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Abstract: The dynamic properties of foldamers, synthetic molecules that mimic folded 

biomolecules, have mainly been explored in free solution. Here we report on the design, 

synthesis, and conformational behavior of photoresponsive foldamers bound in a phospholipid 

bilayer akin to a biological membrane phase. These molecules contain a chromophore, which can 

be switched between two configurations by different wavelengths of light, attached to a helical 

oligoamide that both promotes membrane insertion and communicates conformational change 

along its length. Light-induced structural changes in the chromophore are translated into global 

conformational changes, detected by monitoring the solid state 19F nuclear magnetic resonance 

signals of a remote fluorine-containing residue located 1 to 2 nm away. The behavior of the 

foldamers in the membrane phase is similar to that of analogous compounds in organic solvents.  

One Sentence Summary:  

A membrane-bound synthetic molecule communicates photochemical information across 

nanometer-scale distances within a phospholipid bilayer. 
 

 Substantial progress has been made in the field of synthetic biology in the use of light to 

control biological function by customization of membrane-bound proteins with artificial 

chromophores (1). In parallel, synthetic molecular photoswitches have been used to control 

chemical processes such as ligand binding and catalysis in isotropic solution (2, 3). Here we 

report the design and synthesis of a fully synthetic photoresponsive helical molecule that can 

insert into a phospholipid bilayer. We show that light-induced switching between configurational 

isomers can be used to induce global conformational change that propagates over several 

nanometers in a synthetic molecule within a membrane environment. Artificial membrane-bound 

photoswitchable synthetic structures capable of translating photochemical information into 

extended conformational changes, in a manner reminiscent of the operation of natural 

photoswitchable proteins such as rhodopsin (4), could ultimately provide opportunities for 
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controlling chemical processes within membrane-defined compartments. Detailed understanding 

of the way that the phospholipid bilayer affects long-range conformational changes in 

membrane-bound molecules is limited by the difficulty of observing directly conformational 

changes in the membrane phase and by a lack of examples of biomolecules that adopt well 

defined structures in both the membrane phase and in solution (5, 6, 7). A simplified yet 

functional synthetic analogue of the membrane-spanning domains of natural proteins, containing 

in-built spectroscopic handles that are diagnostic of conformation, would be a powerful tool. 

Dynamic conformational changes in a membrane-bound molecule could then be explored, free of 

the complexities of protein structure, and compared with analogous changes in isotropic solution.  

 Given the requirement for a synthetic structure with a tendency to embed into membranes 

and with well-understood conformational dynamics, we chose to explore the membrane insertion 

of foldamers (synthetic polymeric molecules with well defined conformations (8)) built from 

oligomers of the achiral amino acid Aib (2-aminoisobutyric acid, Figure 1A, shown in black). 

These Aib foldamers show a strong preference for helical conformations (9) and therefore have 

two principal conformational states, in which the helix adopts a global left or right-handed screw 

sense. Furthermore, helical Aib-rich peptides have a known tendency to insert into phospholipid 

bilayers because they occur naturally in the form of membrane-disrupting fungal antibiotics 

known as peptaibols (10). 

In order to allow photochemical induction of conformational change, a chiral amino acid 

residue was covalently linked to the N-terminus of an (Aib)n foldamer and then N-acylated by an 

azobenzene motif (shown in red in Fig. 1A) (11). This motif manifests well understood 

photochemical interconversion between E and Z configurations and thus offers a reversible light-

driven means of initiating conformational re-organization from the terminus of the oligomer. The 

influence of azobenzene geometry on the relative population of conformational states of the 

(Aib)n helix was first explored in solution using foldamers 1 (Fig. 1A) that carry a C-terminal 

glycinamide as a solution-state 1H NMR-compatible reporter of helical conformation (12). An 

unequal conformational population can result when the first turn of a helical Aib-containing 

foldamer incorporates a single chiral tertiary amino acid residue, and the magnitude of this bias 

depends on the detailed structure of the first (N-terminal) -turn of the helix (12). 1H NMR 

spectra of valine-containing foldamers 1a-d were acquired in deuterated methanol (CD3OD) 

solution as their thermally equilibrated mixtures of E (major) and Z (minor) geometrical isomers 

(analogous behavior in phenylalanine-containing foldamers is reported in table S1). Methanol 

has a polarity similar to the interfacial region of the phospholipid bilayer and prevents 

aggregation of the foldamers in solution (13, 14). Since the left- and right-handed conformational 

states of an (Aib)n helix interconvert on a sub-millisecond timescale at ambient temperature, the 
1H NMR spectrum that is observed results from a weighted average of both conformational 

states, reflecting their relative population. The diagnostic feature in the averaged spectra of 

foldamers 1 is the signal or signals due to the methylene protons of the C-terminal glycinamide 

residue. A single signal indicates equal population of the two states; a pair of signals indicates 

unequally populated states. Furthermore, the magnitude of the chemical shift difference  

between these signals is proportional to the excess population of one screw-sense conformation 

over the other. A change in  therefore indicates a change in population distribution across 

these two conformational states (12).  

A comparison of the chemical shift differences in the glycinamide residue of the E 

and the Z geometrical isomers of 1a-d (Fig. 1B) showed that the E isomers consistently exhibited 

greater  values than the Z isomers.  This indicates that the E isomer of the azobenzene induces 
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a more powerful conformational preference KE than that of the Z isomer KZ, and induces a more 

unequal distribution of screw-sense populations (Fig. 1A-C). The sensitivity of the 

conformational preference of 1 to the geometry of the azobenzene was tuned by varying the 

substituent in the meta position of the terminal ring (15, 16). Methoxy-substituted 1c and 1d 

showed the greatest differences in conformational populations between their E and Z isomers 

(Fig 1C), and were cleanly photoswitched from E to Z on irradiation at 365 nm and from Z to E 

on irradiation at 455 nm (fig. S2). Both 1c and 1d exhibited particularly slow thermal relaxation 

from Z to E [t1/2 of 64 h for 1d (fig. S6)], and the para-fluoro substituent of 1d additionally 

provided a local 19F NMR reporter of azobenzene geometry.  
 

 
 

Fig. 1. Validation of the photoswitchable foldamer architecture 1 in solution. (A) Switching the 

terminal azobenzene chromophore between E and Z configurations changes the population 

distribution between right-handed and left-handed conformations of foldamers 1a-d with general 

structure Azo-Val-Aib4-GlyNH2; (B) Portions of 1H NMR spectra showing the change in 

chemical shift separation between the signals arising from the glycinamide methylene protons 

of foldamer 1d in CD3OD upon irradiation with light of 365 nm; (C) Percentage change in 

population distribution for foldamers 1a-d, calculated from  values; (D) The intramolecular 

hydrogen bonding network (shown in green) in the X-ray crystal structure of Azo-Aib-Ala-Aib4-

GlyNH2 2. 

 

We assume that the conformational switching of 1 is driven by a difference in electronic 

properties between the E and Z azobenzene-2-carboxamides. The population distribution 
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between screw-sense conformations across a series of related (Aib)n foldamers is sensitive to the 

basicity of the carbonyl group linked to the N-terminal residue that initiates the first -turn of the 

helix (12). The X-ray crystal structure of an azobenzene-2-carboxamide capped foldamer 2 (Fig. 

1D) reveals that the proximal azo nitrogen atom forms an intramolecular hydrogen bond in the 

solid state with the NH of this N-terminal residue. Given the persistence of the intramolecular 

hydrogen bond network of Aib foldamers even in polar, hydrogen-bonding solvents (17), we 

assume this hydrogen bond is retained in solution. On photoisomerization from E to Z, the 

azobenzene loses planarity and the diazo group becomes more basic (18), likely strengthening 

this hydrogen bond, and in turn altering the geometry of the hydrogen bonding and hence the 

conformational preference within the -turn. This change in conformational preference is 

propagated through the helical chain, leading to a detectable shift in the relative populations of 

left-and right-handed helical conformations, reported by the 1H NMR signals of the C-terminal 

glycinamide reporter. 

Having established that the conformational populations of the foldamers in solution could 

be perturbed by photochemical switching and detected by solution state 1H NMR, we needed to 

devise a means of detecting conformational changes in related foldamers when embedded in a 

membrane. Solid state nuclear magnetic resonance (ss-NMR (19)) is a powerful analytical 

technique that can determine structures in non-dissolved systems with quasi-atomic resolution. It 

can be used to characterize membrane-bound structures (20, 21), and it can yield detailed 

information on the conformation and dynamics of membrane-bound proteins and peptides (22, 

23, 24) and their artificial mimics (25). It has recently been used to investigate both the structure 

and dynamics of the photoswitchable vision protein rhodopsin (26), and provides evidence that 

the solution-phase conformational preference of the Aib-rich peptaibol alamethicin is preserved 

when embedded in phospholipid bilayers (27). Magic angle spinning (MAS) is the most 

commonly used ss-NMR method (28), and in a lipid bilayer, MAS spin rates of ~10 kHz 

generate well resolved 1H ss-NMR signals within an experimental time scale of 1 h (29). In the 

H, C and P-rich membrane environment, details of orientation, conformation, folding and 

association can be obtained through incorporation of fluorine substituents into natural (30) and 

artificial molecules (31). Temperature, drug and solvation-dependent conformational changes of 

labeled membrane-bound proteins have been detected by ss-NMR (32) but the method has rarely 

been used to quantify conformational ratios or to observe dynamic conformational changes in 

artificial membrane-bound molecules (33). 

In order to identify the foldamer in the phospholipid bilayer we incorporated into its 

structure a 2,2-difluoroAib (Fib (34)) residue (Fig. 2, shown in green). Located at the foldamer's 

C-terminus, several nanometers remote from the chromophore, Fib’s pair of fluorine atoms allow 

the use of 19F ss-NMR (30, 35) to detect changes in the conformational population distributions, 

since chemical shift differences () between the 19F NMR signals of the two fluorine atoms of 

2,2-difluoroAib (Fib) report on the conformational preferences of helical foldamers in solution in 

a similar way to the glycinamide probe of 1 (34). Initially, a series of foldamers 3a-f (Fig. 2) 

lacking the azobenzene chromophore was synthesized in order to validate the use of Fib as a 

conformational reporter in the membrane phase. To enhance membrane solubility, a 

triethyleneglycol (TEG) tail was ligated to the C terminus of the foldamers, adjacent to the Fib 

residue. The spatial separation between the FibTEG reporter and the N-terminal chiral residue 

ensures the chemical shift difference between the 19F NMR signals is insensitive to 

configurational changes in the chromophore, and thus reports only on induced conformational 

changes in the helical part of the foldamer. The 19F NMR spectra of foldamers 3a-f in 
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trideuterated methanol (CD3OH) at 23 °C showed pairs of signals with chemical shift differences 

 that are proportional to the screw-sense population distributions reported for related 

compounds (12). The  value provides a measure of population distribution between 

conformations only when exchange between screw-senses is fast on the NMR time scale, so 

variable temperature 19F NMR (fig. S7) was used to confirm that the conformations of 3a 

interconvert rapidly (i.e. at a rate of >6000 s–1) in both CD3OH (coalescence temperature Tc of 3a 

= 0 °C) and deuteriochloroform (CDCl3, Tc of 3a = +7 °C), a low dielectric constant solvent that 

simulates the low polarity at the center of a phospholipid bilayer (36).  

The dynamic conformational behavior of the helical foldamers 3 was then studied in a 

membrane environment using ss-NMR. Multilamellar vesicles (MLVs, (37)) were prepared by 

co-dissolving 3 and the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (1:19-

1:9 peptide/DOPC w/w ratio) in chloroform (38). After removal of solvent under reduced 

pressure, the residue was rehydrated, freeze-dried and resuspended in phosphate buffer solution 

(pH 7.2). Centrifugation and removal of the aqueous supernatant layer afforded a viscous lipid 

phase which was loaded into a MAS zirconia rotor (fig. S6). The 31P static NMR spectrum 

showed an anisotropic signal, while the 1H MAS ss-NMR spectrum showed resolved, sharp 

peaks from both the lipids and foldamer (see fig. S7), indicative of a lipidic fluid lamellar phase 

into which the oligomer is embedded but remains freely mobile (39, 40, 41). 
19F MAS ss-NMR spectra of 3a-f embedded in DOPC membranes were acquired with a 

spinning rate of 10 kHz, and were compared with solution phase 19F NMR spectra of the same 

compounds 3a-f in CD3OH (Fig. 2). In every case, either one or two 19F signals centered around 

–234 ppm were observed in the ss-NMR spectrum, further confirming that the fluorinated 

foldamers 3a-f had partitioned into the lipid bilayer. The single 19F NMR signal of the achiral 

foldamer 3a both in solution phase NMR and ss-NMR suggested that the rapid screw-sense 

inversion observed in solution persists in the membrane phase, allowing use of chemical shift 

differences  in the 19F ss-NMR spectrum to measure the population distribution of helical 

conformations in the membrane. The increasing separation of the 19F NMR signals of the 

FibTEG probe in the series 3b-f in both solution and solid state confirms the increasingly strong 

chiral influence at the remote N-terminus in both environments. Strongly helicogenic, C-

tetrasubstituted residues (-methylvaline, aMv), and in particular two consecutive aMv residues, 

induced the greatest bias in the conformational population in both environments. Although some 

subtle differences are evident, probably due to a weakening of conformational induction in a 

membrane environment, the similar conformational behavior of 3a-f both in isotropic solution 

and in the liquid crystal (42) environment of the DOPC bilayer suggests that the population of 

foldamer conformations in the membrane phase may be predicted by studying their population 

distribution in solution. 19F ss-NMR spectra were concentration-independent: there was no 

change in on varying the loading of foldamer 3d from 3 to 15% w/w (see fig. S12), nor on 

adding a non-fluorinated, chiral foldamer to a lipid bilayer already containing 3d (fig. S13), 

indicating that screw-sense preferences detected by 19F ss-NMR are not the result of 

intermolecular communication between helices. The single 19F ss-NMR signal of 3a confirms 

that the chirality of DOPC has no discernible influence on screw-sense preference. 
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Fig. 2. Solution and membrane-phase 19F NMR signals of fluorinated foldamers 3a-f along with 

their corresponding chemical shift separations . aMv = L--methylvaline. (*) Achiral residue; 

(†) Two consecutive aMv residues. 
 

Having shown that the constituent parts function successfully in isolation, we brought 

them together in the synthesis of a foldamer designed for photoswitching in the membrane phase. 

The most effective azobenzene motif 1d (Fig. 1) was ligated to the N-terminus of an Aib-

containing foldamer carrying the C-terminal FibTEG ss-NMR conformational reporter. The 

resulting oligomer 4 (Fig. 3) carries 19F labels at both the N and C termini, allowing parallel 

monitoring by 19F ss-NMR of both configurational E/Z photoswitching in the azobenzene unit 

and consequent global conformational population switching of the foldamer. (The similar 

behavior of a Phe-containing analogue is described in fig. S17). 

Foldamer 4 was equilibrated in the dark to a >99:1 E/Z ratio and embedded into the 

DOPC membrane phase using the procedure described earlier, but minimizing exposure to light. 

The 19F ss-NMR spectrum (Fig. 3A) of the membrane-embedded foldamer showed a fluoroarene 

signal at –126 ppm, accompanied by two equally populated but unequally broadened (due to 

chemical shift anisotropy differences) signals in the region of–234 ppm. The single signal at 

–126 ppm confirmed that the azobenzene was still a single geometrical isomer after 

incorporation into the lipid bilayer. The appearance of two signals at –234 ppm, separated by 

~1 ppm (Fig. 3A), indicates that the foldamer is in its ‘on’ state, with one of the equilibrating 

screw-sense conformers of the helical structure preferentially populated. Analogy with behavior 

of related Aib foldamers in solution suggests that the preferred conformational state is left-

handed and accounts for approximately 60 to 65% of the equilibrium population (43). 
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Fig. 3. Conformational switching of 4 by irradiation in a DOPC phospholipid bilayer (5% w/w). 

Molecular dimensions, but not necessarily orientation, of 4 are shown in proportion to the 

thickness of the bilayer, with the bilayer boundary indicated by grey balls representing the 

phosphate head-groups. Portions of the 19F ss-NMR spectra corresponding to the N-terminal 

fluoroarene substituent (–125 to –140 ppm, left) and the C-terminal FibTEG reporter (–230 

to –235 ppm, right) are shown as well. (A) Dark-equilibrated sample (>99:1 E/Z azobenzene 

ratio); (B) the same sample after irradiation at 365 nm (14:86 E/Z ratio) and (C) after subsequent 

irradiation at 455 nm (69:31 E/Z ratio). 

 

 The suspension of MLVs containing foldamer (E)-4 was then transferred to a quartz 

cuvette and illuminated using an LED of wavelength 365 nm (fig. S11). After 5 minutes, the 

phospholipid mixture was spun out from the cuvette and directly loaded into the MAS rotor. The 
19F ss-NMR spectrum (Fig. 3B) now revealed relative intensities of 14:86 for the signals 

corresponding to the E and Z azobenzenes, indicating substantial switching of the azobenzene 

geometry from E to Z within the phospholipid bilayer. Simultaneously, the pair of signals arising 

from the FibTEG reporter had collapsed into a broad singlet (Fig. 3B). This indicates that the 

photo-induced change in geometry at the N-terminal azobenzene had induced a global 

conformational switch into an ‘off’ state, in which an approximately equal population of left and 

right handed screw-sense conformers is detected by the C-terminal reporter. 

This Z-rich sample of 4 was transferred back into a quartz cuvette and illuminated a 

second time, with light of wavelength 455 nm, and again a ss-NMR sample was prepared using 

this now twice-illuminated, membrane-bound oligomer. This longer wavelength illumination 

changed back the E/Z isomer population to a 69:31 ratio and restored the initial peak separation 

of the FibTEG reporter (Fig. 3C). This second irradiation at longer wavelength thus switched the 

foldamer back into its ‘on’ state, reinstating its original conformational preference for a preferred 

screw sense, and demonstrating the reversibility of the photoswitching process (see also fig. S16 

for multiple, reversible photoswitching cycles). 

 No changes were evident in the FibTEG region of the 19F ss-NMR spectrum when a 

similar illumination procedure was applied to an azobenzene-free foldamer, nor using 
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azobenzene-capped but achiral foldamer after irradiation at 365, 405 or 455 nm (see fig. S14 and 

S15). The slow Z to E thermal relaxation exhibited by the fluorinated azobenzene-valine moiety 

in CD3OD solution (t1/2 = 64 h for 1d, fig. S6) became only slightly faster in the phospholipid 

bilayer (t1/2 ≈ 44 h for both 4 and 5, fig. S19-20). This proved particularly helpful for the 

purposes of this study, given the acquisition time required (0.5 to 1 h) for each ss-NMR 

spectrum. 

With the aim of transmitting conformational information over multi-nanometer distances 

comparable with the reach of the photo-induced conformational changes in rhodopsin that 

underpin the biochemistry of vision (44), we also studied foldamers with a much more extended 

helical structure. Foldamer 5 was synthesized, in which the azobenzene chromophore was 

separated from the FibTEG reporter by eight Aib residues, or about three turns of a 310 helix, 

corresponding to a distance of 2 nm (45), a distance commensurate the hydrophobic thickness of 

a DOPC bilayer (Fig 4A) (42). (A related phenylalanine-containing foldamer is reported fig. 

S18). Preliminary 19F NMR studies in CDCl3 (fig. S8) indicated that the rate of exchange 

between conformational states is slower in these longer homologues (Tc ~ +35 °C, indicating a 

rate of <6000 s–1 at room temperature (46)). After insertion into the DOPC bilayer but before 

irradiation, integration of the 19F ss-NMR signals at ~ –130 ppm indicated that 5 exists as a 

92:8 mixture of E and Z geometrical isomers. Foldamer 5 showed two FibTEG NMR signals in 

the region of –234 ppm separated by 4.0 ppm (Fig. 4A). The membrane-embedded foldamers 

were irradiated for 7 minutes with light of wavelength 365 nm, which switched the azobenzene 

chromophore to an 18:82 E/Z geometrical ratio, and simultaneously caused a marked change in 

the FibTEG reporter signal, increasing the separation of the peaks to 5.4 ppm (Fig. 4B). A 

second period of illumination at 455 nm switched back the population of azobenzene geometrical 

isomers to a 71:29 E/Z ratio, and returned the chemical shift separation to its initial value (Fig. 

4C). As in CDCl3 solution, the spectroscopic responses of 5 in the membrane phase are 

characteristic of slower exchange between screw-sense conformations (they are in intermediate 

exchange on the NMR timescale), which at this stage in the work prevents us quantifying the 

relative populations of the conformational states. The results demonstrate that light-induced 

configurational switching at one location in extended membrane-bound synthetic molecules 

induces local changes in structure that propagate through the oligomers to induce global changes 

in conformation, causing a change in conformational populations that is detected by spatially 

remote reporters. 
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Fig. 4. Conformational switching of 5 by irradiation in a DOPC phospholipid bilayer (5% w/w). 

Molecular dimensions, but not necessarily orientation, of 5 are shown in proportion to the 

thickness of the bilayer, with the bilayer boundary indicated by grey balls representing the 

phosphate head-groups. Portions of the 19F ss-NMR spectra corresponding to the N-terminal 

fluoroarene substituent (–125 to –135 ppm, left) and the C-terminal FibTEG reporter (–230 

to –240 ppm, right) are shown as well. (A) Dark-equilibrated sample (92:8 E/Z azobenzene 

ratio); (B) the same sample after irradiation at 365 nm (18:82 E/Z ratio) and (C) after subsequent 

irradiation at 455 nm (71:29 E/Z ratio). 

 

 

We have shown that the dynamic control over the conformational behavior of foldamers 

in solution may be replicated in a phospholipid bilayer. We envisage that replacement of the 

spectroscopic reporter with a catalytic or binding site in related switchable oligomers should 

allow photoswitchable changes in conformation to lead to stimulated release of a chemical 

messenger, or catalytic formation of a secondary messenger to be up- or downregulated (47). 

Incorporation of such switchable functional molecules into membranes would allow localized, 

photoinduced chemical changes to be translated into chemical responses in the lumen of artificial 

vesicles, or even the controlled release or uptake of a chemical signal in the cytosol of individual 

live cells. The work demonstrates that simplified synthetic molecules may be designed to display 

the essential functions of much more complex, evolved biomolecules. 
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