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Complex-order PID controller design
for enhanced blood-glucose regulation
in Type-I diabetes patients

Omer Saleem1 and Jamshed Iqbal2

Abstract
Type-I Diabetes (TID) is a chronic autoimmune disease that elevates the glucose levels in the patient’s bloodstream. This
paper formulates a fractional complex-order Proportional-Integral-Derivative (PID) control strategy for robust Blood
Glucose (BG) regulation in TID patients. The glucose-insulin dynamics in blood plasma are modeled via the Bergman-
Minimal-Model. The proposed control procedure employs the ubiquitous fractional order PID controller as the baseline
BG regulator. The design flexibility of the baseline regulator to effectively normalize the BG levels is enhanced by assign-
ing complex orders to the integral and differential operators instead. The resulting Complex Order PID (CO-PID) regu-
lator strengthens the controller’s robustness against abrupt variations in the patient’s BG levels caused by meal
disturbances or sensor noise. The controller parameters are numerically optimized offline. The aforesaid propositions
are justified by performing credible simulations in which the proposed controller is tasked to effectively track a set point
value of 80 mg/dL from an initial state of hyperglycemia under various disturbance factors. As compared to the FO-PID
controller, the CO-PID controller improves the reference tracking-error, transient recovery-time, and control expendi-
ture by 13.1%, 33.4%, and 28.1%, respectively. The simulation results validate the superior reference-tracking accuracy of
the proposed CO-PID controller for BG regulation.
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Introduction

Type-I Diabetes (TID) is a chronic organ-specific
disease that destroys the insulin-generating pancreatic
T-cells, thus, preventing them to generate sufficient
insulin in the blood plasma.1 This inevitably creates an
impairment in the generation and utilization of insulin,
which elevates the glucose levels in the patient’s blood-
stream.2 The insufficient insulin production, or hyper-
glycemia, in the patient’s body eventually leads to a
life-long reliance on exogenous insulin therapy for the
maintenance of normal glycemic control.3 The closed
loop glucose-insulin regulation systems, as illustrated in
Figure 1, are used by TID patients to normalize the
blood glucose (BG) levels. The closed-loop system con-
tains a sensor that continually measures the BG levels
and feeds them to a feedback control law that operates
the insulin pump to appropriately alter the insulin infu-
sion rate (IIR) in patient’s bloodstream.4 Designing
agile and robust glycemic control laws for TID patients
is a complex control engineering problem.

Extensive research has been conducted by scientists
and researchers to devise reliable BG regulation control

strategies to improve the external insulin administra-
tion process for the reliable glycemic control of TID
patients.5–7 The PID controller is a computationally
simple model-free control strategy that uses the sys-
tem’s state error dynamics to yield a reliable control
effort.8 However, it lacks the degree of freedom to
effectively compensate for the non-vanishing distur-
bances and random noise.9 Other notable control
schemes used for robust BG regulatory control are
sliding-mode controllers,10,11 linear quadratic regula-
tors,12 neural controllers,13 etc. Each of these control
schemes tends to make a trade-off between the control-
ler’s computational complexity, robustness, time optim-
ality, and control efficiency. Recently, a novel deep
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learned type-II fuzzy logic glycemic control approach
for type-I diabetes patients has been proposed in
Mosavi et al.14 The said scheme employs the fuzzy
immersion and invariance theorem to establish online
adaptive tuning rules for unknown parameters that
harness the controller’s ability to robustly compensate
for the estimations errors and regulate the BG levels in
a short time. However, the aforementioned scheme
requires specialized computational resources for its
execution.

The PID controller’s design flexibility is generally
improved by restructuring the control law with the aid
of fractional calculus.15 This objective is achieved by
replacing the PID controller’s integer-order integral
and differential operators with fractional-order coun-
terparts.16 The fractional-order controller optimizes the
control resource application to effectively reject exter-
nal disturbances, chaotic behavior, and intrinsic nonli-
nearities.17 Although, this scheme optimizes the
controller’s design flexibility and increases its degrees
of freedom to better address the exogenous distur-
bances; however, it also introduces two new parameters
in the control law to be pre-specified by the control
expert. The fractional order controllers have yielded
promising results in regulating the BG levels in TID
patients.18

The ability of the conventional fractional order con-
troller to address the nonlinear behavior of chaotic sys-
tems can be harnessed by extending it to complex
controllers.19 The complex controllers are realized by
replacing the integer-order integral and differential
operators with the complex-order counterparts of the
form z= a+ jb, where a and b are the real and imagin-
ary parts of the complex number z.20 The studies have
shown that the assignment of complex orders to the
aforementioned operators increases the controller’s
degrees of freedom, which enhances its resilience
against parametric uncertainties especially when the
gain and phase characteristics are notable.21 The
complex-order controllers are extensively used to solve
practical control engineering problems owing to their
aforementioned attributes.22

The main contribution of this article is the systema-
tic formulation and verification of the Complex-Order
PID (CO-PID) controller for the normalization and
robust regulation of BG levels in TID patients. The
Bergman Minimal Model (BMM) is commonly used to

dynamically model the glucose-insulin interaction in
patients.10,15 The FO-PID controller is used as the
baseline BG regulator, since it has been observed to
effectively normalize the BG levels in TID patients.15,17

This observation sets a clear motivation to systemati-
cally evolve the FO-PID controller into the proposed
CO-PID control law, an improved variant, to further
robustify the system’s glycemic disturbance attenuation
capacity. Moreover, the CO-PID scheme is relatively
more flexible to deal with inherently chaotic and com-
plex physical systems. Since the BG regulation problem
manifests the aforementioned properties; therefore, the
usage of CO-PID control law in this research is war-
ranted. The innovative contributions of this article are
thus presented as follows:

1. Formulation and calibration of a CO-PID con-
trol law for the BG regulation and normaliza-
tion. This is done by augmenting the integral
and differential operators of the baseline con-
troller with complex orders instead.

2. Verification of the proposed control law via
credible simulations to normalize the BG levels
of a patient (modeled via BMM) to a set point
of 80mg/dL from an initial state of hyperglyce-
mia, under the influence of meal disturbance
and sensor noise.

The formulation of the CO-PID controllers intro-
duces multiple parameters in the control law that signif-
icantly increase the controller’s degrees of freedom,
which in turn enables it to better address the parametric
disturbances and effectively normalize the BG levels.
All controller parameters are numerically selected off-
line by using a well-established numerical optimization
method. The CO-PID control law can be easily realized
by using modern embedded processors. The computa-
tional realization as well as the simulated testing of the
proposed BG regulator is done in the MATLAB
SIMULINK environment. The design and verification
of the proposed CO-PID glycemic control law, to opti-
mize the BG regulation in TID patients under exogen-
ous disturbances, has never been attempted previously
in the scientific literature available. Thus, this article
primarily focuses on this innovative idea.

The remaining paper is organized as follows. The
dynamics of the glucose-insulin regulation mechanism
and the associated baseline FO-PID control law are
discussed in Section 2. The formulation of the proposed
CO-PID control law is presented in Section 3. The
parameter tuning procedure is discussed in Section 4.
The simulation results are analyzed in Section 5.
Finally, the article is concluded in Section 6.

Glucose-insulin regulation mechanism

This article synthesizes an optimal insulin delivery sys-
tem for diabetics to effectively reduce their high BG

Figure 1. Closed-loop glucose-insulin regulation mechanism.
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levels.10 The BG levels within the patient’s body tend to
get disturbed by the excessive or insufficient infusion of
insulin, which adversely affects the patient’s health. The
closed-loop glucose-insulin regulation system is an
automated BG control scheme that administers the pre-
cise amount of glucose. The subcutaneous injection
technique imitates the biological insulin discharge, and
thus, it is regarded as the most secure method of admin-
istering an insulin dose to the body. The close-loop insu-
lin infusion technique is already depicted in Figure 1.
The system continually monitors the BG level during
insulin infusion via a dedicated sensor. The sensor
feedback is compared with the reference set-point. The
corresponding deviations in the desired and actual BG
levels are fed to a feedback controller that appropriately
manipulates the exogenous insulin infusion rate to nor-
malize the BG levels. The controller stops the infusion
when the actual and desired BG levels become equal.

Mathematical model for glucose-insulin dynamics

The BMM is the most commonly used mathematical
model for representing the kinetics of glucose-insulin
interaction.15 The model offers minimal biological com-
plexities which makes it a viable option for evaluating
the effectiveness of the artificial pancreas. The BMM
represents the dynamics of glucose and insulin via the
following set of first-order differential equations.23

_G tð Þ=2p1 G tð Þ � X tð Þ G tð Þ � Gbð Þ+ Gm tð Þ
V1

_X tð Þ=2p2 X tð Þ+ p3 I tð Þ

_I tð Þ=2n I tð Þ � Ibð Þ+ u tð Þ
V1

ð1Þ

where, G tð Þ is the BG concentration variable, X tð Þ is
the insulin concentration in a ‘‘remote’’ compartment
variable, I tð Þ is the blood-insulin concentration vari-
able, Gm tð Þ is the meal disturbance input variable, u tð Þ
is the manipulated insulin infusion rate (IIR) variable,
Gb is the basal BG concentration, Ib is the basal blood-
insulin concentration, n is the first-order decay rate of
plasma insulin, V1 represents the blood volume, and

p1, p2, p3 are pre-calibrated parameters that are specific
to the blood specimen being used. A linear system is
generally represented in state-space as shown below.

_x tð Þ=Ax tð Þ+Bv tð Þ, y tð Þ=Cx tð Þ+Dv tð Þ ð2Þ

where, x tð Þ is the state vector, y tð Þ is the output vector,
v tð Þ is the input vector, A is the system matrix, B is the
input matrix, C is the output matrix, and D is the feed-
forward matrix. The state vector and input vector of
the glucose-insulin dynamical system are provided in
equation (3).23

x tð Þ= G tð Þ X tð Þ I tð Þ½ �T, v tð Þ= Gm tð Þ u tð Þ½ �T

ð3Þ

The nominal state-space model representing the
glucose-insulin dynamics are given by equation (4).23

A=

�p1 Gb 0

0 �p2 p3

0 0 �n

2
64

3
75, B=

0 1
V1

0 0
1
V1

0

2
64

3
75,

C= 1 0 0½ �, D= 0 0½ �

ð4Þ

As per the matrix, the system has only one output vari-
able, y tð Þ=G tð Þ. The model parameters for a healthy
subject and three different patients, used in this
research, are listed in Table 1.10

Fractional-order PID control

The PID control law is formulated as a weighted sum
of the system’s classical state error, error-integral, and
error-derivative.24 The proportional term rejects the
instantaneous error, the derivative term speeds up the
transient response and predicts the system’s future state
variations, and the error-integral term optimizes the
system’s reference-tracking behavior and damps the
steady-state fluctuations. The conventional integer-
order PID control law formulation for BG regulation
is expressed below.25

Table 1. BMM parameters for three different patients.10

Parameter Normal Patient 1 Patient 2 Patient 3 Units

p1 0.0317 0 0 0 min�1

p2 12.3 3 1023 20 3 1023 7.2 3 1023 14.2 3 #1023 min�1

p3 4.92 3 1026 5.3 3 1026 2.16 3 1026 99.4 3 #1026 min�1

n 0.2659 0.3 0.2465 0.2814 min�1

Ib 7 7 7 7 mU=L
Gb 80 80 80 80 mg=dL
V1 12 12 12 12 L
G 0ð Þ 200 200 200 200 mg=dL
X 0ð Þ 0 0 0 0 min�1

I 0ð Þ 50 50 50 50 mU=L
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u tð Þ= kpe tð Þ+ ki

ðt

0

e tð Þdt + kd _e tð Þ ð5Þ

where, e tð Þ=Gref � G tð Þ

where, Gref and G tð Þ represent the desired and actual
levels of BG concentration in the patient’s body, respec-
tively, and e tð Þ represents the error between the desired
and actual BG concentration levels. In this research,
the value of Gref is set at 80mg/dL.

The conventional PID control law lacks the neces-
sary degrees of freedom to effectively compensate for
bounded disturbances in BG regulation systems owing
to its integer-order integral and differential operators.
Hence, in this work, the PID control law is augmented
with fractional calculus to improve its design flexibility.

In fractional calculus, the integral and differential
operators involved in the control law are assigned pre-
calibrated fractional powers rather than the usual integer
ones.26 The generalized fractional order of the operator
is denoted by the symbol Dl; where, l represents the
operator’s fractional order. Fractional calculus is fre-
quently chosen to represent and regulate practical engi-
neering systems with extremely chaotic and nonlinear
dynamics. The studies show that the innate properties of
the fractional-order operators allow the corresponding
fractional control law to recognize and effectively reject
the exogenous disturbances encountered by the BG regu-
lation systems.27 The following well-known formulations
offered by Riemann-Liouville, Gruunwald-Letnikov,
and Caputo28 serve as the mathematical definitions of
fractional operators.

Dlf tð Þ= 1

G m� lð Þ
dm

dtm

ðt

a

f tð Þ
t� tð Þl�m+1

dt ð6Þ

where, G xð Þ is the Euler gamma function, m is an
integer such that m� 1\ l \m.

Dlf tð Þ= lim
h!0

1

hi

Xt�að Þ=h

i=0

�1ð Þi l

i

� �
f t� ihð Þ ð7Þ

where,
l

i

� �
=G l+1ð Þ=G i+1ð ÞG l� i+1ð Þ, and h is

the step size.

Dlf tð Þ= 1

G l�mð Þ

ðt

a

fm tð Þ
t� tð Þl�m+1

dt ð8Þ

The FO-PID control law is formulated by supplement-
ing the conventional PID controller with predetermined
fractional orders integral and differential operators as
indicated below.29

u tð Þ= kpe tð Þ+ ki D
�ae tð Þð Þ+ kd Dge tð Þð Þ ð9Þ

The aforementioned FO-PID control law possesses five
unique parameters that enhance the controller’s design

flexibility; namely, kp, ki, kd, a, and g. Together these
five parameters increase the controller’s flexibility to
manipulate the damping control effort of the proce-
dure. The parameters a and g represent the real-
numbered fractional orders allocated to the integral
and differential operators of e tð Þ, respectively. The fol-
lowing expression identifies the transfer function of the
FO-PID control law.

C sð Þ= U sð Þ
E sð Þ = kp +

ki
sa

+ kds
g ð10Þ

where, s represents the Laplace operator. It is quite
challenging to computationally realize the operators sg

and sa due to their fractional powers. To simplify their
implementation, the fractional operators are approxi-
mated via the Oustaloup recursive filters.29 The
Oustaloup approach is used to implement the frac-
tional operator as demonstrated below.

sl =C
YM
i=1

1+ s=vz, i

� �

1+ s
�
vp, i

� � ð11Þ

such that, vz, i =vL
vH=vL

� �2i� 1� l=2M
,

vp, i =vL
vH=vL

� �2i� 1+ l=2M

where, M is the filter’s order, and vL and vH represent
the filter’s lower and the upper translational frequen-
cies, respectively. The value of C is chosen such that
jvð Þl =1 at unity frequency. In this research, a fifth-
order Oustaloup’s recursive filter is employed with
vL =10�5 rad/s and vH =105 rad/s to approximate
the fractional operators. The analytical computation of
the fractional orders is quite difficult. Therefore, all five
parameters of the FO-PID controller are optimized
offline by using the tuning procedure discussed in
Section 4.

Proposed complex order PID control
methodology

The CO-PID controller is an improved variant of the
fractional-order controllers that further enhance the
robustness and flexibility of the control law by retrofit-
ting the integral and differential operators with com-
plex orders rather than real-numbered integer or
fractional orders. The complex order control schemes
are derived from the third generation CRONE con-
trol.30 As discussed earlier, the CO-PID control proce-
dure has been proposed in the available literature for
DC motor’s speed control, inverted pendulum’s balan-
cing control, and surface roughness control in machin-
ing applications.21,22,31 However, the dynamics of the
glucose-insulin interactions in human body are quite
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different than that of the aforementioned electro-
mechanical systems. The CO-PID controller, formu-
lated in this section, introduces additional controller
parameters that increases the controller’s degrees of
freedom and improves its design flexibility, which
enables it to effectively track the reference under exo-
genous disturbances. Hence, the idea of formulating a
CO-PID controller for glycemic control application is
being investigated in this article.

The formulation of the CO-PID control law for the
BG regulation system is presented in equation (12).

u tð Þ= kpe tð Þ+ ki D
�fe tð Þ

� �
+ kd Dge tð Þð Þ ð12Þ

such that, f=a+ jb, g= g + jd

where, a and g are coefficients of the real parts of the
complex order of the integral/differential operator, and
b and d are the coefficients of the imaginary parts of
the complex order of the integral/differential operator,
respectively. As compared to the FO-PID law, this
scheme introduces two additional parameters in the
control law. Together, these seven parameters (kp, ki,
kd, a, g, b, and d) significantly enhance the adaptability
of the control law to efficiently reject the disturbances
while ensuring a minimum-time transient recovery. The
following expression represents the modified transfer
function of the control law.31

C sð Þ= U sð Þ
E sð Þ = kp + ki

1

s

� �a+ jb

+ kd sð Þg + jd ð13Þ

The differential operator in the modified transfer func-
tion can be simplified as shown below.22

sð Þg + jd = sð Þg sð Þjd

= sð Þg eln sð Þjd

= sð Þg ejdln sð Þ

= sð Þg cos d ln sð Þð Þ+ j sin d ln sð Þð Þ½ �

ð14Þ

In real-time applications, a feedback control law is
required to deliver real output for a real input signal.
Hence, the differential operator is approximated by
considering only its real part as shown below.22

sð Þg + jd = sð Þg cos d3ln sð Þð Þ ð15Þ

The integral operator in the modified transfer function
can also be simplified as shown below.22

1

s

� �a+ jb

=
1

s

� �a
1

s

� �jb

ð16Þ

By considering only the real part, the integral operator
can be approximated as shown below.22

1

s

� �a+ jb

=
1

s

� �a

cos b ln
1

s

� �� �
ð17Þ

The simplified transfer function of the control law is
thus formulated as shown below.

C sð Þ=U sð Þ
E sð Þ=kp+

ki
sa
cos b ln

1

s

� �� �
+kds

g cos d ln sð Þð Þ

ð18Þ

The CO-PID transfer function in (18) is quite similar to
the FO-PID transfer function shown in (10). The only
modification comes in the form of the two new weights
assigned to the integral and differential terms. These
weights are formulated as the cosines of natural loga-
rithms of integer-order integrals and derivatives of the
state error variable. It is to be noted that the coefficient
of the complex order’s imaginary part modulates each
ln :ð Þ term in the expression. The CO-PID control law is
expressed in equation (19).

u tð Þ= kpe tð Þ+ ki D
�ae tð Þð Þ cos b ln

ðt

0

e tð Þdt

						
						

0
@

1
A

+ kd Dge tð Þð Þ cos d ln _e tð Þj jð Þ
ð19Þ

The magnitude of the cos :ð Þ terms varies between zero
and unity. In the transient (or disturbed) state, the
magnitude of the error-derivative and error-integral
enlarges which reduces the cos :ð Þ term to zero allowing
the response to quickly converge to the set point with
minimal control cost. In the steady state, the magnitude
of the error-derivative and error-integral enlarges
which inflates the cos :ð Þ term to unity contributing
stronger damping against stead-state fluctuations and
overshoots. This arrangement significantly improves
the response speed and disturbance attenuation capac-
ity of the control law while effectively economizing the
overall control energy expenditure and preventing large
control input requirements that eventually saturate the
actuator. From a functional viewpoint, the cos :ð Þ term
acts as a superior self-regulator that adapts the integral
and differential gains of the control law as a nonlinear
function of error variables, as shown below.

u tð Þ= kpe tð Þ+ ki tð Þ D�ae tð Þð Þ+ kd tð Þ Dge tð Þð Þ ð20Þ

where, ki tð Þ= ki cos b ln

ðt

0

e tð Þdt

						
						

0
@

1
A,

kd tð Þ= kd cos d ln _e tð Þj jð Þ

To maintain a stable control behavior, the variations
in the internal constituents of the cos :ð Þ term are
saturated between 0 rad and p=2 rad. The block dia-
gram of the CO-PID structure is shown in Figure 2.
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The CO-PID controller parameters are optimized by
using the tuning procedure discussed in Section 4.

Parameter tuning procedure

Optimizing the controller parameters is very crucial to
generate an optimal control yield. However, selecting a
unique set of parameters that yield optimum time-
domain performance and control efficiency under every
operating condition is an ill-posed problem.30 Owing to
the contradictory nature of these factors, generally, a
compromise is made between the controller’s time
optimality, and control input economy. The analytical
tuning methods are hard to track. The empirical set-
tings of the PID gains are constrained by the designer’s
experience, and thus, may not always produce precise
position regulation or transitory recovery behavior.
Hence, in this work, the following quadratic cost func-
tion is employed that iteratively minimizes the varia-
tions in the control input as well as the classical error.15

J=

ðT

0

100 e tð Þj j2 + u tð Þj j2
� �

dt ð21Þ

To ensure optimal tuning, a weight of 10 is assigned to
error-minimization criteria, so that the transgressions
in the BG concentration levels are penalized more than
that of the control-minimization criteria.15 The control-
ler parameters are optimized via simulations as dis-
cussed in Section 5.1. The flow chart in Figure 3 depicts
the parameter tuning algorithm. The BMM parameters
of patient 1 are used as the reference for the parameter
tuning procedure. The offline selection process is initi-
ated by picking a random set of controller parameters
(PID gains and fractional/complex orders) from the
pre-defined search space. In every simulation trial, the
controller parameters are empirically updated and the
control system is tasked to regulate the virtual patient’s
BG levels at 80mg/dL from an initial state of hypergly-
cemia for 500min. The resulting cost Jn for that trial is
then computed; where, n represents the number of trial.
The search space is investigated in the direction of the
cost function’s steepest gradient descent.32 If the cost of
the present trial (Jn) is found to be lesser than the cost
of the previous trial (Jn�1), the local minimum-cost

variable Jmin is updated. This arrangement ensures that
the exploration proceeds in the direction of the des-
cending gradient of J. The search for the best-fit para-
meter values is terminated if either Jmin achieves a
predefined threshold cost or the algorithm has com-
pleted the maximum number of trials (nmax) allowed. In
this work, the threshold for Je,min is preset at 13 107

based on the expert’s experience. Owing to the long
time-duration of each simulation, the value of nmax is
set at 12. Finally, the acquired set of parameters values
are manually fine-tuned to further refine the selections.
The selected parameter values are shown in Table 2.
The same procedure is employed to tune all the para-
meters offline.

Simulations and analysis

This section presents the simulation-based testing of the
designed BG regulation control schemes along with a
comprehensive analysis of the acquired results.

Simulation setup

The time-domain performance of the FO-PID and CO-
PID control schemes is comparatively analyzed via
credible simulations. The customized control applica-
tion is implemented and the simulations are carried out
using the MATLAB/Simulink R2018b software envi-
ronment.33 The software is operated on a personal
computer that is equipped with a 64 -bit, 2.4GHz CPU,
and 8.0GB RAM. The fractional operators in the FO-
PID and CO-PID control laws are implemented by

Figure 2. Block diagram of the CO-PID control law.

Figure 3. Flow chart of the parameter tuning algorithm.

6 Measurement and Control



using the built-in functions in MATLAB’s FOMCON
toolbox. The sampling time is set at 1.0min. As dis-
cussed in Section 2, the dynamics of the virtual diabetic
patients are simulated using three different BMMs to
validate the BG regulation performance of the control
laws to ascertain the controller’s performance under
parametric variations. The BMM parameters for three
different virtual patients are also considered in the pres-
ence of sensor noise and meal disturbance. The three
different sets of model parameters are already listed in
Table 1. The IIR signal u tð Þ is restricted within the lim-
its of 0mU/min and 100mU/min via a saturation func-
tion of the form, 100sat u tð Þð Þ, to prevent the BG levels
from plunging significantly, which may put the patient
in a hypoglycemic state.10 The control saturation func-
tion is described as follows.

100sat u tð Þð Þ=
100, u tð Þ. 100
u tð Þ, 04u tð Þ4100
0, u tð Þ\ 100

8<
: ð22Þ

Simulation results

The efficacy of the proposed CO-PID controller is ana-
lyzed against the FO-PID controllers via the following
two test cases. The tests are conducted on the three

virtual patients whose BMM parameters are identified
in Table 1. In each test case, the closed-loop system is
tasked to track the BG level set-point of 80mg/dL.
White Gaussian noise is introduced in G tð Þ in each test
case to emulate the effects of sensor noise on the
reference tracking behavior.

A. BG regulation under normal conditions: This simu-
lation serves to examine the capability of the
designed control law to regulate the BG levels of
the three patients to 80mg/dL from an initial state
of hyperglycemia (200mg/dL). To emulate the
effects of measurement noise contributed by the
glucose sensor, a white Gaussian noise signal
having a mean of zero and variance of 0.2 is
introduced in G tð Þ at the beginning of the trial.
The time-domain profiles of BG level and IIR
(control input) under FO-PID and CO-PID
controllers for the Patients 1, 2, and 3 are depicted
in Figures 4 to 6, respectively.

B. BG regulation under meal disturbance: This simula-
tion serves to analyze the controller’s resilience
against the bounded exogenous disturbances that
are normally caused by the meal intake. The
effects of meal disturbance and sensor noise are
emulated by administering a simulated impulse
signal in Gm tð Þ and a white Gaussian noise signal
in G tð Þ, respectively. The closed-loop system is
tasked to recover from the transient disturbance
and normalize the BG levels of each patient to
80mg/dL from an initial state of hyperglycemia
(200mg/dL). The simulated impulse signal of ampli-
tude 80mg/dL is injected in the system at t’ 500
min, whereas, the white noise signal having a mean
of zero and variance of 0.2 is introduced in the sys-
tem at the beginning of the trial. The time-domain
profiles of BG level and IIR under FO-PID and
CO-PID controllers for the Patients 1, 2, and 3 are
depicted in Figures 7 to 9, respectively.

Table 2. Optimized controller parameters.

Parameters Selection
range

Initial
value

Optimized values

FO-PID CO-PID

kp [0, 0.1] 1 3 1023 3.55 3 1023 3.71 3 1023

ki [0, 0.1] 1 3 1024 1.19 3 1024 1.24 3 1024

kd [0, 0.1] 1 3 1023 0.0478 0.0511
a [0, 1] 0.1 0.675 0.538
g [0, 1] 0.1 0.395 0.322
b [0, 1] 0.01 0 0.0519
d [0, 1] 0.01 0 0.0762

Figure 4. (a) BG levels of Patient 1 under normal conditions and (b) IIR (control input) for Patient 1 under normal conditions.
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Figure 5. (a) BG levels of Patient 2 under normal conditions and (b) IIR (control input) for Patient 2 under normal conditions.

Figure 6. (a) BG levels of Patient 3 under normal conditions and (b) IIR (control input) for Patient 3 under normal conditions.

Figure 7. (a) BG levels of Patient 1 under meal disturbance and (b) IIR (control input) for Patient 1 under meal disturbance.
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Analytical discussion

The simulation results are examined as per the following
Key-Performance-Metrics (KPMs).

The RMSE is calculated as shown below.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n=0

e nð Þj j2
vuut ð23Þ

where, N is the total number of samples and n is num-
ber of measurement. The value of N is 500 for

simulation A and 1000 for simulation B in this article.
The IAE is calculated as shown below.

IAE=

ð
e tð Þj jdt ð24Þ

The IIRMS is calculated as shown below.

IIRMS =
1

N

XN
n=0

u nð Þj j2 ð25Þ

These KPMs are used to quantitatively analyze the per-
formance and robustness of the designed BG regulation
control procedures. The simulation results are summar-
ized in Table 3. The quantitative analysis of the simula-
tion results validates the superior time optimality and
disturbance-response speed of the CO-PID controller
as compared to the FO-PID controller.

In Simulation A, each controller exhibits a different
transient response to normalize the BG levels of each
patient at the desired level. The FO-PID controller
demonstrates a mediocre reference tracking accuracy and
a relatively higher settling time to converge to Gref. As
compared to FO-PID, the CO-PID controller exhibits a
considerable improvement in the reference-tracking

Figure 8. (a) BG levels of Patient 2 under meal disturbance and (b) IIR (control input) for Patient 2 under meal disturbance.

Figure 9. (a) BG levels of Patient 3 under meal disturbance and (b) IIR (control input) for Patient 3 under meal disturbance.

RMSE : Root-mean-squared value of error e tð Þ in the
BG levels.

IAE : Integral of the absolute value of error e tð Þ in the
BG levels.

Tfall : Time taken by the BG level to fall to +10% of Gref

from an initial state of hyperglycemia.
Tset : Time taken by the BG level to normalize and settle

within 62% of Gref .
Trec : Time taken by the BG level to recover from

a transient disturbance.
IIRMS : Mean-squared value of the IIR.
IIRp,Start : Peak value of the IIR during initial start-up
IIRp,Dist : Peak value of the IIR during transient disturbances.
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behavior by improving the response speed and the regula-
tion accuracy. The CO-PID displays the fastest transient
response and an accurate reference tracking behavior. It
quickly settles the BG levels at the desired set-point and
effectively suppresses the steady-state fluctuations while
maintaining an economical application of the control
input (IIR).

In Simulation B, each controller applies the neces-
sary control resources to normalize the BG levels from
a state of hyperglycemia caused by the simulated meal
disturbance. The FO-PID controller exhibits weak
immunity against meal disturbance and sensor noise.
The response shows relatively higher chattering and
slower transient recovery time. It also yields a highly
discontinuous control activity with large insulin infu-
sion requirements. Furthermore, the FO-PID control-
ler injects the insulin for a longer time duration, which
is therapeutically unsuitable for the patients from a
practical point of view. The CO-PID controller shows
the most time optimal behavior with a significant
improvement in robustness against meal disturbance
and sensor noise. It exhibits the relatively faster refer-
encing response speed, minimum-time transient recov-
ery, and minimal tracking error. It also yields a smooth
and economical control yield, which in turn minimizes
the chattering content in the state response.

As compared to the FO-PID controller, the CO-PID
controller renders a mean improvement of 13.1%,
56.8%, 25.9%, 33.4%, 30.9%, 28.1%, and 26.2% in
the RMSE, IAE, Tfall, Trec, Tset, IIRMS, and IIRp,
respectively. The significant improvement in the transi-
ent response speed and the control input efficiency of
the CO-PID controller is credited to the enhancement
in the controller’s degree of freedom contributed by the
allocation of complex orders to integral and differential
operators. This arrangement indirectly modifies the
derivative and integral gains online to improve the con-
troller’s adaptability to execute better reference tracking
accuracy and transient recovery response, even under
exogenous disturbances. Furthermore, it achieves the
aforementioned feats without compromising the control
input (IIR) economy which is yet another remarkable

milestone. Although the CO-PID control procedure
requires the offline tuning of seven distinct parameters
which is indeed a laborious task; however, the enhanced
time optimality offered by the said procedure exceeds
this disadvantage.

The proposed CO-PID controller’s performance is
also compared with the state-of-the-art controllers pre-
sented in Delavari et al.10 to further validate its effec-
tiveness in addressing the BG regulation problem. These
state-of-the-art control schemes include the super-
twisting sliding-mode-controller (STSMC), higher-order
SMC (HOSMC), fractional-order SMC (FOSMC), and
adaptive fractional-order SMC (AFOSMC). The afore-
mentioned controllers were applied to the same set of
three patient models, as described in Table 1, to carry
out the simulations A and B in Delavari et al.10 The
reader is referred to Delavari et al.10 for visualizing the
simulation results of the aforementioned controllers. In
this article, the performance comparison is done on the
basis of the IAE metric expressed in Guras et al.24. The
summary of performance comparison is quantified in
Table 4. The quantitative analysis also validates the
enhanced BG regulation capability of the CO-PID con-
troller as compared to other state-of-the-art controllers.
The AFOSMC is declared as the proposed control law
in Delavari et al.10 As compared to the AFOSMC, the
CO-PID controller demonstrates an improvement of
10.0%, 26.8%, and 15.7% in the IAE of Patients 1, 2,
and 3, respectively, for Simulation A. For Simulation B,
the CO-PID controller exhibits a relative improvement
of 11.6%, 25.9%, and 3.8% in the IAE of Patients 1, 2,
and 3, respectively, as compared to AFOSMC.

A special comparison case

To better ascertain their effectiveness and time-
optimality of the FO-PID and CO-PID controller in
regulating the BG levels, the performance of these con-
trollers with various orders of the differential operator
is being analyzed in this section. The analysis is done
by carrying out additional simulations of test cases A
and B.

Table 3. Summary of simulation results.

Simulation KPM Patient 1 Patient 2 Patient 3

Metric Unit FO-PID CO-PID FO-PID CO-PID FO-PID CO-PID

A RMSE mg/dL 27.7 26.7 35.3 29.7 30.5 24.9
IAE mg/dL 1586.3 788.7 1719.1 811.3 1433.0 855.4
Tfall min. 136 128 191 148 186 104
Tset min. 228 201 302 230 328 162
IIRMS (mU/min)2 7.01 2.89 6.14 2.92 5.20 2.12
IIRp,Start mU/min 7.72 5.27 7.67 5.34 7.80 4.98

B RMSE mg/dL 30.59 24.38 32.60 26.25 30.78 24.62
IAE mg/dL 1962.0 1252.9 2028.1 1277.3 1961.4 1591.8
Trec min. 218 154 352 180 229 198
IIRMS (mU/min)2 4.04 2.25 4.78 2.30 4.48 2.48
IIRp,Dist mU/min 4.83 2.40 4.75 2.83 4.53 2.68
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Firstly, two new FO-PID controller variants are
introduced and their behavior is benchmarked against
the original FO-PID controller (See Table 2). The origi-
nal control law is referred to as FO-PID-1 controller
for this comparison. The value of g in the FO-PID-2
controller variant is incremented by 10% while keeping
all other controller parameters affixed at their original
values. Conversely, the value of g in the CO-PID-3
controller variant is decremented by 10% while keeping
all other parameters affixed at their original values.
The changes in the orders of the fractional derivative
terms are highlighted in Table 5. The simulations A
and B are carried out for Patient 2 under the influence
of the aforementioned FO-PID controller variants. The
simulation results are shown in Figures 10 and 11,
respectively. The simulation results are quantified in
Table 6. The results show that increasing the magni-
tude of the differential operator’s fractional order mini-
mizes the settling time and transient recovery time at

the cost of generating a highly discontinuous control
activity which introduces chattering in the BG levels,
which is not desirable. On the contrary, reducing the
said fractional order slows down the BG regulation
response speed while maintaining a relatively smoother
control activity. In terms of BG regulation and IIR
input behavior, the FO-PID-1 controller outperforms
the FO-PID-2 and FO-PID-3 controller.

Similar to the process discussed above, two new CO-
PID controller variants are also introduced and their
behavior is benchmarked against the original CO-PID
(CO-PID-1) controller (optimized in Table 2). The values
of both parameters g and d in the CO-PID-2 controller
variant are incremented by 10% while keeping all other
parameters fixed at their original values. Conversely, the
values of both parameters g and d in the CO-PID-3
controller variant are decremented by 10% while keeping
all other parameters fixed at their original values. The
changes introduced in the orders of the fractional deriva-
tive terms are highlighted in Table 7. The simulations A
and B are carried out for Patient 2 under the influence of
the aforementioned CO-PID controller variants. The
simulation results are shown in Figures 12 and 13,
respectively. The simulation results are quantified in
Table 8. The results show that increasing the magnitude
of the complex order of the differential operator
improves the transitional times of the BG regulation

Table 4. Performance comparison with other controllers.

Simulation Metric Unit Controllers Patient 1 Patient 2 Patient 3

A IAE mg/dL STSMC10 1956 2110 1880
HOSMC10 1456 1357 1609
FOSMC10 1135 916 1542
AFOSMC10 877 759 1015
CO-PID (proposed) 789 811 855

B IAE mg/dL STSMC10 2720 2986 3560
HOSMC10 2014 1895 2398
FOSMC10 1766 1660 2228
AFOSMC10 1417 1206 1655
CO-PID (proposed) 1253 1277 1592

Table 5. Modified FO-PID controller variants.

Parameters Modified derivative’s fractional order

FO-PID-1 FO-PID-2 FO-PID-3

g 0.395 0.435 0.355

Figure 10. (a) BG levels of Patient 2 with different FO-PID controller variants under normal conditions, (b) IIR (control input) for
Patient 2 with different FO-PID controller variants under normal conditions.
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response under normal as well as disturbance conditions
while generating a disrupted control activity and large
control energy requirements. The chattering in the
response is also inevitable in this case. Conversely, reduc-
ing the said complex order makes the BG regulation

response quite sluggish speed; however, it also econo-
mizes the control energy expenditure. The overall perfor-
mance of the CO-PID-1 controller surpasses the CO-
PID-2 and CO-PID-3 controller as per the BG regula-
tion and IIR input.

Figure 11. (a) BG levels of Patient 2 with different FO-PID controller variants under meal disturbance, (b) IIR (control input) for
Patient 2 with different FO-PID controller variants under meal disturbance.

Table 6. Simulation results with different FO-PID controller variants.

Simulation KPM FO-PID-1 FO-PID-2 FO-PID-3

Metric Unit

A RMSE mg/dL 35.3 32.4 38.2
IAE mg/dL 1719.1 1588.5 1862.2
Tfall min. 191 185 208
Tset min. 302 295 318
IIRMS (mU/min)2 2.65 3.05 2.44
IIRp,Start mU/min 7.67 9.11 6.32

B RMSE mg/dL 32.60 30.1 35.8
IAE mg/dL 2028.1 1902.4 2182.9
Trec min. 352 295 365
IIRMS (mU/min)2 4.78 5.15 4.57
IIRp,Dist mU/min 4.75 5.68 4.09

Figure 12. (a) BG levels of Patient 2 with different CO-PID controller variants under normal conditions, (b) IIR (control input) for
Patient 2 with different CO-PID controller variants under normal conditions.
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Conclusion

This article methodically formulates and verifies the
efficacy of a flexible CO-PID controller to improve the
BG normalization behavior in TID patients, especially
under the influence of meal disturbances and exogen-
ous noise sources. The BG regulation in TID patients
via closed-loop feedback control procedure is a difficult
task. The proposed control procedure is realized by
augmenting the integral and differential operators of
the ubiquitous PID baseline controller with complex
order. The controller’s transformation into complex
order controllers increases its design flexibility and time

optimality, thus equipping it to exhibit a faster tracking
speed and stronger immunity against disturbances.

The simulation results validate the superior robust-
ness and time optimality of the CO-PID controller.

Additional simulations are also conducted to further

analyze the time-optimality of the FO-PID and CO-

PID controllers under the influence of different orders

of differential operators. These simulations also vali-

date the optimum BG regulation behavior of the origi-

nally prescribed CO-PID control law. In the future, the

CO-PID controller can be augmented with intelligent

systems, online supervised learning laws, or model-free

expert adaptive systems to dynamically self-tune the

controller parameters to further robustify its perfor-

mance against hyperglycemia and exogenous distur-

bances. Meta-heuristic optimization algorithms can be

investigated to improve the controller’s parameter tun-

ing process. Furthermore, the type-3 fuzzy systems and

controllers should also be investigated in the future to

analyze their ability to further improve the performance

of the closed-loop BG regulators.

Figure 13. (a) BG levels of Patient 2 with different CO-PID controller variants under meal disturbance, (b) IIR (control input) for
Patient 2 with different CO-PID controller variants under meal disturbance.

Table 8. Simulation results with different CO-PID controller variants.

Simulation KPM CO-PID-1 CO-PID-2 CO-PID-3

Metric Unit

A RMSE mg/dL 29.7 28.5 31.6
IAE mg/dL 811.3 788.2 896.5
Tfall min. 148 129 177
Tset min. 230 221 268
IIRMS (mU/min)2 2.17 3.84 1.98
IIRp,Start mU/min 5.34 6.22 4.34

B RMSE mg/dL 26.3 25.0 28.1
IAE mg/dL 1277.3 1068.4 1398.6
Trec min. 180 168 198
IIRMS (mU/min)2 2.30 4.18 2.05
IIRp,Dist mU/min 2.83 2.06 4.18

Table 7. Modified CO-PID controller variants.

Parameters Modified derivative’s fractional order

CO-PID-1 CO-PID-2 CO-PID-3

g 0.322 0.354 0.290
d 0.0762 0.0838 0.0686
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