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Abstract

Condition-based monitoring (CBM) has been widely utilised in the wind in-
dustry for monitoring operational inconsistencies and failures in turbines,
with techniques ranging from signal processing and vibration analysis to
artificial intelligence (AI) models using Supervisory Control & Acquisition
(SCADA) data. However, existing studies do not present a concrete ba-
sis to facilitate explainable decision support in operations and maintenance
(O&M), particularly for automated decision support through recommenda-
tion of appropriate maintenance action reports corresponding to failures pre-
dicted by CBM techniques. Knowledge graph databases (KGs) model a
collection of domain-specific information and have played an intrinsic role
for real-world decision support in domains such as healthcare and finance,
but have seen very limited attention in the wind industry. We propose
XAI4Wind, a multimodal knowledge graph for explainable decision support
in real-world operational turbines and demonstrate through experiments sev-
eral use-cases of the proposed KG towards O&M planning through interactive
query and reasoning and providing novel insights using graph data science
algorithms. The proposed KG combines multimodal knowledge like SCADA
parameters and alarms with natural language maintenance actions, images
etc. By integrating our KG with an Explainable AT model for anomaly predic-
tion, we show that it can provide effective human-intelligible O&M strategies
for predicted operational inconsistencies in various turbine sub-components.
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This can help instil better trust and confidence in conventionally black-box
AT models. We make our KG publicly available and envisage that it can
serve as the building ground for providing autonomous decision support in
the wind industry]]

Keywords: Wind energy, SCADA, Operations and Maintenance,
Knowledge Graphs, Decision Support, Explainable Al

1. Introduction

In the global efforts towards tackling climate change and transitioning
to sustainable energy sources, there has been a significant rise in develop-
ments and advancements of wind power systems in recent years [I]. How-
ever, the complexity of the environments in which wind turbines continue
to be deployed, especially offshore regularly leads to irregular loads, oper-
ational inconsistencies and failures in the various electrical and mechanical
sub-components within the turbine [2]. Operations & maintenance (O&M)
is integral to tackle such problems through fault detection and diagnosis [3],
and presently accounts for up to a third of the total cost of energy generation
[4].

Condition-based monitoring (CBM) [5] plays a crucial role in O&M, by
facilitating monitoring of operational changes and anomalies in the turbine
and its sub-components. In the last decade, there has been a rising interest in
utilising signal-processing techniques and physics-based modelling for CBM.
More recently, the wind industry has witnessed application of Artificial in-
telligence (AI) techniques towards data-driven decision making in O&M, by
utilising the Supervisory Control & Acquisition (SCADA) data generated by
various sensors in the turbine at regular intervals. There have been some
applications of Explainable Al (XAI) models [6], [7, 8], which can provide in-
terpretations and reasoning behind predictions made by the conventionally
black-box AI models during decision support, such as feature importances for
SCADA parameters leading to faults [2]. Such techniques have shown im-
mense success, especially for anomaly prediction in turbine sub-components
[9, 10, 1], wind resource assessment [12, [I3] and forecasting vital opera-
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tional parameters [14, 15, [16] with high accuracy, which can be vital to
improve the utilisation efficiency of wind energy [17]. However, they fail to
provide contextualised information (e.g. in the form of thorough descriptions
of failures and maintenance reports to fix/avert such inconsistencies), which
is essential to achieve ambient intelligence during decision support. More
importantly, these techniques do not present a concrete basis to serve as the
generic building ground for critical concepts in the wind industry, pertaining
to maintenance strategies and their relationship with other sources of hetero-
geneous information, such as SCADA data from sensors, alarm logs, images
describing failures and prognostic actions etc.

Knowledge bases (KBs) or knowledge graphs (KGs) play an integral role
in supporting effective and informed decision making, by interlinking hetero-
geneous entities (such as numerical data from sensors) with contextualised
and semantic information [I8]. KGs have been successfully utilised for opti-
mal decision support in several safety-critical applications such as healthcare
for clinical decision support [19], power systems for optimising service pro-
cesses [20], manufacturing for process safety management [21], finance for
making business decisions [22] etc. Given the multidisciplinary nature of
construction and management of wind farms as well as the presence of mul-
tiple sub-systems interacting with other sub-systems and various external
components, a systematic organisation of knowledge in the wind industry
can serve an integral role in assisting developers, designers and researchers
to utilise such domain-specific information for decision support [23].

In comparison to other disciplines, the wind industry has seen very lim-
ited application of KGs for explainable decision support. In an early work in
this area, Zhu et al. [24] developed a wind power plant information model
by utilising the web ontology language (OWL) for systematic management
of domain-specific information. The proposed ontology in the paper consists
of conceptual information for wind power plant management with multiple
classes based on different types of turbines, their functional parts etc., embed-
ded as semantic information with corresponding OWL descriptions. While
the paper demonstrates immense promise of graph databases for managing
complex information in the wind industry through its conceptual overview, it
does not provide a practical demonstration of the proposed ontology, includ-
ing its use-cases in real-world information management in the wind energy
domain. Moreover, there is no mention of the applicability of the proposed
ontology for O&M, in particular to facilitate decision support in real-world
turbines.



Kiigiik and Arslan [25] utilised web resources, specifically from Wikipedia,
to develop a domain ontology for the wind energy sector. Their ontology is
constructed semi-automatically and provides a wide coverage of the wind
energy domain as a discipline, including terms like meteorological data,
sub-components of the turbine, monitoring and control system etc. This
can be useful for utilisation in question-answering systems during informa-
tion retrieval, wherein specific segments of natural language texts from the
Wikipedia articles relevant to the end user can be accessed easily. While
the semi-automatic construction of the ontology is less time consuming and
a simpler process, it cannot provide low level details pertaining to the wind
industry and O&M of turbines. Moreover, it lacks the ability to provide a
coherent view on critical aspects in CBM, including the role of SCADA data
for anomaly prediction and power forecasting, maintenance tasks for failures
in the turbine and its sub-components and more thorough and technically
detailed descriptions for engineers & technicians beyond the Wikipedia arti-
cles. The role of the KG for utilisation in real-world decision support systems
is also not showcased in the paper.

In another study, Quaeghebeur et al. [23] proposed a graph database for
the wind energy domain, consisting of a conceptual overview of several impor-
tant terms and parameters in the wind energy sector, such as power curves,
associated relationships between turbine sub-components, mathematical and
statistical distributions for modelling vital parameters etc. The KG for this
study was developed from the ground up by the authors, and provides a foun-
dational ontology for the wind turbine as a system with a specific focus on
offshore wind power. Similar to Zhu et al. [24], their focus is on developing
knowledge representations and structured information pertaining to the wind
industry. The paper provides significant information and descriptions which
can be queried from the KG, being particularly beneficial for the purposes
of education and training. However, the proposed KG does not contain any
description of different types of faults which occur in real-world turbines,
varieties of alarms and their relationship to turbine sub-components and
maintenance action strategies to fix/avert the failures. More importantly, it
does not demonstrate the applicability of the KG for O&M, and its use-cases
for explainable decision support in real-world practical scenarios.

As evident, while these few existing studies have demonstrated the promise
of utilising KGs for systematically structuring conceptual information in the
wind industry, they only serve as an endpoint [I§] providing information for
consultation without the ability to further reason over the data. Moreover,
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these ontologies need to be queried manually through specialised program-
ming languages to extract relevant and meaningful information, which may
not be easily accessible to turbine engineers & technicians. The existing
studies clearly do not focus on the critical aspects of O&M, and their utility
in decision-making systems for tasks such as recommendations and predic-
tions. We believe that the optimal utility of KGs for decision support in the
wind industry can only be realised by integrating conceptual information on
O&M with other heterogeneous data, such as SCADA parameters from sen-
sors, alarm types, turbine sub-components preventive/predictive/corrective
maintenance action strategies etc. and their associated relationships.
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Figure 1: Overview of the proposed KG integrated with XAI models for explainable deci-
sion support.

In this paper, we propose the role of KGs for explainable decision support
in the wind industry, and their utility in real-world applications for O&M.
We present a novel KG, XA Wind and develop the domain-specific ontol-
ogy for O&M in the wind industry manually. The proposed KG presently
contains 537 nodes and 1059 relationships (of 9 different types), and includes
several types of heterogeneous data such as descriptions of various types
of SCADA features, alarm types, turbine sub-components and maintenance
action strategies. To demonstrate use-cases, we show that the KG can be
queried interactively in Neo4j and graph data science algorithms can be ap-



plied to generate novel insights during O&M. Notably, we utilise SCADA
data from an operational turbine, and showcase its interfacing with an Ex-
plainable AI (XAI) model. We demonstrate the intrinsic role which the
proposed KG can play in decision support during various failures predicted
in the turbine by the XAI model, by providing thorough descriptions of fault
conditions and maintenance actions required to fix/avert the failures. Un-
like existing studies, our proposed KG can be queried both manually (by
querying through relevant syntatic commands in programming) as well as
automatically (through its integration with the XAI model), thereby paving
the path to autonomous decision making for the wind energy sector which
can serve as a complementary resource to aid decisions by engineers & tech-
nicians. According to Futia and Vetro [26], integration of KGs with XAI
models can contribute to more comprehensive decisions through knowledge
matching, cross-disciplinary and interactive explanations. Figure [I]describes
the overview of our proposed KG and its applications which are demonstrated
in this paper. The different elements (SCADA data, XAI model and model
predictions) have mutual interaction, and can also consult the KG indepen-
dently for information querying/retrieval.

We make the KG publicly available, and it can be further developed /ex-
panded in the future as new terms, concepts and maintenance action strate-
gies prevail in the wind industry. We envisage that our work can serve as a
building ground for encouraging future research in utilising KGs for O&M
in the wind industry, providing more value and utility to the conventionally
opaque Al models to move closer to achieving human-level intelligence.

The paper is organised as follows: Section [2] describes the datasets used
for constructing the KG and demonstration of its application on an opera-
tional turbine. Section [3|introduces KG databases and their basic concepts.
The development of the proposed KG is described in Section [ Section
discusses potential use-cases of the KG in decision support. A brief discus-
sion on the experimental results and the wider applicability of the KG to
other turbines beyond the LDT is presented in Section [6] Finally, Section
concludes the paper and provides the path for future work.



2. Data description

We utilised the publicly available Skillwind Maintenance Manual [ for de-
veloping the maintenance actions segment of our KG. The Skillwind project
has seen immense success in applications development of games and learning
tools to complement and foster skills for training professionals and engi-
neers in an interactive environment as well as providing solid foundations
and knowledge to enhance industrial skills in the wind energy sector [27].
The Skillwind Maintenance Manual originally contains 179 pages of domain-
specific information, consisting of text, images and tables and was first devel-
oped to support training and set skill standards for wind turbine technicians
and O&M personnel. There are extensive and comprehensive details of pre-
ventive, corrective and predictive maintenance action strategies for different
systems such as blades, yaw system, pitch system etc. There were some
specific details in this manual such as glossary of common terms and defini-
tions (like downtime, time to repair etc.) which we have not considered in
constructing the KG, as such information is already available widely on the
internet and in existing studies.

Besides this data, we utilised a SCADA dataset from the Levenmouth
Demonstration Turbine (LDT) - an operational offshore wind turbine rated
at 7 MW, along with historical logs of alarm messages and ground truth of
failures in various Functional Groups (sub-components) to support the de-
velopment of our KG. Note that given the confidential nature of SCADA
datasets, we have provided all information which is presently publicly avail-
able in our openly released KG, and more details and relevant information
is available from the Platform for Operational Data (POD)EI and [2]. We
utilise 102 SCADA features (such as pitch angle, gearbox oil temperature,
wind speed, rotor speed etc.) at generally 10 minutes intervals from the LDT
data, with labelled records of 13 categories of anomalies (14 including normal
operation) in different turbine sub-components (gearbox, pitch system, yaw
system, hydraulic system etc.) and 26 different classes of alarm messages for
our study. We integrate the SCADA feature types, fault categories and alarm
types with the corresponding maintenance actions in the Skillwind manual.
The LDT SCADA dataset is later utilised in the paper, to demonstrate the

2Skillwind Maintenance Manual: https://skillwind.com/wp-content/uploads/
2017/08/SKILWIND_Maintenance_1.0.pdf
sDisseminated by ORE Catapult: https://pod.ore.catapult.org.uk
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application of the proposed KG for intelligent and explainable decision sup-
port during turbine operation.

3. Knowledge graph databases

Knowledge graphs (KGs) are typically semantic networks, which can ex-
tract all available information (knowledge) to construct graph structures,
wherein, the nodes denote entities in the graph and edges represent the as-
sociated relationships between nodes [20]. These networks are commonly
referred to as property graphs [28], and can contain property-value pairs in
each node, providing conceptual descriptions of domain-specific events and
routines.

Presently, there are several graph database management systems which
are commonly used for development of KGs and information retrieval, such
as Neodj, GraphDB, AlegroGraph etc. [29]. We chose to utilise Neo4j for
developing the KG in this paper, as it is an open-source NoSQL database,
has a robust architecture and is highly computationally efficient in terms of
its read and write performance. Moreover, Neo4j supports ACID (Atomicity,
Consistency, Isolation and Durability), ensuring reliable processing of trans-
actional operations in the database [30], which is integral for information
management in safety-critical domains like wind energy. Neo4j also consists
of a Developer Graph Apps Library, which gives the user the ability to install
several specialised applications directly within Neo4j Desktop such as Halin
(for cluster-enabled monitoring of live queries and metrics), Graph Data Sci-
ence Library (for interactive exploration and insights from the KG through
graph data analytics), Graphlytic Desktop (for graph analytics and visuali-
sation through HTML5 directly in the web browser) and several others. Such
features and provisions make Neo4j an ideal tool for both, professionals and
non-technical users in the wind industry.

KGs can be directed (wherein, a directional relationship is specified from
one node to another) or undirected (with the graph edges not having a spec-
ified directional relationship to the nodes). Figure [2[ shows a labelled di-
rected KG model, wherein, there are 3 distinct nodes describing the effect of
an alarm (Pitch Heartbeat Error) on the wind turbine’s Pitch system. Each
node has some properties/attributes such as name, description etc., which
contain more detailed information on the event/phenomenon described by
the node. It is possible for different nodes to have the same property labels
such as name, but their contents will always be distinct and unique. Note
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Figure 2: Example description of a KG with 3 distinct nodes, 2 edges and 3 labels defining
an alarm in the Pitch system

that every node has a unique ID assigned automatically by Neo4j to help
distinguish it from other nodes.

4. Development of the knowledge graph

4.1. General structure

At the most basic level, we consider the wind turbine as a system repre-
senting the root node for our KG. The system node is referred to by the name
Study Turbine, and has properties describing its key specifications, such as
rated power of the turbine, its location etc. The key attributes for the LDT
specified for this node are shown in Listing [I] The node can be referred to
either using its label, which in this case is System or its properties such as
name, rated_ power etc.

Based on the Skillwind manual, we created 11 child nodes for the Study
Turbine, which refer to the different sub-systems wind turbines are gener-
ally comprised of (such as pitch system, yaw system etc.). We utilised the
CONTAINS relationship to interlink these sub-systems with the parent tur-
bine system node. Note that these child nodes are not specific to the LDT,
but represent the general constituents of any wind turbine. Figure [3|shows
the system-level visualisation of the KG. Note that given the large numbers
of nodes and their associated relationships in our study, it is infeasible to



Listing 1: Description of root node pertaining to the study turbine

{

"identity ": 15,
"labels": |
"System"

]7

"properties": {
"name": "Study Turbine",
"location ": "Levenmouth, Fife",
"rated power": "MVW",
"type": "Offshore"

}

}
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Hydraulic
System

Foundation
& Concrete
Section Ground
Line &
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Power
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Electric,
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Figure 3: System-level entities for the wind turbine in the KG

visualise all nodes together in the size constraints of the figures. We show
a subset of relevant nodes in our graph visualisations in this paper. The
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interactive graph is publicly available on GitHub [f, and the user can zoom
in/out, view relevant nodes and relationships and perform appropriate query
operations easily by using Neo4j.

For each of these sub-system nodes, we created properties for preventive
and corrective maintenance activities which are common and generic to the
broad area of these sub-systems. These properties are referred to by Pre-
ventiveActivities and CorrectiveActivities respectively, and encompass a list
of multiple actions which are relevant to O&M of the sub-system. We also
created an InspectionActivities attribute, describing O&M strategies for sub-
systems like Blades, which generally require an external evaluation of the
damage prior to maintenance. In addition, wherever available, we included
images relevant to the maintenance activities for these sub-systems in the
image__url property, wherein, the clickable link directly points the user to
the appropriate image stored in our Github repository. Listing [2 shows an
example snippet describing the Transformer node.

4.2. Incorporation of the LDT data

Based on the LDT data, we created a HAS relationship between the
available SCADA dataset and the Functional Group which comprises the
data. The Functional Group node has 14 different child nodes (such as
Gearbox, Yaw etc.), which were represented using TYPFE relations. NoFault
is a special node which we created to denote normal operation of the LDT,
wherein, there is no anomaly /operational inconsistency in any of the turbine
sub-components. Each type of Functional Group was assigned a unique label
and a class number. See Listing [3| for an example description of the Pitch
System Interface Alarms Functional Group.

Figure [4|shows the different constituent Functional Groups in our KG.
Note that these nodes are specific to the LDT based on our utilised data,
and can have some variations depending on the wind turbine types and their
technical specifications. The interested reader can refer to [3I] for more
detailed information on these Functional Groups. We mapped these Func-
tional Groups to the generic sub-system nodes of the Study Turbine node
through RELATESTO relationships. As different Functional Groups and
sub-systems can themselves be composed of several other sub-components

4XAI4Wind Supplementary Resources: http://github.com/joyjitchatterjee/
XAI4Wind
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Listing 2: Example description of the Transformer sub-system

"identity ": 405,
"labels": |
"Transformer"

|

"properties": {
"name": "Transformer",
"image url": |

"https://github.com/joyjitchatterjee /XAI4Wind/blob/

master /images maintenance/Transformer Diagram.png
"n

I

"CorrectiveActivities": |
"The transformer could have two different corrective
maintenance operations:
1. Replacement in case of failure.
2. Centering coils in case moves are observed.
The procedure of centering coils is made in order to
maintain the same distance between
the three phases and to check that LV and HV coils are
concentric.",
"In order to do that procedure it is necessary to
ground the transformer and to lock some
disconnections in accordance with the instruction manual

consignment. ...... "

|
}
}
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Listing 3: Example description of the Pitch System Interface Alarms Functional Group

{

"identity": 66,

"labels": |

"PitchInterfaceAlarm"

I,

"properties": {
"name": "Pitch System Interface Alarms",
"fno": 2

}
}

Power
Conditioning

Yaw Brak
System SCADA dataset S

Moisture i
Vapour Hydraulic Cgr\llgi]t(ijon
Transmission VW Alarms
Rate

Functional
Group

Partial
Performanc...

Gearbox Partial

Performance
Degraded
Pitch
System

Interface Pitch
Alarms System EFC
Monitoring

Figure 4: Constituent Functional Groups in the SCADA dataset for the LDT

(e.g. drive train in turbines are made up of gearbox and generator), we
created CONSISTSOF relationships to interlink them.
Based on the 102 SCADA features we had in the dataset, we also created
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Listing 4: Example description of a SCADA feature pertaining to the turbine gearbox

{

"identity": 57,

"labels": |

"Feature"

|

"properties": {
"name": "GBoxOpShaftBearingTemp2 Stdev",
"description": "Gearbox Bearing 2
Temperature Standard Deviation",
"unit": "Deg celsius",
"feature no": 46

}
}

102 distinct nodes representing these features. Fach node is of the label type
FEATURE, and has attributes describing the feature like name, measurement
units and a brief description of the feature. Listing [4] shows an example
describing a SCADA feature relating to the turbine gearbox.

We created 26 different nodes representing different alarm types in the
LDT, wherein, each alarm is described with a brief description and has a
unique alarm_no attribute in the range 901-926. See Listing [5| for an ex-
ample snippet describing an alarm in the turbine’s Blades. Due to the con-
fidential nature of alarm logs in the wind industry, we have provided some
examples (alarms Alarm1 to Alarm&) of these in our publicly released KG.
More information on these can be found at [32].

4.8. Mapping fault events in the Skillwind manual to the LDT Functional
Groups

Based on the Skillwind manual, we had a collection of 57 different types of
fault events which are common to any wind turbine, and we created 57 sepa-
rate nodes denoting the same, which are basically child nodes of FaultFvents
with TYPFE relations. Each fault event node FaultEventl to FaultEvent57
has a details attribute, briefly describing the nature of the fault. We mapped
the 26 different alarms to the corresponding fault events with RELATESTO
relations. As specific SCADA features can give rise to anomalies in the
turbine sub-components [2], we also created RELATESTO relationships be-
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Listing 5: Example description of an alarm for turbine blades

{
"identity ": 318,
"labels": |

"Alarm4"
I,

"properties": {
"description": "Blade 1 too slow to respond",
"alarm no": "904"

}
}

tween the relevant features which contribute to the fault events (and thereby
lead to the alarms). Figure [ enunciates an example sub-graph for fault
events affecting the Generator, wherein, the Generator stator temperature
mean value SCADA feature (attributing a high temperature in the genera-
tor stator winding) is related to the fault events, leading to the Generator
winding temperature alarm in the LDT.

Generator

TYPE winding
FaultEvents temperature AFFECTS

alarm

3AdAL

Treg

B
m
5
=1
m
[}
@
o

IGBT high
temperatures,

High
RELATESTO GenStatorte. .. RELATESTO temperature
on
generator’s
slipring

Generator stator temperature
mean value

Figure 5: Fault event sub-graph for an anomaly in the Generator

4.4. Operations & maintenance actions for different sub-systems

As decisions pertaining to O&M of wind turbines can vary widely ow-
ing to the presence of multiple complex scenarios and a large number of
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Listing 6: Example description of properties in the Preventive node

{
"identity": 79,
"labels": |
"Preventive"
|
"properties": {
"Cleaning": |
"Cleaning everything (grease, oil, dust, rags
,other maintenance, carbon rings, collectors, etc.)",
"Treating waste in accordance with procedures .....

"Retightening": |
"All bolted joints need to be
proven to not lose their tightening."

|
|
}
}

variables [33], preventive, predictive and corrective actions can be unique to
each sub-system in the turbine, or it may also be possible for similar ac-
tions to fix/avert different types of failures [32]. We created a specific node
referenced with the label MaintenanceAction, which has 3 child nodes con-
nected with ACTION relationships: Preventive, Predictive and Corrective
representing corresponding maintenance actions respectively. We also added
several properties into the Preventive node, which contain maintenance ac-
tions generally common to any component in the turbine such as Cleaning
activities, Retightening actions etc. Listing [6] shows some examples of these
attributes.

Preventive maintenance activities. For preventive actions which are
specific to any of the turbine sub-systems (or Functional Groups), we created
233 distinct nodes referenced with labels from PrevAct! to PrevAct233. We
also created several properties for each node, such as name (describing the
activity briefly), gen_ periodicity (general periodicity of the action), activities
(thorough and comprehensive description of the action(s)), initial _ periodicity
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(initial periodicity of the action) and act (numeric reference to the action).
To explicitly specify the preventive actions which are required for individual
sub-components, we created FOR relationships to map such actions to the
corresponding sub-systems. A subset of all preventive maintenance actions
created in the KG is visualised in Figure [6]
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Figure 6: Example visualisation of few nodes for preventive maintenance actions

Figure [7] shows an example of multiple preventive actions for the Main
Shaft in the turbine (which is a part of the Drive Train). Further, each of
these nodes representing preventive actions contains further details within
the node’s attributes, see Listing [7] for an example.

Predictive maintenance activities. We created 11 distinct nodes rep-
resenting 11 distinct maintenance actions based on the Skillwind manual,
referenced by the labels PredActl to PredActl1. Similar to the nodes for
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Listing 7: Example of detailed description for a preventive action for main shaft

{

"identity": 181,

"labels": |
"PrevAct100"
|
"properties": {
"details ": "Checking Main Bearing Noises",
"act": 100,

"activities": |

"It is mandatory to listen to any noise or vibration
from the bearing mounting when rotor is turning
slowly . ",

"Another verification is to make the rotor turn
slowly , then stop the turbine by pushing an
emergency button and looking at the clearance
between the main shaft and the bearing shield."
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Figure 7: Example of preventive maintenance actions required for the main shaft

preventive maintenance actions, the predictive action nodes were assigned
attributes like details (brief description of the maintenance activity), ac-
tiwities (list of multiple predictive actions), image wurl (links to image(s)
representing the action required) etc. We also created FOR relationships
between these action nodes with the sub-components/sub-systems which are
relevant to their condition monitoring. Figure |8/ depicts the various types of
predictive maintenance actions which were created for different assets in the
turbine. An example description of a predictive action for the Converter is
shown in Listing [§, with a visualisation of the relationship in Figure [9]

Corrective maintenance activities. For incorporating correcting main-
tenance actions into the KG, which are specific to either of the 57 fault
events (which in-turn lead to an associated alarm event), we utilised the
Skillwind manual to create 57 distinct corrective action nodes referenced by
the labels CorrAct! to CorrAct57. For each of these nodes, we also created
the attributes activities (representing a list of multiple corrective action(s))
and image_url (link to the appropriate image representative of the action).
Figure [10]shows a subset of all corrective actions as an example.

Similar to preventive and predictive actions, we created FOR relation-
ships between the corrective action nodes and the fault events which these
actions help to fix. An example of corrective actions required for a Twist sen-
sor fail fault event in the Yaw System is depicted in Figure [II} A detailed
example description of the corrective action node is provided in Listing [9}

It is integral to note from this example that for all types of maintenance
actions (preventive, predictive and corrective) incorporated in our KG, there
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Listing 8: Example description of a predictive action for power wires of the converter

{
"identity ": 528,
"labels": |
"PredActl"
e
"properties": {
"details": "Power wires",
"activities": |
"The power connections are formed by wires through
which high intensities run, converter input and
output and its rotor exits, connected with ring
connectors through whose hole passes the screw
that is to join them to the terminal passes.",

"image url": |
"https://github.com/joyjitchatterjee /XAI4Wind/blob/
master /images maintenance/
Wires MountedOverReactance.png". ...
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Listing 9: Example describing corrective maintenance action for an alarm in the yaw
system

"identity ": 410,
"labels": |
"CorrActl"
|
"properties": {
"activities": |
"Checking to see if counters are working correctly
in manual yaw. If not, the encoder
has to be replaced",
"Untwisting the turbine, resetting turtle, and
resetting the counters on the touchscreen",
"Checking wiring breaks, connection points, cuts",
"Checking connection on the I/O card"
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Figure 9: Visualisation of the predictive maintenance action for the converter

exist several other associations and relationships with other nodes, such as
the alarm type ( Yaw Error > Max Start Yaw Error), Functional Group ( Yaw
System) etc. which have been discussed earlier. We provide the complete
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Figure 10: Example of few types of corrective actions

details of all nodes in the KG, along with a brief description of their utility
and the available properties in [Appendix Al The presence of multiple rela-

tionships and nodes E| gives rise to ambient intelligence in the proposed KG,
and can lead to several real-world applications in the wind industry, which

we discuss next.

5. Use-cases of the proposed knowledge graph

Below, we discuss potential use-cases and real-world applications of the
proposed KG in the wind energy domain. Note that there are a plethora of

®Some nodes may not have specific associated relationships (e.g. Communications &
Network Sub-System does not share relationships with SCADA features based on our
datasets utilised), but new relationships can be incorporated in the future.
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applications which can be leveraged from the KG through the Neo4j apps
outlined in Section [3] but in our discussion below, we focus on 3 specific
areas which we believe are most relevant to the wind industry for explainable
decision support in O&M.

5.1. Querying the graph through Cypher

The most basic application which can directly be leveraged from the
proposed KG is the utilisation of the Cypher programming language im-
plemented in Neo4j to query the KG. At present, the Cypher language for
property graph querying is extensively used for development and manage-
ment of commercial databases and products in industry, and by researchers
[34]. The proposed KG can easily be queried using the common keywords
in Neodj such as MATCH, WHERE, RETURN etc. A simple one-liner in
Neodj (either hosted on a web server such as the Neo4j Sandbox or directly in
the desktop application) can be used to retrieve relevant nodes and relation-
ships, including their visualisations and detailed descriptions. The interested
reader can refer to relevant papers such as |34} 35] and the official Neo4j doc-
umentation ﬁ for more details on Cypher and its syntax.

As an example of querying a Neodj KG, to retrieve preventive mainte-
nance actions for the Generator, the one-liner code below can be utilised:

MATCH(n:Preventive)-[:ACTION]->(p)-[:FOR]->(q:Generator) RETURN n,p,q

5Neo4j Documentation: https://neo4j.com/docs/
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Listing 10: End result towards an example preventive maintenance action query for Gen-
erator

{
"identity": 276,
"labels": |
"PrevAct195"
|
"properties": {
"details ": "WINDING HEATERS",
"act": 195,
"activities": |
"Firstly , it is necessary to disconnect the automatic
switch. Then, the resistance connected would be
released and it would be checked that the resistor
is not open. If it is open, it must be changed."

The end result of this query is shown in Listing providing an example
description of one of the required preventive actions. The resultant graph
following this query is shown in Figure [12] and can provide useful and easy-
to-comprehend information to the end user in facilitating decision support.

Despite its advantages, the use of Cypher has the key drawback that
it requires basic technical know-how on part of the wind turbine engineers
& technicians in Cypher programming within Neo4j and knowledge graph
databases. We believe that there are better alternatives to facilitate au-
tomated decision making instead of solely performing syntactic queries, as
discussed next.

5.2. Interactive graph exploration in Neo4j Bloom

Neo4j contains a specialised graph exploration and visualisation tool called
Bloom [1], which facilitates querying the KG with support for custom search
phrases in natural language, interactive visualisation /exploration and discov-
ery of novel patterns and insights based on context of the retrieved informa-

"Neo4j Bloom: https://neo4j.com/bloom/
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Figure 12: Visualisation of the end result of query in preventive actions for the generator

tion. Bloom facilitates the information available in the KG to be analysed
and investigated visually from varying perspectives, and has a specialised
search bar which provides type-ahead suggestions when querying the KG
through Cypher commands.

We believe that the ability of Bloom to provide near natural language
search can be significantly beneficial in the wind energy sector. Custom
search phrases with human-readable text can be created during the develop-
ment phase to provide engineers & technicians with a platform for retrieval of
appropriate information without the need for any coding. Note that Bloom
supports both static and dynamic search phrases, for which Cypher queries
can be pre-defined and mapped to natural language text. Once a query
is created, it is automatically stored in the Bloom perspective, and future
queries can simply be performed via natural language search phrases. Bloom
essentially breaks down the search phrases into multiple word tokens, and
utilises the data present in the KG together with its interpretation of the
graph schema for information retrieval. Below, we discuss the role of both
types of queries for decision support through Neo4j Bloom’s user-friendly
interactive interface.
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Listing 11: Example description of creating a static search phrase query in Bloom for
preventive maintenance actions for blades

Search phrase: Preventive actions for blades

Description: Preventive maintenance actions for the wind
turbine ’s blades

Cypher query:

MATCH(n: Preventive ) —[:ACTION| —(p) —|| —(q: Blades) RETURN =x

Static queries in Bloom:. In Bloom, static queries are the search phrases
mapped to Cypher queries which never change and are hard-coded to only
retrieve the exact information and records which they have been specifically
linked to. An example for creation of a static query for retrieving preventive
actions pertaining to the turbine’s blades is shown in Listing [11I] Note that
informative descriptions for the search phrases can also be provided during
the development phase, which can help engineers better understand the util-
ity of these search phrases. In this example, a simple natural language search
phrase - Preventive actions for blades retains multiple nodes pertaining to
preventive actions for the blades. Figure shows an example screenshot of
the user-friendly interface in Bloom, which provides the ability to easily type
the search phrase and retrieve appropriate O&M strategies in such scenarios.

Dynamic queries in Bloom:. Unlike static search phrases, Bloom also
supports dynamic queries which can utilise parameters in the query strings
to determine the appropriate information which should be retrieved. These
search phrases can support multiple parameter data types, such as integers,
strings, Boolean values, floats etc., making them powerful tools as a single
search phrase can retrieve multiple relevant nodes and relationships. List-
ing shows an example for creating dynamic search phrases in Bloom
pertaining to retrieving corrective maintenance functions for abnormality in
SCADA features. Here, $description is a dynamic parameter used to match
the SCADA feature (e.g. Absolute Wind Direction Mean Value) to the corre-
sponding maintenance actions present in the KG. It is interesting to mention
that given that we have 102 SCADA features in this study, dynamic queries
help create a single query for corrective actions pertaining to all SCADA fea-
tures, instead of creating 102 unique/distinct queries which can be a time-
consuming and complex task. This can particularly be beneficial in cases
wherein there are hundreds or thousands of SCADA features, particularly
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Figure 13: Example screenshot of the Neo4j Bloom interface providing preventive main-
tenance actions for turbine blades, given corresponding natural language search phrase

for large wind farms.

The $description parameter is a string type variable, which basically maps
the description attribute of the SCADA feature in the KG to the correspond-
ing natural language search phrase’s user-provided attribute by executing a
Cypher query in the back-end as shown below.

MATCH(n:Feature) RETURN n.description

In the user-friendly Bloom interface, when the search phrase for Correc-
tive actions for abnormal $description is entered, Neo4j Bloom also provides
suggestions (in an alphabetical order) for relevant feature descriptions which
the user can directly choose from in the interface. Figure [I4]shows an exam-
ple of suggestions provided by Bloom for SCADA feature descriptions based
on the KG schema and data. This provision makes Bloom extremely con-
venient as engineers & technicians do not need to remember/memorise the
exact feature descriptions to retrieve maintenance actions from the KG. An
example of corrective maintenance actions required to fix/avert inconsistency
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Listing 12: Example description of creating a dynamic search phrase query in Bloom for
corrective actions to fix/avert anomalies due to inconsistency in SCADA features

Search phrase: Corrective actions for abnormal $description

Description: Corrective maintenance actions for [Choose
feature description| abnormal important feature

Cypher query: MATCH(n: Corrective) —[:ACTION|—>(p) —[:FOR]—>(
q) —[:RELATESTO| —(r : Feature) WHERE r.description =
$description

RETURN

in the Pitch Angle Mazimum Value SCADA feature (which can further con-
tribute to a fault in the pitch system), as obtained through Bloom’s interface
is shown in Figure [I5] Note that there are multiple corrective actions pos-
sible in this case (as evident with 10 nodes found in the interface), and we
show an example of one such action.

Nodes Relationships
{ Corrective actions for abnormal
R ) v
Corrective actions for abnormal Absolute Wind Direction Maximum Value
CORRECTIVE MAINTENANCE ACTIONS FOR [CHOOSE FEATURE DESCRIPTION] ABNORMAL IMPORTANT FEATURE
All (® InScene Off Scene

CORRECTIVE MAINTENANCE ACTIONS FOR [CHOOSE FEATURE DESCRIPTION] ABNORM
<TAB> AUTO CC

RTANT FEATURE

Corrective actions for abnormal Absolute Wind Direction Mean Value
<RETURN> RUN

Corrective actions for abnormal Absolute Wind Direction Minimum Value
CORRECTIVE MAINTENANCE ACTIONS FOR [CHOOSE FEATURE DESCRIPTION] ABNORMAL IMPORTANT FEATURE

Corrective actions for abnormal Absolute Wind Direction Standard Deviation
CORRECTIVE MAINTENANCE ACTIONS FOR [CHOOSE FEATURE DESCRIPTION] ABNORMAL IMPORTANT FEATURE

Corrective actions for abnormal Active Power Maximum Value
CORRECTIVE MAINTENANCE ACTIONS FOR [CHOOSE FEATURE DESCRIPTION] ABNORMAL IMPORTANT FEATURE

Corrective actions for abnormal Active Power Mean Value
CORRECTIVE MAINTENANCE ACTIONS FOR [CHOOSE FEATURE DESCRIPTION] ABNORMAL IMPORTANT FEATURE

Allo Selected 0

Figure 14: Example screenshot of the Neo4j Bloom interface providing dynamic sugges-
tions for SCADA feature descriptions, given natural language search phrase

29




Nodes Relationships

Corrective actions for abnormal Pitch Angle Maximum Value
@ 10 nodes found Y

[T checking if the wiring... 8 X All (® InScene Off Scene

Properties Relationships Neighbors
CorrAct21 1

Corract21
CorrAct42

activities Checking if the wiring in connection box is
correct, Checking the alignment of the sonic
with the alignment tool, Check for Ice on the CorrActd3
Sonic, Checking for the proper voltages in the
connection box
WindVan-

e T Mean CorrAct44

CorrAct45

Corrective

Faultévent21 1

O

FaultEvent42

FaultEvent43

Figure 15: Example screenshot outlining corrective actions for anomalous behaviour of
the Pitch Angle Maximum Value SCADA feature

5.8. Application of graph data science algorithms for insightful reasoning and
analytics

While the KG in itself serves as a powerful resource for information query-
ing and retrieval, in real-world complex industrial use-cases, it is integral to
understand the contextual impact of the KG through discovery of key in-
sights, such as the root causes of events and discovery of communities revolv-
ing around a common theme [36]. Graph data analytics can help accomplish
this objective, and provide a pathway to the stakeholders for development of
new tools and algorithms for optimisation of existing activities.

Neo4j contains the Graph Data Science Library, which is a native ap-
plication for graph data analytics. Through a simple and interactive user
interface referred to as NEuler, a no-code platform is available, helping users
apply graph data science algorithms on datasets. There are several available
algorithms built into the platform focused on centrality, community detec-
tion, path finding and similarity, which can help in discovering significant
novel insights. As an example, we discuss a centrality algorithm applied to
the proposed KG which can be of interest to the wind industry:-
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PageRank for determining influential nodes. Ranking on KGs is vi-
tal for the determination of node importances, with several applications in
real-world domains, such as information retrieval, neuroscience, social net-
works etc [37]. PageRank [38] is a very popular iterative centrality algorithm,
which utilises the topological structure of KG to quantitatively measure the
transitive influence and interconnection between nodes. It can be utilised to
determine influential elements in the KG (like subgraphs, edges and nodes).
In the context of the wind industry, identifying influential elements from the
proposed KG can help understand the most important metrics for decision
support, which can help engineers prioritise events and activities for such
elements.

We utilise the PageRank algorithm available in the Neo4j Graph Data
Science Library for determining influential elements in our proposed KG.
For the algorithm, we used 20 iterations, a damping factor of 0.85 and a nat-
ural relationship orientation for the projected graph. The algorithm assigns
a score to each element in the KG, which provides an approximation of the
importance of the element with a higher score signifying a more influential
element. Figure shows the PageRank scores for various sub-systems and
Functional Groups in our KG. As can clearly be seen, the nodes for the Pitch
System, Yaw System, Generator, Electric, Sensor € Control, Transformer
and Gearboxr are amongst the elements with the highest PageRank scores,
signifying their importance for O&M. This is highly relevant based on ex-
isting literature, as these sub-systems generally have the highest frequency
of failures determined during structural reliability analysis of wind turbines
[39]. This insight from the KG can help engineers & technicians to especially
focus on the important nodes during O&M, e.g. stocking higher quantity of
spare parts for these sub-systems during inventory planning.

Similar to PageRank scores obtained for the importance of sub-systems,
novel insights can be derived on the importance of fault events in the pro-
posed KG. Figure [I7shows the PageRank scores for various fault events and
alarms in our KG. As can be visualised, events like Grid problems, High tem-
perature on the gearbox bearing and Very high wind direction misalignment
are amongst the elements with highest importance, signifying the frequent
nature as well as the complexity of O&M activities for such cases. It is inter-
esting to note that we observed that the identified fault events with higher
PageRank scores have a greater number of interconnections with O&M ac-
tivity nodes (Preventive, Corrective and Predictive) and linkage to SCADA
features, outlining that their influence in impacting outcomes from the KG
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Figure 16: Influence analysis of turbine sub-systems based on PageRank scores

are significant. O&M engineers can use these insights to prioritise mainte-
nance activities for the more critical fault events.

5.4. Interfacing with FExplainable AI models for decision support

A primary advantage of KGs is that they are natively developed to fa-
cilitate explainability, with their entities and semantic technologies being a
significant implementation of symbolic Al [26]. With the recent advent of
XAI models in the wind industry [6], achieving human-understandable de-
cisions is key to facilitate trustworthy decision making for O&M. The KG
can serve as a powerful resource when used in combination with XAI models,
as the important parameters and reasoning of the decisions made by the Al
models can be used as the basis to retrieve appropriate maintenance actions
directly from the KG. We discuss the integration of our KG with an XAI
model for explainablity in autonomous decision support below.

XGBoost + SHAP for Explainable anomaly prediction. We propose
the integration of our KG with XGBoost (eXtreme Gradient Boosting) [40)],
an XAI model which has seen immense success in anomaly prediction with
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Figure 17: Influence analysis of fault events based on PageRank scores

SCADA data in the wind industry in recent times [7, 8, 4], including with
data from the LDT [2, 42]. XGBoost utilises gradient boosting and ensemble
learning to leverage the best predictions made by multiple decision tree mod-
els, and is highly computationally efficient and scalable. The XGBoost model
can easily provide feature importances for the SCADA data to identify con-
tributing factors which led to an anomaly in specific turbine sub-components,
making it a viable and highly promising choice for explainable decision sup-
port. We also propose the utilisation of SHAP [43], a specialised game-theory
based approach which makes use of credit allocations and local explanations
to explain the outputs of AI models.

We utilised the XGBoost + SHAP model proposed by Chatterjee and
Dethlefs [42] with 21,392 samples of SCADA observations from the LDT
(at generally 10 minutes intervals), consisting of 102 SCADA features and
labelled history (ground truth) of faults across the 14 different Functional
Groups as discussed in Section A training-test data split of 70 — 30%
was used, with 100 individual decision trees as the learning estimators, a

33



learning rate of 0.1, 10 early stopping rounds and a multi-class multi:softprob
objective function. The model achieves an accuracy of up to 99% for anomaly
prediction, with an F1 score of up to 0.99 [42]. The model was developed in
Python, and the code is made publicly available on GitHub ﬂ

Integration of XGBoost + SHAP model with the Knowledge Graph
Database. Given that the XGBoost model was developed and trained in
Python, whereas, the Neo4j graph database is conventionally a part of the
Neo4j Desktop Application, we utilised Py,?neoﬂ, a specialised Python library
which facilitates connection of the Neo4j knowledge graph database server
with Python applications. Based on the XGBoost model’s predictions for the
test dataset and the feature importances of top-10 SCADA parameters likely
contributing to the fault, we created Cypher queries in Python to determine:-

1. Preventive maintenance actions for the Functional Group in which the
fault occurs.

2. Corrective maintenance actions related to the Functional Group and
fixing inconsistency in the SCADA features leading to the fault.

3. Predictive maintenance actions for Functional Groups through contin-
uous monitoring of SCADA features for any inconsistencies which can
lead to a fault.

An example of a Cypher query for retrieving corrective maintenance actions
from the KG and its execution in Python is shown in Listing [13] Here,
imp__try is a variable denoting the name of the feature which is likely lead-
ing to the anomaly, as identified by the XGBoost + SHAP model, and it is
mapped to the SCADA features in the LDT dataset with the $name param-
eter.

Besides mapping the maintenance actions to the SCADA features, we also
developed queries to automatically leverage the KG database in mapping
predicted faults in the Functional Group to the appropriate O&M actions.
An example of this query is shown in Listing [14] Here, fno is a variable
which refers to the class of the Functional Group wherein the anomaly is
predicted, and it is mapped to one of the 14 different Functional Groups in
the LDT dataset using the $fno parameter. When the graph query is excuted

8XAI4Wind Supplementary Resources: http://github.com/joyjitchatterjee/
XAI4Wind
YPy2neo Handbook: https://py2neo.org/2020.1/
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Listing 13: Example Cypher query for extracting corrective actions from the KG in Python
based on SCADA features

query = "MATCH(n: Corrective ) —[:ACTION]—>(p) —[:FOR]—>(q) —|:
RELATESTO| —(r: Feature{name: $name}) RETURN p,q,r"

print (graph.run(query2, parameters= {"name": imp_ try}).data

()

Listing 14: Example Cypher query for extracting corrective actions from the KG in Python
based on the Functional Group

query = "MATCH(n: Corrective ) —[:ACTION|—>(p) —[:FOR]—>(q) —[:
AFFECTS| —(r{fno:$fno}) RETURN p,q,r"

print (graph.run(query3, parameters= {"fno": int(y test.iloc
[current sample totest])}).data())

through graph.run, the value of fno passed is the predicted class in the test
dataset (described as the value at y test for the current sample under test
for which the O&M action is to be retrieved).

With the integration of the proposed KG with the XAI model, thorough
descriptions of faults and appropriate maintenance actions can be generated
at runtime (when the XAI model makes predictions with SCADA data).
Below, we discuss 2 different cases of anomalies predicted by the XAI model,
and examples of O&M reports obtained:-

e Anomaly in Gearbox: The first case we discuss is an anomaly pre-
dicted by the XAI model in the turbine’s gearbox. Figure shows
the force plot outlining the contribution of SCADA features towards
this prediction. The red color (higher metric) indicates that features
such as the GearBoxTemperature DegC Max contribute positively to
this prediction, with a potential increase in the gearbox oil tempera-
ture causing the fault in the gearbox. There is a 97% probability (0.97
as shown in the force plot) that these features would have a positive
impact leading to a gearbox operational inconsistency. This is highly
relevant to the gearbox anomaly based on existing literature, as there is
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Figure 18: Force plot for the predicted gearbox anomaly, with the outlined features con-
tributing positively (higher-red) to the fault

a high degree of correlation between the gearbox oil and wind turbine
gearbox conditions [44] and appropriate monitoring and management
of such parameters can play a vital role in managing incipient gearbox
failures [45], [46]. As an interesting point to note, our XAI model also
indicates the change-point for the anomaly, including the exact values
of the parameters at the time the anomaly occurs as can be seen from

Figure (18|

In Figure the top-10 important features identified by the XG-
Boost+SHAP model for this prediction are described in terms of their
percentage contribution (based on the feature importance values, gener-
ally referred to as the Shapley values [43]). Based on the top-10 impor-
tant features, our integrated model automatically extracts the relevant
nodes for the maintenance actions and the relevant fault event which
is likely caused due to abnormality in the SCADA features. Listing
describes examples of nodes automatically retrieved from the KG cor-
responding to the Gearbox Oil Sump Temperature Mean Value SCADA
feature which is identified to be a major contributor to the fault. It
can clearly be seen that the most appropriate maintenance actions cor-
responding to the identified fault event (in this case High temperature
on the gearbox oil) are represented through the nodes. Note that these
maintenance actions are specific to the fault type as well as the im-
portant SCADA feature, and provide the engineers & technicians with
guidance on how the operational inconsistency can be fixed /averted by
handling the issues in the SCADA feature. It is interesting to note
that besides the text-based descriptions of the maintenance actions,
our model also provides links to the images which are relevant to the
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predicted anomaly - in this case redirecting the user to Gearbox Con-
nection Diagrams and Gearbox Assembly as per Listing Figure
shows an example visualisation for the Gearbox Assembly.

GBoxOpShaftBearingTemp
1_Stdev (6%)
GearBoxTemp _Deg
C_Max (22%)

RotorSpeed_rpm_Max
(7%)

AuxConsumptionApparent
Pwr_Min (7%)

GenStatortemp2_Mean
(8%)

GearBoxTemperature_Deg

C_Mean (14%)

MainBearingtemp1_Mean
(8%)

Power_kW_Max (8%)
2_Mean

(13%)

Pitch_Deg_Max (8%)

Figure 19: Pie chart outlining the percentage contribution of top-10 SCADA features to
the predicted gearbox anomaly

Figure 20: Visualisation of the Gearbox Assembly as obtained through the image wurl
attribute in the KG. The image is extracted from the Skillwind maintenance manual
based on the predicted anomaly

As it is infeasible to show all corrective maintenance actions and the
complete reports in this paper, we provide some examples of our model
outputs for this operational inconsistency. Table describes some
examples for different important features for the predicted gearbox
anomaly, the corresponding fault events which are relevant and a subset
of the appropriate maintenance actions.

A specialised provision which our model provides is the additional
ability to generate maintenance actions based on the features which
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Listing 15: Example description of nodes extracted during gearbox anomaly

[{’p’: Node(’CorrAct25’, activities=|"Checking the

adjustment of louvers’, ’'Gearbox PT sensor’, ..... 1),

Y )

q’: Node(’FaultEvent25’,

details="High temperature on the
gearbox oil "),

Y ?

r’: Node(’'Feature’, description='Gearbox Oil Sump
Temperature Mean Value’, feature no=51, name=’

GearBoxTemperature _DegC Mean’, unit='deg celsius ’) },

{’p’: Node(’CorrAct37’, activities=| Resetting the switch/
breaker’, ’Checking the amp settings ’ 1),

g e e e e

Y Y

q’: Node(’FaultEvent37’,

details="Temperature switch of
the gearbox pump’) ....]|

Listing 16: Image reference property in the corrective maintenance action node for the
gearbox anomaly

image wurl:[’ https://github.com/joyjitchatterjee/XAI4Wind/
blob/master /images maintenance/Gearbox ConnectionDiagram
-png’,

"https://github.com/joyjitchatterjee /XAI4Wind/blob /master/
images maintenance/Gearbox Assembly.png’,

"https://github.com/joyjitchatterjee /XAI4Wind/blob /master/
images maintenance/Bearing Change.png’|
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Table 1: Examples of corrective maintenance actions based on identified important
SCADA features for the predicted gearbox anomaly

Important Feature Relevant Fault Event Retrieved Examples of Corrective Ac-
tion(s)

GearBoxTemperature DegC_Max High temperature on the gear- 1. Checking the adjustment of louvers. 2.

(Gearbox Oil Sump Temperature box oil Checking the wires for damages and appro-

Maximum Value) priate connections. 3. Making sure the bear-

ing temperature is higher than oil tempera-
ture, if not the wiring could be swapped. 4.
Making sure the PLC is reading oil temper-
ature correctly. If it is too high, it implies
that the pump is running too often.

GenBearingtemp2_Mean (Genera- High temperature on bearings 1. Listening for any unusual noise coming
tor Bearing 2 Temperature Mean (DE or NDE) from bearing (could be a bad bearing). 2.
Value) Checking the temperature touchscreen. Re-

placing the PT100 or temperature card. 3.
Making sure the lubber has enough grease
and it is flowing into the bearing.
GenStatortemp2 _Mean (Generator IGBT high temperatures 1. High temperature on INU IGBT’s. 2.
Stator Temperature Mean Value) Checking and saving the fault log and data
logger. 3. Checking the ambient tempera-
tures.4. Checking the air flow and fan oper-
ation. 5. Checking and clearing air filters in
the cabinet and drivers
GBoxOpShaftBearingTempl _Stdev High temperature on the gear- 1. Looking for bearing damages. 2. Check-
(Gearbox Bearing 1 Temperature box bearing ing the multiplier pump/ cooling units. 3.
Standard Deviation) Checking the wiring and cables for damages.

may not directly contribute to the fault in an obvious manner, but
are identified as important features by the XAI model. For instance,
Pitch_Deg Maz (denoting the pitch angle maximum value) is identi-
fied to have a contribution of 8% towards the prediction by our model,
however, there is no direct relationship between the pitch angle with a
gearbox anomaly based on general domain understanding. This feature
can indeed have indirect relevance to the operational inconsistency, as
in some instances like wind turbine blade icing, the aerodynamic per-
formance of the blades can be affected leading to operational inconsis-
tencies including power loss, equipment failure, mechanical failure etc
[47). Further, the mass and aerodynamic imbalance potentially leads to
loading in the gearbox, which can cause the predicted anomaly [48]. In
such cases, maintenance actions specific to the identified (non-obvious)
features can be helpful for the engineers & technicians to fix any in-
consistency which may have a hidden association with the predicted
anomaly. Also, since Al models are not perfect in making predictions
and false alarms can arise, identifying maintenance actions specific to
important features (rather than being only specific to the predicted
anomaly) can help O&M engineers make critical decisions in such cir-
cumstances. As an example, maintenance actions for the fault event
Possible existence of ice on blades is shown in Listing
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Listing 17: Example of corrective maintenance actions for Pitch Angle Maximum Value
SCADA feature potentially occurring due to ice existence on blades and leading to an
indirect anomaly in the gearbox

{’p’: Node(’CorrAct44’, activities=['Checking the rotor

sensor connection’, ’Checking for loose connections in
the A—9 box’, ’'Checking for damaged cables’, ’'Verifying
the wiring’, ’Visually inspecting the blades for ice
build up’]) }

Besides the corrective maintenance actions, our proposed methodology
is also able to extract relevant predictive and preventive actions for the
identified anomaly in the gearbox. Few examples of preventive main-
tenance actions for averting operational inconsistency in the gearbox
extracted by our model are shown in Table [2] Alongside the brief
description for these actions, our model also provides the general and
initial periodicity (wherever applicable as per the Skillwind manual) to
help engineers make appropriate and timely decisions.

Table 2: Examples of preventive maintenance actions extracted by the XAI-KG integrated
model for the gearbox

Preventive Activity Details General Periodicity
Gearbox oil replacement 48 months
Gearbox vent filter replacement 12 months
Gearbox supports inspection 12 months
Cooling system for gearbox- General inspection 12 months
Cooling system for gearbox- Oil filter substitution | 12 months

e Anomaly in Pitch System: The second case is for an anomaly pre-
dicted by the XAI model in the Pitch System Interface Alarms func-
tional Group. Similar to the discussion above for the gearbox, refer
Figure for the force plot outlining the distribution of SCADA fea-
tures leading to the pitch system anomaly. Amongst notable features,
Pitch_Deg Maz (denoting the pitch angle maximum value) shares a
significant positive contribution (higher-red) to the fault, but can also
have a negative impact (as the pitch angle generally has to be within
an optimum range for normal operation of the turbine). The outlined
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Figure 21: Force plot for the predicted pitch system anomaly, with the outlined features
contributing positively (higher-red) or negatively (low-blue) to the fault

features in the force plot show that the prediction has a probability of 1
(sure event), and this can help engineers & technicians to be especially
prepared for the anomaly, and thereby plan O&M actions in advance
to fix/avert the fault. Similar to Case 1 discussed above, the change-
point for the features e.g. the pitch angle and its exact value during
the prediction can also be clearly visualised.

The percentage composition of the top-10 contributing important SCADA
features which lead to the prediction as identified by the XGBoost +
SHAP model are shown in Figure 22| As can be seen, Pitch_ Deg Max
accounts for 40% of importance in the prediction, which makes it a vi-
tal parameter to monitor and fix any abnormality during O&M. There
are other features like WindSpeed mps Mean, Power kW Stdev and
ReactivePower kVAr Max which are comparatively less relevant but
still important, as based on existing literature, wind speed, output
power and grid-connective frequency (and thereby reactive power) are
highly significant during the pitch system failure and reflect change in
the system’s operational behaviour [49].

By considering the top-10 important SCADA features, similar to Case 1
discussed above, our model is able to generate informative descriptions
of maintenance actions towards fixing/avert the pitch system anomaly.
See Listing for an example of generated corrective actions for an
abnormality in the Pitch  Deg Max feature, which is potentially con-
tributing to the Blade Position Error fault event in the pitch system.

Examples of various types of corrective maintenance actions for differ-
ent fault events and identified important features for the predicted pitch
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Figure 22: Pie chart outlining the percentage contribution of top-10 SCADA features to
the predicted pitch system anomaly

system anomaly are shown in Table [3| It is integral to note, that in a
few cases (e.g. for the feature Power kW Stdev denoting the Active
power standard deviation in this case), it is possible that a feature may
not have an associated maintenance action in the KG database wherein
the feature does not have a direct attribute for maintenance activities
and is dependent on other SCADA features (e.g. the turbine active
power depends on features like wind speed and pitch angle), and any
corrective action for the contributing features would directly fix/avert
any inconsistency in the determined important feature. In such cases,
our model extracts the next highest-priority feature based on its im-
portance score (Shapley value) to provide the appropriate maintenance
strategies.

Besides the corrective maintenance actions, we provide examples of
preventive maintenance actions generated by our integrated model in
Table [ These are specific to the pitch system, and can serve as
an integral resource for the O&M engineers to prepare in advance for
any impending faults, through appropriate monitoring and repair/fix

101f the pitch of any of the blades differs some degrees from the reference pitch for a
short period.
1 This alarm is activated if the wind speed is above the design levels.
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Listing 18: Example description of nodes extracted during pitch system anomaly caused
due to Blade Position Error

{’p’: Node(’CorrAct45’, activities=['Checking the power
supply >, ’'Checking the cables and electrovalves for
damage’, ’Verifying the I/O modules in the hub’,
Swapping the cards between blades to see if fault is

associated to one specific blade.’, ’Verifying the
balluf settings ’]),

'q’: Node(’FaultEvent45’, details="Blade Position Error’),

) Y

r’: Node(’'Feature’, description="Pitch Angle Maximum Value
', feature no=2, name='Pitch Deg Max’, unit="Deg’)}

Table 3: Examples of corrective maintenance actions based on identified important
SCADA features for the predicted pitch system anomaly

Important Feature Relevant Fault Event Retrieved Examples of Corrective Ac-
tion(s)

Pitch _Deg Max

(Pitch Angle Maximum Value) Pitch Activation Error. E 1. Making sure the balluf cable is not dis-
connected. 2. Checking the balluf condition.
3. Checking proportional valve or cable. 4.
Checking the relays for each blade in the hub

cabinet.
WindSpeed mps_ Mean (Average High wind speed.ll—_rl 1. Checking the on-site wind speed. 2.
Wind Speed Mean Value) Checking the wires and voltages in the con-

nection box. 3. Checking for ice build up on
the Sonic and Anemometer.

GenHeWaterInlettemp _Stdev High temperature on generator’s 1. Opening the louvers on generator. 2.

(Generator Inlet Temperature slipring Checking the motor fan condition. 3. Check-

Standard Deviation) ing the PT sensor. 4. Checking the Temper-
ature I/O card.

NacInsidetemp_Min (Nacelle Tem- High or Low nacelle temperature 1. Checking the temperatures. 2. Checking

perature Minimum Value) the PT sensor wiring. 3. Checking the PT

placement. 4. Checking the PT card connec-
tions.

activities wherever necessary.

6. Discussion

Through the use-cases discussed above, we have demonstrated the role
which the proposed KG can play for supporting O&M in the wind industry.
We have also shown that the novel insights and metrics derived from the
KG are highly relevant and informative for decision support in the wind
industry based on existing literature. Also, as the maintenance actions are
retrieved from a domain-specific resource in the wind industry (the Skillwind
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Table 4: Examples of preventive maintenance actions extracted by the XAI-KG integrated
model for the pitch system anomaly

Preventive Activity Details General Periodicity
Pitch re-tightening 12 months
Pitch calibration 12 months
Batteries substitution 48 months
Inspection of the clearance between pinion and crown | 12 months
Gear oil substitution 60 months

manual), the derived actions when used in conjunction with a real-world
operational turbine data (from the LDT) can enhance the capabilities of the
KG even further for autonomous decision support, beyond simply information
querying and retrieval when used standalone.

Note that while we have demonstrated the use-cases with SCADA data
from the LDT, the proposed KG is not restricted to any specific wind turbine.
The KG can serve as a generic resource for O&M in the wind industry, and
it can be integrated with SCADA data from any wind turbine to provide
maintenance actions specific to predicted faults in the turbine. Similarly,
the capabilities of the XAl model are not limited to the LDT data, but can
easily be transferred to new turbines with their specific datasets. Also, the
proposed KG can be potentially integrated with XAI models even in cases
with absence of available data, through specialised techniques like transfer
learning which has seen promising applications in the wind industry [50, 2].

7. Conclusion

We have showcased the immensely powerful role which multimodal KGs
can play for explainable decision support in the wind industry. To the best of
our knowledge, this is the first paper in the wind energy sector to propose real-
world applications of KGs in O&M of wind turbines, demonstrated through
several real-world use-cases. By combining heterogeneous data in the wind
industry, such as SCADA parameters with natural language based mainte-
nance actions and images, we have shown the ability of the KG to be queried
interactively as well as automatically through its integration with an XAI
model. The proposed KG is able to provide effective human-intelligible main-
tenance action strategies based on various faults in turbine sub-components,
which can be better analysed and interpreted by leveraging graph data sci-
ence algorithms and XAI models which we have discussed through promising
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experimental observations in the paper. We envisage that the proposed KG,
which is made publicly available, can serve as a driving resource to encour-
age future research in this area, helping pave way for autonomous explainable
decision support for CBM in the wind industry.
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Appendix A. Details of Nodes in the Knowledge Graph

Node label Description Properties
System Reference  to  the | location, name, rated power, type
Study Turbine (LDT)
Environment Reference  to  the | name
Study Turbine Envi-
ronment
Blades Wind Turbine Blades | name, InspectionActivities, Correc-
Sub-System tiveActivities, PreventiveActivities,
visualinspection image url,image url
ESC Electric, Sensor & | name
Control Sub-System
FCS Foundation & Con- | L 11‘rnage_.u?13
. CorrectiveActivities
crete  Section  Sub-
System
. . name, image url,
HydraulicSystem Hydraulic Sub-System CorrectiveActivities
CommNetwork Communications & giﬁi;;ﬁiiiﬂiﬁies
Network Sub-System
Converter Converter Sub-System aaine, P.redlct%v.eA'ctWMes,
PreventiveActivities
DriveTrain Drive  Train  Sub- | name, PreventiveActivities
System
Yaw Yaw Sub-System name, fno
ParkBrake Park  Brake  Sub- | name
System
YawBrake Yaw  Brake  Sub- | name, fno
System
MainShaft Main  Shaft  Sub- | name
System
PowerCabinet Power Cabinet Sub- | name
System
PitchSystem Pitch Sub-System name
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name, image url,

Transformer Transformer Sub- CorrectiveActivitios
System

Functional Group Reference to all Func- | name, contents
tional Groups

IPR IPR Functional Group | name, fno

PitchInterfaceAlarm Pitch System Inter- | name, fno
face Alarms Func-
tional Group

PitchEFCMon Pitch System EFC | name, fno
Monitoring Sub-
System

PCS Power  Conditioning | name, fno
System Functional
Group

PPD Partial Performance | name, fno
Degraded Functional
Group

Yaw Yaw System Func- | name, fno
tional Group

HydraulicSys Hydraulic System | name, fno
Functional Group

Gearbox (i) Gearbox Func- (i)name, fnol (ii)na_m.e i image_url,
) ... | fno, CorrectiveActivities
tional ~ Group (i)
Gearbox Sub-System

NoFault No Fault Functional | name, fno
Group

WindAlr Wind Condition | name, fno
Alarms Functional
Group

GLLP Ground Line & Light- | name
ning Protection Sub-
System

MVTR Moisture Vapour | name, fno

Transmission Rate
Functional Group
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Test Test Rig Functional | name, fno
Group
Pitch Pitch System Func- | name, fno
tional Group
SCADA Reference  to  all | name
SCADA features
Alarm1 to | 26  different alarm | description, alarm no
Alarm26 (both | types in the LDT
inclusive)
Feature Reference to distinct | name, description, unit, feature no
SCADA features
MaintenanceAction | Reference to all main- | name, contents
tenance actions
FaultEvents Reference to all fault | name
events
FaultEvent1 to | 57 different types of | details

FaultEvent57
(both inclusive)

fault events

Preventive

Reference to all pre-
ventive actions

name, Lineups,

DriveTrainActivities, Cleaning,
CheckWearSlackLineups,
ImpParameters,OilChanges,
SettingPressures, FunctionalChecks,
Filters, Corrosion, LostScuffsOrGaps,
FatLiqours, Sampling, Retightening,
PlasticsOrDegraded Gums

PrevActl to Pre-
vAct233 (both in-

233 distinct preven-
tive maintenance ac-

name, gen periodicity, details,
act, initial periodicity,
activities

clusive) tions
Predictive Reference to all pre- | name, contents
dictive actions
PredActl to | 11 distinct predictive | details, activities, image url
PredActll (both | maintenance actions
inclusive)
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Corrective

Reference to all cor-
rective actions

name, contents

CorrActl to Cor-
rAct57 (both in-
clusive)

57 distinct corrective
maintenance actions

activities, image url
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