Supplementary Materials for

Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer

Matteo De Poli, Wojciech Zawodny, Ophélie Quinonero, Mark Lorch, Simon J. Webb, Jonathan Clayden*
*Corresponding author. e-mail: j.clayden@bristol.ac.uk

This PDF file includes:

Materials and Methods
Supplementary text, images and data
Figs. S1 to S21
Tables S1 to S9
Full Reference List

Table of Contents

Materials and Methods S3
Abbreviations S4
Synthetic schemes S5
General synthetic procedures (A-D) S8
Synthetic procedures and characterization details S10
${ }^{1} \mathrm{H}$ NMR spectra S44
${ }^{13} \mathrm{C}$ NMR spectra S62
${ }^{19} \mathrm{~F}$ NMR spectra in CDCl_{3} S80
${ }^{19} \mathrm{~F}$ NMR spectra in $\mathrm{CD}_{3} \mathrm{OD}$ S90
Spectroscopic studies in solution (Figs. S1 to S6, Tables S1 and S2) S96
Spectroscopic studies in the membrane phase S105
General procedure (E): preparation of DOPC lipid bilayers embedded with fluorinated foldamers (Figs. S7 to S9) S105
General procedure (F): irradiation of the DOPC bilayers (Fig. S10) S107
Control experiments S109

1) Concentration dependence assay (Fig. S11) S109
2) Intermolecular communication of helicity assay (Fig. S12) S110
3) Irradiation assay (no azobenzene chromophore present) (Fig. S13) S111
4) Irradiation assay (no chiral stereocontroller present) (Fig. S14) S112
Additional photoswitching experiments (Figs. S15 to S19) S114
ORTEP image for crystal structure of 2 (Tables S3 to S9 and Fig. S20) S139
References S140

Materials and Methods

All reactions were carried out in flame-dried glassware under a nitrogen atmosphere unless otherwise stated. Reagents and solvents were purchased from either Sigma Aldrich, Iris Biotech GmbH, Apollo Scientific Ltd. or Fluorochem Ltd. and used without further purification. Anhydrous dichloromethane and tetrahydrofuran were obtained by distillation over calcium hydride and sodium/benzophenone respectively. Petrol refers to the fraction of light petroleum ether boiling between 40 and $65{ }^{\circ} \mathrm{C}$. All other commercially available solvents and reagents were used as received. Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Ultrashield 300, 400 or 500 MHz spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in solution were referenced relative to the solvent residual peaks and chemical shifts (δ) reported in ppm downfield of tetramethylsilane $\left(\mathrm{CDCl}_{3} \delta_{\mathrm{H}}: 7.26 \mathrm{ppm}, \delta_{\mathrm{C}}: 77.16 \mathrm{ppm}\right.$; $\left.\mathrm{CD}_{3} \mathrm{OD} \delta_{\mathrm{H}}: 3.31 \mathrm{ppm}, \delta_{\mathrm{C}} 49.05 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ spectra in solution were referenced using CFCl_{3} as the internal standard and ${ }^{19} \mathrm{~F}$ NMR chemical shifts (δ_{F}) are given in ppm. ${ }^{31} \mathrm{P}$ spectra were referenced using $\mathrm{H}_{3} \mathrm{PO}_{4}$ as the internal standard and ${ }^{31} \mathrm{P}$ chemical shifts (δ_{P}) are given in ppm. Coupling constants (J) are reported in Hertz. Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), septet (spt), multiplet (m), broad (br) or some combination of these. In ${ }^{1} \mathrm{H}$ NMR spectra, amide $\mathrm{N} H$ signals that exchange with deuterated solvent are not reported. Assignments were made using DEPT-135, 2D ${ }^{1} \mathrm{H}$-COSY and HMQC experiments. ${ }^{19}$ F solid-state NMR spectra were acquired at 293 K (unless otherwise specified) using a 4 mm MAS probe (zirconium oxide rotors used) on a Bruker Avance III 400 MHz spectrometer operating at $376.3639 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$ and referenced using $\mathrm{C}_{6} \mathrm{~F}_{6}$ (neat) as standard. Each experiment was carried out with a spinning rate of 10 kHz , a $\pi / 2$ pulse length of $11 \mu \mathrm{~s}$ and a relaxation delay of 5 s . ${ }^{1} \mathrm{H}$ solid-state NMR spectra were acquired at 293 K on a Bruker Avance II 500 MHz spectrometer using a 4 mm MAS probe operating at frequencies of $500.1013 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ with a spinning rate of 8 kHz and referenced using tetramethylsilane as standard. ${ }^{1} \mathrm{H}$ experiments were carried out with a typical $\pi / 2$ pulse length of $7 \mu \mathrm{~s}$ and a relaxation delay of 4 s . Electrospray (ES) spectra were recorded on a Waters Platform II and high resolution mass spectra (HRMS) were recorded on a Thermo Finnigan MAT95XP and are accurate to $\pm 0.001 \mathrm{Da}$. Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 FTIR spectrometer. Melting points were determined on a GallenKamp apparatus and are uncorrected. Thin layer chromatography (TLC) was performed using commercially available pre-coated plates (Macherey-Nagel alugram Sil G/UV254) and visualized under UV light at 254 nm and/or by staining with phosphomolybdic acid solution.

Flash column chromatography was carried out on 40-63 $\mu \mathrm{m} 60 \AA$ silica (Sigma Aldrich) with the eluent quoted. Circular dichroism spectra (CD) were recorded on a Jasco J-815 spectrometer using a 1 mm cell length at $20^{\circ} \mathrm{C}$. Optical rotation measurements were taken on an AA-100 polarimeter using a cell with a pathlength of 0.25 dm at $20^{\circ} \mathrm{C}$ with the solvent and concentration $(\mathrm{g} / 100 \mathrm{~mL})$ stated. All reactions were conducted in oven or flame-dried glassware under a nitrogen atmosphere unless otherwise stated. THF was distilled under nitrogen from sodium using a benzophenone indicator. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were obtained by distillation over calcium hydride under a nitrogen atmosphere. Anhydrous acetonitrile and dimethylformamide were purchased from Sigma-Aldrich. All other solvents and commercially available reagents were used as received. Synthetic phospholipid bilayers were prepared using commercially available 1,2-di-(9Z-octadecenoyl)-sn-glycero-3phosphocholine (DOPC) from Avanti Polar Lipids, Inc. (Alabaster, AL, USA), milliQ water and Dulbecco's Phosphate Buffer (pH 7.2 , Sigma Aldrich). UV-visible absorption spectra were recorded using quartz cuvettes of 1 cm pathlength on an Agilent Cary 5000 UV-VisNIR spectrophotometer equipped with a Peltier-thermostat controlled cell holder at 25 ± 0.05 ${ }^{\circ} \mathrm{C}$. Analytical irradiation experiments in solution were carried out in spectrophotometric grade MeOH using a Thorlabs DC4100 (4 channel LED driver) equipped with mounted highpower LEDs (models M365L2, M405L2 and M455L3 at 365, 405 and 455 nm , respectively). Irradiation experiments in solution were carried out in a quartz NMR tube (Wilmad Suprasil®, SP industries, Warminster, PA, USA); foldamer/lipid samples for ss-NMR were irradiated in a quartz cuvette ($380 \mu \mathrm{~L}$ tot. volume, pathlength 1 mm , Hellma, Müllheim, Germany).

Abbreviations

Aib, 2-aminoisobutyric acid; Fib, 2-Amino-3-fluoro-2-(fluoromethyl)propanoic acid; aMv, (S)-2-methylvaline; EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; HOAt, 1-hydroxy-7-azabenzotriazole; TMS, trimethylsilyl; TFFH, fluoro- $N, N, N^{\prime}, N^{\prime}$ tetramethylformamidinium hexafluorophosphate; TEG, triethyleneglycol monomethyl ether; AcOH , acetic acid; Su , succinimide; THF, tetrahydrofuran; DMSO, dimethylsulfoxide; TMSCHN_{2}, trimethylsilyldiazomethane; Cbz, Carboxybenzyl; DCC $N, N N^{\prime}$ dicyclohexylcarbodiimide; DIPEA, N, N-diisopropylethylamine; MAS, magic angle spinning; PSS, photostationary state.

Synthetic schemes

1. Azobenzene precursors

2. Fluorinated and model oligomers

F2
TEG-NH2 (Ref. 55) EDC, HOAt, DIPEA (83\%)

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$ (quant.);
2) azlactone from $\mathrm{N}_{3} \mathrm{Aib}_{4} \mathrm{OH}$ (Ref. 56) $\mathrm{CH}_{3} \mathrm{CN}$, reflux (86\%)
3) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, (quant.); 2) $\mathrm{Cbz}-\mathrm{AA}-\mathrm{OH}$,

EDC, HOAt, DIPEA (64-70\%) or Cbz-AA-F (Ref. 57), DIPEA (62-74\%)
ux (86\%)

F4

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$ (quant.);
2) Cbz-AA-OH,

EDC, HOAt, DIPEA (74-85\%)
or Cbz-Aib-F (Ref. 57), DIPEA (82\%)

6a, 6c-d (R, R': see table)

3f

3a-e (R, R': see table)

3e

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$ (quant.); 2) $\mathrm{Cbz}-\mathrm{aMv-F}$ (Ref. 57), DIPEA (63\%)

amino acid (AA)	R	R' $^{\prime}$	letter code
Aib	Me	Me	a
Ala	Me	H	b
Val	Pr	H	c
Phe	Bn	H	d
aMv	Pr	Me	e

amino acid (AA)	R	R^{\prime}	letter code
Aib	Me	Me	a
Ala	Me	H	b
Val	Pr	H	c
Phe	Bn	H	d

General synthetic procedures

General procedure (A): Pd-catalyzed cleavage of Cbz protection and reduction of \mathbf{N} terminal azido-oligomers to the corresponding amines

A round-bottom flask was charged with 1.0 equiv of N -terminal Cbz-protected oligomer or azido-oligomer, $10 \% \mathrm{Pd} / \mathrm{C}$ in $\mathrm{EtOH}(10 \mathrm{~mL} / \mathrm{mmol})$ and the mixture was stirred at room temperature under H_{2} atmosphere (balloon) until completion (TLC monitoring). Upon completion, the suspension was filtered under vacuum through a charcoal/Celite ${ }^{\circledR}$ pad and the filter cake washed several times with $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was concentrated under reduced pressure and the residue placed under high vacuum. The resulting crude amine was used directly in the subsequent coupling step.

General procedure (B): EDC coupling of Cbz-protected amino acids and N-terminal deprotected $\mathrm{Aib}_{\mathbf{n}}$ foldamers

To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ suspension of the appropriate Cbz-N-protected amino acid (2 eq) and HOAt (2 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} / \mathrm{mmol})$ was added EDC (2.1 eq). The mixture was stirred under nitrogen until complete dissolution of the starting materials. This solution was then added to a solution of N -deprotected $\mathrm{Aib}_{\mathrm{n}}$ fragment (1 eq) and DIPEA (2 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL} / \mathrm{mmol}$). Additional DIPEA was added if required to maintain basic pH . The mixture was allowed to slowly reach room temperature and stirred overnight under nitrogen. After solvent removal under vacuum, EtOAc (25 mL) was added and the organic phase washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 5 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (saturated solution, $3 \times 5 \mathrm{~mL}$), brine $(5 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield a crude product that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ using the appropriate mixture of eluents.

General procedure (C): Acyl fluoride coupling of Cbz-protected amino acids and \mathbf{N} terminal deprotected $\mathbf{A i b}_{\mathbf{n}}$ foldamers

1) Fluoride formation: a round bottom flask was charged with the appropriate $\mathrm{Cbz}-\mathrm{N}$ protected amino acid (4 mmol), pyridine (4 mmol) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} / \mathrm{mmol})$. TFFH (6 mmol) was added and the mixture left stirring at room temperature for 3 h under nitrogen, during which the formation of a white precipitate was observed. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with ice-cooled water $(3 \times 5 \mathrm{~mL})$, brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum (bath temperature $<30{ }^{\circ} \mathrm{C}$) to give the corresponding Cbz-AA-F, which was used immediately without further purification.
2) Coupling: a solution of the freshly prepared Cbz-protected amino acid fluoride (step 1, approximately 4 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} / \mathrm{mmol})$ was added to a solution of N -deprotected amino-oligomer (1 mmol) and DIPEA (5 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} / \mathrm{mmol})$. The solution was stirred for 4 days at room temperature under nitrogen. Additional DIPEA was added if required to maintain basic pH . After solvent removal under reduced pressure, EtOAc (25 mL) was added and the organic phase washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 5 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (saturated solution, $3 \times 5 \mathrm{~mL}$), brine (5 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield a crude product that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ using the appropriate mixture of eluents.

General procedure (D): Coupling of azobenzenecarboxylic acids and N -deprotected oligomers.

1) succinimidyl ester formation: A round bottom flask was charged with the appropriate azobenzene-2-carboxylic acid (1 mmol) and $\mathrm{HOSu}(1.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} / \mathrm{mmol})$. DCC was added in one portion (1.1 mmol) and the reaction stirred at room temperature for 1 h , with protection from ambient light and under an inert atmosphere, during which a white precipitate was observed. The solids were removed by filtration and the filter cake rinsed with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~mL}\right.$). After solvent removal in vacuo (bath temperature $<30^{\circ} \mathrm{C}$), the crude residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using the appropriate mixture of eluents to afford a moisture-sensitive product, which was used directly in the following step.
2) Coupling: a solution of the freshly prepared azobenzene-2-carboxylic acid succynimidyl ester (step $1,2 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} / \mathrm{mmol})$ was added to a solution of N -deprotected amino-oligomer (1 eq) and DIPEA (2 eq) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} / \mathrm{mmol})$. The solution was stirred for 24 h at room temperature under nitrogen. After solvent removal in vacuo, EtOAc $(25 \mathrm{~mL})$ was added and the organic phase washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 5 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (saturated solution, $3 \times 5 \mathrm{~mL}$), brine (5 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield a crude product that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ using the appropriate mixture of eluents.

Synthetic procedures and characterization details

Methods for the synthesis of 2-((phenylazo)benzene)carboxylic acid S2 (48, 49), 2((phenylazo)benzene)carboxylate succinimidyl ester $\mathbf{S 3}(50,51)$, 1-nitro-3-nitrosobenzene $\mathbf{S 4}$ (52), 1-methoxy-3-nitrosobenzene $\mathbf{S 5}$ (53), methyl 2-nitrosobenzoate S10 (54), $\mathrm{N}_{3} \mathrm{Aib}_{4}$ FibOMe F1 (34), TEG-NH2 (55), $\mathrm{N}_{3} \mathrm{Aib}_{4} \mathrm{OH}$ (56), Cbz-Aib-F (57), Cbz-aMv-F (57), $\mathrm{Cbz}^{2}-\mathrm{AlaAib}_{4} \mathrm{GlyNH}_{2} \quad$ S14b (43), $\quad \mathrm{Cbz}^{2}-\mathrm{L}-\mathrm{ValAib}_{4} \mathrm{GlyNH}_{2} \quad$ S14c (43), Cbz-LPheAib $_{4} \mathrm{GlyNH}_{2} \mathbf{S 1 4 d}$ (43) and Cbz-L-aMv $\mathrm{Aib}_{4} \mathrm{OH} \mathbf{S 1 6}$ (57) have been reported previously.

S6
A solution of crude 1-nitro-3-nitrosobenzene $\mathbf{S 4}(1.58 \mathrm{~g}, 10 \mathrm{mmol}$, prepared from 1.6 g of 3nitroaniline in 90% yield using the procedure of Tibiletti et al. (52)) and anthranilic acid $(1.37 \mathrm{~g}, 1 \mathrm{eq})$ in $\mathrm{EtOH} / \mathrm{AcOH}(16+4 \mathrm{~mL})$ was stirred at $85^{\circ} \mathrm{C}$ overnight under nitrogen. The mixture was cooled to room temperature and concentrated under vacuum. The residue was diluted with EtOAc (80 mL) and washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 20 \mathrm{~mL})$. The organic phase was extracted with $\mathrm{NaOH}\left(5 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 3 \times 10 \mathrm{~mL}$) and filtered to remove insoluble material. The combined aqueous phases were washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ then solid KHSO_{4} was added with stirring until $\mathrm{pH} \sim 3$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic fractions washed with $\mathrm{KHSO}_{4} 5 \%(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and brine (10 mL), dried with MgSO_{4} and filtered. After solvent removal under vacuum, the residue was purified by column chromatography ($\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5$) to give $\mathbf{S 6}$ as a dark yellow solid ($1.45 \mathrm{~g}, 53 \%$).
$\mathbf{R}_{\mathbf{f}} 0.75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $153-154^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3088,1731,1594,1525,1399,1349,1243,1216,1082,917,763,700$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a 94:6 mixture of E / Z isomers) $\delta_{\mathrm{H}} 12.03\left(\right.$ brs, $1 \mathrm{H}^{E}+$ $\left.1 \mathrm{H}^{Z}\right), 8.75\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 8.49-8.37\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 8.15\left(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 8.07$ $\left(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 8.04-7.95\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.89\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.79(\mathrm{dd}, J=14.7$, $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.77-7.71\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 7.44\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.38(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{Z}\right), 7.25\left(\mathrm{dd}, J=19.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.29\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{C} 169.50^{Z}, 166.45^{E}, 155.41,154.11^{Z}, 152.10^{E}, 149.63^{E}, 149.30^{E}, 148.41^{Z}, 134.43^{Z}, 134.07^{E}$, $133.71^{E}, 133.28^{E}, 131.89^{Z}, 130.92^{E}, 130.10^{Z}, 127.80^{E}, 127.55^{Z}, 127.01^{E}, 125.70^{Z}, 122.58^{Z}$, $120.14^{E}, 117.92^{Z}, 116.42^{E}, 116.09^{Z}$.
MS (ES, MeOH) m/z $272(\mathrm{M}+\mathrm{H})^{+} 50 \% ; 294(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 270(\mathrm{M}-\mathrm{H})^{-} 100 \%$.
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{K}(\mathrm{M}+\mathrm{K})^{+}: 310.0230$, found: 310.0241.

S7
A solution of crude 1-methoxy-3-nitrosobenzene $\mathbf{S 5}(1.55 \mathrm{~g}, 11 \mathrm{mmol}$, prepared from 2.46 g of 3-methoxyaniline in 57% yield using the method of Defoin (53)) and anthranilic acid (1.55 $\mathrm{g}, 11 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{AcOH}(16+4 \mathrm{~mL})$ was stirred at room temperature overnight under inert atmosphere. After solvent evaporation, the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ and washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 20 \mathrm{~mL})$. The organic phase was extracted with $\mathrm{NaOH}(5 \%$ in $\left.\mathrm{H}_{2} \mathrm{O}, 3 \times 10 \mathrm{~mL}\right)$ and the combined aqueous phases washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. Solid KHSO_{4} was added with stirring until $\mathrm{pH} \sim 3$, then the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{KHSO}_{4} 5 \%(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times$ 15 mL) and brine (10 mL), dried with MgSO_{4} and filtered. After solvent removal under vacuum, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PE}, 1: 1\right)$ to give S7 as a red-orange solid ($950 \mathrm{mg}, 33 \%$).
$\mathbf{R}_{\mathbf{f}} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PE}, 1: 1\right)$
m.p. $50-52{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 2962,2772,2360,1735,1595,1447,1251,1240,1035,732,702$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a $97: 3$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 12.96$ (brs, $1 \mathrm{H}^{E}+$ $\left.1 \mathrm{H}^{Z}\right), 8.51-8.41\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 8.11-8.00\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.76-7.65\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 7.56-7.46$ $\left(\mathrm{m}, 2 \mathrm{H}^{E}\right), 7.37-7.30\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.20-7.10\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 6.72(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{Z}\right), 6.69-6.64\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 6.58\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.48\left(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.32(\mathrm{~d}$, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 166.27,160.83,152.81,149.43,133.96,133.31,132.93$, 130.67, 127.24, 120.38, 117.50, 115.93, 106.98, 55.71.

MS (ES, MeOH) m/z $257(\mathrm{M}+\mathrm{H})^{+} 100 \% ; 279(\mathrm{M}+\mathrm{Na})^{+} 45 \% ; 255(\mathrm{M}-\mathrm{H})^{-} 100 \%$.

HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 257.0926$, found: 257.0916 .

S8
Compound $\mathbf{S 8}$ was prepared according to general method (D , step 1) using azobenzene acid S6 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$), HOSu ($47 \mathrm{mg}, 0.40 \mathrm{mmol}$) and DCC ($84 \mathrm{mg}, 0.40 \mathrm{mmol}$). After workup, the pure product was isolated by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a moisture-sensitive, dark red waxy solid ($129 \mathrm{mg}, 94 \%$).
$\mathbf{R}_{\mathbf{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} \mathbf{3 0 7 9}, 1734,1527,1351,1199,1061,994$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a 94:6 mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.82(\mathrm{t}, J=2.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{E}\right), 8.37$ (dddd, $\left.J=14.7,8.2,2.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}^{E}\right), 8.14\left(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 8.07$ $\left(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 8.02\left(\mathrm{ddd}, J=8.2,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.91\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right)$, $7.83\left(\mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.76\left(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.71\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.65$ $\left(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.53-7.46\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 7.41\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.30(\mathrm{td}, J=7.9$, $\left.1.1 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right), 7.04\left(\mathrm{ddd}, J=7.9,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right), 6.46\left(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right), 2.93(\mathrm{~s}$, $4 \mathrm{H}^{E}+4 \mathrm{H}^{Z}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 169.15,162.50,152.79,151.33,149.13,134.04,131.38$, 131.19, 130.22, 129.17, 125.92, 124.78, 119.12, 118.92, 25.86.

MS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 369(\mathrm{M}+\mathrm{H})^{+} 100 \% ; 386(\mathrm{M}+\mathrm{Na})^{+} 50 \%$.

S9

Compound $\mathbf{S 9}$ was prepared according to general method (D , step 1) using azobenzene acid S7 ($193 \mathrm{mg}, 0.75 \mathrm{mmol}$), HOSu ($95 \mathrm{mg}, 0.83 \mathrm{mmol}$) and DCC ($178 \mathrm{mg}, 0.83 \mathrm{mmol}$). After workup, the pure product was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $5: 95$) as a moisture-sensitive, viscous red liquid ($255 \mathrm{mg}, 97 \%$).
$\mathbf{R}_{\mathbf{f}} 0.55$ ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$)
IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 2943,1735,1594,1479,1255,1200,1061,992$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.54$ (m, 2H), 7.43 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (dd, $J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (s, 3H), 2.89 (brs, 4H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 169.15,162.58,160.50,153.75,152.28,134.00,131.00$, 130.20, 129.92, 124.16, 119.38, 118.82, 118.73, 105.91, 55.72, 25.86.

MS ($\mathrm{ES}^{+}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) m/z $354(\mathrm{M}+\mathrm{H})^{+} 100 \% ; 376(\mathrm{M}+\mathrm{Na})^{+} 30 \%$.

S11
A solution of 2-nitrosobenzoic acid methyl ester $\mathbf{S 1 0}$ ($1.288 \mathrm{~g}, 8 \mathrm{mmol}$, prepared from 1.43 g methyl anthranilate in 83% yield using the procedure of Jurok et al. (54)), 3-methoxy-4fluoroaniline ($1.10 \mathrm{~g}, 7.8 \mathrm{mmol})$, $\mathrm{AcOH}(0.46 \mathrm{~mL})$ and toluene $(10 \mathrm{~mL})$ was heated $\left(60^{\circ} \mathrm{C}\right)$ with stirring overnight under nitrogen. The mixture was cooled to room temperature and concentrated under vacuum. The residue was diluted with $\operatorname{EtOAc}(50 \mathrm{~mL})$ and washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 10 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (saturated solution, $3 \times 10 \mathrm{~mL}$), brine (5 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PE}, 1: 1\right)$ to afford methyl ester $\mathbf{S 1 1}$ as a bright orange solid ($1.17 \mathrm{~g}, 55 \%$).
$\mathbf{R}_{\mathrm{f}} 0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PE}, 1: 1\right)$
m.p. $64-65{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\max } / \mathbf{c m}^{-1} 2949,2960,1723,1594,1505,1409,1267,1209,1109,1050,1029$, 862, 768
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, 1H), 3.98 ($\mathrm{s}, 3 \mathrm{H}$), 3.91 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 168.00,154.72(\mathrm{~d}, J=253.7 \mathrm{~Hz}), 151.84,149.43(\mathrm{~d}, J=3.2$ $\mathrm{Hz}), 148.54(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 132.21,130.00(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 128.63,119.28(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, 118.93, $116.31(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 105.53(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 56.31,52.53$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-129.4(\mathrm{ddd}, J=10.9,7.9,4.6 \mathrm{~Hz}, 1 \mathrm{~F})$.
MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 289(\mathrm{M}+\mathrm{H})^{+} 50 \% ; 312(\mathrm{M}+\mathrm{H})^{+} 90 \%$.
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}(\mathrm{M}+\mathrm{H})^{+}: 289.0988$, found: 289.1002 .

S12
To a solution of methyl ester $\mathbf{S 1 1}(1.18 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(30+6 \mathrm{~mL})$ was added $\mathrm{LiOH}(690 \mathrm{mg}, 29 \mathrm{mmol})$ and the mixture heated to reflux for 5 h (TLC monitoring). Upon reaction completion the mixture was cooled down to room temperature and concentrated under vacuum. The residue was diluted with EtOAc $(20 \mathrm{~mL})$ and the organic phase extracted with $\mathrm{NaOH} 2 \mathrm{M}(3 \times 10 \mathrm{~mL})$. The combined aqueous phases were washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10$ $\mathrm{mL})$ then $\mathrm{HCl}\left(20 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added with external cooling and stirring until $\mathrm{pH} \sim 3$. The aqueous phase was extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$, dried with MgSO_{4} and filtered. After solvent removal under vacuum, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 98: 2 \rightarrow 95: 5\right)$ to give $\mathbf{S 1 2}$ as an orange solid ($819 \mathrm{mg}, 73 \%$)
$\mathbf{R}_{\mathbf{f}} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PE}, 2: 1\right)$
m.p. $139-141^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3070,1737,1593,1507,1483,1273,1106,1026,667$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a 94:6 mixture of E / Z isomers) $\delta_{\mathrm{H}} 13.13\left(\mathrm{brs}, 1 \mathrm{H}^{E}+\right.$ $1 \mathrm{H}^{Z}$), $8.46\left(\mathrm{dd}, J=7.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 8.09\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right), 8.03(\mathrm{dd}, J=6.0,3.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{E}\right), 7.75-7.66\left(\mathrm{~m}, 2 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.60\left(\mathrm{ddd}, J=8.3,4.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.41(\mathrm{dd}, J=7.7,2.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{E}\right), 7.31\left(\mathrm{dd}, J=10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 6.98\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.93(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{Z}\right), 6.69\left(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.55-6.48\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 6.29\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 4.00(\mathrm{~s}$, $3 \mathrm{H}^{E}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 166.25,155.85(\mathrm{~d}, J=258.7 \mathrm{~Hz}), 149.31,149.14(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}), 148.27(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 134.00,133.27,132.87,127.02,120.12(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $117.05(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 115.91,105.60(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 56.37$.
${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a 94:6 mixture of E / Z isomers) $\delta_{\mathrm{F}}-124.49-124.59(\mathrm{~m}$, $1 \mathrm{~F}^{E}$), -133.65--133.79 (m, 1F ${ }^{Z}$).

MS: (ES, MeOH) m/z $273(\mathrm{M}-\mathrm{H})^{-} 100 \% ; 275(\mathrm{M}+\mathrm{H})^{+} 100 \%$; HRMS: (ES ${ }^{+}$, MeOH) calc. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 297.0651$, found: 297.0664.

S13
Compound $\mathbf{S 1 3}$ was prepared according to general method (D , step 1) using azobenzene acid $\mathbf{S 1 2}(200 \mathrm{mg}, 0.73 \mathrm{mmol}), \mathrm{HOSu}(92 \mathrm{mg}, 0.80 \mathrm{mmol})$ and DCC ($165 \mathrm{mg}, 0.80 \mathrm{mmol})$. After workup, the pure product was isolated by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 95: 5$) as a moisture-sensitive, bright red waxy solid ($210 \mathrm{mg}, 78 \%$).

$\mathbf{R}_{\mathbf{f}} 0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

m.p. $179-181^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 2944,1735,1593,1495,1270,1200,1059,992,909,797$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66$ $(\mathrm{m}, 2 \mathrm{H}), 7.58(\mathrm{ddd}, J=14.2,7.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{qt}, J=$ $6.8,4.8 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 169.14,162.90,155.05(\mathrm{~d}, J=254.4 \mathrm{~Hz}), 151.87,149.25(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 148.67(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 133.88,130.92,130.25,124.43,120.74(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, $118.80,116.16$ (d, $J=19.7 \mathrm{~Hz}$), 105.38 (d, $J=2.9 \mathrm{~Hz}$), $56.49,25.85$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-128.53$ (ddd, $\left.J=10.6,8.0,4.5 \mathrm{~Hz}, 1 \mathrm{~F}\right)$.
MS: $\left(\mathrm{ES}^{+}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{m} / \mathrm{z} 372(\mathrm{M}+\mathrm{H})^{+} 100 \% ; 394(\mathrm{M}+\mathrm{Na})^{+} 30 \%$.

F2
A round bottom flask was charged with $\mathrm{N}_{3} \mathrm{Aib}_{4} \mathrm{FibOMe} \mathbf{F 1}$ ($1.05 \mathrm{~g}, 2 \mathrm{mmol}$, prepared using the procedure of Pike et al. (34)) and $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3: 1,30 \mathrm{~mL})$. $\mathrm{LiOH}(840 \mathrm{mg}, 35 \mathrm{mmol})$ was added in one portion and the mixture stirred at room temperature for 7 h (TLC monitoring). Upon reaction completion, HCl 1 M was added dropwise with stirring until $\mathrm{pH}<2$ and the mixture extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried with MgSO_{4}, filtered and evaporated under vacuum to give azido acid F2 as a white solid ($862 \mathrm{mg}, 86 \%$).
$\mathbf{R}_{\mathbf{f}} 0.15$ (EtOAc/PE, 7:3)
m.p. $183-185^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3305,2965,2113,1656,1519,1364,1224,1023$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 4.96-$ $4.67(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 177.65,176.52,176.18,174.76,171.66,81.43(\mathrm{~d}, J=168$ Hz), 64.77, 62.76 (t, $J=19.7 \mathrm{~Hz}$), 58.16, 58.08, 57.97, 25.60, 25.36, 24.81, 24.49.
${ }^{19}$ F NMR ($\left.376 \mathrm{MHz}, \mathrm{MeOD}\right) \delta_{\mathrm{F}}-235.7(\mathrm{t}, J=47.0 \mathrm{~Hz})$.
MS (ES', MeOH) m/z $504(\mathrm{M}-\mathrm{H})^{-} 100 \%$; (ES^{+}, MeOH) m/z $506(\mathrm{M}+\mathrm{H})^{+} 50 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~F}_{2}(\mathrm{M}+\mathrm{H})^{+}: 506.2538$, found: 506.2541.

F3
EDC ($282 \mathrm{mg}, 1.47 \mathrm{mmol}$) was added with stirring to a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of azido acid $\mathbf{F} 2(720 \mathrm{mg}, 1.40 \mathrm{mmol})$ and $\mathrm{HOAt}(200 \mathrm{mg}, 1.47 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After complete dissolution of the starting materials, a solution of TEG- $\mathrm{NH}_{2}(430 \mathrm{mg}, 2.66 \mathrm{mmol}$, prepared according to the method of Dan et al. (55)) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added, followed by DIPEA ($0.415 \mathrm{~mL}, 2.3 \mathrm{mmol}$). The mixture was allowed to slowly reach room temperature and stirred for 48 hs under nitrogen. After solvent evaporation, the residue was
taken up in EtOAc (10 mL) and the organic phase washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 5 \mathrm{~mL})$, NaHCO_{3} (saturated solution, $3 \times 5 \mathrm{~mL}$), brine $(5 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} \rightarrow \mathrm{EtOAc} / \mathrm{MeOH}, 95: 5\right)$ to afford $\mathbf{F 3}$ as a white solid (753 mg , 83\%).
$\mathbf{R}_{\mathbf{f}} 0.45$ (EtOAc/MeOH, 95:5)
m.p. $94-96^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3305,2938,2113,1657,1530,1463,1364,1224,1107$
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.02$ (A of AB, dd, $J=9.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (B of AB, dd, $J=9.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.86$ (A of AB, d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (B of AB, d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}$, $6 \mathrm{H}), 3.58(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=5.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=12.3,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 12 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 174.82,174.26,173.24,173.22,168.96(\mathrm{t}, J=4.5 \mathrm{~Hz})$, $82.34(\mathrm{dd}, J=176 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}), 72.05,70.65,70.57,70.34,69.40,64.08,62.92(\mathrm{t}, J=18$ Hz), 59.11, 57.29, 56.98, 56.96, 39.37, 25.27, 25.13, 24.92, 24.38.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{F}}-233.5(\mathrm{t}, J=45.9 \mathrm{~Hz})$.
MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 651(\mathrm{M}+\mathrm{H})^{+} 60 \% ; 673(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.
HRMS (ES $\left.{ }^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 673.3461$, found: 673.3430.

3a
Oligomer 3a was prepared according to general method (C). Crude Cbz-Aib-F, obtained from Cbz-Aib-OH ($30 \mathrm{mg}, 0.128 \mathrm{mmol}$) using the procedure of Byrne et al. (57), amino-oligomer H-Aib ${ }_{4}$ FibTEG (obtained from the Pd-catalyzed hydrogenolysis of the corresponding azidooligomer $\mathbf{F 3}$ following general method (A)) and DIPEA ($28 ~ \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were used (reaction time: 4 days). After workup, the product was purified by column chromatography (SiO_{2} : EtOAc/PE, 9:1) to give a white solid ($20 \mathrm{mg}, 74 \%$).
$\mathbf{R}_{\mathbf{f}} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $163-164{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3294,2984,1664,1529,1263,1089,731$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 5 \mathrm{H})$, $7.57(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=10.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=$ $5.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{dd}, J=12.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.46$ (s, 12H), $1.42(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 176.01,175.44,175.39,174.20,174.11,169.47(\mathrm{t}, J=5$ $\mathrm{Hz}), 156.01,136.14,128.89,128.82,128.30,82.26(\mathrm{~d}, J=176 \mathrm{~Hz}), 72.06,70.65,70.57$, $70.36,69.44,67.65,62.77(\mathrm{t}, J=18 \mathrm{~Hz}), 59.15,57.33,57.10,56.86,56.59,39.32,25.28$, $25.25,25.22,25.19,25.15,25.08,25.07,25.03,24.98,24.95,24.90,24.84$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-233.58$ (brs, 2F); ($376 \mathrm{MHz}, \mathrm{MeOD)} \delta_{\mathrm{F}}-235.59$ (brs, 2F).
MS (ES, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{m} / \mathrm{z} 866(\mathrm{M}+\mathrm{Na})^{+} 60 \%$; $842(\mathrm{M}-\mathrm{H})^{-} 80 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{39} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 866.4451$, found: 866.4470.

3b
Oligomer 3b was prepared according to general method (B) using Cbz-Ala-OH ($33 \mathrm{mg}, 0.15$ mmol), HOAt ($20 \mathrm{mg}, 0.13 \mathrm{mmol}$), EDC ($30 \mathrm{mg}, 0.16 \mathrm{mmol}$), amino-oligomer HAib $_{4}$ FibTEG ($40 \mathrm{mg}, 0.074 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azido-oligomer $\mathbf{F 3}$ following general method (A)) and DIPEA ($26 \mu \mathrm{~L}, 0.15$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 hs). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to give a white solid ($45 \mathrm{mg}, 74 \%$).
$\mathbf{R}_{\mathbf{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $91-93{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3292,2985,1653,1530,1421,1384,1229,1025,735$
$[\alpha]_{\mathrm{D}}{ }^{25}-3.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}$, $1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~A}$ of AB, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~B}$ of AB, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.76(\mathrm{~m}, 4 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 1 \mathrm{H})$, $3.66-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.58(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=12.4,6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.31$ (brs, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 175.95,175.48,175.16,173.96,173.00,169.57(\mathrm{t}, J=4.4$ $\mathrm{Hz}), 156.94,136.07,128.87,128.76,128.22,72.04,70.63,70.55,70.36,69.42,67.66,62.72$ (t, $J=18.8 \mathrm{~Hz}$), 59.14, 57.09, 56.90, 56.70, 39.34, 25.40 (brs), 24.65 (brs), 16.94.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-233.0$ (brs, 1 F), -233.9 (brs, 1 F); ($376 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{F}}-234.8$ (brs, 1F), -236.2 (brs, 1F).
MS: (ES, MeOH) m/z $853(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.
HRMS: $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 852.4295$, found: 852.4262.

3c
Oligomer 3c was prepared according to general method (B) using Cbz-Val-OH ($32 \mathrm{mg}, 0.128$ mmol), HOAt ($17 \mathrm{mg}, 0.128 \mathrm{mmol}$), EDC ($26 \mathrm{mg}, 0.134 \mathrm{mmol}$), amino-oligomer HAib_{4} FibTEG ($40 \mathrm{mg}, 0.064 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azido-oligomer F3 following general method (A)) and DIPEA ($23 \mu \mathrm{~L}, 0.128$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 48 hs). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} / \mathrm{PE}, 95: 5 \rightarrow \mathrm{EtOAc}, 100 \%\right)$ to give a white solid (38 $\mathrm{mg}, 70 \%$).
$\mathbf{R}_{\mathbf{f}} 0.4$ (EtOAc/PE, 9:1)
m.p. $149-150{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3293,2963,1652,1529,1384,1229,1105,1018$
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 5}}-12.8(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}$, 1 H), $7.41-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (A of AB, d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.09 (B of AB, d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.77(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=5.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.44$ $(\mathrm{m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{dt}, J=13.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 175.79,175.31,174.90,173.60,171.60,169.38,169.34$, 169.30 (t, $J=5.0 \mathrm{~Hz}$), 157.26, 135.77, 128.93, 128.37, 82.62 (d, $J=173 \mathrm{~Hz}$), 82.03 (d, $J=$ $176 \mathrm{~Hz}), 72.06,70.67,70.59,70.36,69.41,67.88,62.82(\mathrm{t}, J=18 \mathrm{~Hz}), 62.44,59.17,57.10$, $56.94,56.85,39.30,29.81,25.53,24.72,24.55,19.31,18.69$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-232.9$ (brs, 1F), -234.2 (brs, 1 F); ($376 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{F}}-$ 234.6 (brs, 1F), -236.6 (brs, 1F).

MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 880(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 880.4608$, found: 880.4606.

3d
Oligomer 3b was prepared according to general method (B) using Cbz-Phe-OH ($29 \mathrm{mg}, 0.32$ mmol), HOAt ($44 \mathrm{mg}, 0.32 \mathrm{mmol}$), EDC ($64 \mathrm{mg}, 0.33 \mathrm{mmol}$), amino-oligomer HAib ${ }_{4}$ FibTEG ($105 \mathrm{mg}, 0.17 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azido-oligomer $\mathbf{F 3}$ following general method (A)) and DIPEA ($56 \mu \mathrm{~L}, 0.32$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 hs). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to give a white solid ($98 \mathrm{mg}, 64 \%$).
$\mathbf{R}_{\mathbf{f}} 0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $78-80^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3297,2933,1651,1530,1421,1381,1226,1041,699$
$[\alpha]_{\mathbf{D}}{ }^{25}-16.9(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 3 \mathrm{H}), 7.44-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$, 5.88 (brs, 1H), $5.18-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 6 \mathrm{H}), 3.62(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=$ $5.6,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=11.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=13.9,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, J=6.5 \mathrm{~Hz}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, J=2.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, J=15.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 177.93,177.56,177.34,176.65,171.43(\mathrm{t}, J=4.0 \mathrm{~Hz})$, 158.59, 138.20, 138.04, 130.56, 129.59, 129.54, 129.12, 128.62, 127.95, 83.48 (d, $J=177$ $\mathrm{Hz}), 81.86(\mathrm{~d}, ~ J=168 \mathrm{~Hz}), 72.98,71.55,71.41,70.18,67.67,63.72(\mathrm{t}, J=18.9 \mathrm{~Hz}), 59.12$, $58.22,58.01,57.86,57.59,40.49,38.28,26.46,26.37,26.15,24.59,24.51,24.16,23.98$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-233.4$ (brs, 2F); $(376 \mathrm{MHz}, \mathrm{MeOD}) \delta_{\mathrm{F}}-234.2$ (brs, 1F), 236.8 (brs, 1F).

MS (ES, MeOH) m/z $906(\mathrm{M}+\mathrm{H})^{+} 100 \% ; 928(\mathrm{M}+\mathrm{Na})^{+} 80 \% ; 904(\mathrm{M}-\mathrm{H})^{-} 20 \% ; 940(\mathrm{M}+\mathrm{Cl})^{-}$ 100%.

HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~F}_{2}(\mathrm{M}+\mathrm{H})^{+}: 906.4788$, found: 906.4814.

Oligomer $\mathbf{3 e}$ was prepared according to general method (C) from crude Cbz-aMv-F (obtained from Cbz-aMv-OH, $94 \mathrm{mg}, 0.35 \mathrm{mmol}$, using the method of Byrne et al. (57)) aminooligomer $\mathrm{H}-\mathrm{Aib}_{4} \mathrm{FibTEG}(54 \mathrm{mg}, 0.087 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azido-oligomer $\mathbf{F 3}$ following general method (A)) and DIPEA ($76 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 5 days). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\left.\mathrm{EtOAc} / \mathrm{PE}, 9: 1\right)$ to give a white solid (40 mg , 62\%).
$\mathbf{R}_{\mathbf{f}} 0.5$ (EtOAc/PE, 9:1)
m.p. $167-168^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3290,2962,1652,1530,1259,1227,1103,1029$
$[\alpha]_{\mathrm{D}}{ }^{25}+39.5(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}$, $1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~A}$ of $\mathrm{AB}, \mathrm{d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14$ (ddd, $J=47.2,9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (B of AB, d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (dd, J $=48.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=27.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=27.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.40(\mathrm{~m}, 12 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dt}, J=13.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 3 H), 1.44 ($\mathrm{s}, 6 \mathrm{H}$), 1.42 ($\mathrm{s}, 6 \mathrm{H}$), 1.19 ($\mathrm{s}, 3 \mathrm{H}), 0.97$ (dd, $J=13.8,6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{MeOD} / \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 175.95,175.35,175.32,173.93,172.77,169.33$ ($\mathrm{t}, J=5.0 \mathrm{~Hz}$), 156.18, 135.94, 128.94, 128.42, $83.41(\mathrm{~d}, J=176 \mathrm{~Hz}), 81.29$ (d, $J=176 \mathrm{~Hz}$), 72.07, 70.68, 70.59, 70.37, 69.42, 67.78, 63.18, 62.83 (t, $J=18 \mathrm{~Hz}$), 59.18, 57.10, 56.92, $56.90,56.73,39.28,35.81,26.93,26.87,26.83,26.71,23.61,23.43,23.34,23.28,17.74$, 17.41, 17.27.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-231.3$ (brs, 1F), -235.8 (brs, 1 F); ($376 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{F}}-$ 233.9 (brs, 1F), -237.3 (brs, 1F).

MS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 872(\mathrm{M}+\mathrm{H})^{+} 70 \% ; 895(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.

HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{41} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{11}+\mathrm{H}(\mathrm{M}+\mathrm{H})^{+}: 872.4945$, found: 879.4913.

Oligomer $\mathbf{3 f}$ was prepared according to general method (C) from crude Cbz-aMv-F (obtained from Cbz-aMv-OH, $71 \mathrm{mg}, 0.27 \mathrm{mmol}$ using the method of Byrne et al. (57)) aminooligomer $\mathrm{H}-\mathrm{aMvAib} 4$ FibTEG ($50 \mathrm{mg}, 0.067 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer $\mathbf{4 e}$ following general method (A)) and DIPEA ($58 \mu \mathrm{~L}, 0.335 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 5 days). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} \rightarrow \mathrm{EtOAc} / \mathrm{MeOH}, 95: 5\right)$ to give a white solid ($43 \mathrm{mg}, 63 \%$).
$\mathbf{R}_{\mathbf{f}} 0.3$ (EtOAc/PE, 95:5)
m.p. $141-145{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3304,2981,1651,1529,1415,1361,1107$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+53.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{MeOD}) \delta_{\mathrm{H}} 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}$, $1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{~A}$ of AB, d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~B}$ of AB, d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.66(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 8 \mathrm{H}), 3.53(\mathrm{dd}, J=5.7,3.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.51-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dt}, J=13.8,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 24 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{dd}, J=22.1,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.83$ (dd, $J=23.7,6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.27,175.87,175.52,175.23,172.48,169.44(\mathrm{t}, J=5.0$ Hz), $165.58,156.29,135.74,129.87,128.89,128.85,128.72,83.57(\mathrm{dd}, J=180 \mathrm{~Hz}, J=5.3$ Hz), 80.88 (dd, $J=172 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}$), 72.02, 70.63, 70.55, 70.32, 69.40, 67.87, 63.52, $62.73(\mathrm{t}, J=18.1 \mathrm{~Hz}), 62.40,59.17,57.07,56.97,56.92,56.82,56.78,56.72,39.23,36.14$, $35.82,29.84,27.29,27.26,27.14,27.08,23.10,22.97,22.82,22.79,18.14,18.07,17.42$, 17.28, 17.15, 17.07, 14.29, 8.79.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-230.8(\mathrm{t}, J=46.6 \mathrm{~Hz}, 1 \mathrm{~F}),-236.3(\mathrm{t}, J=47.2 \mathrm{~Hz}, 1 \mathrm{~F}) ;(471$ $\mathrm{MHz}, \mathrm{MeOD}) \delta_{\mathrm{F}}-233.2(\mathrm{t}, J=45.9 \mathrm{~Hz}),-237.9(\mathrm{t}, J=46.8 \mathrm{~Hz})$.
MS (ES, MeOH) m/z $1007(\mathrm{M}+\mathrm{Na})^{+} 100 \%$; $983(\mathrm{M}-\mathrm{H})^{-} 30 \% ; 1019(\mathrm{M}+\mathrm{Cl})^{-} 100 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{47} \mathrm{H}_{78} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 1007.5599$, found: 1007.5621.

F4

1) Azlactone formation: a round bottom flask was charged with $\mathrm{N}_{3} \mathrm{Aib}_{4} \mathrm{OH}(683 \mathrm{mg}, 1.78$ mmol, obtained using the method of Clayden et al. (50)) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). After cooling with an external ice bath, EDC ($358 \mathrm{mg}, 1.87 \mathrm{mmol}$) was added. After 5 minutes, the ice bath was removed and the mixture stirred at room temperature for 3 h . The solvents were removed under reduced pressure and the residue diluted with EtOAc (25 mL) and $\mathrm{KHSO}_{4} 5 \%$ $(5 \mathrm{~mL})$. The phases were separated and the organic layer washed again with $\mathrm{KHSO}_{4} 5 \%(2 \times$ $5 \mathrm{~mL}), \mathrm{NaHCO}_{3} 5 \%(2 \times 3 \mathrm{~mL})$ and brine. After drying $\left(\mathrm{MgSO}_{4}\right)$ and solvent removal under vacuum, the residue was placed under high vacuum for 2 h to give the pure azlactone (590 $\mathrm{mg}, 90 \%$) as confirmed by NMR, which was used directly in the next step.
2) Coupling: the freshly prepared azlactone was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and added via syringe under nitrogen to $\mathrm{H}-\mathrm{Aib}_{4} \mathrm{FibTEG}(370 \mathrm{mg}, 0.59 \mathrm{mmol}$, obtained from the Pd catalyzed hydrogenolysis of the corresponding azido-oligomer $\mathbf{F 3}$ following general method (A)) and DIPEA ($465 \mu \mathrm{~L}, 2.67 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The mixture was stirred at reflux ($90^{\circ} \mathrm{C}$) under nitrogen for 5 days, after which it was cooled down to ambient temperature and the solvent removed under vacuum. EtOAc (25 mL) was added and the organic phase washed with $\mathrm{KHSO}_{4} 5 \%(3 \times 5 \mathrm{~mL}), \mathrm{NaOH} 5 \%(3 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} / \mathrm{MeOH}, 95: 5\right)$ to give a white solid ($505 \mathrm{mg}, 86 \%$).
$\mathbf{R}_{\mathbf{f}} 0.45$ (EtOAc/MeOH, 95:5)
m.p. $225-226^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3295,2985,2116,1650,1534,1415,1382,1227$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}$, 1H), 7.61 (s, 2H), 7.53 (s, 1H), 6.98 (s, 1H), 6.22 (s, 1H), 5.06 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-$ $4.88(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}$, $J=5.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.48$ (dd, $J=12.3,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ (s, 3H), 1.56 (s, 6H), 1.51 (s, 6H), 1.49 (s, 6H), 1.48 (s, 6H), 1.46 (s, 12H), 1.45 (s, 6H), 1.43 (s, 6H).

[^0]64.07, 62.74 (t, $J=18.3 \mathrm{~Hz}), 59.16,57.08,57.03,56.93,56.83,56.77,56.76,56.74,39.28$, 25.51, 24.58, 24.47.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-233.6$ (brs, 2F); (376 MHz , MeOD) $\delta_{\mathrm{F}}-235.6$ (brs, 2F). MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 1013(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.

HRMS (ES^{+}, MeOH) calc. for $\mathrm{C}_{43} \mathrm{H}_{76} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 1013.5571, found: 1013.5545.

$6 a$
Oligomer 6a was prepared according to general method (C) from crude Cbz-Aib-F (obtained from Cbz-Aib-OH, $36 \mathrm{mg}, 0.152 \mathrm{mmol}$, using the method of Byrne et al. (57)) amino-peptide H-Aib ${ }_{8}$ FibTEG ($40 \mathrm{mg}, 0.038 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azidopeptide $\mathbf{F 4}$ following general method (A)) and DIPEA ($33 \mathrm{~mL}, 0.19$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 4 days). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right.$) to give a white solid ($37 \mathrm{mg}, 82 \%$).

Rf $0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
mp: $195-197^{\circ} \mathrm{C}$
IR $\boldsymbol{v}_{\text {max }}$ (ATR)/ $\mathbf{c m}^{-1} 3262,2985,1650,1533,1384,1228,732$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $5.67(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{brs}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.37$ ($\mathrm{s}, 3 \mathrm{H}$), $1.54-1.45(\mathrm{~m}, 48 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.49,176.26,176.13,176.04,175.95,175.69,175.54$, $174.45,174.42,169.67(\mathrm{t}, J=4.4 \mathrm{~Hz}), 156.09,136.19,128.88,128.78,128.26,72.05,70.64$, $70.56,70.38,69.44,67.62,62.68(\mathrm{t}, J=18.4 \mathrm{~Hz}), 59.16,57.32,57.08,56.81,56.80,56.73$, $56.69,56.68,56.60,39.30,26.13-24.06$ (brs).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-230.9$ (brs, 1F), -236.1 (brs, 1 F); $(376 \mathrm{MHz}, \mathrm{MeOD}) \delta-$ 235.6 (brs, 2F).

MS: (ES $\left.{ }^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 1206(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 1184(\mathrm{M}+\mathrm{H})^{+} 50 \%$.

HRMS: $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{55} \mathrm{H}_{91} \mathrm{~N}_{11} \mathrm{O}_{15} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 1206.6522, found: 1206.6556.

Oligomer $\mathbf{6 c}$ was prepared according to general method (B) using Cbz-Val-OH ($33 \mathrm{mg}, 0.13$ mmol), HOAt ($18 \mathrm{mg}, 0.13 \mathrm{mmol}$), EDC ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$), amino-oligomer HAib $_{8}$ FibTEG ($70 \mathrm{mg}, 0.066 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azido-oligomer $\mathbf{F 4}$ following general method (A)) and DIPEA ($13 \mu \mathrm{~L}, 0.058$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 36 hs). After workup, the product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right.$) to give a white solid ($61 \mathrm{mg}, 83 \%$).
$\mathbf{R}_{\mathbf{f}} 0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $175-176^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3253,2984,1650,1531,1384,1228,910,730$
$[\alpha]_{\mathbf{D}}{ }^{25}+16.2\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.69(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, 6.74 (brs, 1H), 5.64 (brs, 1H), 5.12 (dd, $J=19.9,12.6 \mathrm{~Hz}, 2 \mathrm{H}$), $5.05-4.77$ (m, 4H), $3.74-$ $3.67(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=5.7,3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.47 (dd, $J=11.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{dd}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.38(\mathrm{~m}$, $48 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.53,176.29,176.09,176.04,175.85,175.77,175.22$, 174.15, 171.96, 169.75 (t, $J=4.7 \mathrm{~Hz}$), 157.33, 135.94, 128.89, 128.80, 128.27, 72.02, 70.61, $70.52,70.35,69.46,67.73,62.68(\mathrm{t}, J=18.5 \mathrm{~Hz})$, 59.15, 57.08, 56.86, 56.81, 56.77, 56.72, 56.69, 56.68, 39.32, 29.84, 27.19 - 22.96 (brs), 19.30, 18.83, 14.27.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-230.8$ (brs, 1F), -235.9 (brs, 1 F); ($376 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{F}}-$ 234.8 (brs, 1F), -236.3 (brs, 1F).

MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 1199(\mathrm{M}+\mathrm{H})^{+}$100\%; $1222(\mathrm{M}+\mathrm{Na})^{+} 60 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{56} \mathrm{H}_{93} \mathrm{~N}_{11} \mathrm{O}_{15} \mathrm{~F}_{2}+\mathrm{H}(\mathrm{M}+\mathrm{H})^{+}: 1198.6899$, found: 1197.6947.

6d
Oligomer 6d was prepared according to general method (B) using Cbz-Phe-OH (17 mg , 0.058 mmol), HOAt ($8 \mathrm{mg}, 0.058 \mathrm{mmol}$), EDC ($12 \mathrm{mg}, 0.061 \mathrm{mmol}$), amino-oligomer HAib $_{8}$ FibTEG ($30 \mathrm{mg}, 0.029 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding azido-oligomer $\mathbf{F 4}$ following general method (A)) and DIPEA ($10 \mu \mathrm{~L}, 0.058$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 48 hs). After workup, the product was purified by column chromatography (SiO_{2} : $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5$) to afford a white solid ($31 \mathrm{mg}, 85 \%$).
$\mathbf{R}_{\mathbf{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$
m.p. $224-228^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3288,2984,1651,1530,1384,1228,731$
$[\alpha]_{\mathbf{D}}{ }^{25}-8.4\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.66(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, 5.48 (s, 1H), 5.09 (dd, $J=20.3,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.10$ (brs, 1H), 3.63 (m, $6 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (A of AB, dd, $J=13.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (B of AB, dd, $J=13.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.55-1.44$ (m, $36 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.59,176.40,176.20,176.13,175.96,175.87,175.42$, 174.42, 172.00, $169.88(\mathrm{t}, J=4.3 \mathrm{~Hz}), 136.08$, 129.30, 129.02, 128.80, 128.63, 128.13, $127.45,71.92,70.52,70.44,70.25,69.44,67.46,62.50$ (t, $J=19 \mathrm{~Hz}$), 59.14, 57.01, 56.78, $56.76,56.70,56.67,56.64,56.62,39.26,36.60,29.83,26.56-22.34$ (brs).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-231.3$ (brs, 1 F), -235.7 (brs, 1 F); ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}$) $\delta_{\mathrm{F}}-$ 234.6 (brs, 1F), -236.6 (brs, 1F).

MS (ES, MeOH) m/z $1269(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 1244(\mathrm{M}-\mathrm{H})^{-} 80 \% ; 1290(\mathrm{M}+\mathrm{Cl})^{-} 55 \%$.
HRMS (ES^{+}, MeOH) calc. for $\mathrm{C}_{60} \mathrm{H}_{93} \mathrm{~N}_{11} \mathrm{O}_{15} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 1268.6718, found: 1268.6696.

Azobenzene-oligomer 1a was prepared according to general method (D) from succinimidyl ester $\mathbf{S 3}$ ($62 \mathrm{mg}, 0.194 \mathrm{mmol}$, prepared according to the method of Keiper and Vyle (50)), amino-oligomer $\mathrm{H}-\mathrm{ValAib}_{4} \mathrm{GlyNH}_{2}(50 \mathrm{mg}, 0.097 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14c (43) following general method (A)) and DIPEA ($34 \mu \mathrm{~L}, 0.194 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 hs). After workup, 1a was isolated by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{EtOAc} / \mathrm{MeOH}, 95: 5\right)$ as an orange solid ($48 \mathrm{mg}, 68 \%$).
$\mathbf{R}_{\mathbf{f}} 0.7$ (EtOAc/MeOH, 95:5)
m.p. $271-272{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3306,2983,2467,1642,1420,1290$
$[\alpha]_{\mathrm{D}}{ }^{25}-28.7(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR (500 MHz , MeOD, observed as a 79:21 mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.09-8.02(\mathrm{~m}$, $\left.1 \mathrm{H}^{E}\right), 7.96-7.90\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 7.89-7.82\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.76\left(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.70-7.63$ $\left(\mathrm{m}, 2 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.62-7.57\left(\mathrm{~m}, 3 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 7.30-7.17\left(\mathrm{~m}, 3 \mathrm{H}^{Z}\right), 7.06-7.02\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 6.28$ $\left(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 4.22\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 4.14\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.91(\mathrm{~A}$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.89\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.75(\mathrm{~B}$ of $\mathrm{AB}, \mathrm{d}, J=17.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{Z}\right), 3.68\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 2.24-2.07\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.50(\mathrm{~s}$, $\left.3 \mathrm{H}^{Z}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.48-1.44\left(\mathrm{~m}, 12 \mathrm{H}^{E}+6 \mathrm{H}^{Z}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}^{\mathrm{Z}}\right), 1.39\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right)$, $1.32\left(\mathrm{~s}, 3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.10\left(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 6 \mathrm{H}^{Z}\right), 1.02(\mathrm{dd}, J$ $=24.6,6.8 \mathrm{~Hz}, 6 \mathrm{H}^{E}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 178.07^{Z}, 178.03^{Z}, 177.99^{E}, 177.87^{Z}, 177.82^{E}, 177.80^{E}, 176.73^{E}, 176.59^{Z}, 175.38^{Z}, 175.33^{E}$, $174.35^{E}, 173.80^{Z}, 169.78^{Z}, 169.46^{E}, 154.81^{Z}, 154.58^{Z}, 154.05^{E}, 151.20^{E}, 133.47^{E}, 133.21^{E}$, $133.17^{E}, 132.53^{E}, 131.33^{E}, 130.57^{E}, 129.91^{Z}, 129.75^{Z}, 129.37^{Z}, 128.28^{Z}, 124.35^{E}, 121.75^{Z}$, $118.74^{Z}, 117.75^{E}, 62.30^{E}, 62.17^{Z}, 58.15^{Z}, 58.11^{E}, 58.01^{Z}, 57.83^{E}, 57.79^{E}, 57.75^{Z}, 43.66^{E}$, $31.53^{E}, 31.23^{Z}, 26.50^{E}, 26.42^{E}, 26.38^{E}, 26.30^{E}, 24.62^{E}, 24.05^{E}, 23.88^{E}, 19.74^{E}, 19.63^{Z}$.

MS (ES, MeOH) m/z $722(\mathrm{M}+\mathrm{H})^{+} 30 \% ; 744(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 720(\mathrm{M}-\mathrm{H})^{-} 100 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{7}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 744.3809$, found: 744.3832.

1b
Azobenzene-oligomer 1b was prepared according to general method (D) from succinimidyl ester S8 ($57 \mathrm{mg}, 0.156 \mathrm{mmol}$), amino-oligomer $\mathrm{H}-\mathrm{ValAib}_{4} \mathrm{GlyNH}_{2}$ ($40 \mathrm{mg}, 0.078 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14c (43) following general method (A)) and DIPEA ($27 \mu \mathrm{~L}, 0.156 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, 1b was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5$) as a red-orange solid ($36 \mathrm{mg}, 61 \%$).
$\mathbf{R}_{\mathbf{f}} 0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $200-202{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} \mathbf{2 9 9}, 2963,1642,1531,1418,1352,1226,737$
$[\alpha]_{\mathrm{D}}{ }^{25}-2.7(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}\right.$, observed as a $83: 17$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.67$ ($\mathrm{t}, J=1.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{E}\right), 8.48-8.36\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 8.06\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.98\left(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.95-$ $7.85\left(\mathrm{~m}, 3 \mathrm{H}^{E}\right), 7.76-7.72\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 7.69\left(\mathrm{dd}, J=5.8,3.5 \mathrm{~Hz}, 2 \mathrm{H}^{E}\right), 7.54\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right)$, $7.47\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.30\left(\mathrm{dd}, J=5.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}^{Z}\right), 6.43-6.30\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 4.23(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}^{E}$), $4.11\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right), 3.93\left(\mathrm{~A}\right.$ of AB, d, $\left.J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.88(\mathrm{~A}$ of AB, d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}$), $3.76\left(\mathrm{~B}\right.$ of $\mathrm{AB}, \mathrm{d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}$), $3.69(\mathrm{~B}$ of $\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{E}\right), 2.24-2.10\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 1.52-1.40\left(\mathrm{~m}, 15 \mathrm{H}^{E}+21 \mathrm{H}^{Z}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$, $1.30\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.11\left(\mathrm{dd}, J=9.2,6.9 \mathrm{~Hz}, 6 \mathrm{H}^{Z}\right), 1.03\left(\mathrm{dd}, J=15.7,6.7 \mathrm{~Hz}, 6 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 180.24^{E}, 180.17^{E}, 180.07^{Z}, 179.88^{E}, 179.77^{Z}, 178.68^{E}, 178.58^{Z}, 177.88^{E}, 176.45^{E}, 176.35$, $171.11^{E}, 171.03,156.49^{E}, 153.38^{E}, 152.95^{E}, 136.73^{E}, 136.68^{E}, 135.55,135.46,135.00^{Z}$, $134.71^{E}, 130.19,130.09,120.50^{E}, 118.85,118.78^{E}, 65.45^{E}, 65.31^{E}, 60.96^{E}, 60.85^{Z}, 60.73^{E}$, $60.56^{E}, 60.47^{E}, 60.36^{Z}, 46.75^{E}, 46.64^{Z}, 34.25^{E}, 30.28^{E}, 29.93^{E}, 29.88^{E}, 29.82^{E}, 29.76^{E}, 27.55^{E}$, $27.21^{E}, 27.07^{E}, 23.25^{E}, 22.98^{E}$.
MS (ES, MeOH) m/z $767(\mathrm{M}+\mathrm{H})^{+} 60 \% ; 790(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 765(\mathrm{M}-\mathrm{H})^{-} 50 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{O}_{0}+\mathrm{K}(\mathrm{M}+\mathrm{K})^{+}: 805.3399$, found: 805.3389.

1c
Azobenzene-oligomer 1c was prepared according to general method (D) from succinimidyl ester $\mathbf{S 9}$ ($51 \mathrm{mg}, 0.14 \mathrm{mmol}$), amino-oligomer $\mathrm{H}-\mathrm{ValAib}_{4} \mathrm{GlyNH}_{2}(37 \mathrm{mg}, 0.072 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14c (43) following general method (A)) and DIPEA ($25 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 hs). After workup, $\mathbf{1 c}$ was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5$) as a red-orange solid ($36 \mathrm{mg}, 66 \%$).
$\mathbf{R}_{\mathbf{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$
m.p. $246-247^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3303,2985,1642,1530,1421,1251$
$[\alpha]_{\mathrm{D}}{ }^{25}-17.3(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{MeOD}, 25: 75\right.$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 7.95$ (dd, $J=7.2,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{E}\right), 7.77-7.70\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.67-7.63\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 7.61-7.51\left(\mathrm{~m}, 2 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.45(\mathrm{~d}, J=$ $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.41\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.45\left(\mathrm{brs}, 1 \mathrm{H}^{E}\right), 7.21-7.15\left(\mathrm{~m}, 2 \mathrm{H}^{Z}\right), 7.10-7.04(\mathrm{~m}$, $\left.1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 6.65\left(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.54\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 6.50\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 4.11(\mathrm{~d}$, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 4.03\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.82\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.79(\mathrm{~s}$, $3 \mathrm{H}^{E}$), $3.78\left(\mathrm{~A}\right.$ of AB, d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}$), $3.66\left(\mathrm{~B}\right.$ of AB, d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}$), $3.57(\mathrm{~B}$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}^{\mathrm{Z}}\right), 2.14-2.06\left(\mathrm{~m}, 1 \mathrm{H}^{\mathrm{Z}}\right), 2.03(\mathrm{td}, J=13.8,6.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{E}\right), 1.41\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.38\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 1.38-1.34\left(\mathrm{~m}, 12 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$, $1.30\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.22\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$, $1.00\left(\mathrm{dd}, J=11.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}^{Z}\right), 0.92\left(\mathrm{dd}, J=20.7,6.7 \mathrm{~Hz}, 6 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR (126 MHz , MeOD, E / Z assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 178.07^{Z}, 178.04^{Z}, 177.99^{E}, 177.88^{Z}, 177.83^{E}, 177.79^{E}, 176.73^{E}, 176.58^{Z}, 175.38^{Z}, 175.34^{E}$, $174.35^{E}, 173.77^{Z}, 169.82^{Z}, 169.48^{E}, 162.13^{E}, 161.50^{Z}, 155.99^{Z}, 155.23^{E}, 154.76^{Z}, 151.18^{E}$, $133.20^{E}, 132.60^{Z}, 132.53^{E}, 131.34^{E}, 131.31^{E}, 130.80^{Z}, 129.87^{Z}, 129.64^{Z}, 128.28^{Z}, 119.13^{E}$, $118.63^{Z}, 118.09^{E}, 117.82^{E}, 114.88^{Z}, 113.81^{Z}, 108.37^{E}, 107.27^{Z}, 62.32^{E}, 62.19^{Z}, 58.15^{Z}$, $58.11^{E}, 58.01^{Z}, 57.83^{E}, 57.79^{E}, 57.75^{Z}, 56.17^{E}, 55.82^{Z}, 43.66^{E}, 31.57^{E}, 31.23^{Z}, 26.55^{E}, 26.49^{E}$, $26.42^{E}, 26.34^{E}, 24.57^{E}, 24.00^{E}, 23.83^{E}, 19.79^{E}, 19.74^{Z}, 19.72^{E}, 19.60^{Z}$.

MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 752(\mathrm{M}+\mathrm{H})^{+} 15 \% ; 774(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{~N}_{9} \mathrm{O}_{8}+\mathrm{H}(\mathrm{M}+\mathrm{H})^{+}: 752.4090$, found: 752.4087.

1d
Azobenzene-oligomer 1d was prepared according to general method (D) from succinimidyl ester S13 ($41 \mathrm{mg}, 0.11 \mathrm{mmol}$), amino-oligomer $\mathrm{H}-\mathrm{ValAib}_{4} \mathrm{GlyNH}_{2}$ ($28 \mathrm{mg}, 0.054 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14c (43) following general method (A)) and DIPEA ($19 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, 1d was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{EtOAc} / \mathrm{MeOH}, 99: 1 \rightarrow 95: 5$) as an orange solid ($29 \mathrm{mg}, 69 \%$).
$\mathbf{R}_{\mathbf{f}} 0.65$ (EtOAc/MeOH, 95:5)
m.p. $213-215^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}(E$ isomer) 3292, 2983, 1651, 1529, 1385, 1281, 1218, 731 ; IR (ATR)
$\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ (Z isomer) 3287, 2980, 2465, 2361, 1643, 1417, 1273, 1216
$[\alpha]_{\mathrm{D}}{ }^{25}-65.7(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta_{\mathrm{H}} 7.99(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=12.0,4.5 \mathrm{~Hz}$, 1H), $7.70-7.56$ (m, 4H), 7.34 (dd, $J=10.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (s, $3 \mathrm{H}), 3.93$ (A of AB, d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (B of AB, d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{td}, J=$ $13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{dd}, J=21.0,6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz , MeOD, E / Z assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 178.07^{Z}, 178.04^{Z}, 177.98^{E}, 177.86^{Z}, 177.78^{E}, 176.74^{E}, 176.56^{Z}, 175.38^{Z}, 175.33^{E}, 174.34^{E}$, $173.72^{Z}, 169.98^{Z}, 169.78^{E}, 156.31^{E}(\mathrm{~d}, J=254.3 \mathrm{~Hz}), 154.93^{E}, 152.88^{Z}(\mathrm{~d}, J=249.2 \mathrm{~Hz})$, $151.14^{E}, 151.06^{Z}, 150.83^{E}(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 150.11^{E}(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 149.28^{Z}(\mathrm{~d}, J=11.8 \mathrm{~Hz})$, $133.57^{E}, 133.03^{E}, 132.78^{Z}, 132.34^{E}, 131.06^{E}, 129.76^{Z}, 129.58,128.26,119.64^{E}(\mathrm{~d}, J=7.4$ $\mathrm{Hz}), 118.49^{Z}, 118.05^{E}, 117.44^{E}(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 116.88^{Z}(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 114.91^{Z}(\mathrm{~d}, J=7.1$ $\mathrm{Hz}), 108.04^{Z}, 107.88^{E}, 64.13^{Z}, 62.31^{E}, 62.21^{Z}, 61.54^{Z}, 58.16^{Z}, 58.13^{E}, 58.02^{Z}, 57.83^{E}, 57.81^{E}$, $57.79^{E}, 57.75^{Z}, 57.04^{E}, 56.70^{Z}, 43.67^{E}, 31.60^{E}, 31.20^{Z}, 26.57^{E}, 26.46^{E}, 26.40,24.56^{E}, 24.04^{E}$, $23.98^{E}, 23.76^{E}, 20.86^{Z}, 19.90^{E}, 19.76^{Z}, 19.69^{E}, 19.61^{Z}, 14.47^{E}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a $92: 8$ mixture of E / Z isomers) $\delta_{\mathrm{F}}-126.47$ - $126.56\left(\mathrm{~m}, 1 \mathrm{~F}^{E}\right),-131.73--131.87\left(\mathrm{~m}, 1 \mathrm{~F}^{E}\right)$.

MS (ES $\left.{ }^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 792(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.

HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{~N}_{9} \mathrm{O}_{8} \mathrm{~F}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 792.3821$, found: 792.3847.

1 e
Azobenzene-oligomer 1e was prepared according to general procedure (D) from succinimidyl ester $\mathbf{S 3}$ ($40 \mathrm{mg}, 0.124 \mathrm{mmol}$ prepared from acid $\mathbf{S} \mathbf{2}$ in 94% yield using the procedure of Keiper and Vyle (50)), amino-oligomer H-PheAib4 ${ }_{4} \mathrm{GlyNH}_{2}(35 \mathrm{mg}, 0.062 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14d (43) following general method (A)) and DIPEA ($21.6 \mu \mathrm{~L}, 0.124 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, $\mathbf{1 e}$ was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$) as an orange solid ($37 \mathrm{mg}, 79 \%$).
$\mathbf{R}_{\mathbf{f}} 0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $221-223{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3292,2930,1644,1527,1416,1381,730$
$[\alpha]_{\mathrm{D}}{ }^{25}+65.8(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}\right.$, observed as a $68: 32$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.03-7.99$ (m, $\left.2 \mathrm{H}^{Z}\right), 7.88-7.82\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 7.68-7.54\left(\mathrm{~m}, 1 \mathrm{H}^{Z}+3 \mathrm{H}^{E}\right), 7.39-7.30\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.30-$ $7.12\left(\mathrm{~m}, 4 \mathrm{H}^{E}+4 \mathrm{H}^{Z}\right), 7.05-6.97\left(\mathrm{~m}, 2 \mathrm{H}^{Z}\right), 6.29-6.22\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 4.72\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right)$, $4.54\left(\mathrm{dd}, J=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.92\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 3.72(\mathrm{~B}$ of AB, d, $\left.J=17.5 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.67\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.26-3.06\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 1.52-$ $1.30\left(\mathrm{~m}, 18 \mathrm{H}^{E}+18 \mathrm{H}^{Z}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.17\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 178.06^{Z}, 178.02^{Z}, 177.98^{E}, 177.88^{Z}, 177.80^{E}, 177.79^{E}, 176.68^{E}, 176.58^{Z}, 175.37^{Z}, 175.32^{E}$, $174.02^{E}, 173.58^{Z}, 169.58^{Z}, 169.15^{E}, 154.78^{Z}, 154.72^{Z}, 154.03^{E}, 151.03^{E}, 138.28^{Z}, 137.66^{E}$, $133.40^{E}, 133.21^{E}, 133.20^{E}, 132.56^{Z}, 132.50^{E}, 131.28^{E}, 130.64^{E}, 130.53,130.38^{E}, 129.85^{Z}$, $129.64^{Z}, 129.58^{E}, 129.40^{Z}, 129.28^{Z}, 128.14^{Z}, 128.08^{E}, 128.01^{Z}, 124.42^{E}, 121.76,118.79^{Z}$, $117.54^{E}, 58.14^{Z}, 58.10^{E}, 57.99^{E}, 57.80^{E}, 57.78^{E}, 57.68^{E}, 57.64^{E}, 43.69^{Z}, 43.66^{E}, 38.34^{E}$, $37.82^{Z}, 26.58^{E}, 26.50^{E}, 26.42^{E}, 26.36^{E}, 24.56^{E}, 24.09^{Z}, 23.95,23.77^{E}$.

MS (ES, MeOH) m/z $770(\mathrm{M}+\mathrm{H})^{+}$20\%; $792(\mathrm{M}+\mathrm{Na})^{+} 100 \%$; $768(\mathrm{M}-\mathrm{H})^{-} 100 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{9} \mathrm{O}_{7}+\mathrm{K}(\mathrm{M}+\mathrm{K})^{+}: 808.3549$, found: 808.3547.

1f
Azobenzene-oligomer 1f was prepared according to general method (D) from succinimidyl ester S8 ($26 \mathrm{mg}, 0.072 \mathrm{mmol}$), amino-oligomer $\mathrm{H}-\mathrm{PheAib}_{4} \mathrm{GlyNH}_{2}(20 \mathrm{mg}, 0.036 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14d (43) following general method (A)) and DIPEA (13 $\mu \mathrm{L}, 0.072 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, $\mathbf{1 f}$ was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5$) as an orange-brown solid ($22 \mathrm{mg}, 75 \%$).
$\mathbf{R}_{\mathbf{f}} 0.8\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $241-242{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} \mathbf{3 2 8 8}, 2957,1649,1530,1354,908,728$
$[\alpha]_{\mathrm{D}}{ }^{25}+47.8(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1}$ H NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta_{\mathrm{H}} 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H), 7.91 (ddd, $J=9.1,5.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.86 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (dd, $J=5.8,3.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~A}$ of $\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~B}$ of $\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (ddd, $J=30.9,13.5,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.47 (s, 3H), 1.46 (s, 3H), 1.40 (s, 3H), 1.32 (s, 6H), 1.31 (s, 3H), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 178.00,177.82,177.78,176.73,175.35,173.86,169.48$, $154.17,150.62,150.52,137.69,135.14,133.37,132.93,132.29,131.98,130.98,130.52$, $129.45,127.94,126.89,117.78,116.62,58.13,57.82,57.76,57.66,43.66,38.32,26.55$, 26.50, 26.43, 26.36, 24.56, 24.09, 24.00, 23.74.

MS (ES, MeOH) m/z $815(\mathrm{M}+\mathrm{H})^{+} 30 \% ; 837(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 813(\mathrm{M}-\mathrm{H})^{-} 100 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{O}_{9}+\mathrm{K}(\mathrm{M}+\mathrm{K})^{+}: 853.3399$, found: 853.3383 .

1 g
Azobenzene-oligomer 1 g was prepared according to general method (D) from succinimidyl ester $\mathbf{S} 9(25 \mathrm{mg}, 0.072 \mathrm{mmol})$, amino-oligomer $\mathrm{H}-\mathrm{PheAib}_{4} \mathrm{GlyNH}_{2}(20 \mathrm{mg}, 0.036 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14d (43) following general method (A)) and DIPEA (13 $\mu \mathrm{L}, 0.072 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 hs). After workup, $\mathbf{1 g}$ was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$) as a red-orange solid ($22 \mathrm{mg}, 75 \%$).
$\mathbf{R}_{\mathbf{f}} 0.75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$
m.p. $204-205^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} \mathbf{3 3 0 5}, 2985,1645,1417,1258$
$[\alpha]_{\mathrm{D}}{ }^{25}+42.1(\mathrm{c}=1, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}$ NMR (500 MHz , MeOD, observed as a $75: 25$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.04-7.96(\mathrm{~m}$, $\left.1 \mathrm{H}^{E}\right), 7.83\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.65\left(\mathrm{tt}, J=13.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}^{E}\right), 7.56-7.52\left(\mathrm{~m}, 1 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right)$, $7.46\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 7.37-7.31\left(\mathrm{~m}, 3 \mathrm{H}^{\mathrm{Z}}\right), 7.28-7.13\left(\mathrm{~m}, 7 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 6.75\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right)$, $6.62\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 6.58\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.31\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 4.70\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right)$, $4.53\left(\mathrm{~d}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.93\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.72$ (B of AB, d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}$), $3.66\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 3.25-$ $3.06\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 1.52-1.28\left(\mathrm{~m}, 18 \mathrm{H}^{E}+24 \mathrm{H}^{Z}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.17\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 177.99,177.82,177.79,176.69,175.34,174.02,169.19$, $162.15,155.26,150.99,137.62,133.28,133.22,132.55,131.44,131.29,130.37,129.58$, $128.05,119.12,118.37,117.58,108.27,58.11,57.81,57.79,57.72,57.67,56.21,43.66$, 38.48, 26.63, 26.48, 26.40, 24.50, 23.88, 23.69.

MS (ES, MeOH) m/z $800(\mathrm{M}+\mathrm{H})^{+} 50 \% ; 822(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 798(\mathrm{M}-\mathrm{H})^{-} 100 \% ; 834$ $(\mathrm{M}+\mathrm{Cl})^{-1} 100 \%$.

HRMS ($\left.\mathrm{ES}^{-}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{O}_{9}+\mathrm{Cl}(\mathrm{M}+\mathrm{Cl})^{-}: 834.3711$, found: 834.3717.

1h
Azobenzene-oligomer $\mathbf{1 h}$ was prepared according to general method (D) from succinimidyl ester S13 ($74 \mathrm{mg}, 0.20 \mathrm{mmol}$), amino-oligomer $\mathrm{H}-\mathrm{PheAib}_{4} \mathrm{GlyNH}_{2}(55 \mathrm{mg}, 0.10 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer S14d (43) following general method (A)) and DIPEA ($36 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, $\mathbf{1 h}$ was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5$) as a red solid ($22 \mathrm{mg}, 75 \%$).
$\mathbf{R}_{\mathbf{f}} 0.75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$
m.p. $243-245^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3285,2985,1651,1528,1510,1274,734$
$[\alpha]_{\mathrm{D}}{ }^{25}+26.7(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1}$ H NMR (500 MHz , MeOD, observed as a 78:22 mixture of E / Z isomers) $\delta_{\mathrm{H}} 7.96$ (dd, $J=$ $\left.7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.81\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.68-7.58\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 7.56-7.50\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.38$ $-7.11\left(\mathrm{~m}, 2 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 6.99\left(\mathrm{dd}, J=10.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.82\left(\mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.67$ $-6.62\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 6.30\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 4.71\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 4.54(\mathrm{dd}, J=8.9,6.7 \mathrm{~Hz}$, $1 \mathrm{H}^{Z}$), $3.96\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.93\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, \mathrm{d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.91(\mathrm{~A}$ of $\mathrm{AB}, \mathrm{d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}^{Z}$), $3.73\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.67\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}^{\mathrm{Z}}\right), 3.27-3.06(\mathrm{~m}$, $\left.2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.50\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.40\left(\mathrm{~m}, 3 \mathrm{H}^{E}+\right.$ $\left.12 \mathrm{H}^{Z}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.32\left(\mathrm{~s}, 6 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 178.07^{Z}, 178.05^{Z}, 177.98^{E}, 177.86^{Z}, 177.77^{E}, 177.76^{E}, 176.72^{E}, 176.56^{Z}, 175.38^{Z}, 175.33^{E}$, $173.95^{E}, 173.51^{Z}, 169.71^{Z}, 169.38^{E}, 156.31^{E}(\mathrm{~d}, J=254.3 \mathrm{~Hz}), 155.17^{Z}, 150.97^{E}, 150.77^{E}(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 150.11^{E}(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 138.40^{E}, 137.62^{E}, 133.54^{E}, 133.08^{E}, 132.85^{Z}, 132.36^{E}$, $131.10^{E}, 130.51^{E}, 130.38^{E}, 129.64^{Z}, 129.57^{E}, 129.29^{Z}, 128.05^{E}, 119.95^{E}(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, $118.50^{Z}, 117.83^{E}, 117.55^{E}, 117.39^{E}, 107.69^{E}(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 58.15^{Z}, 58.12^{E}, 58.02^{Z}, 57.81^{E}$, $57.78^{Z}, 57.71^{Z}, 57.67^{E}, 57.08^{E}, 56.68^{Z}, 43.66^{E}, 38.49^{E}, 37.79^{Z}, 26.59^{E}, 26.49^{E}, 26.39^{E}, 24.55^{E}$, $24.00^{E}, 23.92^{E}, 23.67^{E}$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{MeOD}$, observed as a 68:12 mixture of E / Z isomers) $\delta_{\mathrm{F}}-130.09--$ $130.15\left(\mathrm{~m}, 1 \mathrm{~F}^{E}\right),-136.39-136.46\left(\mathrm{~m}, 1 \mathrm{~F}^{Z}\right)$.

MS (ES, MeOH) m/z $818(\mathrm{M}+\mathrm{H})^{+} 40 \% ; 840(\mathrm{M}+\mathrm{Na})^{+} 80 \% ; 856(\mathrm{M}+\mathrm{K})^{+} 100 \% ; 816(\mathrm{M}-\mathrm{H})^{-}$ 100%; $852(\mathrm{M}+\mathrm{Cl})^{-} 65 \%$.

HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{~N}_{9} \mathrm{O}_{8} \mathrm{~F}+\mathrm{K}(\mathrm{M}+\mathrm{K})^{+}: 856.3560$, found: 856.8574 .

S15
Oligomer S15 was prepared according to general method (C) from crude Cbz-Aib-F (obtained from Cbz-Aib-OH, $58 \mathrm{mg}, 0.24 \mathrm{mmol}$) amino-oligomer $\mathrm{H}-\mathrm{ValAib}_{4} \mathrm{GlyNH}_{2}$ (30 mg , 0.062 mmol , obtained from the Pd-catalyzed hydrogenolysis of Cbz-L-AlaAib ${ }_{4} \mathrm{GlyNH}_{2} \mathbf{S 1 4 b}$ (43) following general method (A)) and DIPEA ($54 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring at room temperature for 48 h , a white solid precipitated out of the reaction medium and was collected by filtration to afford the pure product ($29 \mathrm{mg}, 68 \%$).
$\mathbf{R}_{\mathbf{f}} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$
m.p. $237-238^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3285,2985,1651,1530,1261,736$
$[\alpha]_{\mathrm{D}}{ }^{25}+37.6(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{H}} 7.48-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{~A}$ of $\mathrm{AB}, \mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~B}$ of $\mathrm{AB}, \mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~A}$ of $\mathrm{AB}, \mathrm{d}, J=17.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~B}$ of $\mathrm{AB}, \mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 12 \mathrm{H}), 1.43(\mathrm{~s}$, $6 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.54$ (x2), 176.15, 176.13, 175.56, 175.16, 172.92, $156.12,136.10,128.89,128.75,128.10,67.57,57.23,57.17,56.96,56.80,56.77,51.92$, $43.07,26.56,26.26,26.23,26.19,24.28,24.26,24.20,24.15,23.85,23.81,23.79,23.77$, 16.75.

MS (ES ${ }^{+}$, MeOH) m/z $727(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{9}+\mathrm{H}(\mathrm{M}+\mathrm{H})^{+}: 705.3930$, found: 705.3926.

Azobenzene-oligomer 2 was prepared according to general method (D) from succinimidyl ester S9 ($27 \mathrm{mg}, 0.078 \mathrm{mmol}$), amino-oligomer H -AibAlaAib ${ }_{4} \mathrm{GlyNH}_{2}(14 \mathrm{mg}, 0.039 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer $\mathbf{S 1 5}$ following general method (A)) and DIPEA ($36 \mu \mathrm{~L}, 0.078 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, 3 was isolated by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $95: 5 \rightarrow 9: 1$) as a dark red solid ($17 \mathrm{mg}, 55 \%$).
$\mathbf{R}_{\mathbf{f}} 0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $262-263{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3285,2985,1651,1528,1510,1274,734$
$[\alpha]_{\mathrm{D}}{ }^{25}+24.2(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta_{\mathrm{H}} 7.98-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{dt}, J=6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-$ $7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88 (s, 3H), 3.85 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ (s, 3H), 1.60 (s, 3H), 1.49 (s, 6H), 1.44 (s, 6H), 1.41 (s, 3H), 1.40 (s, 2H), 1.39 (s, 3H), 1.38 (s, 3H), 1.35 (s, 1H), 1.33 (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 178.07,177.94,177.42,177.05,175.41,175.38,169.44$, $162.14,155.39,151.09,135.29,132.66,132.41,131.36,130.63,118.66,117.87,117.41$, 108.37, 58.23, 58.16, 57.98, 57.73, 57.70, 56.17, 52.63, 25.83, 25.41, 24.95, 16.47.

MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 809(\mathrm{M}+\mathrm{H})^{+} 70 \% ; 831(\mathrm{M}+\mathrm{Na})^{+} 90 \%$.
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{~N}_{10} \mathrm{O}_{9}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 831.4129$, found: 831.4104.

S17
A solution of Cbz-(aMv) $2_{2} \mathrm{Aib}_{4} \mathrm{OH} \mathbf{S 1 6}(11.8 \mathrm{mg}, 0.016 \mathrm{mmol}$, obtained using the method of Byrne et al. (57)) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(3: 1 \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL})$ was treated with TMSCHN_{2} (2 M in hexanes) dropwise under nitrogen until persistence of the yellow color ($\sim 15 \mu \mathrm{~L}$). The
resulting solution was stirred for further 7 h at room temperature, after which the volatiles were removed under vacuum. The product was isolated as a white solid ($12 \mathrm{mg}, 99 \%$).
$\mathbf{R}_{\mathbf{f}} 0.75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $191-193{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3308,2962,1702,1666,1526,1384,1260,1153,909,730$
$[\alpha]_{\mathbf{D}}{ }^{25}+45.1(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.38-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~A}$ of $\mathrm{AB}, \mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~B}$ of AB , d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$, 0.97 (dd, $J=11.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.78$ (dd, $J=8.3,7.1 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 175.78,175.12,175.01,174.16,172.27,172.16,156.28$, 135.81, 129.18, 128.90, 128.87, 128.72, 128.37, 67.86, 63.58, 62.50, 57.04, 56.97, 56.78, 55.85, 52.07, 36.20, 35.88, 27.85, 27.53, 27.41, 25.95, 24.24, 23.15, 23.11, 23.01, 18.25, 18.20, 17.41, 17.29, 17.18, 17.09.

MS (ES, MeOH) m/z $733(\mathrm{M}+\mathrm{H})^{+} 60 \% ; 755(\mathrm{M}+\mathrm{Na})^{+} 100 \% ; 731(\mathrm{M}-\mathrm{H})^{-} 100 \%$.
HRMS (ES $\left.{ }^{-}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{9}-\mathrm{H}(\mathrm{M}-\mathrm{H})^{-}: 731.4349$, found: 731.4349.

3g
According to general procedure (D), succinimidyl ester $\mathbf{S 1 3}$ ($37 \mathrm{mg}, 0.1 \mathrm{mmol}$), DIPEA (18 $\mu \mathrm{L}, 0.1 \mathrm{mmol}$) and amino-oligomer $\mathrm{H}^{2} \mathrm{Aib}_{5} \operatorname{FibTEG}(35 \mathrm{mg}, 0.049 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer 3a following general method (A)) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were used (reaction time: 24 h). The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 97: 3\right)$ to afford $\mathbf{3 g}$ as an orangered solid ($29 \mathrm{mg}, 61 \%$).
$\mathbf{R}_{\mathbf{f}} 0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $121-123{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3294,2982,1651,1530,1506,1265,1105,1029,730$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, E / Z$ assigned only when unambiguous distinction is possible) δ_{H} $9.00\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 8.26\left(\mathrm{dd}, J=6.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.83\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 7.82-7.77\left(\mathrm{~m}, 3 \mathrm{H}^{Z}\right), 7.73(\mathrm{~s}$, $\left.1 \mathrm{H}^{E}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 7.69-7.65\left(\mathrm{~m}, 2 \mathrm{H}^{E}\right), 7.65-7.63\left(\mathrm{~m}, 1 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 7.60\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 7.59-$ $7.57\left(\mathrm{~m}, 2 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.56-7.53\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.44\left(\mathrm{ddd}, J=8.4,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.30$ $\left(\mathrm{dd}, J=10.2,8.7 \mathrm{~Hz}, 2 \mathrm{H}^{E}\right), 6.96\left(\mathrm{dd}, J=10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right), 6.82\left(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}^{\mathrm{Z}}\right)$, $6.74\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 6.61-6.56\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 6.46\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 6.17\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 5.02-4.99(\mathrm{~m}$, $\left.1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 4.95-4.87\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 4.83-4.78\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.70(\mathrm{~s}$, $\left.3 \mathrm{H}^{Z}\right), 3.65-3.61\left(\mathrm{~m}, 6 \mathrm{H}^{E}+6 \mathrm{H}^{Z}\right), 3.58\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.54(\mathrm{dd}, J=5.7,3.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.49-3.44\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}^{\mathrm{Z}}\right), 1.62\left(\mathrm{~s}, 6 \mathrm{H}^{Z}\right), 1.59(\mathrm{~s}$, $\left.6 \mathrm{H}^{E}\right), 1.53\left(\mathrm{~s}, 6 \mathrm{H}^{E}\right), 1.49\left(\mathrm{~s}, 6 \mathrm{H}^{E}+6 \mathrm{H}^{Z}\right), 1.47\left(\mathrm{~s}, 6 \mathrm{H}^{Z}\right), 1.46\left(\mathrm{~s}, 6 \mathrm{H}^{Z}\right), 1.44\left(\mathrm{~s}, 6 \mathrm{H}^{E}\right), 1.39(\mathrm{~s}$, $6 \mathrm{H}^{E}$), $1.35\left(\mathrm{~s}, 6 \mathrm{H}^{Z}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 175.98,175.49,175.37,174.23,173.87,169.39(\mathrm{t}, J=4.6$ $\mathrm{Hz}), 166.61,155.43(\mathrm{~d}, J=256.8 \mathrm{~Hz}), 149.93,149.38(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 149.05(\mathrm{~d}, J=11.8$ $\mathrm{Hz}), 133.18,132.09,131.42,129.99,117.13,116.97,116.72,115.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 109.39$ (d, $J=3.1 \mathrm{~Hz}$), $82.29(\mathrm{brd}, J=176.0 \mathrm{~Hz}), 72.07,70.67,70.58,70.37,69.44,62.82(\mathrm{t}, J=$ 18.3 Hz) $59.16,57.49,57.11,57.07,56.87,56.86,56.78,39.31,25.56,25.06$ (brs).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a $81: 19$ mixture of E / Z isomers) $\delta_{\mathrm{F}}-126.10-126.15$ $\left(\mathrm{m}, 1 \mathrm{~F}^{E}\right),-132.24-132.26\left(\mathrm{~m}, 1 \mathrm{~F}^{Z}\right),-233.5\left(\right.$ brs, $\left.1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right)$.
MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 966(\mathrm{M}+\mathrm{H})^{+} 20 \% ; 988(\mathrm{M}+\mathrm{Na})^{+} 90 \%$.
HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{45} \mathrm{H}_{66} \mathrm{~F}_{3} \mathrm{~N}_{9} \mathrm{O}_{11}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 988.4732, found: 988.4721.

4
According to general procedure (D), succinimidyl ester S13 ($26 \mathrm{mg}, 0.07 \mathrm{mmol}$), DIPEA (12 $\mu \mathrm{L}, 0.07 \mathrm{mmol}$) and amino-oligomer $\mathrm{H}-\mathrm{ValAib}_{4} \mathrm{FibTEG}(26 \mathrm{mg}, 0.035 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer $\mathbf{3 c}$ following general method (A)) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were used (reaction time: 24 h). The crude product was
purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to afford $\mathbf{4}$ as an orange-red solid ($32 \mathrm{mg}, 92 \%$).
$\mathbf{R}_{\mathbf{f}} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$

m.p. $105-107^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3294,2935,1650,1530,1506,1272,1106,1027,910,730$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+112.0(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a $65: 35$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.99(\mathrm{~d}, J=4.3$, $\left.1 \mathrm{H}^{E}\right), 8.26\left(\mathrm{~d}, J=7.0,1 \mathrm{H}^{E}\right), 7.91\left(\mathrm{dd}, J=9.3,6.6,1 \mathrm{H}^{E}\right), 7.76\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.69-7.57$ $\left(\mathrm{m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 7.53\left(\mathrm{~m}, 1 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 7.48-7.43\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.39\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 7.35-7.19(\mathrm{~m}$, $\left.3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 6.95\left(\mathrm{t}, J=9.5,1 \mathrm{H}^{Z}\right), 6.76\left(\mathrm{~d}, J=7.5,1 \mathrm{H}^{Z}\right), 6.72\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 6.60\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 6.48(\mathrm{~d}$, $\left.J=8.4,1 \mathrm{H}^{Z}\right), 6.21\left(\mathrm{~d}, J=7.8,1 \mathrm{H}^{Z}\right), 5.10-4.69\left(\mathrm{~m}, 4 \mathrm{H}^{E}+4 \mathrm{H}^{Z}\right), 4.05-4.01\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 3.99$ $\left(\mathrm{s}, 3 \mathrm{H}^{E}\right), 3.92\left(\mathrm{dd}, J=7.1,5.3,1 \mathrm{H}^{E}\right), 3.70\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 3.64-3.38\left(\mathrm{~m}, 12 \mathrm{H}^{E}+12 \mathrm{H}^{Z}\right), 3.36(\mathrm{~s}$, $\left.3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 2.27\left(\mathrm{dt}, J=13.4,6.6,1 \mathrm{H}^{Z}\right), 2.10\left(\mathrm{td}, J=13.6,6.8,1 \mathrm{H}^{E}\right), 1.53-1.14\left(\mathrm{~m}, 24 \mathrm{H}^{E}+\right.$ $\left.24 \mathrm{H}^{Z}\right), 1.10\left(\mathrm{~d}, J=6.6,6 \mathrm{H}^{Z}\right), 1.01\left(\mathrm{dd}, J=11.7,6.7,6 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 175.91^{Z}, 175.70^{E}, 175.39^{Z}, 175.26^{E}, 175.14^{Z}, 175.06^{E}, 173.96^{Z}, 173.91^{E}, 172.30^{Z}, 171.29^{Z}$, $169.40^{Z}(\mathrm{t}, J=4.6 \mathrm{~Hz}), 169.32^{E}(\mathrm{t}, J=4.7 \mathrm{~Hz}), 167.62^{E}, 155.34^{E}(\mathrm{~d}, J=256.6 \mathrm{~Hz}), 152.51^{E}$, $152.15^{Z}(\mathrm{~d}, J=252.5 \mathrm{~Hz}), 150.18^{E}, 149.43^{E}(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 148.92^{E}(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 148.30^{Z}$ (d, $J=11.9 \mathrm{~Hz}$) , $133.13^{E}, 132.37,131.90^{E}, 131.47^{E}, 129.65^{Z}, 129.32^{E}, 128.24,127.85^{Z}$, $116.97^{E}, 116.83^{E}, 116.73^{Z}, 116.45^{Z}, 116.29,116.23^{Z}, 113.68^{Z}(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 108.86^{E}$, $107.66^{Z}, 82.79(\mathrm{~d}, J=177.7 \mathrm{~Hz}), 81.70(\mathrm{~d}, J=173.2 \mathrm{~Hz}), 72.03^{E}, 70.62^{E}, 70.55^{E}, 70.31^{E}$, $69.42^{Z}, 69.38^{E}, 62.79(\mathrm{t}, J=18.3 \mathrm{~Hz}), 62.20^{Z}, 60.55^{Z}, 59.15^{E}, 57.19^{E}, 57.08^{Z}, 57.07^{Z}, 57.05^{E}$, $56.98^{E}, 56.96^{Z}, 56.89^{Z} 56.68^{E}, 56.62^{E}, 56.35^{Z}, 39.24^{E}, 30.15^{E}, 29.65^{Z}, 25.95$ (brs), 24.05 (brs), $19.68^{E}, 19.61^{Z}, 19.41^{E}, 18.87^{Z}$.
${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a $65: 35$ mixture of E / Z isomers) $\delta_{\mathrm{F}}-126.43--$ $126.49\left(\mathrm{~m}, 1 \mathrm{~F}^{E}\right),-131.68--131.84\left(\mathrm{~m}, 1 \mathrm{~F}^{Z}\right),-232.3\left(\right.$ brs, $\left.1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right),-234.8\left(\right.$ brs, $\left.1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right)$. MS (ES $\left.{ }^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 651(\mathrm{M}+\mathrm{H})^{+} 60 \% ; 673(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.

HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~F}_{2}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 673.3461$, found: 673.3430.

Phe-4
Azobenzene-oligomer Phe-4 was prepared according to general method (D) from succinimidyl ester $\mathbf{S 1 3}$ ($29 \mathrm{mg}, 0.078 \mathrm{mmol}$), amino-oligomer H-PheAib ${ }_{4}$ FibTEG (30 mg , 0.039 mmol , obtained from the Pd -catalyzed hydrogenolysis of the corresponding Cbzprotected oligomer 3d following general method (A)) and DIPEA ($13.5 \mu \mathrm{~L}, 0.078 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, Phe-4 was isolated by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ as an orange solid ($30 \mathrm{mg}, 82 \%$).
$\mathbf{R}_{\mathbf{f}} 0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $126-129{ }^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3294,2986,1650,1530,1384,1215,1106,1027,751$
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 5}}+125.9\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a $83: 17$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 9.08\left(\mathrm{brs}, 1 \mathrm{H}^{E}\right)$, $8.27-8.16\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.86-7.75\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.70-7.44\left(\mathrm{~m}, 7 \mathrm{H}^{E}+4 \mathrm{H}^{Z}\right), 7.42-7.05$ $\left(\mathrm{m}, 8 \mathrm{H}^{E}+5 \mathrm{H}^{Z}\right), 6.94\left(\mathrm{dd}, J=9.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.73\left(\mathrm{~m}, 2 \mathrm{H}^{Z}\right), 6.47\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right)$, $6.29\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 6.15\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 4.90\left(\mathrm{~m}, 4 \mathrm{H}^{E}+4 \mathrm{H}^{Z}\right), 4.41\left(\mathrm{dd}, J=10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right.$ $\left.+1 \mathrm{H}^{Z}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 3.64-3.49\left(\mathrm{~m}, 10 \mathrm{H}^{E}+10 \mathrm{H}^{Z}\right), 3.44(\mathrm{ddd}, J=19.4,12.9$, $\left.6.7 \mathrm{~Hz}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{\mathrm{Z}}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 3.34-3.26\left(\mathrm{~m}, 1 \mathrm{H}^{\mathrm{Z}}\right), 3.23-3.08\left(\mathrm{~m}, 2 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right)$, $1.49\left(\mathrm{~s}, 3 \mathrm{H}^{\mathrm{Z}}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}^{\mathrm{Z}}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right)$, $1.38\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.29\left(\mathrm{~s}, 6 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 1.25\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right)$, $1.22\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{\mathrm{C}} 175.92^{Z}, 175.68^{E}, 175.42^{Z}, 175.26^{E}, 175.1^{Z}, 175.05^{E}, 174.02^{Z}, 173.86^{E}, 171.70^{E}, 171.07^{Z}$, $169.32(\mathrm{t}, J=4.6 \mathrm{~Hz}), 167.38^{E}, 155.30^{E}(\mathrm{~d}, J=256.6 \mathrm{~Hz}), 151.97^{Z}(\mathrm{~d}, J=237.5 \mathrm{~Hz})$, $149.85^{E}, 149.35^{E}(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 148.91^{E}(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 135.78^{E}, 133.16^{E}, 132.26^{Z}$, $131.97^{E}, 131.41^{E}, 129.55^{Z}, 129.33^{Z}, 129.10^{E}(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 127.93^{Z}(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 127.69^{E}$, $117.00^{E}(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 116.62^{E}, 115.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 109.10^{E}, 82.98(\mathrm{~d}, J=181.1 \mathrm{~Hz})$,
$81.52(\mathrm{~d}, J=173.9 \mathrm{~Hz}), 72.03^{E}, 70.63^{E}, 70.55^{E}, 69.38^{E}, 62.77(\mathrm{t}, J=18.2 \mathrm{~Hz}), 59.15^{E}$, $57.99^{E}, 57.06^{E}, 56.96^{E}, 56.71^{E}, 56.65^{E}, 39.25^{E}, 37.01^{E}, 26.34$ (brs), 24.04 (brs), 23.64 (brs).
${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a 83:17 mixture of E / Z isomers) $\delta_{\mathrm{F}}-126.43--$ $126.49\left(\mathrm{~m}, 1 \mathrm{~F}^{E}\right),-132.20-132.29\left(\mathrm{~m}, 1 \mathrm{~F}^{Z}\right),-231.9\left(\right.$ brs, $\left.1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right),-235.2\left(\right.$ brs, $\left.1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right)$. MS (ES, MeOH) m/z $1026(\mathrm{M}-\mathrm{H})^{-}$100\%; $1062(\mathrm{M}+\mathrm{Cl})^{-} 85 \% ; 1050(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.

HRMS $\left(\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{~F}_{3}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 1050.4883$, found: 1050.4855.

5
Azobenzene-oligomer 5 was prepared according to general method (D) from succinimidyl ester S13 ($21 \mathrm{mg}, 0.0 .058 \mathrm{mmol}$), amino-oligomer H-ValAib ${ }_{8}$ FibTEG ($32 \mathrm{mg}, 0.029 \mathrm{mmol}$, obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbz-protected oligomer $6 \mathbf{c}$ following general method (A)) and DIPEA ($10 \mu \mathrm{~L}, 0.058 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, 5 was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{EtOAc} / \mathrm{MeOH}$, 95:5) as an orange solid ($32 \mathrm{mg}, 84 \%$).
$\mathbf{R}_{\mathbf{f}} 0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $125-127^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}} 3289,2984,1650,1594,1530,1384,1228,910,731$
$[\alpha]_{\mathrm{D}}{ }^{25}-34.8(\mathrm{c}=1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a $72: 28$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 8.96\left(\right.$ brs, $1 \mathrm{H}^{E}$), $8.29-8.21\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 8.11\left(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 7.92-7.56\left(\mathrm{~m}, 11 \mathrm{H}^{E}+8 \mathrm{H}^{Z}\right), 7.53(\mathrm{dd}, J=$ $\left.7.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right), 7.49-7.41\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 7.38-7.21\left(\mathrm{~m}, 1 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 6.98\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 6.95(\mathrm{dd}, J$ $\left.=10.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.84\left(\mathrm{brs}, 1 \mathrm{H}^{E}\right), 6.78\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.54\left(\mathrm{brs}, 1 \mathrm{H}^{Z}\right), 6.19(\mathrm{~d}, J=$ $\left.7.5 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 5.11-4.69\left(\mathrm{~m}, 4 \mathrm{H}^{E}+4 \mathrm{H}^{Z}\right), 4.04-4.00\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}^{E}\right), 3.98-3.93$ $\left(\mathrm{m}, 1 \mathrm{H}^{Z}\right), 3.68\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 3.62\left(\mathrm{~m}, 6 \mathrm{H}^{E}+6 \mathrm{H}^{Z}\right), 3.60-3.56\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.54-3.51(\mathrm{~m}$, $\left.2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.51-3.41\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.36(\mathrm{~s}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{dd}, J=13.6,6.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{Z}\right), 2.14-2.05\left(\mathrm{~m}, 1 \mathrm{H}^{E}\right), 1.54-1.38\left(\mathrm{~m}, 48 \mathrm{H}^{E}+48 \mathrm{H}^{Z}\right), 1.11\left(\mathrm{dd}, J=9.9,6.8 \mathrm{~Hz}, 6 \mathrm{H}^{Z}\right)$, $1.01\left(\mathrm{dd}, J=11.5,6.8 \mathrm{~Hz}, 6 \mathrm{H}^{Z}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, E / Z$ assigned only when unambiguous distinction is possible) $\delta_{C} 176.52^{Z}, 176.46^{E}, 176.31^{Z}, 176.22^{E}, 176.11^{Z}, 176.01^{E}, 176.00^{E}, 175.74^{E}, 175.69^{E}, 175.51^{Z}$, $175.35^{E}, 174.52^{E}, 174.41^{E}, 169.62^{E}(\mathrm{t}, J=4.3 \mathrm{~Hz}), 167.54^{Z}$ (brs), $155.27^{E}(\mathrm{~d}, J=256.5 \mathrm{~Hz}$), $152.95^{Z}, 151.95^{Z}(\mathrm{~d}, J=251.9 \mathrm{~Hz}), 150.15^{E}, 149.40^{E}(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 148.87^{E}(\mathrm{~d}, J=11.8$ $\mathrm{Hz}), 148.17^{Z}(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 133.02^{E}, 132.17^{Z}, 131.84^{E}, 131.43^{E}, 129.50^{E}, 127.90^{Z}, 116.87^{E}$ (d, $J=16.8 \mathrm{~Hz}), 116.75^{E}, 116.66^{Z}, 116.29^{Z}(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 82.63(\mathrm{~d}, J=174 \mathrm{~Hz}), 81.60(\mathrm{~d}$, $J=168 \mathrm{~Hz}), 72.00^{E}, 70.60^{E}, 70.53^{E}, 70.33^{E}, 69.40^{E}, 62.65^{E}, 62.61^{E}(\mathrm{t}, J=18.4 \mathrm{~Hz}), 59.15^{E}$, $57.14^{E}, 57.03^{E}, 56.98^{Z}, 56.88^{E}, 56.85^{Z}, 56.76^{E}, 56.68^{Z}, 56.65^{E}, 56.62^{E}, 56.58^{E}, 56.49^{E}, 56.29^{Z}$, $39.26^{E}, 30.21^{E}, 26.03$ (brs), 23.96 (brs), $19.71^{Z}, 19.58^{Z}, 19.38^{E}, 19.20^{Z}$.
${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a $72: 28$ mixture of E / Z isomers) $\delta_{\mathrm{F}}-126.34--$ $126.40\left(\mathrm{~m}, 1 \mathrm{~F}^{E}\right),-131.93\left(\right.$ brs, $\left.1 \mathrm{~F}^{Z}\right),-231.0\left(\right.$ brs, $\left.1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right),-235.8\left(1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}\right)$.
MS (ES', MeOH) m/z $1318(\mathrm{M}-\mathrm{H})^{-} 100 \%$.
HRMS ($\left.\mathrm{ES}^{-}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{62} \mathrm{H}_{95} \mathrm{~N}_{13} \mathrm{O}_{15} \mathrm{~F}_{3}(\mathrm{M}-\mathrm{H})^{-}: 1318.7023$, found: 1318.7081.

Phe-5
Azobenzene-oligomer Phe-5 was prepared according to general method (D) from succinimidyl ester $\mathbf{S 1 3}$ ($20 \mathrm{mg}, 0.054 \mathrm{mmol}$), amino-oligomer H-PheAib ${ }_{8}$ FibTEG (30 mg , 0.027 mmol , obtained from the Pd-catalyzed hydrogenolysis of the corresponding Cbzprotected oligomer 6d following general method (A)) and DIPEA ($9.4 \mu \mathrm{~L}, 0.054 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reaction time: 24 h). After workup, Phe-5 was isolated by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 97: 3 \rightarrow 95: 5\right)$ as an orange solid ($29 \mathrm{mg}, 85 \%$).
$\mathbf{R}_{\mathbf{f}} 0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$
m.p. $119-121^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1} 3288,2985,1651,1530,1384,1227,753$
$[\alpha]_{\mathrm{D}}{ }^{25}+69.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a $72: 28$ mixture of E / Z isomers) $\delta_{\mathrm{H}} 9.09$ (brs, $1 \mathrm{H}^{E}+$ $\left.1 \mathrm{H}^{Z}\right), 8.24\left(\mathrm{~m}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 7.92\left(\mathrm{brs}, 1 \mathrm{H}^{E}\right), 7.72\left(\mathrm{~m}, 9 \mathrm{H}^{E}+9 \mathrm{H}^{Z}\right), 7.49\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}^{E}\right)$,
$7.43\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 7.37-7.18\left(\mathrm{~m}, 7 \mathrm{H}^{E}+8 \mathrm{H}^{Z}\right), 7.14\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 7.13\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 6.95(\mathrm{dd}, J=10.4,8.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{Z}\right), 6.86\left(\mathrm{~s}, 1 \mathrm{H}^{Z}\right), 6.75\left(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 6.50\left(\mathrm{ddd}, J=8.4,3.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right)$, $6.33\left(\mathrm{~s}, 1 \mathrm{H}^{E}\right), 6.19-6.09\left(\mathrm{~m}, 1 \mathrm{H}^{Z}\right), 5.16-4.72\left(\mathrm{~m}, 4 \mathrm{H}^{E}+4 \mathrm{H}^{Z}\right), 4.42\left(\mathrm{brs}, 1 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 3.98$ $\left(\mathrm{s}, 3 \mathrm{H}^{E}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}^{Z}\right), 3.62\left(\mathrm{~m}, 6 \mathrm{H}^{E}+6 \mathrm{H}^{Z}\right), 3.60-3.56\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.53\left(\mathrm{~m}, 2 \mathrm{H}^{E}+\right.$ $\left.2 \mathrm{H}^{Z}\right), 3.51-3.39\left(\mathrm{~m}, 2 \mathrm{H}^{E}+2 \mathrm{H}^{Z}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}^{E}+3 \mathrm{H}^{Z}\right), 3.33\left(\mathrm{dd}, J=14.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}^{Z}\right), 3.24$ $-3.11\left(\mathrm{~m}, 2 \mathrm{H}^{E}+1 \mathrm{H}^{Z}\right), 1.53-1.21\left(\mathrm{~m}, 48 \mathrm{H}^{E}+48 \mathrm{H}^{Z}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.39,176.14,175.93,175.63,175.21,174.16,171.78$, 169.56 (t, $J=4.6 \mathrm{~Hz}$), 167.46, $155.31(\mathrm{~d}, J=256.9 \mathrm{~Hz}), 149.88,149.34(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $148.92(\mathrm{~d}, ~ J=11.8 \mathrm{~Hz}), 135.78,133.17,131.95,131.39,129.12,127.72,117.02(\mathrm{~d}, J=20.1$ $\mathrm{Hz}), 116.65,109.21,72.04,70.64,70.55,70.35,69.44,62.73(\mathrm{t}, J=18.2 \mathrm{~Hz}), 59.16,57.08$, $57.07,56.92,56.80,56.70,56.67,56.57,39.27,36.98,26.47-26.20$ (brs), $24.04-23.48$ (brs).
${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a 93:7 mixture of E / Z isomers) $\delta_{\mathrm{F}}-126.39(\mathrm{dd}, J=$ $13.6,7.7 \mathrm{~Hz}, 1 \mathrm{~F}^{E}$), $-132.40\left(\right.$ brs, $1 \mathrm{~F}^{Z}$), $-231.04\left(\right.$ brs, $1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}$), $-236.0\left(\right.$ brs, $1 \mathrm{~F}^{E}+1 \mathrm{~F}^{Z}$).
MS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z} 1390(\mathrm{M}+\mathrm{Na})^{+} 100 \%$.
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right)$ calc. for $\mathrm{C}_{66} \mathrm{H}_{96} \mathrm{~N}_{13} \mathrm{O}_{15} \mathrm{~F}_{3}+\mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 1390.6999, found: 1390.6971.

${ }^{1} \mathrm{H}$ NMR spectra

$\mathbf{S 6}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

S7 ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

S8 ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\mathbf{S 9}\left(\mathbf{C D C l}_{3}, 500 \mathrm{MHz}\right)$

$\mathbf{S 1 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\mathbf{S 1 2}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\mathbf{S 1 3}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

F2 $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

F3 ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{M H z}\right)$

F4 ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$3 \mathrm{a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

3b ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

3c ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

3d $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

3f ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$

$6 \mathrm{a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$6 \mathrm{c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

 1a ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$)

1b ($\left.\mathbf{C D}_{3} \mathbf{O D}, 400 \mathrm{MHz}\right)$

1c ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

1d ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

1e ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

1f ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

$1 \mathrm{~g}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

$1 \mathrm{~h}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$
 S15 (CD $\left.\mathbf{C l}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$

2 (CD3OD, 400 MHz$)$
 $\mathbf{S 1 7}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

 $4\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Phe-4 ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$5\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Phe-5 ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13}$ C NMR spectra

S6 ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$
 S7 $\left(\mathbf{C D C l}_{3}, 126 \mathrm{MHz}\right)$

$$
-55,71
$$

S8 ($\mathrm{CDCl}_{3}, \mathbf{1 2 6 ~ M H z)}$

S9 ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

$\mathbf{S 1 1}\left(\mathbf{C D C l}_{3}, 126 \mathrm{MHz}\right)$

$\mathbf{S 1 2}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

$\mathbf{S 1 3}\left(\mathbf{C D C l}_{3}, 126 \mathrm{MHz}\right)$

F2 (CD $\left.{ }_{3} \mathrm{OD}, 126 \mathrm{MHz}\right)$

3a ($\left.\mathrm{CDCl}_{3}, \mathbf{1 0 1} \mathrm{MHz}\right)$

mmm	NoRisoninion	
4	人以	

$1 \underbrace{1}$

3b ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

	帝	商	
	$\stackrel{\sim}{\square}$		
$1 /$	\|		

3c ($\left.\mathrm{CDCl}_{3}, \mathbf{1 2 6 ~ M H z}\right)$

	\%	
	$\stackrel{\oplus}{\sim}$	
- 尤ノ	\|	$Y 4$

$3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

F4 ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

6c ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
ppm	90																			

1a ($\mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}$)
(

1c ($\left.\mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}\right)$

					1														
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

B ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	¢ $\overbrace{\text { ¢ }}$	
$\stackrel{\text { ¢ }}{\sim}{ }^{\text {Non }}$	南家号	
＋	1 Y	$\cdots \mid$

$1 \mathrm{~g}\left(\mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}\right)$

1h (CD $\mathbf{C l}_{3} \mathrm{OD}, 126 \mathrm{MHz}$)

$\mathbf{S 1 5}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

[^1]
$2\left(\mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}\right)$

	,		,		,		1		1								1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

$5\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
ppm																				

Phe-5 ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{19}$ F NMR spectra in CDCl_{3}

S11 ($\mathbf{3 7 6} \mathbf{~ M H z) ~}$

S12 ($\mathbf{3 7 6} \mathbf{~ M H z) ~}$

S13 (471 MHz)

 స్తి

F3 (471 MHz)

3a (471 MHz)

3b (471 MHz)

3c (471 MHz)

3d (471 MHz)

$$
\stackrel{\infty}{\stackrel{\infty}{\sim}}
$$

3e (376 MHz)

~~~~~


\section*{3f ( \(\mathbf{3 7 6} \mathbf{~ M H z}\) )}


F4 (471 MHz)


6a ( \(\mathbf{4 7 1} \mathrm{MHz}\) )
\(\stackrel{\sim}{\sim}\)


6c ( 471 MHz )
~o


6d ( \(\mathbf{3 7 6} \mathbf{~ M H z ) ~}\)



\footnotetext{

}

1d ( \(\mathbf{3 7 6} \mathbf{~ M H z ) ~}\)


3g ( 471 MHz )

~~~

\section*{}
in in

\section*{4 (471 MHz)}

\section*{Phe-4 (471 MHz)}

\(\stackrel{\sim}{n}\)
\(\stackrel{\infty}{\infty}\)

\section*{\({ }^{19}\) F NMR spectra in \(\mathrm{CD}_{3} \mathrm{OD}\)}

3a (\(\mathbf{3 7 6} \mathbf{~ M H z) ~}\)

\section*{3b (471 MHz)}

3c (\(\mathbf{3 7 6} \mathbf{~ M H z) ~}\)

3d (\(\mathbf{3 7 6} \mathbf{~ M H z) ~}\)
\(\stackrel{\sim}{\underset{\sim}{\sim}} \underset{i}{\sim}\)

\section*{3e (\(\mathbf{3 7 6} \mathbf{~ M H z) ~}\)}
\(\stackrel{\sim}{\infty}\)

\section*{3f (\(\mathbf{3 7 6} \mathbf{~ M H z) ~}\)}
orir

\footnotetext{
\begin{tabular}{llllllllllllllllllllllllllllllllllll}
\hline-226 & -227 & -228 & -229 & -230 & -231 & -232 & -233 & -234 & -235 & -236 & -237 & -238 & -239 & -240 & -241 & -242 & -243 & -244 & -245 & -246
\end{tabular}
}

F4 (\(\mathbf{3 7 6} \mathbf{~ M H z) ~}\)
\(\stackrel{\oplus}{\stackrel{\omega}{n}}\)

6d (471 MHz)

\section*{Spectroscopic studies in solution}

UV-visible absorption spectra were recorded using quartz cuvettes of 1 cm pathlength on an Agilent Cary 5000 UV-Vis-NIR spectrophotometer equipped with a Peltier-thermostat controlled cell holder at \(25 \pm 0.05^{\circ} \mathrm{C}\). Analytical irradiation experiments (figures \(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3\) and Table S2) were carried out in spectrophotometric grade MeOH (concentration: \(1 \times 10^{-4}\) M) using a Thorlabs DC4100 (4 channel LED driver) equipped with mounted high-power LEDs (models M365L2, M405L2 and M455L3). \(E \rightarrow Z\) isomerization was performed using 365 nm light (7.5 nm bandwidth, 360 mW output power, 700 mA current), while light of 405 nm (13 nm bandwidth, 760 mW output power, 1000 mA current) or \(455 \mathrm{~nm}(18 \mathrm{~nm}\) bandwidth, 1020 mW output power, 1000 mA current) was used to trigger \(Z \rightarrow E\) isomerization. Circular dichroism spectra (CD) were recorded on a Jasco J-815 spectrometer using a 1 mm cell length at \(20^{\circ} \mathrm{C}\).
Pure \(E\) isomer spectra were obtained after warming the azobenzene-oligomer solutions at 40 \({ }^{\circ} \mathrm{C}\) under nitrogen for 2 h in the dark.

Azobenzene-oligomer solutions in \(\mathrm{CD}_{3} \mathrm{OD}\) (concentration: \(1 \times 10^{-4} \mathrm{M}\)) were irradiated at the appropriate wavelength in quartz tubes. \(E / Z\) isomer ratios and thermal \(Z \rightarrow E\) isomerization parameters of \(\mathbf{1 c}\) and \(\mathbf{1 d}\) (fig. S6) were determined by NMR spectroscopy by integrating the peaks at \(\delta \sim 4.2\) and \(\delta \sim 4.1 \mathrm{ppm}\left(\mathrm{Val} \mathrm{C}^{\alpha} \mathrm{H}_{E}\right.\) and Val C \({ }^{\alpha} \mathrm{H}_{Z}\) respectively, see fig. S2).
Quantitative spectra of \(E\) and \(Z\) isomers for model azobenzene oligomers \(\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}\) and \(\mathbf{1 d}\) were determined combining UV/Vis and NMR data (see fig. S2).

Fig. S1. UV spectra of model azobenzene oligomers \(\mathbf{1 a - d}\) in MeOH solution. Pure \(E\) isomer (red spectra) and PSS mixture after 15 min at 365 nm (blue spectra).

Fig. S2. Photochemical and conformational responsiveness of model azobenzene oligomers 1a-d

(A) UV spectra of pure \(E\) and \(Z\) isomers (red and blue, respectively) of model oligomers 1a-d in MeOH; (B) NMR spectra (\(\mathrm{C}^{\alpha} \mathrm{H}\) area, \(\mathrm{CD}_{3} \mathrm{OD}\)) of \(E: Z\) mixtures at photostationary state (PSS) at 365,405 and 455 nm . The relative integration is also reported; (C) \(\mathrm{GlyNH}_{2}\) area (455 nm PSS) showing the different anisochronicities (\(\Delta \delta\)) of the reporter protons in each of the \(E\) or \(Z\) isomer (red and blue peaks, respectively); (D) \(\Delta \delta\) values (ppb) for each \(E\) or \(Z\) isomer and change in population distribution, expressed as the relative \(\%\) difference in \(\Delta \delta\) between \(E\) and \(Z\) isomers: \(\left(\Delta \delta_{E}-\Delta \delta_{Z}\right) / \Delta \delta_{E}\).

Table S1. Comparison of \(\Delta \delta\) values in \(\mathrm{CD}_{3} \mathrm{OD}\) solution for model oligomers \(\mathbf{1 a} \mathbf{a} \mathbf{h}\)

\(\Delta \delta\) values (ppb) for each \(E\) or \(Z\) isomer of model oligomers 1a-d (N-terminal residue: Valine) and \(\mathbf{1 e}-\mathrm{h}\) (N-terminal residue: Phenylalanine). Their relative \(\%\) change in population distribution (cfr. fig. 1 in main text and fig. S2) is also reported. This value is calculated by assuming that \(\Delta \delta\) is proportional to helical excess \((12,58)\).

Fig. S3. Irradiation of \(\mathbf{1 d}\) in \(\mathrm{CD}_{3} \mathrm{OD}\) solution

\({ }^{1} \mathrm{H}\) NMR spectra (\(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\)) of oligomer \(\mathbf{1 d}\) before (red spectrum, mainly \(E\) isomer) and after 10' irradiation at 365 nm (blue spectrum, \(92 \% Z\) isomer).

Fig. S4. CD spectra of oligomer 1c

CD spectra of oligomer \(\mathbf{1 c}\) in (1 M in \(\mathrm{CH}_{3} \mathrm{OH}\)) before (red spectrum, mainly \(E\) isomer) and after 10' irradiation at 365 nm (blue spectrum, mainly \(Z\) isomer). The absorption of the azobenzene chromophore obscures the diagnostic amide region (200-230 nm) indicative of secondary structure conformation, therefore only changes in the chiral environment around the azobenzene group can be reliably observed.

Fig. S5. Thermal \(Z \rightarrow E\) relaxation parameters for \(\mathbf{1 c}\) and \(1 d\)

1c
concentration: \(10^{-2} \mathrm{M}\) in \(\mathrm{CD}_{3} \mathrm{OD}\)
\(k_{Z \rightarrow E}=0.00926 \pm 0.00019 \mathrm{~h}^{-1}\)
\(t_{1 / 2}=\ln (2) / k=0.693 / 0.00926 \mathrm{~h}^{-1}=74.7 \pm 1.5 \mathrm{~h}^{-1}\)

\section*{1d}
concentration: \(10^{-2} \mathrm{M}\) in \(\mathrm{CD}_{3} \mathrm{OD}\)
\(k_{Z \rightarrow E}=0.01081 \pm 0.000098 \mathrm{~h}^{-1}\)
\(t_{1 / 2}=\ln (2) / k=0.693 / 0.01081 \mathrm{~h}^{-1}=64.0 \pm 0.6 \mathrm{~h}^{-1}\)

Table S2. Molar extinction coefficients \(\left(\varepsilon, L \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)\) for \(E\left(\pi-\pi^{*}\right.\) and \(\mathrm{n}-\pi^{*}\) transitions) and \(Z\) (\(\mathrm{n}-\pi^{*}\) transition) isomers of \(\mathbf{1 a - d}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline & 1a \(\left(\lambda_{\text {max }}, \mathrm{nm}\right)\) & \(1 \mathrm{~b}\left(\lambda_{\text {max }}, \mathrm{nm}\right)\) & 1c \(\left(\lambda_{\text {max }}, \mathrm{nm}\right)\) & 1d (\(\left.\lambda_{\text {max }}, \mathrm{nm}\right)\) \\
\hline \(E\left(\pi-\pi^{*} ; \mathrm{n}-\pi^{*}\right)\) & \[
\begin{gathered}
15860(324) \text {; } \\
730(445)
\end{gathered}
\] & \[
\begin{gathered}
11790(317) \text {; } \\
830(443)
\end{gathered}
\] & \[
\begin{gathered}
10550(323) ; \\
1040(436)
\end{gathered}
\] & \[
\begin{gathered}
13200(331) \text {; } \\
1030(439)
\end{gathered}
\] \\
\hline \(Z\left(\mathrm{n}-\pi^{*}\right)\) & 1230 (430) & 700 (426) & 1200 (429) & 1610 (430) \\
\hline
\end{tabular}

Fig. S6. \({ }^{19}\) F VT-NMR of foldamer 3a

\({ }^{19}\) F VT NMR spectra (magnet strength: 476 MHz) of fluorinated oligomer 3a in \(\mathrm{CD}_{3} \mathrm{OH}(\mathrm{A})\) and in \(\mathrm{CDCl}_{3}(\mathrm{~B})\). At the coalescence temperature (\(\boldsymbol{T}_{\mathbf{c}}\)) of \(273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)\) in \(\mathrm{CD}_{3} \mathrm{OH}\) and \(280 \mathrm{~K}\left(+7^{\circ} \mathrm{C}\right)\) in \(\mathrm{CDCl}_{3}\) the rate of screw-sense inversion approximates to \(k=\frac{\pi \delta v}{\sqrt{2}} \sim 6000 \mathrm{~s}^{-1}\), indicating that at 293 K screw sense interconversion occurs faster than this rate in both solvents.

Fig. S7. \({ }^{19}\) F VT-NMR of foldamer \(\mathbf{6 a}\)

\({ }^{19}\) F VT NMR spectra (magnet strength: 476 MHz) of fluorinated oligomer \(\mathbf{6 a}\) in \(\mathrm{CD}_{3} \mathrm{OH}(\mathrm{A})\) and in \(\mathrm{CDCl}_{3}(\mathrm{~B})\). At the coalescence temperature \(\left(\boldsymbol{T}_{\mathbf{c}}\right)\) of \(283 \mathrm{~K}\left(+10^{\circ} \mathrm{C}\right)\) in \(\mathrm{CD}_{3} \mathrm{OH}\) and \(308 \mathrm{~K}\left(+35^{\circ} \mathrm{C}\right)\) in \(\mathrm{CDCl}_{3}\) the rate of screw-sense inversion approximates to \(k=\frac{\pi \delta v}{\sqrt{2}} \sim 6000 \mathrm{~s}^{-1}\), indicating that at 293 K screw sense interconversion occurs faster than this rate in \(\mathrm{CD}_{3} \mathrm{OH}\) but more slowly that this rate in \(\mathrm{CDCl}_{3}\).

\section*{Spectroscopic studies in the membrane phase}

\section*{General procedure (E): preparation of DOPC lipid bilayers embedded with fluorinated foldamers}

Multilamellar liposomes doped with fluorinated foldamers were prepared by co-dissolving the oligomer and the lipids (1:40-1:9 oligomer/DOPC w/w ratio) in chloroform. The solvent was removed under reduced pressure and the resulting foldamer/lipid film was placed under high vacuum for \(>1 \mathrm{~h}\), after which milliQ water was added \((0.1 \mathrm{~mL}\) per 10 mg of DOPC used). After shaking the mixture with a vortex mixer until visually homogeneous (5 to 30 min), the suspension was freeze-dried overnight and rehydrated with Dulbecco's phosphate buffer solution (\(\mathrm{pH} 7.2,0.1 \mathrm{~mL}\) per 10 mg of DOPC). The suspension was again shaken until homogeneous and then centrifuged in a microfuge for 5 to 15 min at 13 K rpm . The supernatant aqueous layer (Fig. S7A and S7B) was carefully removed with a micropipette and the viscous lipid phase (Fig. S7C) loaded into a MAS zirconia rotor (Fig. S7D) using a centrifuge or a micropipette. All the samples were freshly made and directly used for ssNMR experiments. For time-dependent ss-NMR measurements, the lipid-foldamer mixtures were left in the capped MAS rotor in the dark.

Fig. S8. (A-C) Preparation of multilamellar foldamer/phospholipid liposomes. The arrows (in A and B) show the top aqueous layer which is separated after centrifugation (C); (D) MAS zirconia rotor filled with freshly made foldamer/DOPC sample.

Fig. S9. \({ }^{1} \mathrm{H}\) ss-NMR of \(\mathbf{6 d}\) in DOPC

Water-suppressed \({ }^{1}\) H MAS NMR spectrum of DOPC phospholipid bilayers containing \(5 \%\) of foldamer 6d. Assignments of the DOPC signals are made according to Yau et. al (15) and correspond to the labels on the DOPC molecule shown above the spectrum, with the \(\mathrm{CH}_{3}\) peak (a) referenced to \(\delta 0.9 \mathrm{ppm}\). A 16 -fold expansion of the low-field region around \(\delta 7.3\) ppm highlights the foldamer amides' peak. The lipid bilayer is in a fluid disordered phase characterised by rapid lateral and axial motion. This mobility, coupled with the MAS, results in well-resolved peaks that have been reported before \((39,40,59)\). As for the lipid ones, the foldamer amides's peak at \(\delta 7.3 \mathrm{ppm}\) indicates that the foldamer is also undergoing rapid motions and is freely moving in the lipid bilayer.

The spectrum was acquired at 298 K on a Bruker Avance II 500 MHz spectrometer using a 4 mm MAS probe operating at frequencies of \(500.1013 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)\) with a spinrate of 8 kHz . The \({ }^{1} \mathrm{H}\) experiment was carried out with a typical \(\pi / 2\) pulse length of \(7 \mu \mathrm{~s}\), a relaxation delay of 4 s and processed with 2 Hz line broadening.

Fig. S10. \({ }^{31}\) P NMR studies

\({ }^{31} \mathrm{P}\) NMR spectra (\(500 \mathrm{MHz}, 298 \mathrm{~K}\), static conditions) of DOPC phospholipid bilayers (left) and of DOPC phospholipid bilayers containing \(5 \%\) of foldamer \(\mathbf{3 e}\) (right). The samples were prepared according to the general procedure (E). Both spectra are consistent with those of a powder line shape and are indicative of a fluid lamellar phase (41). The small peak at 0 ppm (a) is assigned to the phosphate anion (phosphate buffer solution is used during sample preparation).

\section*{General procedure (F): irradiation of the DOPC bilayers}

Freshly prepared multilamellar liposomes (see general procedure (E)) containing the fluorinated foldamers were transferred in a quartz cuvette (path length: 1 mm) using a Gilson micropipette and irradiated with the chosen wavelength using the same LED apparatus used for liquid-phase experiments for the appropriate amount of time (3-10 min, fig. S11). The illuminated phospholipid mixture was then directly loaded into the MAS rotor using a centrifuge (10 s at 1 K rpm), with the whole transfer procedure taking typically less than 1 minute. When a second irradiation on the same sample was required, this procedure was repeated by spinning out the previously illuminated lipid-oligomer mixture from the MAS rotor back into a quartz cuvette, followed by irradiation and loading into the MAS rotor.

Fig. S11. LED irradiation of the phospholipid-oligomer samples in 1 mm quartz cuvettes using a Thorlabs DC4100 apparatus.

\section*{Control experiments}

\section*{1) Concentration dependence assay}

Following general procedure (E), three samples were prepared using 3d (CbzPheAib \({ }_{4} \mathrm{FibTEG}\)) and DOPC in different phospholipid/oligomer ratios (\(\mathbf{A}, \mathbf{B}\) or \(\mathbf{C}\)) and the relative \({ }^{19} \mathrm{~F}\) ss-NMR spectra were collected (fig. S12). The specifications of each sample are summarized in the following table:
\begin{tabular}{ccccccc}
sample \begin{tabular}{c}
oligomer/DOPC \\
\((\mathrm{mg})\)
\end{tabular} & \begin{tabular}{c}
ratio \\
\((\mathrm{w} / \mathrm{w})\)
\end{tabular} & \begin{tabular}{c}
number of \\
scans (NS)
\end{tabular} & T (K) & \({ }^{19} \mathrm{~F} \delta_{F}(\mathrm{ppm})\) & \(\Delta \delta\) \\
A & \(1.5 / 50\) & \(3 \%\) & 1044 & 293 & \(-232.23 ;-233.15\) & 0.92 \\
B & \(4.5 / 40\) & \(10 \%\) & 963 & 293 & \(-232.23 ;-233.12\) & 0.89 \\
C & \(6 / 35\) & \(15 \%\) & 1175 & 293 & \(-232.24 ;-233.14\) & 0.90 \\
\hline
\end{tabular}

Fig. S12. \({ }^{19}\) F ss-NMR spectra of 3d at different oligomer/DOPC ratios (see above Table). Each spectrum was acquired at 10 KHz spinning rate and processed with 20 Hz line broadening.

\section*{2) Intermolecular communication of helicity assay}

Following general procedure (E), 3d (2 mg), \(\mathrm{Cbz}(\mathrm{aMv})_{2} \mathrm{Aib}_{4} \mathrm{OMe}(2 \mathrm{mg}\), see Ref. (57)) and DOPC (40 mg) were used to prepare mixed oligomer/lipid sample (A, \(5 \%+5 \% \mathrm{w} / \mathrm{w}\)). The \({ }^{19} \mathrm{~F}\) ss-NMR spectrum was recorded and compared (fig. S13) with that of 3d in DOPC (B, \(5 \%\) \(\mathrm{w} / \mathrm{w}\)), prepared using general procedure (E) starting from 3d (2 mg) and DOPC (40 mg). The following table reports the spectral features of each sample:
\begin{tabular}{|c|c|c|c|c|c|}
\hline sample & components (mg) in 40 mg DOPC & \begin{tabular}{l}
ratio \\
(w/w)
\end{tabular} & number of scans (NS) & \({ }^{19} \mathrm{~F} \delta_{\mathrm{F}}(\mathrm{ppm})\) & \(\Delta \delta\) \\
\hline A & \[
\begin{gathered}
3 \mathbf{d}(2)+ \\
\mathrm{Cbz}(\mathrm{aMv})_{2} \mathrm{Aib}_{4} \mathrm{OMe}(2)
\end{gathered}
\] & 5\% / 5\% & 1038 & -232.27; -233.16 & 0.89 \\
\hline B & 3d (2) & 5\% & 962 & -232.16; -233.05 & 0.89 \\
\hline
\end{tabular}

Fig. S13. \({ }^{19} \mathrm{~F}\) ss-NMR spectra of sample (A) \(\left(\mathbf{3 d}+\mathrm{Cbz}(\mathrm{aMv})_{2} \mathrm{Aib}_{4} \mathrm{OMe} 5 \%+5 \%\right.\) in DOPC) and (B) (3d 5\% in DOPC). Each spectrum was acquired at 293 K (10 KHz spinning rate) and processed with 20 Hz line broadening.

\section*{3) Irradiation assay (no azobenzene chromophore present)}

Following general procedure (E), 3d and DOPC were used (13.5 and 120 mg respectively) to prepare a \(10 \%\) oligomer/lipid sample. This mixture was split in three equal portions and each portion irradiated for 5 minutes as described in general procedure (F) using LED light at either 365 (A), 405 (B) or \(455 \mathrm{~nm}(\mathbf{C})\). A \({ }^{19} \mathrm{~F}\) ss-NMR spectrum was run immediately after each sample have been irradiated (fig. S14). The following table reports the experimental conditions for each experiment:
\begin{tabular}{ccccccc}
sample & \begin{tabular}{c}
Wavelength \\
\((\mathrm{nm})\)
\end{tabular} & \begin{tabular}{c}
time \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{c}
output power \\
\((\mathrm{mW})\)
\end{tabular} & \begin{tabular}{c}
number of \\
scans (NS)
\end{tabular} & \({ }^{19} \mathrm{~F} \delta_{F}(\mathrm{ppm})\) & \(\Delta \delta\) \\
A & 365 & 5 & 360 & 985 & \(-232.24 ;-233.12\) & 0.88 \\
B & 405 & 5 & 760 & 878 & \(-232.23 ;-233.12\) & 0.89 \\
C & 455 & 5 & 1020 & 775 & \(-232.24 ;-233.13\) & 0.89
\end{tabular}

Fig. S14. \({ }^{19} \mathrm{~F}\) ss-NMR spectra of 3d (10\% in DOPC) after exposure to different wavelengths (see above Table). Each spectrum was acquired at 293 K (10 KHz spinning rate) and processed with 20 Hz line broadening.

\section*{4) Irradiation assay (no chiral stereocontroller present)}

Following general procedure (E), achiral oligomer 3g and DOPC were used (2 and 40 mg respectively) to prepare a \(5 \%\) foldamer/lipid sample. This mixture was split in three equal portions and each portion irradiated for 5 minutes as described in general procedure (F) using LED light at either 365 (A), 405 (B) or 455 nm (C). A \({ }^{19} \mathrm{~F}\) ss-NMR spectrum was run immediately after each sample have been irradiated (fig. S15). No change upon azobenzene photoswitching is observed in the broad singlet at \(\delta-234 \mathrm{ppm}\), confirming that the achiral, but helical environment in which the FibTEG reporter is located is in fast exchange. The following table reports the experimental conditions for each experiment:

\(3 g\)
\begin{tabular}{cccccc}
sample & \begin{tabular}{c}
wavelength \\
\((\mathrm{nm})\)
\end{tabular} & \begin{tabular}{c}
time \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{c}
output power \\
\((\mathrm{mW})\)
\end{tabular} & \begin{tabular}{c}
number of \\
scans (NS)
\end{tabular} & E/Z integral ratio \\
A & 365 & 5 & 360 & 502 & \(68 / 32\) \\
B & 405 & 5 & 760 & 756 & \(63 / 37\) \\
C & 455 & 5 & 1020 & 325 & \(16 / 84\) \\
\hline
\end{tabular}

Fig. S15. \({ }^{19} \mathrm{~F}\) ss-NMR spectra of \(\mathbf{3 g}\) (\(5 \%\) in DOPC) after exposure to different irradiation wavelengths. Each spectrum was acquired at 293 K (10 KHz spinning rate) and processed with 20 Hz line broadening.

\section*{Additional photoswitching experiments}

Fig. S16. Reversible photoswitching of 4 in DOPC

\({ }^{19} \mathrm{~F}\) ss-NMR spectra showing the reversible behavior of photoswitchable foldamer \(\mathbf{4}\) (\(1 \%\) in DOPC) during different illumination cycles (A-E). Each spectrum has been processed using 20 Hz line broadening. Irradiation times and \(E / Z\) ratios based on the integration of the azobenzene \({ }^{19} \mathrm{~F}\) signals (\(\delta-125\) to -135 ppm) are reported and summarized in the graph below:

Fig. S17. Photoswitching of Phe-4 in DOPC

Conformational switching of rhodopsin mimic Phe-4 by irradiation in a DOPC phospholipid bilayer (\(10 \% \mathrm{w} / \mathrm{w}\)), showing portions of the \({ }^{19} \mathrm{~F}\) ssNMR spectra corresponding to the N -terminal fluoroarene substituent (\(\delta-125\) to -135 ppm , left) and the C terminal FibTEG reporter (\(\delta-230\) to -235 ppm , right; the different \(\Delta \delta\) separations observed at each irradiation stage are reported). (A) E-rich sample (96:4 E/Z azobenzene ratio); (B) same sample after 5 min irradiation at \(365 \mathrm{~nm}(13: 87 \mathrm{E} / \mathrm{Z}\) ratio) and (C) after subsequent 5 min irradiation at 455 nm (\(67: 33 \mathrm{E} / \mathrm{Z}\) ratio).

Fig. S18. Photoswitching of Phe-5 in DOPC

Conformational switching of rhodopsin mimic Phe-5 by irradiation in a DOPC phospholipid bilayer (\(5 \% \mathrm{w} / \mathrm{w}\)), showing portions of the \({ }^{19} \mathrm{~F}\) ssNMR spectra corresponding to the N -terminal fluoroarene substituent (\(\delta-125\) to -135 ppm , left) and the C terminal FibTEG reporter (\(\delta-230\) to -235 ppm , right; the different \(\Delta \delta\) separations observed at each irradiation stage are reported). (A) \(E\)-rich sample (\(95: 5 E / Z\) azobenzene ratio); (B) same sample after 5 min irradiation at \(365 \mathrm{~nm}(16: 84 \mathrm{E} / \mathrm{Z}\) ratio) and \((\mathbf{C})\) after subsequent 5 min irradiation at 455 nm (69:31 \(\mathrm{E} / \mathrm{Z}\) ratio).

Fig. S19. Photoswitching and \(Z \rightarrow E\) thermal relaxation of \(\mathbf{4}\) in DOPC

\({ }^{9} \mathrm{~F}\) ss-NMR spectra showing the irradiation (A-D) and \(Z \rightarrow E\) thermal relaxation (D-J) of foldamer \(\mathbf{4}\) (\(10 \%\) in DOPC). The graph on the right reports the variation of the integral ratio of the azobenzene \({ }^{19} \mathrm{~F}\) peaks (\(\delta-126\) to -133 ppm) upon 365 nm irradiation and during back-switching in the dark. Fitting of the thermal relaxation data gives the following parameters:
\(k_{Z \rightarrow E}=0.01522 \pm 0.00343 \mathrm{~h}^{-1}\)
\(t_{1 / 2}=\ln (2) / k=45.5 \pm 10.2 \mathrm{~h}^{-1} \quad\) [cfr. thermal relaxation in \(\mathrm{CD}_{3} \mathrm{OD}\) solution of compound \(\mathbf{1 d}\) (fig. S5): \(t_{1 / 2}=64.0 \mathrm{~h}\)]

Fig. S20. Photoswitching and \(Z \rightarrow E\) thermal relaxation of \(\mathbf{5}\) in DOPC
H \(\qquad\)
H

G \(\qquad\)
G \(\qquad\)
F \(\qquad\)

D ~
D \(\qquad\)
C

c \(\qquad\)

\({ }^{19} \mathrm{~F}\) ss-NMR spectra showing the irradiation \((\mathbf{A}-\mathbf{B})\) and \(Z \rightarrow E\) thermal relaxation \((\mathbf{B}-\mathbf{H})\) of foldamer 5 (\(10 \%\) in DOPC). The graph on the right reports the variation of the integral ratio of the azobenzene \({ }^{19} \mathrm{~F}\) peaks (\(\delta-126\) to -133 ppm) upon 365 nm irradiation and during back-switching in the dark. Fitting of the thermal relaxation data gives the following parameters:
\(k_{Z \rightarrow E}=0.01615 \pm 0.00221 \mathrm{~h}^{-1}\)
\(t_{1 / 2}=\ln (2) / k=42.8 \pm 5.9 \mathrm{~h}^{-1}\)

Fig. S20. Photoswitching and \(Z \rightarrow E\) thermal relaxation of \(\mathbf{5}\) in DOPC
H \(\qquad\)
H

G \(\qquad\)
G \(\qquad\)
F \(\qquad\)

D ~
D \(\qquad\)
C

c \(\qquad\)

\({ }^{19} \mathrm{~F}\) ss-NMR spectra showing the irradiation \((\mathbf{A}-\mathbf{B})\) and \(Z \rightarrow E\) thermal relaxation \((\mathbf{B}-\mathbf{H})\) of foldamer 5 (\(10 \%\) in DOPC). The graph on the right reports the variation of the integral ratio of the azobenzene \({ }^{19} \mathrm{~F}\) peaks (\(\delta-126\) to -133 ppm) upon 365 nm irradiation and during back-switching in the dark. Fitting of the thermal relaxation data gives the following parameters:
\(k_{Z \rightarrow E}=0.01615 \pm 0.00221 \mathrm{~h}^{-1}\)
\(t_{1 / 2}=\ln (2) / k=42.8 \pm 5.9 \mathrm{~h}^{-1}\)

\section*{X-ray data: compound 2}

Full X-ray data deposited with the CCDC: Deposition number 1415763
Table S3. Crystal data and structure refinement for compound 2.
\begin{tabular}{|c|c|}
\hline Identification code & s4224ma \\
\hline Empirical formula & C39 H56 N10 O9 \\
\hline Formula weight & 808.94 \\
\hline Temperature & 100(2) K \\
\hline Wavelength & 1.54178 £ \\
\hline Crystal system & Orthorhombic \\
\hline Space group & P2(1)2(1)2(1) \\
\hline \multirow[t]{3}{*}{Unit cell dimensions} & \(\mathrm{a}=9.2058(2) \AA \quad \alpha=90^{\circ}\). \\
\hline & \(b=14.2974(3) \AA \quad \beta=90^{\circ}\). \\
\hline & \(\mathrm{c}=32.2718(7) \AA \quad \gamma=90^{\circ}\). \\
\hline Volume & 4247.58(16) \(\AA^{3}\) \\
\hline Z & 4 \\
\hline Density (calculated) & \(1.265 \mathrm{Mg} / \mathrm{m}^{3}\) \\
\hline Absorption coefficient & \(0.754 \mathrm{~mm}^{-1}\) \\
\hline F(000) & 1728 \\
\hline Crystal size & \(0.29 \times 0.12 \times 0.08 \mathrm{~mm}^{3}\) \\
\hline Theta range for data collection & 2.74 to \(72.09^{\circ}\). \\
\hline Index ranges & \(-10<=\mathrm{h}<=11,-12<=\mathrm{k}<=16,-36<=\mathrm{l}<=38\) \\
\hline Reflections collected & 18026 \\
\hline Independent reflections & \(7847[\mathrm{R}(\mathrm{int})=0.0292]\) \\
\hline Completeness to theta \(=67.00^{\circ}\) & 97.8 \% \\
\hline Absorption correction & Semi-empirical from equivalents \\
\hline Max. and min. transmission & 0.9421 and 0.84334 \\
\hline Refinement method & Full-matrix least-squares on \(\mathrm{F}^{2}\) \\
\hline Data / restraints / parameters & 7847 / 0 / 535 \\
\hline Goodness-of-fit on \(\mathrm{F}^{2}\) & 1.017 \\
\hline Final R indices [\(1>2 \operatorname{sigma}(\mathrm{I})\)] & \(\mathrm{R} 1=0.0309, \mathrm{wR} 2=0.0753\) \\
\hline R indices (all data) & \(\mathrm{R} 1=0.0329, \mathrm{wR} 2=0.0762\) \\
\hline Absolute structure parameter & 0.02(11) \\
\hline Largest diff. peak and hole & 0.190 and -0.191 e. \(\AA^{-3}\) \\
\hline
\end{tabular}

Table S4. Atomic coordinates (x \(\left.10^{4}\right)\) and equivalent isotropic displacement parameters \(\left(\AA^{2} \mathrm{x}\right.\) \(10^{3}\)) for compound 2. \(\mathrm{U}(\mathrm{eq})\) is defined as one third of the trace of the orthogonalized \(\mathrm{U}^{\mathrm{ij}}\) tensor.
\begin{tabular}{|c|c|c|c|c|}
\hline & X & y & Z & \(\mathrm{U}(\mathrm{eq})\) \\
\hline C(1) & 8845(3) & 12798(2) & 9281(1) & 58(1) \\
\hline C(2) & 8845(2) & 13671(1) & 8652(1) & 24(1) \\
\hline C(3) & 7564(2) & 13267(1) & 8515(1) & 23(1) \\
\hline C(4) & 6945(2) & 13595(1) & 8146(1) & 21(1) \\
\hline C(5) & 7596(2) & 14310(1) & 7918(1) & 25(1) \\
\hline C(6) & 8876(2) & 14707(1) & 8064(1) & 29(1) \\
\hline C(7) & 9499(2) & 14396(1) & 8427(1) & 27(1) \\
\hline C(8) & 3665(2) & 12308(1) & 8015(1) & 19(1) \\
\hline C(9) & 3202(2) & 11366(1) & 8021(1) & 18(1) \\
\hline C(10) & 1773(2) & 11168(1) & 7907(1) & 23(1) \\
\hline C(11) & 809(2) & 11873(1) & 7796(1) & 27(1) \\
\hline C(12) & 1270(2) & 12798(1) & 7798(1) & 27(1) \\
\hline C(13) & 2680(2) & 13012(1) & 7908(1) & 23(1) \\
\hline C(14) & 4115(2) & 10527(1) & 8131(1) & 17(1) \\
\hline C(15) & 6379(2) & 9904(1) & 8424(1) & 16(1) \\
\hline C(16) & 7662(2) & 10350(1) & 8653(1) & 22(1) \\
\hline C(17) & 6893(2) & 9312(1) & 8060(1) & 20(1) \\
\hline C(18) & 5523(2) & 9296(1) & 8737(1) & 15(1) \\
\hline C(19) & 3799(2) & 9263(1) & 9309(1) & 16(1) \\
\hline C(20) & 2844(2) & 9971(1) & 9536(1) & 25(1) \\
\hline C(21) & 2861(2) & 8467(1) & 9141(1) & 16(1) \\
\hline C(22) & 1229(2) & 7924(1) & 8584(1) & 19(1) \\
\hline C(23) & 767(2) & 8303(1) & 8160(1) & 26(1) \\
\hline C(24) & -107(2) & 7736(1) & 8851(1) & 27(1) \\
\hline C(25) & 2101(2) & 7012(1) & 8517(1) & 19(1) \\
\hline C(26) & 4379(2) & 6340(1) & 8241(1) & 21(1) \\
\hline C(27) & 5781(2) & 6742(1) & 8056(1) & 24(1) \\
\hline C(28) & 3685(2) & 5657(1) & 7935(1) & 27(1) \\
\hline \(\mathrm{C}(29)\) & 4762(2) & 5843(1) & 8653(1) & 16(1) \\
\hline C(30) & 5896(2) & 6088(1) & 9340(1) & 18(1) \\
\hline C(31) & 6193(2) & 6953(1) & 9611(1) & 23(1) \\
\hline C(32) & 7299(2) & 5562(1) & 9242(1) & 25(1) \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
\(\mathrm{C}(33)\) & \(4849(2)\) & \(5446(1)\) & \(9580(1)\) & \(14(1)\) \\
\(\mathrm{C}(34)\) & \(2318(2)\) & \(5120(1)\) & \(9772(1)\) & \(18(1)\) \\
\(\mathrm{C}(35)\) & \(843(2)\) & \(5495(1)\) & \(9628(1)\) & \(25(1)\) \\
\(\mathrm{C}(36)\) & \(2465(2)\) & \(5202(1)\) & \(10242(1)\) & \(23(1)\) \\
\(\mathrm{C}(37)\) & \(2389(2)\) & \(4081(1)\) & \(9642(1)\) & \(18(1)\) \\
\(\mathrm{C}(38)\) & \(3116(2)\) & \(2958(1)\) & \(9115(1)\) & \(27(1)\) \\
\(\mathrm{C}(39)\) & \(4419(2)\) & \(2418(1)\) & \(9274(1)\) & \(27(1)\) \\
\(\mathrm{N}(1)\) & \(5579(2)\) & \(13284(1)\) & \(7986(1)\) & \(22(1)\) \\
\(\mathrm{N}(2)\) & \(5102(2)\) & \(12540(1)\) & \(8147(1)\) & \(19(1)\) \\
\(\mathrm{N}(3)\) & \(5449(1)\) & \(10673(1)\) & \(8278(1)\) & \(17(1)\) \\
\(\mathrm{N}(4)\) & \(4604(1)\) & \(9748(1)\) & \(8986(1)\) & \(16(1)\) \\
\(\mathrm{N}(5)\) & \(2180(1)\) & \(8630(1)\) & \(8777(1)\) & \(17(1)\) \\
\(\mathrm{N}(6)\) & \(3401(2)\) & \(7126(1)\) & \(8328(1)\) & \(18(1)\) \\
\(\mathrm{N}(7)\) & \(5216(1)\) & \(6419(1)\) & \(8955(1)\) & \(16(1)\) \\
\(\mathrm{N}(8)\) & \(3437(1)\) & \(5664(1)\) & \(9557(1)\) & \(15(1)\) \\
\(\mathrm{N}(9)\) & \(2969(1)\) & \(3901(1)\) & \(9269(1)\) & \(18(1)\) \\
\(\mathrm{N}(10)\) & \(5158(2)\) & \(2753(1)\) & \(9591(1)\) & \(27(1)\) \\
\(\mathrm{O}(1)\) & \(9548(1)\) & \(13437(1)\) & \(9008(1)\) & \(34(1)\) \\
\(\mathrm{O}(2)\) & \(3601(1)\) & \(9731(1)\) & \(8093(1)\) & \(20(1)\) \\
\(\mathrm{O}(3)\) & \(5724(1)\) & \(8442(1)\) & \(8756(1)\) & \(18(1)\) \\
\(\mathrm{O}(4)\) & \(2693(1)\) & \(7748(1)\) & \(9344(1)\) & \(20(1)\) \\
\(\mathrm{O}(5)\) & \(1612(1)\) & \(6247(1)\) & \(8613(1)\) & \(26(1)\) \\
\(\mathrm{O}(6)\) & \(4696(1)\) & \(4988(1)\) & \(8691(1)\) & \(21(1)\) \\
\(\mathrm{O}(7)\) & \(4708(1)\) & \(4780(1)\) & \(9783(1)\) & \(18(1)\) \\
\(\mathrm{O}(8)\) & \(3469(1)\) & \(9866(1)\) & \(27(1)\) \\
\(\mathrm{O}(9)\) & \(1664(1)\) & \(9104(1)\) & \(42(1)\) \\
\hline
\end{tabular}

Table S5. Bond lengths \([\AA]\) and angles [\(\left.{ }^{\circ}\right]\) for compound 2.
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(1)-\mathrm{O}(1)\) & 1.424(2) \\
\hline \(\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(2)-\mathrm{O}(1)\) & 1.361(2) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(3)\) & 1.385(2) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(7)\) & 1.401(2) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)\) & 1.400(2) \\
\hline \(\mathrm{C}(3)-\mathrm{H}(3)\) & 0.9500 \\
\hline \(\mathrm{C}(4)-\mathrm{C}(5)\) & 1.396(2) \\
\hline \(\mathrm{C}(4)-\mathrm{N}(1)\) & 1.431(2) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(6)\) & 1.390(3) \\
\hline \(\mathrm{C}(5)-\mathrm{H}(5)\) & 0.9500 \\
\hline \(\mathrm{C}(6)-\mathrm{C}(7)\) & 1.380(3) \\
\hline \(\mathrm{C}(6)-\mathrm{H}(6)\) & 0.9500 \\
\hline \(\mathrm{C}(7)-\mathrm{H}(7)\) & 0.9500 \\
\hline \(\mathrm{C}(8)-\mathrm{C}(13)\) & 1.398(2) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(9)\) & 1.412(2) \\
\hline \(\mathrm{C}(8)-\mathrm{N}(2)\) & 1.429(2) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(10)\) & 1.395(2) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(14)\) & 1.508(2) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(11)\) & 1.390(2) \\
\hline \(\mathrm{C}(10)-\mathrm{H}(10)\) & 0.9500 \\
\hline \(\mathrm{C}(11)-\mathrm{C}(12)\) & 1.388(3) \\
\hline \(\mathrm{C}(11)-\mathrm{H}(11)\) & 0.9500 \\
\hline \(\mathrm{C}(12)-\mathrm{C}(13)\) & 1.380(3) \\
\hline \(\mathrm{C}(12)-\mathrm{H}(12)\) & 0.9500 \\
\hline \(\mathrm{C}(13)-\mathrm{H}(13)\) & 0.9500 \\
\hline \(\mathrm{C}(14)-\mathrm{O}(2)\) & 1.2386(19) \\
\hline \(\mathrm{C}(14)-\mathrm{N}(3)\) & 1.333(2) \\
\hline \(\mathrm{C}(15)-\mathrm{N}(3)\) & 1.4704(19) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(17)\) & 1.523(2) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(16)\) & 1.533(2) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(18)\) & 1.548(2) \\
\hline \(\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})\) & 0.9800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(18)-\mathrm{O}(3)\) & 1.2362(19) \\
\hline \(\mathrm{C}(18)-\mathrm{N}(4)\) & 1.334(2) \\
\hline \(\mathrm{C}(19)-\mathrm{N}(4)\) & 1.4561(19) \\
\hline \(\mathrm{C}(19)-\mathrm{C}(20)\) & 1.526(2) \\
\hline \(\mathrm{C}(19)\)-C(21) & 1.529(2) \\
\hline \(\mathrm{C}(19)-\mathrm{H}(19)\) & 1.0000 \\
\hline \(\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(21)-\mathrm{O}(4)\) & 1.2292(19) \\
\hline \(\mathrm{C}(21)-\mathrm{N}(5)\) & 1.350(2) \\
\hline \(\mathrm{C}(22)-\mathrm{N}(5)\) & 1.4743(19) \\
\hline \(\mathrm{C}(22)\)-C(24) & 1.526(2) \\
\hline \(\mathrm{C}(22)-\mathrm{C}(23)\) & 1.532(2) \\
\hline \(\mathrm{C}(22)\)-C(25) & 1.547(2) \\
\hline \(\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(25)-\mathrm{O}(5)\) & 1.222(2) \\
\hline \(\mathrm{C}(25)-\mathrm{N}(6)\) & 1.353(2) \\
\hline \(\mathrm{C}(26)-\mathrm{N}(6)\) & 1.467(2) \\
\hline \(\mathrm{C}(26)\)-C(28) & 1.530(2) \\
\hline \(\mathrm{C}(26)\)-C(27) & 1.534(2) \\
\hline \(\mathrm{C}(26)-\mathrm{C}(29)\) & 1.547(2) \\
\hline \(\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})\) & 0.9800 \\
\hline \(\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(29)-\mathrm{O}(6)\) & \(1.2305(19)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(29)\) - \(\mathrm{N}(7)\) & 1.343(2) \\
\hline \(\mathrm{C}(30)-\mathrm{N}(7)\) & 1.469(2) \\
\hline \(\mathrm{C}(30)-\mathrm{C}(32)\) & 1.527(2) \\
\hline C(30)-C(31) & 1.539(2) \\
\hline \(\mathrm{C}(30)-\mathrm{C}(33)\) & 1.540(2) \\
\hline C(31)-H(31A) & 0.9800 \\
\hline \(\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})\) & 0.9800 \\
\hline \(\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})\) & 0.9800 \\
\hline C(32)-H(32B) & 0.9800 \\
\hline \(\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(33)-\mathrm{O}(7)\) & 1.2311(18) \\
\hline \(\mathrm{C}(33)-\mathrm{N}(8)\) & 1.339(2) \\
\hline \(\mathrm{C}(34)\)-N(8) & 1.4659(19) \\
\hline C(34)-C(36) & 1.528(2) \\
\hline C(34)-C(35) & 1.532(2) \\
\hline C(34)-C(37) & 1.545(2) \\
\hline \(\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})\) & 0.9800 \\
\hline C(35)-H(35B) & 0.9800 \\
\hline \(\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})\) & 0.9800 \\
\hline \(\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})\) & 0.9800 \\
\hline C(36)-H(36B) & 0.9800 \\
\hline C(36)-H(36C) & 0.9800 \\
\hline \(\mathrm{C}(37)-\mathrm{O}(8)\) & 1.2276(19) \\
\hline \(\mathrm{C}(37)-\mathrm{N}(9)\) & 1.340(2) \\
\hline \(\mathrm{C}(38)-\mathrm{N}(9)\) & 1.444(2) \\
\hline \(\mathrm{C}(38)-\mathrm{C}(39)\) & 1.516(3) \\
\hline \(\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})\) & 0.9900 \\
\hline \(\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})\) & 0.9900 \\
\hline \(\mathrm{C}(39)-\mathrm{O}(9)\) & 1.240(2) \\
\hline \(\mathrm{C}(39)-\mathrm{N}(10)\) & 1.319(2) \\
\hline \(\mathrm{N}(1)-\mathrm{N}(2)\) & 1.2627(19) \\
\hline \(\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})\) & 0.8800 \\
\hline \(\mathrm{N}(4)-\mathrm{H}(4)\) & 0.8800 \\
\hline \(\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A})\) & 0.8800 \\
\hline \(\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A})\) & 0.8800 \\
\hline \(\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A})\) & 0.8800 \\
\hline \(\mathrm{N}(8)-\mathrm{H}(8)\) & 0.8800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{N}(9)-\mathrm{H}(9)\) & 0.8800 \\
\hline \(\mathrm{N}(10)-\mathrm{H}(10 \mathrm{~A})\) & 0.8800 \\
\hline \(\mathrm{N}(10)-\mathrm{H}(10 \mathrm{~B})\) & 0.8800 \\
\hline \(\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)\) & 124.84(16) \\
\hline \(\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(7)\) & 114.49(15) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)\) & 120.63(16) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)\) & 118.55(16) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)\) & 120.7 \\
\hline \(\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)\) & 120.7 \\
\hline \(\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)\) & 121.32(16) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)\) & 114.41(15) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)\) & 124.16(15) \\
\hline \(\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)\) & 118.88(16) \\
\hline \(\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)\) & 120.6 \\
\hline \(\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)\) & 120.6 \\
\hline \(\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)\) & 120.66(16) \\
\hline \(\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)\) & 119.7 \\
\hline \(\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)\) & 119.7 \\
\hline \(\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)\) & 119.94(16) \\
\hline \(\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)\) & 120.0 \\
\hline \(\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)\) & 120.0 \\
\hline \(\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)\) & 119.56(15) \\
\hline \(\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(2)\) & 120.46(14) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(2)\) & 119.82(14) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)\) & 118.36(15) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)\) & 115.25(14) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)\) & 126.38(14) \\
\hline \(\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)\) & 121.54(16) \\
\hline \(\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)\) & 119.2 \\
\hline \(\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)\) & 119.2 \\
\hline \(\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)\) & 119.55(16) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)\) & 120.2 \\
\hline \(\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)\) & 120.2 \\
\hline \(\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)\) & 120.03(16) \\
\hline \(\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)\) & 120.0 \\
\hline \(\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)\) & 120.0 \\
\hline \(\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)\) & 120.94(16) \\
\hline \(\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)\) & 119.5 \\
\hline \(\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13)\) & 119.5 \\
\hline \(\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{N}(3)\) & 122.07(14) \\
\hline \(\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{C}(9)\) & 119.65(14) \\
\hline \(\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(9)\) & 118.26(14) \\
\hline \(\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(17)\) & 110.45(12) \\
\hline \(\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(16)\) & 107.00(12) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)\) & 111.35(13) \\
\hline \(\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(18)\) & 109.43(12) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(18)\) & 110.39(12) \\
\hline \(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)\) & 108.12(12) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{N}(4)\) & 122.79(14) \\
\hline \(\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(15)\) & 120.84(13) \\
\hline \(\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(15)\) & 116.35(13) \\
\hline \(\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)\) & 108.70(12) \\
\hline \(\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(21)\) & 112.74(12) \\
\hline \(\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(21)\) & 109.81(13) \\
\hline \(\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{H}(19)\) & 108.5 \\
\hline \(\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)\) & 108.5 \\
\hline \(\mathrm{C}(21)-\mathrm{C}(19)-\mathrm{H}(19)\) & 108.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{N}(5)\) & 123.33(14) \\
\hline \(\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{C}(19)\) & 120.25(14) \\
\hline \(\mathrm{N}(5)-\mathrm{C}(21)-\mathrm{C}(19)\) & 116.30(13) \\
\hline \(\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{C}(24)\) & 111.08(14) \\
\hline \(\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{C}(23)\) & 107.52(12) \\
\hline \(\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(23)\) & 110.13(14) \\
\hline \(\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{C}(25)\) & 109.13(12) \\
\hline \(\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(25)\) & 110.41(13) \\
\hline \(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(25)\) & 108.49(14) \\
\hline \(\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{N}(6)\) & 123.24(15) \\
\hline \(\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{C}(22)\) & 121.84(15) \\
\hline \(\mathrm{N}(6)-\mathrm{C}(25)-\mathrm{C}(22)\) & 114.85(13) \\
\hline \(\mathrm{N}(6)-\mathrm{C}(26)-\mathrm{C}(28)\) & 110.92(14) \\
\hline \(\mathrm{N}(6)-\mathrm{C}(26)-\mathrm{C}(27)\) & 107.71(13) \\
\hline \(\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{C}(27)\) & 109.83(13) \\
\hline \(\mathrm{N}(6)-\mathrm{C}(26)-\mathrm{C}(29)\) & 109.10(12) \\
\hline \(\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{C}(29)\) & 110.88(13) \\
\hline \(\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(29)\) & 108.31(13) \\
\hline \(\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})\) & 109.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(6)-\mathrm{C}(29)-\mathrm{N}(7)\) & 123.50(14) \\
\hline \(\mathrm{O}(6)-\mathrm{C}(29)-\mathrm{C}(26)\) & 122.04(14) \\
\hline \(\mathrm{N}(7)-\mathrm{C}(29)-\mathrm{C}(26)\) & 114.42(13) \\
\hline \(\mathrm{N}(7)-\mathrm{C}(30)-\mathrm{C}(32)\) & 110.18(13) \\
\hline \(\mathrm{N}(7)-\mathrm{C}(30)-\mathrm{C}(31)\) & 107.28(13) \\
\hline \(\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(31)\) & 111.24(13) \\
\hline \(\mathrm{N}(7)-\mathrm{C}(30)-\mathrm{C}(33)\) & 110.49(12) \\
\hline \(\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(33)\) & 109.86(13) \\
\hline \(\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(33)\) & 107.75(13) \\
\hline \(\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(31 \mathrm{~B})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{C}(30)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(30)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(30)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(32 \mathrm{~B})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(7)-\mathrm{C}(33)-\mathrm{N}(8)\) & 122.90(14) \\
\hline \(\mathrm{O}(7)-\mathrm{C}(33)-\mathrm{C}(30)\) & 120.96(13) \\
\hline \(\mathrm{N}(8)-\mathrm{C}(33)-\mathrm{C}(30)\) & 116.14(13) \\
\hline \(\mathrm{N}(8)-\mathrm{C}(34)-\mathrm{C}(36)\) & 111.56(13) \\
\hline \(\mathrm{N}(8)-\mathrm{C}(34)-\mathrm{C}(35)\) & 107.07(12) \\
\hline \(\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(35)\) & 110.66(13) \\
\hline \(\mathrm{N}(8)-\mathrm{C}(34)-\mathrm{C}(37)\) & 110.61(12) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(37)\) & 109.87(13) \\
\hline \(\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(37)\) & 106.94(13) \\
\hline \(\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(35 \mathrm{~B})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{C}(34)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})\) & 109.5 \\
\hline \(\mathrm{C}(34)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})\) & 109.5 \\
\hline \(\mathrm{C}(34)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{H}(36 \mathrm{~B})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})\) & 109.5 \\
\hline \(\mathrm{O}(8)-\mathrm{C}(37)-\mathrm{N}(9)\) & 122.90(15) \\
\hline \(\mathrm{O}(8)-\mathrm{C}(37)-\mathrm{C}(34)\) & 120.60(14) \\
\hline \(\mathrm{N}(9)-\mathrm{C}(37)-\mathrm{C}(34)\) & 116.44(13) \\
\hline \(\mathrm{N}(9)-\mathrm{C}(38)-\mathrm{C}(39)\) & 115.65(14) \\
\hline \(\mathrm{N}(9)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})\) & 108.4 \\
\hline \(\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})\) & 108.4 \\
\hline \(\mathrm{N}(9)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})\) & 108.4 \\
\hline \(\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})\) & 108.4 \\
\hline \(\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})\) & 107.4 \\
\hline \(\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{N}(10)\) & 122.81(18) \\
\hline \(\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{C}(38)\) & 118.12(17) \\
\hline \(\mathrm{N}(10)-\mathrm{C}(39)-\mathrm{C}(38)\) & 119.05(15) \\
\hline \(\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(4)\) & 114.73(13) \\
\hline \(\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(8)\) & 113.25(13) \\
\hline \(\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(15)\) & 122.23(13) \\
\hline \(\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})\) & 118.9 \\
\hline \(\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})\) & 118.9 \\
\hline \(\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{C}(19)\) & 121.67(13) \\
\hline \(\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{H}(4)\) & 119.2 \\
\hline \(\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{H}(4)\) & 119.2 \\
\hline \(\mathrm{C}(21)-\mathrm{N}(5)-\mathrm{C}(22)\) & 121.71(12) \\
\hline \(\mathrm{C}(21)-\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A})\) & 119.1 \\
\hline \(\mathrm{C}(22)-\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A})\) & 119.1 \\
\hline \(\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{C}(26)\) & 122.44(13) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A})\) & 118.8 \\
\(\mathrm{C}(26)-\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A})\) & 118.8 \\
\(\mathrm{C}(29)-\mathrm{N}(7)-\mathrm{C}(30)\) & \(123.33(13)\) \\
\(\mathrm{C}(29)-\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A})\) & 118.3 \\
\(\mathrm{C}(30)-\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A})\) & 118.3 \\
\(\mathrm{C}(33)-\mathrm{N}(8)-\mathrm{C}(34)\) & \(122.13(13)\) \\
\(\mathrm{C}(33)-\mathrm{N}(8)-\mathrm{H}(8)\) & 118.9 \\
\(\mathrm{C}(34)-\mathrm{N}(8)-\mathrm{H}(8)\) & 118.9 \\
\(\mathrm{C}(37)-\mathrm{N}(9)-\mathrm{C}(38)\) & \(121.73(14)\) \\
\(\mathrm{C}(37)-\mathrm{N}(9)-\mathrm{H}(9)\) & 119.1 \\
\(\mathrm{C}(38)-\mathrm{N}(9)-\mathrm{H}(9)\) & 119.1 \\
\(\mathrm{C}(39)-\mathrm{N}(10)-\mathrm{H}(10 \mathrm{~A})\) & 120.0 \\
\(\mathrm{C}(39)-\mathrm{N}(10)-\mathrm{H}(10 \mathrm{~B})\) & 120.0 \\
\(\mathrm{H}(10 \mathrm{~A})-\mathrm{N}(10)-\mathrm{H}(10 \mathrm{~B})\) & 120.0 \\
\(\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)\) & \(117.65(15)\)
\end{tabular}

Symmetry transformations used to generate equivalent atoms:

Table S6. Anisotropic displacement parameters \(\left(\AA^{2} \times 10^{3}\right)\) for compound 2. The anisotropic displacement factor exponent takes the form: \(-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{U}^{11}\) & \(\mathrm{U}^{22}\) & \(\mathrm{U}^{33}\) & \(\mathrm{U}^{23}\) & \(\mathrm{U}^{13}\) & \(\mathrm{U}^{12}\) \\
\hline C(1) & 51(1) & 83(2) & 40(1) & 30(1) & -25(1) & -37(1) \\
\hline C(2) & 24(1) & 24(1) & 24(1) & -4(1) & 1(1) & \(0(1)\) \\
\hline C(3) & 28(1) & 19(1) & 23(1) & 1(1) & 3(1) & -3(1) \\
\hline C(4) & 26(1) & 14(1) & 24(1) & -1(1) & 2(1) & 1(1) \\
\hline C(5) & 28(1) & 19(1) & 27(1) & 4(1) & 4(1) & 4(1) \\
\hline C(6) & 29(1) & 20(1) & 38(1) & 2(1) & 7(1) & -3(1) \\
\hline C(7) & 22(1) & 22(1) & 36(1) & -7(1) & 4(1) & -3(1) \\
\hline C(8) & 25(1) & 18(1) & 12(1) & 1(1) & -1(1) & 2(1) \\
\hline C(9) & 23(1) & 19(1) & 12(1) & 1(1) & 1(1) & 2(1) \\
\hline \(\mathrm{C}(10)\) & 25(1) & 24(1) & 20(1) & 1(1) & 1(1) & -1(1) \\
\hline \(\mathrm{C}(11)\) & 21(1) & 34(1) & 26(1) & -2(1) & -3(1) & 3(1) \\
\hline \(\mathrm{C}(12)\) & 30(1) & 29(1) & 22(1) & -1(1) & -4(1) & 12(1) \\
\hline C(13) & 30(1) & 20(1) & 18(1) & \(0(1)\) & -2(1) & 4(1) \\
\hline C(14) & 23(1) & 17(1) & 12(1) & 2(1) & 2(1) & -1(1) \\
\hline C(15) & 17(1) & 14(1) & 18(1) & 2(1) & 0(1) & 1(1) \\
\hline \(\mathrm{C}(16)\) & 22(1) & 18(1) & 25(1) & 2(1) & -1(1) & -3(1) \\
\hline C(17) & 25(1) & 18(1) & 18(1) & 3(1) & 3(1) & 1(1) \\
\hline C(18) & 16(1) & 15(1) & 14(1) & 0 (1) & -4(1) & -1(1) \\
\hline C(19) & 21(1) & 15(1) & 13(1) & \(0(1)\) & 1(1) & 1(1) \\
\hline C(20) & 30(1) & 22(1) & 22(1) & -3(1) & 6(1) & 3(1) \\
\hline C(21) & 14(1) & 17(1) & 17(1) & \(0(1)\) & 5(1) & 2(1) \\
\hline C(22) & 18(1) & 18(1) & 23(1) & 4(1) & -4(1) & -4(1) \\
\hline C(23) & 26(1) & 23(1) & 30(1) & 7(1) & -11(1) & -2(1) \\
\hline C(24) & 19(1) & 24(1) & 38(1) & 8(1) & \(0(1)\) & -1(1) \\
\hline C(25) & 23(1) & 19(1) & 16(1) & 1(1) & -6(1) & -4(1) \\
\hline C(26) & 29(1) & 16(1) & 17(1) & -1(1) & 4(1) & -1(1) \\
\hline C(27) & 34(1) & 19(1) & 19(1) & 0 (1) & 9(1) & -1(1) \\
\hline C(28) & 44(1) & 18(1) & 18(1) & -3(1) & -2(1) & -1(1) \\
\hline C(29) & 17(1) & 15(1) & 18(1) & 0 (1) & 4(1) & \(0(1)\) \\
\hline C(30) & 17(1) & 17(1) & 19(1) & 2(1) & -2(1) & -2(1) \\
\hline C(31) & 30(1) & 15(1) & 25(1) & 3(1) & -9(1) & -5(1) \\
\hline C(32) & 17(1) & 27(1) & 31(1) & 8(1) & 2(1) & 0 (1) \\
\hline C(33) & 19(1) & 12(1) & 12(1) & -3(1) & -1(1) & -2(1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline C(34) & 17(1) & 20(1) & 17(1) & 3(1) & 4(1) & 1(1) \\
\hline C(35) & 19(1) & 31(1) & 25(1) & 5(1) & 3(1) & 5(1) \\
\hline C(36) & 25(1) & 27(1) & 18(1) & \(0(1)\) & 4(1) & 2(1) \\
\hline C(37) & 15(1) & 21(1) & 18(1) & 3(1) & -3(1) & -4(1) \\
\hline C(38) & 43(1) & 17(1) & 22(1) & -4(1) & -2(1) & -7(1) \\
\hline C(39) & 42(1) & 16(1) & 22(1) & 1(1) & 10(1) & -2(1) \\
\hline N(1) & 28(1) & 16(1) & 21(1) & 2(1) & 2(1) & 1(1) \\
\hline N(2) & 24(1) & 15(1) & 18(1) & \(0(1)\) & \(0(1)\) & 1(1) \\
\hline N(3) & 21(1) & 10(1) & 19(1) & 2(1) & -1(1) & -1(1) \\
\hline N(4) & 21(1) & 10(1) & 15(1) & 0(1) & \(0(1)\) & \(0(1)\) \\
\hline N(5) & 20(1) & 13(1) & 18(1) & 3(1) & -1(1) & -2(1) \\
\hline N(6) & 26(1) & 12(1) & 17(1) & 2(1) & -1(1) & -2(1) \\
\hline N(7) & 21(1) & 10(1) & 18(1) & 1(1) & \(0(1)\) & \(0(1)\) \\
\hline N(8) & 18(1) & 13(1) & 15(1) & 2(1) & 1(1) & 1(1) \\
\hline N(9) & 23(1) & 14(1) & 18(1) & \(0(1)\) & -2(1) & -4(1) \\
\hline N(10) & 34(1) & 18(1) & 29(1) & 1(1) & 1(1) & 9(1) \\
\hline \(\mathrm{O}(1)\) & 29(1) & 42(1) & 30(1) & 4(1) & -6(1) & -12(1) \\
\hline \(\mathrm{O}(2)\) & 24(1) & 16(1) & 19(1) & 0(1) & -4(1) & -2(1) \\
\hline \(\mathrm{O}(3)\) & 23(1) & 11(1) & 21(1) & 1(1) & 3(1) & 2(1) \\
\hline O(4) & 22(1) & 17(1) & 21(1) & 4(1) & 0 (1) & \(0(1)\) \\
\hline \(\mathrm{O}(5)\) & 30(1) & 16(1) & 31(1) & 2(1) & 1(1) & -6(1) \\
\hline O(6) & 28(1) & 13(1) & 20(1) & -1(1) & 5(1) & \(0(1)\) \\
\hline \(\mathrm{O}(7)\) & 19(1) & 15(1) & 20(1) & 3(1) & -4(1) & \(0(1)\) \\
\hline \(\mathrm{O}(8)\) & 32(1) & 24(1) & 26(1) & \(6(1)\) & 4(1) & -9(1) \\
\hline O(9) & 72(1) & 16(1) & 39(1) & -6(1) & 14(1) & 3(1) \\
\hline
\end{tabular}

Table S7. Hydrogen coordinates (\(\times 10^{4}\)) and isotropic displacement parameters \(\left(\AA^{2} \times 10^{3}\right)\) for compound 2.
\begin{tabular}{|c|c|c|c|c|}
\hline & X & y & Z & \(\mathrm{U}(\mathrm{eq})\) \\
\hline \(\mathrm{H}(1 \mathrm{~A})\) & 8732 & 12192 & 9143 & 87 \\
\hline H(1B) & 7886 & 13043 & 9356 & 87 \\
\hline \(\mathrm{H}(1 \mathrm{C})\) & 9432 & 12719 & 9532 & 87 \\
\hline H(3) & 7115 & 12778 & 8668 & 28 \\
\hline H(5) & 7171 & 14522 & 7666 & 30 \\
\hline H(6) & 9326 & 15196 & 7912 & 35 \\
\hline H(7) & 10371 & 14674 & 8526 & 32 \\
\hline H(10) & 1451 & 10537 & 7905 & 28 \\
\hline H(11) & -159 & 11723 & 7718 & 32 \\
\hline H(12) & 615 & 13283 & 7724 & 32 \\
\hline H(13) & 2986 & 13646 & 7911 & 27 \\
\hline H(16A) & 8223 & 10737 & 8460 & 33 \\
\hline H(16B) & 8287 & 9858 & 8767 & 33 \\
\hline H(16C) & 7297 & 10741 & 8880 & 33 \\
\hline H(17A) & 6050 & 9084 & 7904 & 31 \\
\hline H(17B) & 7453 & 8778 & 8164 & 31 \\
\hline H(17C) & 7507 & 9692 & 7878 & 31 \\
\hline H(19) & 4509 & 8996 & 9512 & 20 \\
\hline H(20A) & 3456 & 10461 & 9656 & 37 \\
\hline H(20B) & 2305 & 9654 & 9756 & 37 \\
\hline H(20C) & 2159 & 10252 & 9339 & 37 \\
\hline H(23A) & 221 & 8886 & 8197 & 39 \\
\hline H(23B) & 153 & 7841 & 8020 & 39 \\
\hline H(23C) & 1633 & 8425 & 7991 & 39 \\
\hline H(24A) & 197 & 7469 & 9117 & 40 \\
\hline H(24B) & -749 & 7295 & 8708 & 40 \\
\hline H(24C) & -627 & 8324 & 8900 & 40 \\
\hline H(27A) & 5556 & 7069 & 7797 & 36 \\
\hline H(27B) & 6464 & 6232 & 8000 & 36 \\
\hline H(27C) & 6218 & 7181 & 8253 & 36 \\
\hline H(28A) & 2769 & 5423 & 8050 & 40 \\
\hline H(28B) & 4346 & 5131 & 7887 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline H(28C) & 3494 & 5979 & 7672 & 40 \\
\hline H(31A) & 6863 & 7373 & 9466 & 35 \\
\hline H(31B) & 6628 & 6755 & 9874 & 35 \\
\hline H(31C) & 5278 & 7280 & 9665 & 35 \\
\hline H(32A) & 7083 & 5030 & 9061 & 38 \\
\hline H(32B) & 7735 & 5336 & 9501 & 38 \\
\hline H(32C) & 7980 & 5984 & 9102 & 38 \\
\hline H(35A) & 739 & 6148 & 9714 & 37 \\
\hline H(35B) & 64 & 5120 & 9752 & 37 \\
\hline H(35C) & 782 & 5456 & 9325 & 37 \\
\hline H(36A) & 3416 & 4963 & 10328 & 35 \\
\hline H(36B) & 1697 & 4835 & 10376 & 35 \\
\hline H(36C) & 2375 & 5859 & 10323 & 35 \\
\hline H(38A) & 3173 & 2983 & 8809 & 33 \\
\hline H(38B) & 2226 & 2606 & 9188 & 33 \\
\hline H(3A) & 5786 & 11249 & 8287 & 20 \\
\hline H(4) & 4482 & 10354 & 8954 & 19 \\
\hline H(5A) & 2307 & 9171 & 8653 & 20 \\
\hline H(6A) & 3671 & 7693 & 8255 & 22 \\
\hline H(7A) & 5100 & 7025 & 8921 & 20 \\
\hline H(8) & 3172 & 6150 & 9407 & 18 \\
\hline H(9) & 3268 & 4370 & 9115 & 22 \\
\hline H(10A) & 5901 & 2439 & 9691 & 32 \\
\hline H(10B) & 4907 & 3291 & 9703 & 32 \\
\hline
\end{tabular}

Table S8. Torsion angles [\({ }^{\circ}\)] for compound 2.
\begin{tabular}{|c|c|}
\hline \(\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)\) & 178.46(16) \\
\hline \(\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)\) & 0.5(2) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)\) & 0.3(2) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)\) & -175.64(15) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)\) & -0.7(2) \\
\hline \(\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)\) & 175.56(15) \\
\hline \(\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)\) & 0.4(3) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)\) & 0.3(3) \\
\hline \(\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)\) & -178.97(16) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)\) & -0.8(3) \\
\hline \(\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)\) & 1.8(2) \\
\hline \(\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)\) & 177.23(14) \\
\hline \(\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)\) & -179.52(15) \\
\hline \(\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)\) & -4.1(2) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)\) & -0.9(2) \\
\hline \(\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)\) & -179.77(15) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)\) & -0.2(3) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)\) & 0.5(3) \\
\hline \(\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)\) & 0.4(3) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)\) & -1.5(2) \\
\hline \(\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)\) & -176.98(14) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{O}(2)\) & 4.3(2) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{O}(2)\) & -174.46(15) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{N}(3)\) & -174.19(14) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{N}(3)\) & 7.1(2) \\
\hline \(\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{O}(3)\) & 145.98(14) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{O}(3)\) & 24.22(19) \\
\hline \(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{O}(3)\) & -97.81(16) \\
\hline \(\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{N}(4)\) & -35.81(17) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{N}(4)\) & -157.57(13) \\
\hline \(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{N}(4)\) & 80.40(16) \\
\hline \(\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(21)-\mathrm{O}(4)\) & 144.66(14) \\
\hline \(\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(21)-\mathrm{O}(4)\) & -93.97(16) \\
\hline \(\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(21)-\mathrm{N}(5)\) & -39.30(18) \\
\hline \(\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(21)-\mathrm{N}(5)\) & 82.07(16) \\
\hline \(\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{O}(5)\) & 133.32(15) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{O}(5)\) & 11.0(2) \\
\hline \(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{O}(5)\) & -109.81(17) \\
\hline \(\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{N}(6)\) & -49.60(17) \\
\hline \(\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{N}(6)\) & -171.96(13) \\
\hline \(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{N}(6)\) & 67.27(17) \\
\hline \(\mathrm{N}(6)-\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{O}(6)\) & 132.23(15) \\
\hline \(\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{O}(6)\) & 9.8(2) \\
\hline \(\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{O}(6)\) & -110.80(17) \\
\hline \(\mathrm{N}(6)-\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{N}(7)\) & -50.02(18) \\
\hline \(\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{N}(7)\) & -172.46(14) \\
\hline \(\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{N}(7)\) & 66.96(17) \\
\hline \(\mathrm{N}(7)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(7)\) & 146.01(14) \\
\hline \(\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(7)\) & 24.25(19) \\
\hline \(\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(7)\) & -97.08(16) \\
\hline \(\mathrm{N}(7)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{N}(8)\) & -34.83(18) \\
\hline \(\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{N}(8)\) & -156.59(14) \\
\hline \(\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{N}(8)\) & 82.08(16) \\
\hline \(\mathrm{N}(8)-\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{O}(8)\) & 157.61(14) \\
\hline \(\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{O}(8)\) & 34.0(2) \\
\hline \(\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{O}(8)\) & -86.14(17) \\
\hline \(\mathrm{N}(8)-\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{N}(9)\) & -25.02(18) \\
\hline \(\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{N}(9)\) & -148.62(14) \\
\hline \(\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{N}(9)\) & 91.23(16) \\
\hline \(\mathrm{N}(9)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{O}(9)\) & -169.02(15) \\
\hline \(\mathrm{N}(9)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{N}(10)\) & 12.6(2) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{N}(2)\) & 168.68(14) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{N}(2)\) & -15.1(2) \\
\hline \(\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(8)\) & 173.18(13) \\
\hline \(\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{N}(1)\) & -30.5(2) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{N}(1)\) & 154.04(14) \\
\hline \(\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(15)\) & -3.2(2) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(15)\) & 175.26(13) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(14)\) & 70.85(17) \\
\hline \(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(14)\) & -167.79(13) \\
\hline \(\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(14)\) & -50.88(18) \\
\hline \(\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{C}(19)\) & 1.8(2) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{C}(19)\) & -176.38(13) \\
\hline \(\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(18)\) & -179.65(13) \\
\hline
\end{tabular}
\begin{tabular}{lc}
\(\mathrm{C}(21)-\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(18)\) & \(-57.65(18)\) \\
\(\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{N}(5)-\mathrm{C}(22)\) & \(-3.3(2)\) \\
\(\mathrm{C}(19)-\mathrm{C}(21)-\mathrm{N}(5)-\mathrm{C}(22)\) & \(-179.21(13)\) \\
\(\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{N}(5)-\mathrm{C}(21)\) & \(64.91(18)\) \\
\(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{N}(5)-\mathrm{C}(21)\) & \(-174.53(14)\) \\
\(\mathrm{C}(25)-\mathrm{C}(22)-\mathrm{N}(5)-\mathrm{C}(21)\) & \(-57.04(18)\) \\
\(\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{C}(26)\) & \(-3.3(2)\) \\
\(\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{C}(26)\) & \(179.70(13)\) \\
\(\mathrm{C}(28)-\mathrm{C}(26)-\mathrm{N}(6)-\mathrm{C}(25)\) & \(63.81(18)\) \\
\(\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{N}(6)-\mathrm{C}(25)\) & \(-175.97(13)\) \\
\(\mathrm{C}(29)-\mathrm{C}(26)-\mathrm{N}(6)-\mathrm{C}(25)\) & \(-58.61(18)\) \\
\(\mathrm{O}(6)-\mathrm{C}(29)-\mathrm{N}(7)-\mathrm{C}(30)\) & \(9.9(2)\) \\
\(\mathrm{C}(26)-\mathrm{C}(29)-\mathrm{N}(7)-\mathrm{C}(30)\) & \(-167.83(13)\) \\
\(\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{N}(7)-\mathrm{C}(29)\) & \(61.24(18)\) \\
\(\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{N}(7)-\mathrm{C}(29)\) & \(-177.54(14)\) \\
\(\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{N}(7)-\mathrm{C}(29)\) & \(-60.34(18)\) \\
\(\mathrm{O}(7)-\mathrm{C}(33)-\mathrm{N}(8)-\mathrm{C}(34)\) & \(-0.3(2)\) \\
\(\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{N}(8)-\mathrm{C}(34)\) & \(-179.49(13)\) \\
\(\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{N}(8)-\mathrm{C}(33)\) & \(66.14(18)\) \\
\(\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{N}(8)-\mathrm{C}(33)\) & \(-172.65(14)\) \\
\(\mathrm{C}(37)-\mathrm{C}(34)-\mathrm{N}(8)-\mathrm{C}(33)\) & \(-56.48(18)\) \\
\(\mathrm{O}(8)-\mathrm{C}(37)-\mathrm{N}(9)-\mathrm{C}(38)\) & \(-3.6(2)\) \\
\(\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{N}(9)-\mathrm{C}(38)\) & \(179.09(15)\) \\
\(\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{N}(9)-\mathrm{C}(37)\) & \(-6.6(3)\) \\
\(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)\) & \(171.5(2)\) \\
\(\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)\) & \\
& \\
\hline
\end{tabular}

Symmetry transformations used to generate equivalent atoms:

Table S9. Hydrogen bonds for compound 2 [\(\AA\) and \(\left.{ }^{\circ}\right]\).
\begin{tabular}{lcccc}
\hline \(\mathrm{D}-\mathrm{H} \ldots \mathrm{A}\) & \(\mathrm{d}(\mathrm{D}-\mathrm{H})\) & \(\mathrm{d}(\mathrm{H} \ldots \mathrm{A})\) & \(\mathrm{d}(\mathrm{D} \ldots \mathrm{A})\) & \(<(\mathrm{DHA})\) \\
\hline \(\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{N}(2)\) & & & & \\
\(\mathrm{N}(4)-\mathrm{H}(4) \ldots \mathrm{O}(9) \# 1\) & 0.88 & 2.00 & \(2.7218(18)\) & 138.1 \\
\(\mathrm{~N}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{O}(2)\) & 0.88 & 1.95 & \(2.7693(18)\) & 154.6 \\
\(\mathrm{~N}(7)-\mathrm{H}(7 \mathrm{~A}) \ldots \mathrm{O}(3)\) & 0.88 & 2.31 & \(3.0115(17)\) & 137.1 \\
\(\mathrm{~N}(8)-\mathrm{H}(8) \ldots \mathrm{O}(4)\) & 0.88 & 2.17 & \(2.9998(17)\) & 156.5 \\
\(\mathrm{~N}(9)-\mathrm{H}(9) \ldots \mathrm{O}(6)\) & 0.88 & 2.33 & \(3.1328(16)\) & 150.8 \\
\(\mathrm{~N}(10)-\mathrm{H}(10 \mathrm{~A}) \ldots \mathrm{O}(8) \# 2\) & 0.88 & 2.09 & \(2.9026(17)\) & 152.7 \\
\(\mathrm{~N}(10)-\mathrm{H}(10 \mathrm{~B}) \ldots \mathrm{O}(7)\) & 0.88 & 2.13 & \(2.9409(18)\) & 152.4 \\
& 0.88 & 2.18 & \(2.9663(18)\) & 149.2 \\
\hline
\end{tabular}

Symmetry transformations used to generate equivalent atoms:
\#1 \(\mathrm{x}, \mathrm{y}+1, \mathrm{z} \quad \# 2 \mathrm{x}+1 / 2,-\mathrm{y}+1 / 2,-\mathrm{z}+2\)

\section*{ORTEP image for crystal structure of 2}

Fig. S20. Thermal ellipsoids at \(50 \%\) probability.

2-(3-methoxyphenyl)-azobenzoyl-AibAlaAib \({ }_{4} \mathrm{GlyNH}_{2}\) (2)

\section*{References}
1. J. Broichhagen, D. Trauner, The in vivo chemistry of photoswitched tethered ligands. Curr. Op. Chem. Biol. 21, 121-127 (2014).
2. R. Göstl, A. Senf, S. Hecht, Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982-1996 (2014).
3. B. L. Feringa, W. E. Browne, Eds., Molecular Switches (Wiley-VCH, Weinheim, 2011) [second edition].
4. W. J. De Grip, K. J. Rothschild, in Molecular Mechanisms of Visual Transduction, D. G. Stavenga, W. J. De Grip, E. N. Pugh Jr., Eds. (Elsevier, Amsterdam, 2000), pp. \(1-54\).
5. R. Nygaard et al., The dynamic process of \(\beta_{2}\)-adrenergic receptor activation. Cell 152, 532-542 (2013).
6. K. Henzler-Wildman, D. Kern, Dynamic personalities of proteins. Nature 450, 964-972 (2007).
7. F. Hu, W. Luo, M. Hong, Mechanisms of proton conduction and gating by influenza M2 proton channels from solid-state NMR, Science 330, 505-508 (2010).
8. S. H. Gellman, Foldamers: a manifesto. Acc. Chem. Res. 31, 173-180 (1998).
9. C. Toniolo, E. Benedetti, The polypeptide \(3_{10}\)-helix. Trends Biochem. Sci. 16, 350-353 (1991).
10. C. Toniolo, H. Brückner, Eds., Peptaibiotics (Wiley-VCH, Weinheim, 2009).
11. H. M. D. Bandara, S. C. Burdette, Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809-1825 (2012).
12. M. De Poli et al., Engineering the structure of an N-terminal \(\beta\)-turn to maximize screwsense preference in achiral helical peptide chains. J. Org. Chem. 79, 4659-4675 (2014).
13. G. Shanmugan, P. L. Polavarapu, Structure of \(A \beta(25-35)\) peptide in different environments. Biophys. J. 87, 622-630 (2004).
14. S. J. Pike, V. Diemer, J. Raftery, S. J. Webb, J. Clayden, Designing foldamer-foldamer interactions in solution: the roles of helix length and terminus functionality in promoting the self-association of aminoisobutyric acid oligomers. Chem. Eur. J. 20, 15981-15990 (2014).
15. Electron-donating groups para to the azo linkage were avoided as they are known to promote fast thermal relaxation to the E isomer. See (16).
16. N. Nishimura et al., Thermal cis-to-trans isomerization of substituted azobenzenes. II. Substituents and solvent effects. Bull. Chem. Soc. Jpn. 49, 1381-1387 (1976).
17. B. A. F. Le Bailly, L. Byrne, V. Diemer, M. Foroozandeh, G. A. Morris, J. Clayden, Flaws in foldamers: conformational uniformity and signal decay in achiral helical peptide oligomers. Chem. Sci., 6, 2313-2322 (2015).
18. F. Gerson, E. Heilbronner, A. van Veen, B. M. Wepster, Elektronenstruktur und physikalisch-chemische eigenschaften von azo-verbindungen. Teil VIII: die konjugaten säuren des trans- und des cis-azobenzols. Helv. Chim. Acta 43, 1889-1898 (1960).
19. M. J. Duer, Introduction to Solid-State NMR Spectroscopy (Blackwell, Oxford, 2004).
20. D. Huster, Solid-state NMR spectroscopy to study protein-lipid interactions. Biochim. et Biophys. Acta (BBA) - Molecular and Cell Biology of Lipids 1841, 1146-1160 (2014).
21. E. Strandberg, A. S. Ulrich, NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn. Reson. A 23, 89-120 (2004).
22. M. Hong, Y. Zhang, F. Hu, Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63, 1-24 (2012).
23. E. D. Watt, C. M. Rienstra, Recent advances in solid-state nuclear magnetic resonance techniques to quantify biomolecular dynamics. Anal. Chem. 86, 58-64 (2014).
24. L. A. Baker, M. Baldus, Characterization of membrane protein function by solid-state NMR spectroscopy, Curr. Op. Struct. Biol. 27, 48-55 (2014).
25. C. Aisenbrey, N. Pendem, G. Guichard, B. Bechinger, Solid state NMR studies of oligourea foldamers: interaction of \({ }^{15} \mathrm{~N}\)-labelled amphiphilic helices with oriented lipid membranes. Org. Biomol. Chem. 10, 1440-1447 (2012).
26. A. V. Struts, U. Chawla, S. M. Perera, M. F. Brown, Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy. Methods Mol. Biol. 1271, 133-158 (2015).
27. T. Nagao et al., Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim Biophys Acta 1848, 2789-2798 (2015).
28. T. Polenova, R. Gupta, A. Goldbourt, Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal. Chem. 87, 5458-5469 (2015).
29. A. Ramamoorthy, J. Xu, 2D \({ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}\) RFDR and NOESY NMR experiments on a membrane-bound antimicrobial peptide under magic angle spinning. J. Phys. Chem. B 117, 6693-7000 (2013).
30. K. Koch, S. Afonin, M. Ieronimo, M. Berditsch, A. S. Ulrich, in Topics in current Chemistry, J. C. C. Chan, Ed., (Springer, Berlin, 2012), vol. 306, pp. 89-118.
31. Y. Su, W. F. DeGrado, M. Hong, Orientation, dynamics, and lipid interaction of an antimicrobial arylamide investigated by \({ }^{19} \mathrm{~F}\) and \({ }^{31} \mathrm{P}\) solid-state NMR spectroscopy. \(J\). Am. Chem. Soc. 132, 9197-9205 (2010).
32. J. K. Williams et al., Drug-induced conformational and dynamical changes of the S31N mutant of the influenza M2 proton channel investigated by solid-state NMR. J. Am. Chem. Soc. 135, 9885-9897 (2013).
33. N. Joh, T. Wang, M. Bhate, R. Acharya, Y. Wu, M. Grabe, M. Hong, G. Grigoryan, W.F. DeGrado, De novo design of a transmembrane \(\mathrm{Zn}(\mathrm{II})\) transporting four-helix bundle, Science 346, 1520-1524 (2014).
34. S. J. Pike et al., Diastereotopic fluorine substituents as \({ }^{19} \mathrm{~F}\) NMR probes of screw-sense preference in helical foldamers. Org. Biomol. Chem. 11, 3168-3176 (2013).
35. P. Wadhwani, E. Strandberg, in Fluorine in Medicinal Chemistry and Chemical Biology, I. Ojima, Ed., (Wiley, Chichester, 2009) pp. 463-494.
36. S. Mazeres, V. Schram, J.-F. Tocanne, A. Lopez, 7-nitrobenz-2-oxa-1,3-diazole-4-yllabeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys. J. 71, 327-335 (1996).
37. F. Szoka, D. Papahadjopoulos, Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann. Rev. Biophys. Bioeng. 9, 467-508 (1980).
38. D. E. Warschawski et al., Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim. Biophys. Acta, Biomembr. 1808, 1957-1974 (2011).
39. J. H. Davis, M. Auger, R. S. Hodges, High resolution \({ }^{1}\) H nuclear magnetic resonance of a transmembrane peptide. Biophys. J. 69, 1917-1932 (1995).
40. M. Bouchard, J. H. Davis, M. Auger, High-speed magic angle spinning solid-state \({ }^{1} \mathrm{H}\) nuclear magnetic resonance study of the conformation of gramicidin A in lipid bilayers. Biophys. J. 69, 1933-1938 (1995).
41. A. V. Filippov, A. M. Khakimov, B. V. Munavirov, \({ }^{31}\) P NMR Studies of phospholipids, Ann. Rep. NMR Spectr. 85, 27-92 (2015).
42. N. Kučerka, J. F. Nagle, J. N. Sachs, S. E. Feller, J. Pencer, A. Jackson, J. Katsaras, Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data, Biophys J. 95, 2356-2367 (2008).
43. R. A. Brown, T. Marcelli, M. De Poli, J. Solà, J. Clayden, Induction of unexpected lefthanded helicity by an N-terminal L-amino acid in an otherwise achiral peptide chain. Angew. Chem. Int. Ed. 51, 1395-1399 (2012).
44. H.-W. Choe et al., Crystal structure of metarhodopsin II. Nature 471, 651-655 (2011)
45. R. Gessmann, H. Brückner, K. Petratos, Three complete turns of a 310-helix at atomic resolution: the crystal structure of Z-(Aib) \({ }_{11}-\mathrm{OtBu}\). J. Pept. Sci. 9, 753-762 (2003).
46. R.-P. Hummel, C. Toniolo, G. Jung, Conformational transitions between enantiomeric 310 helices, Angew. Chemie Int. Ed. 26, 1150-1152 (1987).
47. B. A. F. Le Bailly, L. Byrne, J. Clayden, Refoldable foldamers: global conformational switching by deletion or insertion of a single hydrogen bond. Angew. Chemie Int. Ed. 55, 2132-2136 (2016).
48. G. M. Badger, R. J. Drewer, G. E. Lewis, Photochemical reactions of azo compounds. III. Photochemical cyclodehydrogenations of substituted azobenzenes. Austr. J. Chem. 17, 1036-1049 (1964).
49. T. W. M. Spence, G. Tennant, The chemistry of nitro-compounds. Part II. The scope and mechanism of the base-catalysed transformations of some \(\mathrm{N}, \mathrm{N}\)-disubstituted onitrobenzamides. J. Chem. Soc. Perkin Trans. 1, 97-102 (1972).
50. S. Keiper, J. S. Vyle, Reversible photocontrol of deoxyribozyme-catalyzed RNA cleavage under multiple-turnover conditions. Angew. Chem. Int. Ed. 45, 3306-3309 (2006).
51. A. J. Harvey, A. D. Abell, Azobenzene-containing, peptidyl \(\alpha\)-ketoesters as photobiological switches of \(\alpha\)-chymotrypsin. Tetrahedron 56, 9763 (2000).
52. F. Tibiletti et al., One-pot synthesis of meridianins and meridianin analogues via indolization of nitrosoarenes. Tetrahedron 66, 1280-1288 (2010).
53. A. Defoin, Simple preparation of nitroso benzenes and nitro benzenes by oxidation of anilines with \(\mathrm{H}_{2} \mathrm{O}_{2}\) catalysed with molybdenum salts. Synthesis 5, 706-710 (2004).
54. R. Jurok et al., Planar chiral flavinium salts: synthesis and evaluation of the effect of substituents on the catalytic efficiency in enantioselective sulfoxidation reactions. Eur. J. Org. Chem. 2013, 7724-7738 (2013).
55. K. Dan, N. Bose, S. Ghosh, Vesicular assembly and thermo-responsive vesicle-tomicelle transition from an amphiphilic random copolymer. Chem. Comm. 47, 12491-12493 (2011).
56. J. Clayden, A. Castellanos, J. Solà, G. A. Morris, Quantifying end-to-end conformational communication of chirality through an achiral peptide chain. Angew. Chem. Int. Ed. 48, 5962 (2009).
57. L. Byrne et al., Foldamer-mediated remote stereocontrol: \(>1,60\) asymmetric induction. Angew. Chem. Int. Ed. 53, 151 (2014).
58. J. Solà, G. A. Morris, J. Clayden, Measuring screw-sense preference in a helical oligomer by comparison of \({ }^{13} \mathrm{C}\) NMR signal separation at slow and fast exchange. \(J\). Am. Chem. Soc. 133, 3712 (2011).
59. W. M. Yau, W. C. Wimley, K. Gawrisch, S. H. White, The preference of tryptophan for membrane interfaces. Biochemistry 37, 14713 (1998).~~~~~

[^0]: ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.31,175.98,175.61,175.56,175.46,174.23,173.42$, 173.37, 169.50 (t, $J=4.3 \mathrm{~Hz}$), 82.26 (d, $J=174 \mathrm{~Hz}$), 72.05, 70.66, 70.57, 70.37, 69.41,

[^1]: $\begin{array}{llllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

