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Abstract: Alloy dendrite growth during solidification with coupled 

thermal-solute-convection fields has been studied by phase field modeling and simulation. 

The coupled transport equations were solved using a novel parallel-multigrid numerical 

approach with high computational efficiency that has enabled the investigation of dendrite 

growth with realistic alloy values of Lewis number ~ 104 and Prandtl number ~ 10-2. The 

detailed dendrite tip shape and character were compared with widely recognized analytical 

approaches to show validity, and shown to be highly dependent on undercooling, solute 

concentration and Lewis number. In a relatively low flow velocity regime, variations in the 

ratio of growth selection parameter with and without convection agreed well with theory.  
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1. Introduction 

In the shaped casting industry the growth behavior of dendrites in a solidifying alloy controls 
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the as-cast microstructure and has a strong influence on final component mechanical 

properties. Cast structures in practice, even in simple binary alloys, are complex and rarely 

conform to easy classification as homogeneously columnar or equiaxed, and frequently 

present complex cellular/dendritic patterns that vary from place to place. There has been 

significant effort to better understand the underlying physics controlling the shape, length 

scale and solute redistribution processes occurring at a growing dendrite tip in an attempt to 

control the factors that determine final cast microstructure [1-5]. Both analytical and 

numerical approaches have been developed, but despite the well-known strong influence of 

liquid movement and convection on final microstructure in practice, only a small number of 

recent studies have begun to account for its influence on the prior, more developed 

thermal-solute approaches. 

 

The operating state of a growing dendrite can be defined by the tip radius Rtip and the tip 

velocity vtip. By assuming the tip to be a parabola (in 2-D) or a paraboloid of revolution (in 

3-D) with parabolic tip radius Rp and the steady dendrite is isothermal with the solid at the 

melting temperature, Ivantsov [6] proposed the most widely quoted relationship for dendrite 

operating state for a purely thermally-controlled growing dendrite, comprising the 

relationship between external imposed undercooling Δ = (Tm - T∞)/(L/Cp) and the thermal 

Peclet number at the tip PeT = Rpvtip/(2α) as Δ = Iv(PeT), where Tm is the melting temperature, 

T∞ is the temperature of the undercooled melt, L is the latent of fusion, Cp is the specific heat, 

α is the thermal diffusivity and ( ) exp( ) ( )Iv x x x erfc x  is the Ivantsov function (in 2-D). 

Ivantsov’s theory predicted that for a given undercooling, there were infinite pairs of (Rtip, vtip) 
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for the solution of the linked expression since only their product (Peclet number) could be 

determined. While convenient, this implication is in conflict with experiment where Rtip and 

vtip are invariant for a fixed undercooling. Two subsequent approaches were then developed 

by the introduction of a selection constant defined as σ*. The marginal stability theory was 

developed by Langer and Muller-Krumbhaar [7] and involved another relationship between 

the tip radius and velocity given as    
2

2 *

0 1p tipR v d    where d0 is the material thermal 

capillary length. Drawing on a stability analysis [8] based on the allowable shape of a 

perturbed, non-flat solid-liquid interface, they proposed σ* = 1/(2π). Ben-Jacob et al [9, 10] 

and Kessler et al [11, 12] developed other approaches that allowed for anisotropic surface 

energy to give a single, paired solution for Rp and vtip, deduced from the fastest growing mode 

of perturbed solid-liquid interface, which led to an expression similar to the one given by 

Langer and Muller-Krumbhaar [7] i.e. Rp
2vtip = constant. Kessler and Levine [13] extended 

this idea and found that the dendrite tip shape computed in this way generally displays a cusp 

(non-zero slope) at the tip and at a unique (Rp, vtip) pair; the cusp reduces to a smooth shape 

with zero slope at the tip, which is called the microscopic solvability condition. Further 

numerical experiments revealed that the selection constant σ* was dependent on the strength 

of the surface anisotropy ε i.e. Rp
2vtip = f(ε). Nevertheless, experimental validation of these 

increasingly complicated analytical/numerical approaches has been difficult since they rely 

on controlling stable and well-characterized growth conditions, generally far from the more 

dynamic conditions expected in practice [14]. 

 

The extension of the microscopic solvability theory to binary alloys, where both solute and 
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thermal diffusion are important, was performed by Lipton, Glicksman and Kurz (LGK) [15] 

and Lipton, Kurz and Trivedi (LKT) [16]. These approaches are also characterized by the use 

of a selection constant σ* (σ*
LGK and σ*

LKT will be used for the LGK and LTK theories 

respectively): 
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where M = |m|(1-k)/(L/Cp) is the scaled dimensionless liquidus slope, m is the actual liquidus 

slope from the phase diagram, k is the solute partition coefficient, Le = α/D is the Lewis 

number, D is the solute diffusivity in liquid, c is the solute concentration and c∞ is the 

equilibrium solute concentration.    (1 )C tip tipc c k c   

 

is the dimensionless solutal 

undercooling and ctip is the solute concentration at dendrite tip. For the LGK theory, both 

T and c are unity but for the LKT theory: 
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The overall undercooling is then given by: 

 
0

1 1

c
T

p c p

k TL
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C k R

  
    

  
                                              (4) 

where the three terms on the right correspond to thermal, solutal and capillary undercooling, 

respectively. ΔT0 = |m|c∞(1-k)/k is the equilibrium freezing range corresponding to c∞ and 
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 is the Gibbs-Thomson coefficient.    /T tip pT T L C   is the dimensionless thermal 

undercooling. Eqs. (1) and (4) together uniquely determine the tip radius and tip velocity. 

 

Convection in the melt – almost always significant in practice – has long been realized to 

have a profound effect on dendritic growth [17]. But it is presently unclear how the preceding 

theories (LGK and LKT) for binary alloys may remain valid or how they might be modified 

when convection is present. Ananth and Gill [18] and Saville and Beaghton [19] studied the 

motion of the freezing front between a needle-shaped crystal and a supercooled liquid for 

situations where there is forced convection aligned along the crystal growth. Analysis was 

conducted by modeling the transport problem for a pure material solidifying as a paraboloid 

of revolution in an infinite undercooled melt. The imposed external undercooling could be 

characterized by the thermal Peclet number PeT, the flow Peclet number Pef = Rtipv∞/2α 

(where v∞ is the imposed external flow velocity) and the Prandtl number Pr = u /α (ratio 

between kinematic viscosity and thermal diffusivity) i.e.  , ,PrT fPe Pe   . Through a 

so-called linear solvability analysis, Boissou and Pelce [20] considered the stability of this 

solution, and found that the ratio of the selection parameters with convection (σ*) and without 

convection (σ0
*) could be characterized by a dimensionless parameter χe:  

*
11/140

*
1 eb





                                                              (5) 

where b is a numerical constant,  

    0.75

0Re / 15e p tipa d v R v                                               (6) 

and 
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a Re( ) = 2Re/ p exp - Re/ 2( ) / erfc Re/ 2( )                                   (7) 

where Re = v∞Rp/u  is the Reynolds number and ε is the anisotropic strength. The theory 

predicts that parameter b in Eq. (5) is very close to zero i.e. * *

0  when χe << 1, and 

therefore the flow only has an effect on the tip-selection parameter if d0v∞/(Rpvtip) = Pefσ
* is 

of the order of unity or greater [20].  

 

The applicability of this approach has not yet been confirmed conclusively by numerical 

modeling or experiments. Beckermann et al [21] found a weak dependence of the selection 

parameter on flow. Tong et al. [22] adopted a 2-D thermal convection phase field model and 

studied the tip operating state corresponding to a pure material dendrite growing against 

forced convection. Within the parameter range of 0<χe <0.2, the simulation results agreed 

well with theoretical predictions and the ratio of the selection parameters with and without 

convection was very close to unity, as suggested by Boissou and Pelce. Jeong et al. [17] 

performed 3-D phase field simulations and compared the results with available theories and 

experimental results: the selection constant σ* decreased slightly in the presence of 

convection, agreeing with the solutions of both Saville and Beaghton [19] and again with 

Boissou and Pelce [20], although the idealized conditions required in the theory were unlikely 

to be present during the experiments. A similar 3-D simulation approach was also adopted by 

Lu et al. [23] who showed again reasonable agreement with the Boissou and Pelce’s theory 

that the selection constants under different conditions were similar whether convection was, 

or was not, present.  

 



7 
 

Apart from these pure material studies, binary alloys have also been considered in which the 

influence of external flow on dendrite growth was investigated. By employing an adaptive 

mesh methodology, Lan et al. [24] studied the influence of thermal-solutal convection on 

morphology changes of a freely growing dendrite. They showed the importance of employing 

the so-called “anti-trapping” current developed by Karma [25] in the phase field model in 

order to produce qualitatively acceptable predictions. Recently, Siquieri et al. [26] calculated 

the shape, using the phase field method, of a freely growing alloy dendrite under isothermal 

conditions where convection was present.  

 

The phase field method for simulating dendritic solidification and other phase transitions has 

become popular in recent years due to its thermodynamic rigour and the perceived benefits of 

avoiding explicit tracking of the complex shaped and evolving solid-liquid interface. The 

phase field method adopts one or several order parameters to characterize the transition of the 

phases during solidification. In particular, to model the dendritic growth of alloys usually one 

order parameter, i.e. the phase filed  , is used to distinguish the solid and liquid phases in 

which  varies smoothly but steeply from -1 in bulk liquid to 1 in bulk solid over the diffuse 

interface region of width W0. 

 

As discussed in our earlier work [27], despite apparent benefits, a major problem for phase 

field modeling remains the enormous computing overhead required to resolve the detail of 

the solid-liquid interface in complex dendritic geometries. Several methods have been 

developed and proposed to help address the practical difficulties, of which the most important 
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was the so-called thin interface limit analysis, developed by Karma and co-workers [25, 28, 

29]. This methodology enabled a diffuse interface width larger than the capillary length, 

which has the practical effect of greatly reducing the computing overhead. However, for alloy 

solidification processes in the casting industry, where multiple dendrite growth proceeds 

according to coupled thermal, solutal and fluid flow fields, use of the phase field approach 

has been restricted by the need thus far to make limiting simplifications to the real process 

physics.  

 

The primary difficulties arise from three aspects: (1) the different length- and time-scales in 

the coupled energy and mass transport processes (high Lewis number Le = α/D ~ 104 and low 

Prandtl number Pr = u /α ~ 10-2 for metallic alloys); (2) enormous computing demands 

arising from the requirement to achieve practically useful and realistic spatial resolution of 

the solid-liquid interface; and (3) a lack of robust numerical schemes that can solve such a 

complex multi-scale problem in a reasonable time span.  

 

In this paper, an approach combining a full approximation storage (FAS) multigrid [30] 

algorithm and a parallel computing architecture is developed for the first numerical solutions 

of coupled thermal-solute-convection fields in the dendritic growth of a real alloy. The phase 

field model including convection and the parallel multigrid approach are firstly described and 

then numerical experiments are performed to investigate convergence and computational 

efficiency. Predictions of dendrite tip radius, tip velocity and particularly the selection 

constant are compared with widely accepted theory as a way to validate various behaviors 
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predicted by the model under different liquid flow conditions. In particular, we focus on the 

effect of convection on the selection constant σ* according to Boissou and Pelce [20] as this 

requires a study of the linked effects of temperature, solute concentration and flow.  

 

2. Mathematical model 

The following assumptions were made: 

(1) Physical properties of materials including thermal diffusivity α, liquid solute diffusivity 

D, latent heat of fusion L, alloy specific heat Cp, and kinematic viscosity  are constant 

unless stated otherwise. 

(2) Solute diffusion in the solid phase is neglected. 

(3) Only forced convection is considered, i.e. the effect of gravity is neglected. 

(4) The flow is incompressible i.e. the alloy density r  is constant. 

 

Formulation of the phase field model starts from the Ginzburg-Landau free energy functional 

[25, 31, 32]:  

 
2

, ,
2

ABF dV f c T


 
 

   
 

                             (8) 

Where F is the free energy,  is a gradient energy coefficient, fAB is a free energy density 

function for a binary mixture [32]. With convection the governing equations for the phase 

field variable , solute concentration c and temperature T can then be written as (assuming 

the phase field is not convective [22])  

  

t
0

¶f

¶t
= -K

f

d F

df
                                     (9) 
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¶c

¶t
+ v ×Ñc = Ñ× K

c
Ñ

d F

dc
- j
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æ

èç
ö

ø÷
                     (10) [26] 

   

¶T

¶t
+ v ×ÑT = aÑ2T +

L

2C
p

¶f

¶t
                         (11) [22] 

where 
 
t

0
is the relaxation time, Kϕ and Kc are constants,

   v = f
l
v

act
is the superficial velocity 

with fl the liquid fraction and 
   vact

 the actual velocity. The velocity can be expanded as 

   
v = u,v( ) in the 2D case, and

  

   

j
a

= -
W

0

2

c / c
¥

1+ k - (1- k)féë ùû

¶f

¶t

Ñf

Ñf
 (12). 

is the so-called “anti-trapping” current developed by Karma [25] to counterbalance spurious 

effects during the phase field simulation.  

 

The conservation of the momentum and mass follows the Navier-Stokes equation and the 

continuity equation, respectively [22] 

   

¶v

¶t
+ v ×Ñ

v

f
l

æ

è
ç

ö

ø
÷ = - f

l
ÑP +uÑ2v + M

1

d

   

     (13) 

v 0 

   

     (14) 

where P is the pressure,
   
M

1

d = -2uh
c

1- f
l( )

2

v is a dissipative interfacial force per unit 

volume developed by Beckerman [21]. The constant hc is 2.757 according to an asymptotic 

analysis of a plane flow past the diffuse interface. This term serves as a distributed 

momentum sink in the diffuse interface region that forces the liquid velocity to zero 

approaching the solid and vanishes in the bulk liquid. 

 

Applying the dimensionless forms of solute and temperature respectively: 
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where TM is the melting point of the solvent, and by scaling length and time to the interfacial 

width W0 and relaxation time τ0, the final governing equations (incorporating crystal 

anisotropy) are:  
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  Ñ×v = 0       (21) 

where variables with tilde are dimensionless and 
   D = la

2
,   a = Le × D , 

   v = v ×t
0

/W
0
, 

   
P = P ×t

0

2 r ×W
0

2( )  and 
   u =ut

0
W

0

2
. The anisotropic effect is characterized by 

function
  
A y( ) = 1+ e cos w y -y

0( )é
ë

ù
ûwhere is the angle between the interface norm  nand 

the axis x (
  
y = arctan f

x

' /f
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x
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f
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' = ¶f ¶y ), e weights the magnitude of 
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the anisotropy strength,w is the symmetry or harmonic factor and
 
y

0
stands for the predefined 

growth orientation. The reciprocal of the scaling parameter 

  

l =
15L2

16HC
p
T

M

  (22) 

measuring the energy barrier height H in the double well potential. The dimensionless 

variables are related to physical units by  

  
W

0
= ld

0
/ a

1
   (23) 

and  

  
t

0
= d

0

2a
2
l3 / Da

1

2( )    (24) 

where  

  
d

0
= G / L / C

p( )
     

(25)  

is the thermal capillary length and a1 = 0.8839 and a2 = 0.6267 according to the thin interface 

limit analysis [25]. 

 

3. The numerical approach 

3.1. Discretization of equations 

It is easy to notice that Eqs. (17) – (21) can be re-written in a simple form as: 

2

t l s x y C E

E E E
E E

t x y

  
       

  
       (26) 

where E is the target variable such asf , U andq . t , l , s , x , y and C are constants 

which are always related to the values from the previous time step, E is a nonlinear term 

related to variable E which is nonzero only for phase field. Eqs. (17) – (21) were then all 
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discretized onto a 2D rectangular domain (as shown in Fig. 1) with equal spacing
 Dx = Dy = h

 
using a finite difference method.  

 

Special attention must be paid when applying the finite difference discretization schemes on 

the phase field equations because spurious anisotropy effect might be introduced, as 

discussed in [33]. In this respect, an isotropic nine-point discretization scheme was employed 

here. The key idea of achieving isotropic discretization is by putting the residual error into a 

rationally invariational form which is basically the laplacian operation [28, 29, 33]. 

Accordingly (taking the phase field variable for instance),  
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Eqs. (27) – (30) were also employed for discretization of solute and temperature fields i.e. 

Eqs. (18) – (19). For Eqs. (20) – (21), a staggered grid was employed to solve the fluid flow 

field. Taking the x component of velocity i.e. u for instance, a simple first order upwind 

scheme was employed for the first derivative of velocity and a second order five-point stencil 
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was applied for the Laplacian operation [34] i.e.  
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ë
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ì
í
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îï
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And  u
*is the velocity value from the previous time step. In this respect and as shown in Fig. 

1, for one grid cell, the corner points (solid spheres) were specified for phase field, 

temperature and solute, velocity was specified at the cell walls and pressure the cell center.  

 

A second order backward difference formulae (BDF2) was employed for the first derivative 

of variable E with respect to time [27]: 

  

¶E

¶t
=

En+1 +a
0
En +a

1
En-1

bDt
        (34) 

where 
 
a

0
= -4/3, 

 
a

1
= 1/3, and b = 2/3. 

 

3.2. The parallel multigrid approach 

3.2.1. The multigrid algorithm 

For a discretized algebra system i.e. A´ E = b, where Ais the parameter matrix (always 

sparse), E  
is the solution vector and  b 

is the right-hand side vector. The key idea for 

solving this system using the multigrid algorithm is to remove the defect  d = b- AE  by 

employing (recursively) the coarse grid correction. It is well known that with fixed grid size, 
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the computational error of the target algebra system can be divided into high frequency and 

low frequency categories. Smoothing techniques such as Gauss-Seidel can efficiently remove 

the high frequency error in a few iteration steps but can hardly or at least very inefficiently 

remove low frequency error. In this respect, by composing a series of grid levels with 

different grid sizes and by employing Gauss-Seidel method, the multigrid algorithm can 

remove all high frequency error on each level in a very efficient way i.e. it normally only 

takes a few smoothing steps during relaxation. Because nonlinearity is involved in the phase 

field equation, the full approximation storage (FAS) multigrid algorithm [30] is employed. 

 

To solve
 
A

l
E

l
= b

l
the FAS multigrid algorithm includes the following steps [30]: 

(1) Pre-smoothing 

 – Compute
 
E

l

n
by applying

  
N

1
smoothing steps to

 
E

l

n
i.e.

  
E

l

n = S E
l

n , A
l
,b

l( ) . 

(2) Coarse-grid correction 

– Compute the defect
 
d

l

n = b
l
- A

l
E

l

n
. 

– Restrict the defect:
  
d
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l

l-1d
l

n
.            

– Restrict
 
E

l

n
i.e. 

  
E
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l

l-1E
l

n
.              

– Compute the right-hand side
  
b

l-1
= d

l-1

n + A
l-1

E
l-1

n
.          

– Compute an approximate solution 
  
ŵ

l-1

n
 of the coarse grid equation on grid level l-1 i.e. 

  
A

l-1
w

l-1

n = b
l-1

     (35)                       

    If l = 1 employ a fast solver for this purpose. 

    If l > 1 solve Eq. (35) by performing γ (≥1) FAS cycles using
  
E

l-1

n
as initial 

approximation 
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ŵ
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1
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2( ) 
 

– Compute the correction
  
v̂

l-1

n = ŵ
l-1

n - E
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n
. 

– Interpolate the correction
  
v̂

l

n = I
l-1

l v̂
l-1

n
. 

– Compute the corrected approximation on level l i.e.
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where the subscript l indicates the index of the current grid level, S is the relaxation operation, 

  
R

l

l-1
and

  
R̂

l

l-1
are restriction operations and

  
I

l-1

l is the interpolation (prolongation) operation. As 

seen, the multigrid algorithm mainly comprises three components including relaxation, 

restriction and interpolation.  

 

After discretization, using the stencils in Eqs. (27) – (32), Eq. (26) can be written as: 
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where
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and subscripts i and j indicate the spatial position in the 2D domain, p is a parameter, n+1 

indicates the next time step and
 
b

E

n
is a constant term always related to the current time step 

i.e. n. Formulation of the parameters for different variables is given in detail in Appendix A. 

The relaxation can then be written: 

  

Eg +1 = Eg -w
sor

G Eg( ) - b
E

n

p
E

n
 (38) 

whereg indicates the iteration step,
 
w

sor
is a relaxation factor corresponding to successive 
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over-relaxation (SOR) method and
 
p

E

n is the prime parameter of E in the function
 
G E( ) . In 

the current study, we normally take
  
w

sor
= 1, i.e. the Gauss-Seidel method is employed.  

 

3.2.2. Parallelization of the multigrid algorithm 

During the solving process using multigrid method, the most time consuming component is 

the relaxation, which is especially true for large-scale problems. To reduce the computation 

overhead, distributed parallel computing methods were developed and incorporated into the 

multigrid method. As discussed in [27, 30], to achieve a high degree of parallelism, two 

important issues including (1) grid partitioning of the computing domain and (2) 

communication between adjacent processes must be addressed. 

 

For grid partitioning, the current study adopts the same approach as mentioned in [27] i.e. the 

2D rectangular computing domain (with M ´ Ngrid cells) is divided into Np parts with each 

having the same number (
  
M / N

p
´ N ) of grid cells. Here Np denotes the number of the main 

computing processes, which in the current study always equals to 2 to the power of np, 

i.e.
  
N

p
= 2

n
p , where the exponent np is dependent on the scale of the problem. The computing 

process is also called the basic computing unit and in most cases stands for a central 

processing unit (CPU) core.  

 

During the simulation, the newly updated data in each time step has to be communicated 

between neighbor processes. For the sake of efficiency, a thin overlap area of width 1 is 

applied for each process to copy the data located in its neighbor sub-grids, as indicated by the 
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first and last rows of data shown in Fig. 1b (e.g “0”, “6” for the bottom process and “4” and 

“10” for the upper process). In this respect, the total number of control cells owned by each 

process is thus
  
( M / N

p
+ 2) ´ N . The parallelization of the multigrid method was then 

realized by parallelizing the three components i.e. relaxation, restriction and interpolation. 

Taking relaxation for instance, mechanism of data communication is shown schematically in 

Fig. 1b for point-wise data including phase field, solute and temperature and Fig. 1c for 

cell-wise data including velocity and pressure.  

 

During relaxation, a parallel version of the line Gauss-Seidel smoother [30] was adopted for 

the phase field, solute and temperature. As shown in Fig. 1b, this smoother comprises two 

half-steps: during the first half step, the odd lines (e.g. 1, 3, 5…) of the grid points are 

smoothed, after which the even lines (e.g. 2, 4, 6…) are smoothed using the updated values of 

the neighbor grid points. In this way, each half-step of the relaxation is fully parallelized and 

because an overlap buffer is applied, data communication is only required at the end of the 

relaxation.  

 

To solve the Navier-Stokes equation efficiently, a symmetrical coupled Gauss-Seidel (SCGS) 

smoothing technique [35] was employed. The key idea of the SCGS smoothing technique is 

to use one grid-cell of data as the basic unit for smoothing. Simply, instead of updating the 

value associated with one grid point during each smoothing step, all five values associated 

with a cell (four velocities and a pressure) are updated simultaneously. Detail of this method 

can be found in [35] and a brief review is given in Appendix B. However, to efficiently solve 
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the N-S equation, the SCGS method has to be parallelized, and a three step parallel scheme 

was developed. Because of the structure of the staggered grid, at least two block lines (a 

block line is a row of grid-cells) of data must be skipped each time the parallel calculation is 

performed to avoid writing and reading data at the same time, and this results in a “parallel 

block line” smoothing scheme. In principle, the number of the skipped block lines during 

each relaxation step could be any number equal to or larger than two. However, because the 

complexity of the parallelization also increases with this number, a skip of only two was 

employed. Therefore, the smoothing procedure for the staggered grid mainly comprised of 

three main steps. As shown in Fig. 1c, in the first step, block lines 1, 4, 7… were smoothed 

and during the second and third steps block lines 2, 5, 8… and 3, 6, 9… were smoothed 

respectively. In this way, the relaxation can be fully parallelized in each step. At the end of 

relaxation, all data belonging to the block line at the overlap area have to be communicated 

between neighbor processes.  

 

Restriction and interpolation can be performed rather more straightforwardly, detail of which 

for both point-wise data (phase field, solute and temperature) and cell-wise data (velocity and 

pressure) is shown schematically in Fig. 2. As shown, the target value pointed by the arrows 

is updated by a summation of the values from neighbors multiplied by the corresponding 

weight factors. 

 

3.3. Summary of the algorithm and programming considerations  

Accordingly, the parallel multigrid algorithm is organized as follows 
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(1) Set current time step n = 0 and initialization of the computing domain according to each 

process. 

(2) Solve the phase field equation i.e. Eq. (17) and getf at time step n+1 i.e. 
  f

n+1. 

(3) Solve the convection equations i.e. Eqs. (20) and (21) to retrieve    u
n+1and    v

n+1
 by 

applying the newly updated 
  f

n+1 from (2) . 

(4) Solve the solute and temperature equations, i.e. Eqs. (18) and (19) to retrieve Un+1 and θn+1 

by applying the newly updated 
  f

n+1,    u
n+1and    v

n+1 from (2) and (3). 

(5) Set time step n = n+1 and repeat (2) until the end of the simulation.  

Each solving process is carried out by employing the FAS multigrid algorithm and parallel 

computation is realized implicitly in multigrid components including relaxation, restriction 

and interpolation. Besides, for all mathematical operations involving matrices and vectors, 

parallelization can be realized straightforwardly and no further discussion will be given here. 

 

In addition to the parallel computing scheme, other methods were adopted to speed up the 

simulation. Firstly, the grid size for evaluating the N-S equations was chosen to be twice as 

coarse as that used for phase field, temperature and solute. Numerical tests showed that the 

application of these multi-grid approaches did not introduce any error larger than 1% in any 

of the results, but brought considerable computational benefit. Secondly, as suggested by 

Tong et al. [22], the time step for evaluating the N-S equation was also increased beyond that 

used for the other fields (normally two to ten times higher depending on the local growth 

velocity of the dendrite).  
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The parallel code was developed and tested on a 640-core (1.9 TB RAM) supercomputing 

cluster named as SAL housed at the Oxford Supercomputing Center and 8800-core 

supercomputing cluster housed at National Laboratory for Information Science and 

Technology in Tsinghua University using C++ language and two message passing libraries 

namely Message Passing Interface (MPI) [36] and Open Multi-Processing (OpenMP) [37]. In 

the program, OpenMP was used in conjunction with MPI to provide a second level of 

parallelism, resulting in an overall so-called hybrid/mixed program structure.  

 

4.  Model validation and numerical studies 

4.1. Benchmark simulations 

Fig. 3 shows the configuration of the benchmark dendrite growth scenario. The 2-D 

computation domain is rectangular with M×N cells. Only half of the growing dendrite was 

simulated because of the symmetry of the case. The dendrite grew from the midpoint of the 

left side of the domain with an initial solid “seed” radius of R0 = 30d0. The initial temperature 

of the seed was set to be zero while for the rest of the domain the temperature was set at an 

initial undercooling θ = θ0. For phase field, solute and temperature, the boundary condition of 

all sides of the domain were set to a Neumann condition (gradient flux is zero). For 

convection, the horizontal velocity u was set to zero at all boundaries, while for the vertical 

velocity v, the boundary condition was set as follows: at the top side of the domain v was set 

to a constant value v0; at the bottom, ∂v/ ∂y = 0; and for both left and right sides, ∂v/ ∂x = 0. A 

no-slip boundary condition was applied at the surface of the dendrite.  

 



22 
 

To calculate the selection constant σ* according to Eq. (1), the dimensionless solutal 

undercooling ΔC must be evaluated first. In phase field modelling the solutal undercooling 

can be calculated from ΔC = Ui/[1+(1-k)Ui] [31] where Ui is the dimensionless solute 

concentration at the interface. Ui can be obtained either directly from the simulation or 

evaluated using Ui = (-d0(1-15ε)Rtip-θi)/Mc∞, and the difference through the two methods was 

always within a few percent. Here, as suggested in [28, 29], θi is calculated corresponding to 

 = 0.9 and the actual tip radius i.e. Rtip is used instead of the parabolic tip radius Rp. For the 

benchmark calculations, a thermo-solutal case with parameters Mc∞ = 0.1, k = 0.15, ε = 0.02, 

Le = 50, v0 = 1 W0/τ0, Δθ = 0.55 and Pr = 23.1was assumed. 

 

4.2. Convergence and efficiency tests 

Firstly, a convergence study was performed by varying both the grid cell dimension Δx=Δy 

and the time step dt for the benchmark case shown in Fig. 3. Because the convergence tests 

for the case without convection have been performed extensively in our previous work [27], 

here only the case with convection for the first time was considered. All the simulations were 

firstly developed on the Oxford University Supercomputing Centre and then performed in 

final stage using 48 processes (cores) on the Tsinghua supercomputing system, except for 

case #3 and #4 for which 96 processes were used instead because of the bigger domain 

employed (for these two cases, the domain sizes were 6144×3072 and 12288×6144 while for 

all others a domain of 3072×1536 was used). Table 1 presents key parameters used in the 

literature to describe the condition or state at a growing dendrite tip, relating to geometry 

(vtipd0/D, Ra/d0, Rp/d0), Pc, σ*
LGK and σ*

LKT, and shows that as different combinations of 



23 
 

dx=dy and dt were chosen, all key dendrite tip parameters remained essentially constant over 

the range studied, even when the time step was increased to dt = 3.2×Δx2/(4D), which was 

160 times bigger than the time step limit required for a stable explicit method. The results 

were also stable, despite the time step for the N-S equations being 5 times larger than that 

employed for phase field. Further, using the hybrid parallel multigrid computing scheme 

described here, all computations for the evolution of a single dendrite to a mature shape, in 

this case with Δx = 0.8, Le = 50 and Pr = 23.1, took less than three hours, despite the modest 

number of cores. This computing efficiency made it possible to conduct a thorough parameter 

study related to dendrite growth under convection in sensible times.  

 

To illustrate further the parallel efficiency and capability of the algorithm, the benchmark 

simulation was repeated, but varying the number of cores (processes) from 1 to 128 and the 

size of the domain (#Ω) from a minimum size of 512×256 grid cells to a maximum size of 

8192×8192. The computation results are summarized in terms of the relationship between 

calculation time and number of process Np and are shown in Fig. 4. Here, the calculation time 

was defined as the time taken to compute one time step after the algorithm had reached 

stability, i.e. approximately the same time is consumed for each step of calculation. For each 

point in Fig. 4, the calculation time was effectively the sum of all the separate calculation 

times corresponding to the solution of Eqs. (17) – (21).  

 

As shown in Fig. 4 and compared with the results in [27], with convection the computation 

time increased significantly. Generally speaking, the time used to solve the Navier-Stokes 
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equation i.e. Eqs. (20) – (21), even with all the speed-up methods as mentioned before, was 

always twice as long as the time used to solve Eqs. (17) – (19) combined. Nonetheless, the 

overall parallel efficiency of the algorithm was excellent. For example, for a constant size of 

computing domain, as shown by indicative lines L1 and L2, the calculation time decreased 

proportionally and very close to linearity with increasing process number. For L1, significant 

non-linearity was established only when Np > 32 while for L2, this occurred when Np > 128. 

This is to be expected because using “too many” processes to simulate a “small” case does 

not extract the benefit of this particular method. The algorithm scalability is shown for 

example, by indicative line L3 that shows when Np was fixed at 16, the calculation time 

increased only linearly with increasing domain size #Ω. The parallel scalability is also 

reflected in indicative line L4 – before Np reached128, the calculation time remained 

approximately constant when both Np and #Ω were increased simultaneously at the same 

proportional rate.  

 

5. Tip operating state of a thermo-solutal dendrite growing against fluid convection 

5.1. Operating state and dendrite morphology transition 

A parametric study of dendrite growth was performed using the same domain as shown in Fig. 

3 and full details are given in Table 2. There were 126 simulations and five main categories 

of parameters were investigated, including Mc∞, Δθ, Le, Pr and v∞, i.e. the main factors that 

could influence the growth of the dendrite tip. The spatial step was fixed at Δx=Δy= 0.8 and 

the time step at dt = 0.8 Δx2/(4D). The size of the computing domain was chosen according to 

the parameters used in the simulation, but was mostly determined by the Lewis number and 
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for all simulations when Le = 200 or 500, the domain size was set to #Ω= 4096×2048; for Le 

= 1000, a medium size of domain of #Ω= 6144×3072 was applied; and for Le > 1000, a 

domain size of #Ω= 8192×4096 was used. For each case the imposed external fluid flow 

velocity entering the top of the domain was varied from 1, 2, 5, 10, 15 to 20 with units of 

W0/τ0. All simulations were initiated by “planting” a circular solid seed with a radius of 30d0 

at the middle of the left boundary, and the simulation was judged complete when the 

upstream primary dendrite arm tip reached a steady state. Other key parameters included the 

scaling parameter λ = 2 and the solute partition coefficient k = 0.15. A simulation (with 

convection) of domain size #Ω= 4096×2048 and 48 cores typically required 3 – 3.5 hours for 

completion while 6 – 6.5 hours were needed for a simulation when the domain size increased 

to #Ω= 8192×4096.  

 

Of all the simulations, particular interest concerns those cases when the key thermophysical 

parameters approach those of practical metallic alloys, such as Le ~ 104 and Pr ~ 10-2, which 

is simulation 115 in Table 2 i.e. v∞ = 2. Fig. 5 shows the evolution of the tip velocity vtip with 

and without convection, the parabolic tip radius Rp and the selection constants σ* 

corresponding to the LKT theory as the upstream dendrite arm grows. In this case, the flow 

was introduced only after the dendrite tip had grown a distance of approximately 272 d0 from 

the seed centre. As expected, before convection was introduced, vtip of the upstream and 

downstream primary dendrite arms were identical, and tip radius was very similar. Once flow 

around the dendrite was introduced, the upstream growth velocity nearly doubled and the tip 

radius was reduced by 28%. All the dendrite tip parameters tended towards stable values after 
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the dendrite upstream tip had reached a distance of 800d0. 

 

Figs. 6a and b show the corresponding contour line maps of solute concentration and 

temperature respectively. To the best knowledge of the authors, this type of fully coupled, 

non-isothermal, realistic alloy parameter simulation has not been achieved previously. As 

expected, as the dendrite solidified the latent heat released spread quickly over the 

computational domain, only weakly distorted from top-bottom symmetry by the flow. In 

contrast, differences in solute distribution due to convection were distinct, close to the 

solid/liquid interface, as shown by the inset figure in Fig. 6a. As also shown in the inset 

magnification of the dendrite in “Z”, convection for the upstream dendrite arm significantly 

reduced both the thickness of the layer in which solute accumulated and reduced the peak 

solute concentration in the liquid to ~ 2.5c∞ compared with ~ 3.4c∞ for the downstream 

direction.  

 

Differences in heat and solute distributions are usually explained by comparing the 

magnitude of Prandtl and Schmidt numbers in the simulation. The Prandtl number is the 

kinematic viscosity divided by the thermal diffusivity and characterizes the relative 

influences of conducting and fluid flow on thermal transport, while the Schmidt (Sc = Pr × Le) 

characterizes the relative influences of the fluid flow and diffusion on solute transport. A 

relatively small Pr = 0.02 used here indicated that it was very difficult for fluid flow to 

influence the distribution of temperature while on the other hand, the relatively large Sc = 200 

here indicated that fluid flow strongly influences solute profiles.  
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Figs. 6c and 6d show the same simulation but with Pr = 2 and Le = 200 so that Sc = 400. The 

100 fold increase in Pr increased the influence of convection on temperature, with now more 

pronounced differences in the upstream and downstream distribution. On the other hand, 

doubling Sc had little effect on the solute distribution: the peak solute concentration at 

upstream and downstream tip was 2.5 c∞ and 3.5 c∞ respectively, little changed from Figs. 6a 

and b, and consequently there was little change in overall dendrite shape. 

 

5.2. Influence of growth parameters 

For dendrite growth in a coupled thermo-solutal field, the parameters expected to influence 

strongly the evolving dendrite morphology are initial solute concentration and external 

imposed undercooling.  

 

To investigate the influence of these factors on dendrite growth, the calculated dendrite shape 

when the upstream arm tip reached the same distance of ~ 1000 d0 from the seed center is 

shown in Fig. 7 for variations in Mc∞, Δθ and Le, all of which directly affected the 

temperature – solute distribution. The default values of Mc∞, Δθ and Le were 0.1, 0.55 and 

200, and then keeping two of these constant, the third was varied in the range Mc∞ = 0.06 to 

0.15, Δθ = 0.35 to 0.65, and  Le = 200 to 104. To better distinguish the different profiles, 

arrows (with hollow heads) are used in the figures to indicate the trend change in shape as the 

variable under consideration was increased. For each parameter set, the shape with and 

without convection is shown, and the inset figures show corresponding contour maps of 
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solute concentration.   

 

The dendrite morphology usually comprised two types of feature: for primary arms and 

minor dendrite arms in-between, as the solute concentration increased in Fig. 7a, the upper 

primary arm became slightly wider and there was an increase in dendrite tip radius. The 

minor arm became more pronounced and extended at an angle of 45o to the symmetry 

boundary, as solutal undercooling in interdendritic regions became more pronounced. When 

convection was present in Fig. 7b, the horizontal side and downstream primary arms were 

significantly shortened. As flow propagated from top to bottom, solute rejected by the 

growing upstream primary dendrite arm, across the solid-liquid interface, and into the local 

liquid was convected downwards with the flow and around the horizontal primary arm. 

Solute then became relatively concentrated in the more stagnant, recirculating flow on the 

downstream side of the side arm, as shown in the zoom-in areas in Fig. 7 (also Fig. 6). 

According to the phase diagram, a higher solute concentration leads to a lower liquidus 

temperature and solute pile-up depresses the local melting point and therefore the level of 

local undercooling – the driving force for solidification is reduced, resulting in shorter, less 

developed side and downstream arms. 

 

Reducing the imposed undercooling in Figs. 7c and d significantly widened the primary arms, 

with a broadly similar effect to increasing solute concentration. The increase in undercooling 

greatly reduced the growth of solid in-between the primary arms. However, the opposite 

behaviour developed when the undercooling was increased from Δθ = 0.35 to 0.45, when 
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growth between primary dendrites became more pronounced. This behavior was 

accompanied by the transition in the morphology of the secondary dendrite arm structure, as 

indicated by “B” in Fig. 7c. For the case Δθ = 0.35, as shown by the insets in both Figs. 7c 

and 7d, the packing of the solute iso-concentration contours became less dense. Interestingly, 

with convection present and as Mc∞ increased in Fig. 7, the upstream part of the horizontal 

primary arm (indicated by “A”) was stimulated to develop a broad secondary dendrite arm, 

growing at approximately 45o to the symmetry axis, which was qualitatively similar to the 

morphology changes induced by decreasing undercooling with convection in Fig. 7d. In both 

cases, local solute redistribution due to the fluid flow caused these shape changes.  

 

The influence of Lewis number on dendrite growth is shown in Figs. 7e and 7f. An increase 

in Lewis number was broadly equivalent to an increase in the effective undercooling and a 

decrease in solute concentration, leading to a decrease in tip radius of the upstream primary 

arm, inhibition of the minor arms between primary arms, and elongation of both side and 

downstream primary arms when convection was present. The overall dendrite shape for Le = 

2000 (inset in Fig. 6e) was very similar to that in the inset in Fig. 7a, even though the 

undercooling in Fig. 7a of Δθ = 0.45 was smaller than Δθ = 0.55 in Fig. 7e i.e. the difference 

in undercooling was largely compensated by the larger Lewis number.  

 

5.3. The selection parameter σ* 

The tip operating state of the upstream primary arm was determined for each case above, and 

the selection parameters with (σ*) and without (σ0
*) convection corresponding to both LGK 
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and LKT theories were calculated. Because one of the aims of the simulations was to 

consider if Bouissou and Pelce’s theory of convection effects on dendrite tip state [20] holds 

for this type of simulation, Fig. 8 shows σ0
*/σ* as a function of χe

11/14 from Eq. (5). Figs. 8a 

and 8b show the influence of solute concentration and imposed undercooling on σ0
*/σ*, while 

Figs. 8c and 8d show the influence of Lewis number (Le) and Prandtl number (Pr). In all the 

figures the magnitude of the imposed fluid flow velocity entering the domain was varied from 

0, 1, 2, 5, 10, 15 to 20 in units of W0/τ0. Since W0/τ0 = Da1/(λ
2d0a2), then the magnitude of the 

velocity is linked to the scaling parameter λ. Constant parameters of ε = 0.02, λ = 2, k = 0.15, 

Δθ = 0.55, Mc∞=0.10 and Le = 200 were used in all the situations except where stated in the 

figure. For Figs. 8c and 8d, a smaller undercooling i.e. Δθ = 0.45 was used to ensure W0vtip/D 

< 1 (required for phase field simulation to be accurate). 

 

Fig. 8a shows the selection parameter corresponding to LGK theory i.e. σ*
LGK calculated 

from the fully coupled phase field simulations with and without convection were similar 

when χe
11/14 < 0.2 i.e. σ*

0 /σ
* ~ 1. Above 0.2 σ*

0 /σ
* increased. The most significant increase 

of σ*
0 /σ

* with χe
11/14 occurred for the lowest value of Δθ = 0.35 because this relatively low 

undercooling made the dendrite more sensitive to the influence of convection, as previously 

described. As undercooling was then increased from 0.35 to 0.55 convection had less 

influence on σ*
LGK. Taking Δθ = 0.55 for instance, σ*

0/σ
*~ 1 even when χe

11/14 > 1. However, 

a further increase of Δθ from 0.55 to 0.75 led to a progressing increase in σ*
0/σ

* σ*
LGK. 

Interestingly, there was a similar trend with an increase in solute concentration Mc∞ – σ*
0 /σ

* 

first decreased and then increased, and there was a certain solute concentration beyond which 
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σ*
LGK became relatively insensitive to fluid flow. This may be explained as follows. When 

the imposed undercooling was comparatively small (Δθ = 0.35), the flow reduced the 

temperature at the dendrite tip when Le = 200, which promoted dendrite growth and 

decreased the selection parameter. As Δθ was increased (Δθ = 0.55), dendrite tip growth was 

promoted, reducing the sensitivity of local temperature on the flow condition. As the imposed 

undercooling was further increased (Δθ = 0.75), the dendrite tip grows still faster but more 

solute must be rejected into the liquid. The influence of flow at these higher concentrations 

again becomes effective, promoting dendrite growth and decreasing the selection parameter.  

 

The selection parameter corresponding to the LKT theory σ*
LKT in Fig. 8b varied similarly to 

σ*
LGK, although the critical value of χe

11/14 beyond which there was a significant increase in 

σ*
0 /σ

* was higher at ~ 0.4. For both selection parameters there was little difference with and 

without convection below a critical value of χe
11/14, which agreed well with the theory due to 

Bouissou and Pelce [20]. In some cases, this regime even extended to χe
11/14 > 1.  

 

More insight was obtained by investigating the change of the selection parameters when the 

Lewis number was varied. As shown in Fig. 8c, an increase in Lewis number significantly 

reduced the dependence of σ*
LGK on χe, and the higher the Le, the more delayed the transition 

from σ*
0 ~ σ* to σ*

0 > σ*. As discussed before, the increase of Le is equivalent to an increase 

on the effective undercooling and as shown in Fig. 8a, this decreases the dependence of σ*
LGK 

on χe. Changing the Prandtl number did not produce a strong change in the transition 

behaviour of σ*
LGK as shown in Fig. 8c, although a decrease of Pr from 2.0 to 0.02 (Le = 104) 



32 
 

significantly increased the effect of convection which can be seen by comparing the 

maximum value of χe from both cases. As shown in Fig. 8d, once χe
11/14 is greater than 0.2, an 

increase of the Lewis number to > 2000 decreased σ0
*
LKT/σ*

LKT to less than unity.  

 

6. Conclusions 

Free dendritic growth against forced convection has been investigated using phase field 

modeling in which fully coupled and non-linear equations for heat, solute and liquid flow 

were solved using a novel parallel-multigrid numerical approach. Convergence and efficiency 

tests confirmed that this approach was very robust and enabled the solution of coupled 

dendrite growth during solidification of alloys of practical interest with Le ~ 104 and Pr ~ 

10-2. Dendrite growth dynamics were studied by investigating the influence of growth related 

parameters such as solute concentration, undercooling and Lewis number on dendrite 

morphology and tip operating state. The selection constants with convection (σ*) and without 

convection (σ0
*) according to both LGK and LKT theories were calculated using the model, 

and their ratio σ0
*/σ* was then compared with the theory. The ratio σ0

* /σ* remained close to 

unity when χe was small and increased significantly beyond a critical value of χe, which 

agreed well with theory.  

 

However, the typical magnitude of the product Pefσ
*in the present work was around 0.005 – 

0.035 because σ*~ 0.05 and Pef ~ 0.1 – 0.7. This is much lower than Pefσ
*~1 used by 

Bouissou and Pelce who only considered the temperature-flow field since they studied only 

pure materials. Therefore, it is proposed that in the present work, recognizing the dominant 
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role of solute distributions in the liquid in the evolving morphology, the appropriate Peclet 

number is supposed to be not Pef = Rtipvtip/2α but Pef = Rtipvtip/2D. When this form is used, the 

range of Peclet number studied in the present work lies in the range spanning unity, and the 

insight provided by the model can therefore be even more closely reconciled with the work of 

Bouissou and Pelce [20].  

 

Nonetheless, for the fully coupled simulations, the Peclet number is dependent on solute 

concentration, undercooling and Lewis number, which cannot be accounted for by Bouissou 

and Pelce’s approach. In this respect, and in spite of the complexity of model formulation, the 

present computational approach provides a more flexible method to explore factors governing 

dendrite evolution under flow conditions. Using this flexibility and performing a large 

number of different simulations revealed that the basic approach of Bouissou and Pelce 

provided surprisingly robust validity. 

 

The extension of the present work to three dimensions requires further development of the 

numerical algorithm. A promising approach is to incorporate the adaptive mesh refinement 

(AMR) into the current parallel multigrid computing scheme. Because the multigrid 

algorithm is intrinsically composed of grids with different sizes, the incorporation of the 

AMR is theoretically straightforward. However, careful attention must be paid on the load 

balance during data communication to ensure the highest parallel efficiency.  
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Appendix A 

(1) For phase field f , The related parameters in Eqs. (36) and (37) are: 
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(2) For the Navier-Stokes equations and according to the staggered grid structure, let the 
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related variables of a grid cell (with indexes i and j) be 
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the related parameters are 
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(3) For solute U, the related parameters are 

   
p

i, j

n =
1+ k

2
-

1- k

2
f

i, j

n+1é

ë
ê

ù

û
ú- bDt ×B

U

n +
5bDtD

3h2
1-f

i, j

n+1( )     (72) 

  
p

i+1, j

n = 4 p
U 0

-
bDt

2h
B

1U

n
     (73) 

  
p

i-1, j

n = 4 p
U 0

+
bDt

2h
B

1U

n
     (74) 

  
p

i, j+1

n = 4 p
U 0

-
bDt

2h
B

2U

n
     (75) 

  
p

i, j-1

n = 4 p
U 0

+
bDt

2h
B

2U

n
     (76) 

  
p

i+1, j-1

n = p
i+1, j+1

n = p
i-1, j-1

n = p
i-1, j+1

n = p
U 0

  (77) 

   
p

U 0
=

-bDtD 1-f
i, j

n+1( )
12h2

            (78) 

  

b
f

n = -
1+ k

2
-

1- k

2
f

i, j

n+1é

ë
ê

ù

û
ú a

0
U

i, j

n +a
1
U

i, j

n-1( ) + bDtC
U

n             (79) 

where 

  
B

U

n = (1- k)D
U

n
     (80) 



38 
 

   

B
1U

n = -
1

2
Df

x

' +
1- k

2 2
f

t

' f
x

'

Ñf

é

ë
ê
ê

ù

û
ú
ú

i, j

- u
i, j

n+1 1+ k

2
-

1- k

2
f

i, j

n+1é

ë
ê

ù

û
ú       (81) 

   

B
2U

n = -
1

2
Df

y

' +
1- k

2 2
f

t

'
f

y

'

Ñf

é

ë

ê
ê

ù

û

ú
ú

i, j

- v
i, j

n+1 1+ k

2
-

1- k

2
f

i, j

n+1é

ë
ê

ù

û
ú     (82) 

   
C

U

n = D
U

n +
1

2
u

i, j

n+1f
x

'

i, j
+ v

i, j

n+1f
y

'

i, j( )      (83) 

  

D
U

n =
1

2 2

¶

¶x
f

t

' f
x

'

Ñf

æ

è
ç

ö

ø
÷ +

¶

¶y
f

t

'
f

y

'

Ñf

æ

è
ç

ö

ø
÷

é

ë

ê
ê

ù

û

ú
ú

i, j

+
1

2
f

t

'

i, j
      (84) 

  

f
t

'

i, j
=

¶f

¶t

æ

èç
ö

ø÷
i, j

=
f

i, j

n+1 -f
i, j

n

Dt
      (85) 

 

(4) For temperature q  the parameters are 
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Appendix B 

Let the related variables of a grid cell (with indexes i and j) be 
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will be updated simultaneously, which is equivalent to solve 
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where the explicit formulation of the parameters in Eqs. (98) to (101) is given in Appendix A. 

Eq. (94) can be easily solved using the Gaussian elimination method.  
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Figure Captions: 

Figure 1: Schematic illustration of (a) grid partitioning approach used in solving the 

discretized equations, and the data communication mechanism with respect to the (b) 

point-wise data including phase field, solute and temperature, and (c) cell-wise data including 

velocity and pressure.  

 

Figure 2: Schematic illustration of (a) restriction and (b) interpolation procedures used in the 

multigrid algorithm for both types of grids. 

 

Figure 3: Configuration and boundary conditions for the benchmark case of a dendrite 

growing freely in a flow from top to bottom of the computational domain. 

 

Figure 4: Calculation time per step for the benchmark dendrite growth case as a function of 

process or core number, indicating excellent computing efficiency and scalability. The lines 

L1 – L4 indicate different data-sets, where L1 and L2 are at constant size and varying process 

number; L3 is at constant process number and increasing grid size; L4 is at constant 

calculation time and increasing grid size and process number in the same proportion. 

 

Figure 5: The variation of key dendrite parameters of parabolic tip radius Rp, selection 

constant σ*
LKT and the tip velocity vtip as a function of the growing tip position during the 

phase field simulation, for the case of Le = 104 and Pr = 0.02. Both stagnant and with forced 

convection are shown. 
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Figure 6: Dendrite shape under coupled thermal-solutal-convection conditions, showing 

contours of (a) solute concentration and (b) temperature corresponding to Le = 104 and Pr = 

0.02; and (c) and (d) solute concentration and temperature respectively corresponding to Le = 

200 and Pr = 2.0. Insets show the distribution of the solute along the mid-line of the dendrite 

from upstream to downstream. 

 

Figure 7: Superimposed phase field simulations of dendrite morphology with arrows (hollow 

head) indicating the direction of changing shape with an increase of the parameter under 

study, for (a) and (b) solute concentration, (c) and (d) undercooling and (e) and (f) Lewis 

number, without  and with convection. Indicative insets show solute iso-concentration 

variations. 

 

Figure 8: Variation of dendrite selection constants as a function of the dimensionless 

parameter χe. Influences of solute concentration and undercooling are shown in (a) and (b) 

corresponding to the LGK and LKT theories, respectively. Influences of the Lewis number 

and Prandtl number are shown in (c) and (d) corresponding to the LGK and LKT theories, 

respectively. 

 

Figure 9: The variation of the solutal Peclet number Pec as a function of the flow Peclet 

number Pef for (a) changes in solute concentration and undercooling, and (b) changes in the 

Lewis number. 


