a matrix formed by data points in each

hypercube.

3 Method

3.1 General description

Let x be a general point belonging to an unknown object in

a subspace X of Rn, the nD Euclidean real space. Given m

sample points fxig of x, the existence of dependencies

among the components of x implies the existence of a

kernel represented by a surjective mapping h: X 7!0 2 Rl

with 0\l\n, and hence of an embedding specified by an

injective mapping f: Y � Rn�l 7!X. This kind of embedding

could simply be a monomorphism with the properties such

as continuity and structure-preserving, not necessarily a

well-behavioured topological manifold. In many applica-

tions, maps h and f could conveniently be viewed as

multivariable functions hðxÞ ¼ 0 and x ¼ f ðyÞ with x 2 X

and y 2 Y, and only fxig is known. The objective is to

locally fit hyperplanes to fxig so that the unknown object is
approximated by the local affine linear manifolds defined

by these fitted hyperplanes. The approximation is optimal

in the sense of least squares of perpendicular distances of

the data points to the fitted hyperplanes.

Denote centroid �x of fxig and the associated data matrix
�X by

�x ¼ 1

m

Xm

i¼1

xi; �X ¼ x1��x; x2��x; . . .; xm��x½ �0;

ð1Þ

where 0 stands for the transpose. A hyperplane denoted by

ðp; dÞ is an ðn� 1ÞD linear subspace in Rn, with unit vector

p being its normal and scalar d its signed perpendicular

distance to the origin of the reference frame. The signed

perpendicular distance from point x to ðp; dÞ is x0p� d.
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3.2 Regional segmentation

Consider an nD hypercube bounding X and segment it with

a sufficient number of equally sized and identically ori-

ented small nD hypercubes called n-cubes. Let the length

of n-cubes be r ¼ 2b=c, where positive integer c is speci-

fied by the data analyst, and b is the maximum of the

absolute differences between the corresponding coordi-

nates of each point and centroid �x.

Figure 1 illustrates a cubic neighbourhood and fitted

plane in 3D space, where Xj is the subregion bounded by

the jth cube. Two n-cubes are said to be neighbours to each

other if they share at least one vertex. The total number of

the n-cubes within the bounding nD hypercube is cn which

is prohibitively huge even for moderate integers c and n.

Moreover, an n-cube has 3n � 1 neighbours, which is still a

huge number for high-dimensional data.

To avoid searching n-cubes most of which contain no

data points anyway, an effective algorithm should directly

assign each point to the n-cube to which it belongs. Con-

sider an n-cube with a vertex at x ¼ �x� be, where e is the

vector of n ones. Clearly, among all cn n-cubes and 2n

vertices of each of them, this n-cube and vertex are the

furthest in the opposite directions of the reference-frame

axes. They are referred to as the first n-cube and its first

vertex, respectively.

Let kc consist of n top-down written digits representing

the base-c number of an integer counting from 0 to cn � 1,

and kc be its base-10 correspondence. For example, if

n ¼ 3, 02 ¼ 03 ¼ 0; 0; 0½ �0, 12 ¼ 13 ¼ 1; 0; 0½ �0,
22 ¼ 0; 1; 0½ �0, 23 ¼ 2; 0; 0½ �0, 72 ¼ 1; 1; 1½ �0,
263 ¼ 2; 2; 2½ �0, and so on. The first vertex of the kcth n-
cube is at xþ rkc. To find the n-cube containing xi, the

rounding-down function bxc of scalar x, and its extension

bxc as the component-wise operator on vector x are used.

At step 0 of the algorithm, (1 ? e)b replacing b avoids

overflow of components of kc. Without the replacement, at

least one component of kc will reach c when xi is on the

boundary of X. This minor adjustment amounts to filling cn

n-cubes into an nD hypercube which is slightly bigger than

that boundingX.

Fig. 1 An illustration of plane

fitting with a cubic

neighbourhood
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The point-to-hypercube algorithm divides the dataset

into k subsets within the identified k n-cubes. It naturally

covers the case where data points scatter in disjoint sub-

regions of X. To the points within each segmenting n-cube,

l hyperplane patches (hyperplanes bounded by this n-cube)

can be fitted in order to obtain a local approximation of the

unknown object. If subregion Xj bounding the jth n-cube

contains mj points, it is clear m ¼
Pk

j¼1 mj. The algorithm

ensures that, for each xi 2 X, there is a unique j so that

xi 2 Xj.

3.3 Fitting hyperplanes

For clarity of exposition, in this and next two sections, all

data points are assumed to be in one n-cube, corresponding

to c ¼ 1 in the point-to-hypercube algorithm. The only

difference between this and general case is that in the latter

an n-cube normally contains a smaller number of data

points.

With 1� l� n, fitting l hyperplanes fðpj; djÞg to m data

points fxig is a constrained minimisation problem:

Jl ¼ min
Xl

j¼1

Xm

i¼1

ðx0ipj � djÞ2 s.t. p0jpj ¼ 1;

j ¼ 1; 2; . . .; l:

ð2Þ

As verified in Appendix A, (2) has the solution

ðpj; djÞ ¼ ðvnþ1�j; �x
0vnþ1�jÞ; j ¼ 1; . . .; l; ð3Þ

where the normals are the last l vectors of V, coming from

the singular value decomposition �X ¼ URxV
0 with

Rx ¼ diag ðr1; r2; . . .; rnÞ, rn � 0, and ri � rj for i\j.

With the fitted l hyperplanes, the least squares criterion in

(2) reaches the minimum Jl ¼
Pl

j¼1 r
2
nþ1�j.

The hyperplanes in (3) are mutually perpendicular, and

they all pass centroid �x. A point simultaneously on several

hyperplanes means that it is on their intersection which is

also a hyperplane. Cases l ¼ n and l ¼ n� 1 correspond to

fitting a point and a straight line to fxig, respectively.

Figure 2a and b illustrate fitting a plane to evenly sampled

3D cylindrical surface and Möbius strip respectively, and

(c) fitting (the intersection of) two mutually perpendicular

planes to a randomly sampled 3D straight line with additive

noise.

3.4 Affine linear manifold

As verified in Appendix B, the intersection of the hyper-

planes in (3) can be described by its parametric equation or

parametric inverse given, respectively, by

x ¼ �xþ Vn�ly; y ¼ V0
n�lðx� �xÞ; ð4Þ

where x 2 Rn represents an arbitrary point on the inter-

section, y 2 Rn�l is its low-dimensional correspondence,

and Vn�l consists of the first n� l vectors of V. The

parametric equation also defines an affine linear manifold

which is an ðn� lÞD subspace complementing the lD

subspace spanned by the hyperplane normals. An arbitrary

point belonging to the manifold is represented by x and y as

its coordinates, respectively, in the global frame, and in the

frame originated at �x with the vectors in Vn�1 as its axes.

Orthogonal projections fx̂ig of fxig onto the manifold

and low-dimensional sequence fyig are readily obtained

from (4) as, for i ¼ 1; 2; . . .;m,

x̂i ¼ �xþ Vn�lyi; yi ¼ V0
n�lðxi � �xÞ: ð5Þ

The difference between xi and x̂i indicates closeness of the

affine linear manifold to xi, while yi is the coordinates of x̂i
in the ðn� lÞD subspace. The sum of the squared distances

between fxig and fx̂ig equals the sum of the squared l

smallest singular values of �X, namely
Pm

i¼1 kxi � x̂ik2 ¼
Pl

j¼1 r
2
nþ1�j.

Being originally addressed to fit a plane or a line to the

observations of the high-dimensional vector [15], the

principal component analysis is normally formulated as to

determine a low-dimensional vector whose components are

Fig. 2 Plane fitting to different objects in 3D space. In each of cases

(a) and (b), a plane is fitted to 30� 30 regularly sampled and noise-

free points shown as the light strips on object’s surface. In case (c), a

line (intersection of two mutually perpendicular planes) is fitted to

randomly sampled noisy points shown as black dots of a 3D straight

line
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linear combinations of the components of a high-dimen-

sional vector [11], or vice versa [16], by maximising the

resultant variance. The high- and low-dimensional vectors

are now shown to be related to each other in (4) by the

hyperplane intersection.

3.5 Determination of dimensionality

The dimensionality of an object is the number of inde-

pendent components in its general point x. Within the

region of an n-cube, it can be approximated by n� l, where

l is the largest number of hyperplanes best fitting to the data

points in the n-cube. Denote the orthogonal projection of xi

onto (the intersection of) the l hyperplanes by x̂
ðlÞ
i obtained

from (5), and recall Jl ¼
Pm

i¼1 kxi � x̂
ðlÞ
i k2 ¼

Pl
j¼1 r

2
nþ1�j

with r1 � r2 � � � � � rn � 0 being the singular values of

data matrix �X. It is evident that if the embedded object is of

ðn� lÞ dimensions, then e 	 rn 	 rn�1 � � � 	
rn�lþ1\\rn�l is expected, where e is a small number

whose value is dependent on the noise level of the sample

points fxig. If there is no embedding in X, then e\\rn is
expected.

3.6 Efficiency of dimensionality reduction

The ideal efficiency of dimensionality reduction ðn� lÞ=n
cannot be achieved. To express m nD sample points, total

mn floating-point numbers are needed. The floating-point

numbers used by the k groups of (n� l)D affine linear

manifolds are the sum of 2nk from the centroids and n-cube

centres, ðn� lÞnk from basis vectors and ðn� lÞm from

subspace points. Hence, the reduction in usage of floating-

point numbers in the approximation is given by cp ¼
l=n� 2ðn� lþ 1Þk=m resulted from subtracting the usage

from and diving the outcome by the total, and clearly

0� cp � 1.

3.7 Component prediction by interor
extrapolation

The information about the fitted l hyperplanes can be used

to determine l components of a general nD point x of the

underlying object as linear combinations of its remaining

n� l components. Let Pl and Pn�l be two parts of a per-

mutation matrix P, partitioning x� �x into l and n� l

components as x1;l � �x1;l ¼ Plðx� �xÞ and

xlþ1;n � �xlþ1;n ¼ Pn�lðx� �xÞ. Refer to the derivation of (4)

and note, if x is on the intersection of the fitted hyper-

planes, V0
lðx� �xÞ ¼ 0 with Vl consisting of the last l

vectors of V. Substituting x� �x ¼ P0
lðx1;l � �x1;lÞþ

P0
n�lðxlþ1;n � �xlþ1;nÞ into V0

lðx� �xÞ ¼ 0, the least squares

solution of x1;l � �x1;l yields

x1;l ¼ �x1;l � ðV0
lP

0
lÞ
þV0

lP
0
n�lðxlþ1;n � �xlþ1;nÞ ; ð6Þ

where ðV0
lP

0
lÞ
þ
is the Moore–Penrose inverse of V0

lP
0
l.

When xlþ1;n belongs to a hypercubic ðn� lÞD subregion

of any non-empty segmenting n-cube, finding x1;l is called

interpolation, or extrapolation otherwise. The produced x1;l
is unreliable if the condition number of PlVj;l is consider-

ably greater than 1 or if xlþ1;n is faraway from any non-

empty n-cube. If xlþ1;n belongs to more than one non-

empty segmenting n-cube, x1;l has multiple solutions.

In some applications, the partition of x is not determined

a priori. In such a case, determination of Pl and Pn�l could

be firstly based on the averaged relative errors fesg defined

by

es ¼
1

mj

Xmj

i¼1

jxsi � x̂sij
jxsij þ jx̂sij

; s ¼ 1; 2; . . .; n ð7Þ

where xsi and x̂si are sth components of xi and x̂i in (5),

respectively, and mj is the number of data points in the jth

n-cube. Let fej1 ; ej2 ; . . .; ejlg be the l smallest elements in

fejg. The rows of Pl are the j1; j2; . . .; jl rows of the

identity matrix of dimension n, while Pn�l contains the

remaining n� l rows.

4 Result

To show the capability of the method for linear approxi-

mation of a nonlinear object, two examples of a 2D man-

ifold embedded in a 3D space are used. The next example

is for the handwritten digit recognition using a MNIST

dataset. A further example illustrates dimensionality

reduction in a cosmological application. The problem of

inter- and extrapolation is considered with an application in

a social and economic data set. The final example deals

with recidivism prediction in a judicial application.

4.1 Möbius strip and Swiss roll

These are two simple academic examples with the para-

metric equation for Möbius strip as

px ¼ ð2þ v cos uÞ cos 2u; py ¼ ð2þ v cos uÞ sin 2u;
pz ¼ v sin u

ð8Þ

with u 2 ½0; p� and v 2 ½�0:4; 0:4�, and for Swiss roll as

px ¼ u cos u; py ¼ v pz ¼ u sin u ð9Þ

with u 2 ½p; 4p� and v 2 ½0; 20�.
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The manifold expressions (8) and (9) have been used to

evaluate quality of local linear manifold approximations

for the original nonlinear manifolds with clean or noisy

data as shown in Fig. 3. However, in real applications such

as in the following examples, the evaluation cannot be

carried out because the underlying object is unknown.

4.2 Handwritten digit recognition

The MNIST dataset consists of 10,000 handwritten digits

[17]. For each of numbers 0 to 9, using the first 800

handwritten digits in hyperplane fitting and the next 50 in

testing, the current study has produced an error rate of

1.4% in the automated recognition. The dimension of data

is 784 (28� 28) plus 1 (index indicating 0 to 9). Figure 4

illustrates five sets of handwritten digits, while Table 1

shows numbers of incorrect recognitions in each of the ten

test sets (10� 50 handwritten digits). In this application,

the segment division constant is c ¼ 1 in the point-to-hy-

percube algorithm, and the dimensionality of the fitted

linear manifolds is n� l ¼ 30.

4.3 Quasar specification

As cosmological objects of great significance in study of

the universe’s origin [18, 19], quasars are active galactic

nucleus of very high luminosity, the first of which was

discovered in 1960’s, and about 450,000 of them cata-

logued in the 14th release of the Sloan Digital Sky Survey

(SDSS) in 2017. A brief introduction to the SDSS projects

and broad accessibility of cosmological data was given in

Fig. 3 Möbius strip (a1)–(a3): Approximation by fitting one hyper-

plane to each subset of the given points, where r is the side length of

segmenting cubes and b is the maximum of the absolute differences

between the corresponding coordinates of each point and the centroid

of all data points. Cases (a1), (a2) and (a3) correspond, respectively,
to 1, 29 and 86 subsets of total 30� 30 regularly sampled and noise-

free points. The original Möbius strip is in cyan with the sample

points (light stripes) and the fitted planes (grey surface patches).

Swiss roll (b1)–(b4): The original Swiss roll (black grids) is shown

with the orthogonal projections (red circles) of the 50� 20 irregularly

sampled and noisy points (blue crosses) on to the fitted planes. The

added noise is normally distributed with zero mean and standard

deviation of 5% of the maximum of each component of the points.

Cases (b1), (b2) and (b3) correspond, respectively, to 1, 27 and 109

fitted planes with the relative norm errors between the sampling

points and their orthogonal projections 19%, 13% and 7%, and the

reductions in usage of floating-point numbers 33%, 17% and -32%.

The ratios of the averaged absolute distances between the original

Swiss roll to the sampled points and to the projected points are,

respectively, 16.3/19.6, 11.8/4.9 and 12.0/4.6.

Fig. 4 Sample of five sets of handwritten digits

Table 1 Numbers of incorrect recognitions in 10� 50 handwritten

digits

Digit 0 1 2 3 4 5 6 7 8 9

Failure

count

0 0 3 2 0 0 0 0 1 1
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[20]. The dataset used in this current study is the SDSS

third release of 46,420 objects covering the redshift range

0:08� z� 5:41 [21, 22]. Each of the quasars is represented

by 14 attributes: right ascension, declination, redshift,

brightness in the (ugriz) five bands, radio and X-ray bands,

near-infrared (JHK) three bands, and the absolute

magnitude in the i band. As shown in Fig. 5, fitting local

hyperplanes to the first 10,000 sample points reveals the

existence of a low-dimensional object with eight or less

attributes embedded in the 14-D space. This corresponds to

approximate 40% reduction in the floating-point usage of

the original dataset. Exploration and specification of these

Fig. 5 Fitting of cosmological data of 10,000 sample points. The first

two plots in each row show, respectively, 3D and 2D manifold

scattered points with maximal magnitudes scaled to 1. A 2D plot

actually shows a particular view of the corresponding 3D plot. The

third, plotted against the number of the fitted hyperplanes to the points

in each n-cube, shows by the left vertical axis the relative errors of the
redshift (blue line) and ugriz-bands (marked lines) along with the

reduction percentage of floating-point usage (red line) by the right

vertical axis. The top, middle and bottom rows correspond to

inclusion of the given points in 1, 29 and 169 n-cubes (n ¼ 14),

respectively, with cubic sizes r ¼ 2b, r ¼ b and r ¼ 2b=3 with

b explained in Fig. 3. The relative error of any particular attribute is

calculated as the norm of the difference between the original and

predicted attribute vectors divided by the norm of the original

attribute vector of total 10,000 components. The relative errors of the

remaining eight attributes are not shown, but similar to or smaller

than that of redshifts. Given the typical accuracy of the point-spread-

function magnitude 0.03 (a relative error 0.15%) of the five-band

(ugriz) CCD-based photometry [21] and assuming that the remaining

attributes have similar accuracy, the outcomes of fitting hyperplanes

suggest that these quasars are 8D objects, probably 6D or even 3D

objects when lower data accuracy is assumed, embedded in the 14D

space
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low-dimensional attributes ought to be of considerable

interest to cosmologists.

4.4 Component prediction applied to a social
and economic dataset

This is use of Eq. 6 to produce unknown components of a

partially known data sample. Published by the Department

for Communities and Local Government of UK govern-

ment, the English Indices of Deprivation 2015 [23] were

based on data of population, income, employment, educa-

tion/skills/training, health/disability, crime, housing/

services and living environment in geographical local areas

in England. For each of 32,844 local authority districts, the

dataset [24] records 20 primary attributes. These attributes

are scores or counts in categories: 1. income; 2. employ-

ment; 3. education/skills/training; 4. health/disability;

5. crime; 6. barriers to housing/services; 7. living/envi-

ronment; 8. income deprivation affecting children index;

9. income deprivation affecting older people index;

10. children/young people sub-domain; 11. adult skills

sub-domain; 12. geographical barriers sub-domain;

13. wider barriers sub-domain; 14. indoors sub-domain;

15. outdoors sub-domain; 16. total population: mid 2012;

17. dependent children aged 0-15: mid-2012; 18. popula-

tion aged 16-59: mid-2012; 19. older population aged 60

and over: mid 2012; 20. working age population 18-59/64.

In categories 16 to 20, prisoners were excluded.

(a)

(b)

Fig. 6 From the data pool, 3000 sample points were randomly

selected, and the fitting/testing split was 8:2. As shown in (a), fitting
hyperplanes to the fitting sample points indicated the existence of an

18D object embedded in the 20D space because of very small relative

errors produced by fitting two hyperplanes. The curves of attributes

18 and 20 are in close proximity of each other, and due to low

resolution of the plot, the former cannot been seen. By examining the

averaged relative errors shown in (b) and the calculated condition

numbers associated with several attribute pairs, pair f16; 20g is

selected. Applied to the test sample points, these two attributes are

well predicted by the remaining 18 attributes

(a)

(b)

Fig. 7 From the data pool, 3000 sample points were randomly

selected, and the fitting/testing split was 8:2. As shown in (a), fitting
hyperplanes to the training sample points indicated the existence of an

3D object embedded in the 5D space. By examining the averaged

relative errors and the associated condition numbers shown in (b),
attribute pair f16; 20g is selected. Applied to the test sample points,

this pair can be predicted from the remaining 3 attributes
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As shown in Fig. 6, a randomly selected data sample has

been used for hyperplane fitting, and attribute pair f16; 20g
has been selected for prediction with test data sample. The

prediction of this pair from the remaining 18 attributes

achieved the averaged relative errors at 1.12% and 1.84%

with the standard deviations of 1.53 and 1.81, respectively.

If other attribute pairs f16; 18g and f18; 20g have been

selected, their predictions have similar outcomes as in the

case of using pair f16; 20g. The condition numbers asso-

ciated with pairs f16; 20g, f16; 18g and f18; 20g are,

respectively, 1.61, 1.64 and 2.01.

Instead of considering all 20 attributes, Fig. 7 shows the

results with consideration of only five attributes 16 to 20.

The prediction of attribute pair f16; 20g from the remain-

ing 3 attributes achieved the averaged relative errors at

0.21% and 1.18% with the standard deviations of 0.41 and

0.90, respectively. If pair f16; 18g is selected, the averaged

relative errors for their predictions are 0.60% and 1.27%

with standard deviations 0.46 and 0.98. As expected, due to

large condition numbers of the coefficient matrix in Eq. 6,

for pair f16; 17g, the averaged relative errors are 4.25%

and 23.68% with standard deviations 1.47 and 8.01, and

similarly, for f16; 19g, the outcomes are 7.72% and

33.41% with 2.67 and 10.61.

4.5 Recidivism prediction

Criminal defendant’s recidivism is an important factor

considered in judicial fairness and resources management.

Given the ever growing number of cases, courts in the USA

are increasingly using algorithmic tools to help make

decisions on defendants in sentencing or bail hearings [25].

However, adding to a recent nation-wide debate on the

issue of race discrimination of a prevalent algorithmic tool

that has assessed more than one million defendants since

1998, efficiency of the tool is being challenged [26]. When

applied to the dataset of 7214 pretrial defendants over the

period of 2013-14 from Broward County, Florida [26, 27],

the hyperplane fitting method has produced an overall

accuracy of 68% for recidivism predictions using only two

attributes (Table 2). Use of more attributes has not

improved but gradually worsened the accuracy. The

hyperplane fitting method does not score the attributes

which are considered indiscriminately by its fitting

mechanism.

5 Discussion

The general method for unsupervised machine learning is

rigorously derived in this study. It shows equivalence

among hyperplane fitting, affine linear manifold fitting [7]

and the principal component analysis [11], all linked by the

singular value decomposition of a matrix formed by the

data points in a segmenting subregion.

For approximations of the Möbius strip and Swiss roll,

fitting planes to regularly sampled and noise-free data

points and to irregularly sampled and noise-corrupted

points in each segmenting cube have been carried out,

respectively. In real applications, as discussed in [28], the

latter type of data are often involved. The hyperplane fit-

ting along with spatial segmentation of the dataset behaves

well in computations of the manifold approximations

against changes in the number of sample points, the side

length of segmenting n-cubes and the number of hyper-

planes fitted to the points within each n-cube. In these

Table 2 Success rates

(minimum, average, maximum

%) of recidivism predictions in

10 simulations

Attributes Overall Recidivated Not

recidivated

l

f3; 6g (65, 68, 71) (62, 67, 72) (61, 68, 73) 2

f3; 4; 6g (65, 68, 71) (59, 67, 72) (61, 69, 73) 3

f3; 5; 6g (65, 68, 71) (58, 66, 72) (63, 69, 73) 3

f3; 4; 5; 6g (65, 68, 71) (58, 66, 72) (63, 69, 73) 4

f3; 4; 5; 6; 7; 8g (63, 65, 68) (60, 63, 67) (64, 67, 70) 4

f1; 2; 3; 4; 5; 6g (64, 66, 68) (62, 67, 72) (60, 65, 70) 5

f1; 2; 3; 4; 5; 6; 7; 8g (62, 65, 69) (60, 64, 68) (61, 65, 70) 4

In each simulation, 1500 sample points of each of the two recidivism categories were randomly selected

from 7214 defendants. The fitting/testing split was 8:2 in all simulations. Regional segmentation of fitting

sample points was not needed. The number l of the fitted hyperplanes is shown in the last column of the

table. In the fitting, each defendant is represented by a point with 8 (or less) attributes: race, gender, age,

number of juvenile felony charges, number of juvenile misdemeanor charges, number of non-juvenile

charges, current charge specification, and degree of the charge. In terms of perpendicular distances, the

closeness of a test point to the two sets of the fitted hyperplanes determines its belonging to which of the

two recidivism categories

Neural Computing and Applications (2022) 34:8885–8896 8893

123



cases, the accuracy of the approximations is also evaluated

since the nonlinear objects are exactly known. In practical

applications, the accuracy can be assessed in terms of least

squares values of these approximations.

For linear approximation of nonlinear objects, and

dimensionality reduction of the quasar data [21, 22], the

method of hyperplane fitting behaves well. A comparison

of the approximations with those produced by other

methods such as the local linear embedding [2–4], the

tangent-based manifold approximation [10], or the

autoencoder [13] would not be very indicative or objective

and hence is spared. This is because the accuracy of linear

approximation and efficiency of dimensionality reduction

are two interrelated criteria and depend on the number of

subregions and the dimensions of local linear manifolds or

equivalents used in these methods. Applied to a social and

economic dataset [23], the current method has predicted

partial components of a high-dimensional vector, while this

type of prediction in high-dimensional data application

does not seem to be reported before.

For classifications, applications of the current method to

the problems of hand-written digit recognition [17] and

recidivism prediction [25] produced competitive results.

The best reported error rate for hand-written digit recog-

nition without data preprocessing in the literature is in the

range 0.2
 3.3% [29, 30], where the lower end is achieved

by deep learning neural networks, while the higher end by

other traditional classifiers. The current method has

achieved an error rate of 1.4%. Compared with hundreds or

thousands of free parameters used in training neural net-

works, the current method has only two free parameters,

namely the side length of segmenting hypercubes and

number of fitted hyperplanes. For recidivism predictions,

the current method has achieved the best accuracy of 68%

when only two attributes for defendants were used. In

comparison, untrained people and algorithmic tools

achieved prediction accuracy between 65% and 67% [26].

With a slightly improved accuracy at 68%, a recent study

[31] replicated the findings in [26], but also showed out-

performance of computational tools over untrained peoples

in different set-ups.

Fitting hyperplanes to high-dimensional data can be

considered a baseline method for machine learning due to

its simplicity and efficiency. There are a few obvious

possibilities of improving the method developed in this

work. First, the spatial segmentation of data could be

combined with the tangent segmentation [10] to merge the

hypercubic subregions in order to enhance efficiency of the

linear approximation at a little cost of approximation

accuracy. Basically, two neighbouring data subgroups are

merged if their hyperplane normals are aligned to each

other and the difference of their centroids is perpendicular

to their normals. Second, instead of fitting one set of

hyperplanes to data points in each hypercube, several

hyperplane sets could be fitted on the basis of the subspace

segmentation [12] of the local data points. This could

enhance approximation accuracy particularly when the

noise level of the data is low. Third, fitting linear manifolds

can be extended to fitting nonlinear manifolds if some

geometric properties of the underlying object are known a

priori, for instance in geodesic applications. The extension

ought to be straightforward because in calculations of the

fitting, parameters of a nonlinear manifold can be formu-

lated to appear linear in terms of sample data. Finally,

using the current method, the fitted hyperplane patches are

normally not connected to each other at the junctions of

hypercubes, which is a drawback of a method for linear

approximation of nonlinear objects. To overcome this

drawback, local geometric details of the object need to be

examined and incorporated in hyperplane fitting.

6 Conclusion

This paper has proposed a general approach to the problem

of unsupervised machine learning, and the proposed

method is rigorously derived. The method requires no

assumptions on the underlying object and its data sample.

Also, it has only two parameters, namely the size of seg-

menting hypercubes and the number of fitted hyperplanes

for user to choose. These make the proposed method

considerably accessible when applied to solving various

problems in real applications.

A successful application of the current rigorously and

transparently defined algorithm to recidivism prediction

has an important implication. In line with the investigation

[26], this study challenges use of any undisclosed algo-

rithms helping make decisions in a justice system where

transparency and fairness are cornerstones. This is also true

about decision making processes of the public sector in a

democratic society. The fundamental argument is: When a

decision maker is obligated to elaborate a decision made in

public services, the algorithm of a computer-aided tool

used to help make such a decision must be subject to

scrutiny by the scientific community and probably also the

general public at large.

Based on two essential concepts of hyperplane fitting

and spatial data segmentation, the developed method is

conceptually simple and shows effectiveness when applied

to several typical machine learning problems. It can

therefore be considered a baseline method for machine

learning. Several possibilities for improvements of the

hyperplane method have been highlighted in the section of

discussion.
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Appendix A: Hyperplane fitting

Fitting hyperplane ðp; dÞ to fxig minimises

J ¼ min
Xm

i¼1

ðx0ip� dÞ2 ¼ min kXp� edk2 s.t. p0p ¼ 1

ð10Þ

where X ¼ x1; x2; . . .; xm½ �0, e 2 Rm is the vector of

ones, and jjajj2 ¼ a0a is the squared norm of a. With

Lagrange multiplier k, this minimisation is equivalent to

minimising

Jk ¼ min kXp� edk2 þ kð1� p0pÞ
� �

: ð11Þ

Setting oJk
od ¼ ðXp� edÞ0e ¼ 0 leads to d ¼ �x0p. Substitut-

ing d into Jk and setting oJk
op ¼ p0Q� kp0 ¼ 0 produces

ðkI�QÞp ¼ 0 with Q ¼ �X0 �X. This means that p is a unit

eigenvector of Q associated with eigenvalue k ¼ p0Qp.

The singular value decomposition of �X in (1) implies

V0QV ¼ R0
xRx ¼ diag ðr21; r22; . . .; r2nÞ, with V ¼

v1; v2; . . .; vn½ � and V0V ¼ I, rn � 0, and ri � rj for
i\j. Hence, the n stationary points of Jk are given by

ðp; d; kÞ ¼ ðvi; �x0vi; r2i Þ , and hyperplane ðvn; �x0vnÞ best

fitting fxig achieves the minimum J ¼ Jk ¼ v0nQvn ¼ r2n.
In general, for fitting l hyperplanes ðpj; djÞ for j ¼

1; 2; . . .; l with 1� l� n to fxig, the criterion is

Jk;l ¼ min
Xl

j¼1

jjXpj � edjjj2 þ kjð1� p0jpjÞ
� �

: ð12Þ

Using similar derivations and arguments as in fitting a

single hyperplane, set
oJk;l
odj

¼ 0 and then
oJk;l
opj

¼ 0. ðkjI�
QÞpj ¼ 0 follows, which gives rise to the fitted hyperplanes

in (3).

Remark 1 There is no need to make assume that the number of data

points is greater than their dimension or that all data points are not

coplanar. This is because the least squares fitting automatically

produces hyperplanes passing all points if they are coplanar with

minimisation criterion Jk;l ¼ Jl ¼ 0.

Remark 2 If and only if rn�j 6¼ rn for j ¼ 1; 2; . . .; l, the optimal

hyperplanes are unique. For i 6¼ j, ri ¼ rj implies symmetric distribu-

tions of fxig about vi and vj directions and therefore non-uniqueness of
optimal hyperplanes. Examples of such cases in a 3D space are evenly

distributed fxig in a cubic, cylindrical or spherical shape.When ri ¼ rn
for 1� i\n, with p1 ¼

Pn
j¼i a1jvj and arbitrary parameter set fa1ig

satisfying
Pn

j¼i a
2
1j ¼ 1, ðp1; �x0p1Þ represents a pencil of infinity of

hyperplanes passing �x, all equally best fitted to fxig with J1ðp1Þ � r2n.
Moreover, with p2 ¼

Pn
j¼i a2jvj and anther arbitrary parameter set

fa2ig satisfying
Pn

j¼i a
2
2i ¼ 1 and

Pn
j¼i a1ja2j ¼ 0, two pencils of

infinity of hyperplanes ðp1; �x0p1Þ and ðp2; �x0p2Þ ensure J2 � 2r2n.

Appendix B: Affine linear manifold

Partition the right-singular vectors of �X into V ¼
Vn�l Vl½ � with Vn�l and Vl consisting of the first n� l

and last l vectors, and note Vn�lV
0
n�l þ VlV

0
l ¼ I. With x

being a general point on the intersection of the fitted l

hyperplanes all passing �x, x� �x is perpendicular to the

normals of these hyperplanes. This suggests V0
lðx� �xÞ ¼ 0

which has the general solution

x ¼ �xþ ðI� VlV
0
lÞu ¼ �xþ Vn�lV

0
n�lu ; ð13Þ

where u 2 Rn is arbitrary. Arbitrariness of u implies arbi-

trariness of V0
n�lu due to full row rank of V0

n�l. Setting

y ¼ V0
n�lu leads to the parametric equation in (4). For

arbitrary x on the intersection, the unique solution of y to

the parametric equation is given by the parametric inverse

in (4).

Setting x ¼ xi in the parametric inverse in (4) produces

low-dimensional point yi, and substituting this yi back to

the parametric equation in (4) yields x̂i, all given in (5). To

verify x̂i being the orthogonal projection of xi onto the

ðn� lÞD affine linear manifold, from (5) it is ready to have

xi � x̂i ¼ VlV
0
lðxi � �xÞ and hence V0

n�lðxi � x̂iÞ ¼ 0.

Indeed,
Pm

i¼1 jjxi � x̂ijj2 ¼
Pm

i¼1 jjVlV
0
lðxi � �xÞjj2 ¼

tr ð �XVlV
0
lVlV

0
l
�X0Þ ¼ tr ðV0

lQVlÞ ¼
Pl�1

j¼0 r
2
n�j ¼ Jl;

where ’tr’ stands for the trace and achieves the same

minimum as the original criterion for fitting l hyperplanes.

This implies that simultaneously fitting several hyperplanes

naturally minimises the sum of the squared perpendicular

distances of their intersection to fxig as well.

Remark 3 Arbitrary �Vn�l satisfying V0
l
�Vn�l ¼ 0 and VlV

0
l þ

�Vn�l
�V0
n�l ¼ I is an orthogonal complement to Vl. In general, all

orthogonal complements are given by �Vn�l ¼ Vn�lT with arbitrary

orthogonal matrix T. Use of Vn�l instead of �Vn�l in (13) makes a

natural connection of the affine linear manifold to the principal

component analysis.
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