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ABSTRACT
We investigate the effects of isocurvature perturbations on the 21 cm radiation from minihaloes
(MHs) at high redshifts and examine constraints on the isocurvature amplitude and power
spectrum using the next generation of radio telescopes such as the Square Kilometre Array. We
find that there is a realistic prospect of observing the isocurvature imprints in the 21 cm emission
from MHs, but only if the isocurvature spectral index is close to 3 (i.e. the spectrum is blue).
When the isocurvature fraction increases beyond ∼10 per cent of the adiabatic component, we
observe an unexpected decline in the 21 cm fluctuations from small-mass MHs, which can be
explained by the incorporation small MHs into larger haloes. We perform a detailed Fisher-
matrix analysis and conclude that the combination of future cosmic microwave background
and 21 cm experiments (such as CMBPol and the Fast Fourier Transform Telescope) is ideal
in constraining the isocurvature parameters, but will stop short of distinguishing between cold
dark matter and baryon types of isocurvature perturbations, unless the isocurvature fraction is
large and the spectrum is blue.
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1 IN T RO D U C T I O N

Recent measurements of the anisotropies in the cosmic microwave
background (CMB) by the Planck satellite have placed constraints
of unprecedented accuracy on the amplitude of the primordial den-
sity fluctuations (Planck Collaboration 2013a,b). Planck also re-
vealed that these fluctuations are consistent with having originated
from adiabatic initial conditions, characterized by the constancy
of the ratios of density contrasts of various particle species in the
early Universe (see Bardeen 1980; Kodama & Sasaki 1984 for re-
views). This is in agreement with previous CMB measurements by
the Wilkinson Microwave Anisotropy Probe satellite (Bennett et al.
2013; Hinshaw et al. 2013). On the other hand, if the aforementioned
ratios of density contrasts are not constant, the fluctuations are
said to be generated from isocurvature initial conditions, of which
there are four types, namely, the cold dark matter (CDM), baryon,
neutrino-density and neutrino-velocity isocurvature perturbations
(Bucher, Moodley & Turok 2000). Constraints from Planck limit
any isocurvature contributions to the CMB temperature anisotropies
to less than ∼10 per cent.

The simplest model of inflation involving a single, slowly rolling
scalar field predicts that density fluctuations are generated from
purely adiabatic initial conditions. Hence, the detection of any

� E-mail: yoshitaka@nagoya-u.jp

isocurvature contribution would be a window to novel physical
mechanisms in the inflationary era. Such mechanisms include the
curvaton mechanism (Langlois & Vernizzi 2004; Lazarides, de
Austri & Trotta 2004; Moroi & Takahashi 2005; Moroi, Takahashi
& Toyoda 2005; Ichikawa et al. 2008a; Langlois, Vernizzi &
Wands 2008), the axion and gravitino CDM (Rajagopal, Turner &
Wilczek 1991; Covi et al. 2001; Covi, Roszkowski & Small 2002;
Brandenburg & Steffen 2004) and the modulated reheating scenar-
ios (Kofman 2003; Dvali, Gruzinov & Zaldarriaga 2004; Ichikawa
et al. 2008b; Takahashi, Yamaguchi & Yokoyama 2009a; Takahashi
et al. 2009b) as well as various combinations of such scenarios.
In most of these models, a large isocurvature fraction can be pro-
duced at the expense of the introduction of a few additional param-
eters (Moroi & Takahashi 2002, 2009; Lyth & Wands 2003; Lyth,
Ungarelli & Wands 2003; Beltran 2008; Takahashi et al. 2009b).

According to our current understanding of cosmology, inflation-
stretched primordial quantum fluctuations subsequently grow via
gravitational instability into the observed cosmic structures. One
of the earliest cosmic structures to form were minihaloes (MHs),
which are virialized haloes of dark and baryonic matter with typical
mass 104–108 M� and temperature �104 K, at very high redshift
(z ∼ 6–20). MHs typically host a high density of neutral hydrogen,
which can be detected by the 21 cm absorption/emission line due to
the transition of the hydrogen atom from a parallel to antiparallel
spin state. MHs are typically at such high temperatures that their
21 cm signal appears in emission with respect to the CMB (Iliev
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et al. 2002). The 21 cm signals from MHs give us information on the
small-scale density fluctuations at high redshifts, and their detection
will therefore lead to a deeper understanding of small-scale physics
during the earliest structure formation epoch.

The 21 cm signal from MHs has previously been studied by
Chongchitnan & Silk (2012b), who showed that the 21 cm emis-
sions from MHs are a sensitive probe of primordial non-Gaussianity,
due to a strong dependence of the MH number density and bias on
the amplitude of non-Gaussianity. Tashiro, Sekiguchi & Silk (2013)
calculated the 21 cm fluctuations due to MHs in cosmic wakes pro-
duced by cosmic strings.

In this paper, we present a new probe of isocurvature fluctuations
using the 21 cm signal from MHs. We will show that the fluctuations
in the 21 cm emission from MHs are a viable probe of isocurvature
fluctuations. We also give forecasts on the isocurvature fraction and
spectral index using the next generation of large arrays of radio
interferometers, which are expected to measure the cosmic 21 cm
signals over a wide range of redshifts, from the cosmic dark ages
(z ∼ 30–50) down to the epoch of reionization (EoR) at z ∼ 6.
Such radio surveys include: the Low-Frequency Array (LOFAR),1

the Murchion Widefield Array2 and the Giant Metrewave Radio
Telescope,3 all of which focus on 6 � z � 30, as well as more am-
bitious future arrays such as the Square Kilometre Array (SKA),4

and the Fast Fourier Transform Telescope (FFTT; Tegmark &
Zaldarriaga 2009), which can probe the radio Universe at z � 30.

There have only been a handful of works exploring the link be-
tween 21 cm cosmology and isocurvature perturbations: Barkana &
Loeb (2005) and Lewis & Challinor (2007) discussed the prospects
for differentiating between the CDM and baryon isocurvature fluc-
tuations using 21 cm signals. Further work by Kawasaki, Sekiguchi
& Takahashi (2011) showed that 21 cm surveys can effectively probe
the difference between CDM and baryon isocurvature fluctuations
if the spectrum of isocurvature perturbations is strongly blue tilted
(we revisit this claim later). Gordon & Pritchard (2009) investigated
the constraints on isocurvature modes from 21 cm observations, fo-
cusing on the so-called compensated isocurvature perturbations.

This paper is organized as follows: we summarize the 21 cm ra-
diation from MHs and its sensitivity to the presence of isocurvature
modes in Section 2. The effects of isocurvature modes on the fluc-
tuations of this signal are explained in Section 3. Forecasts on the
constraints of isocurvature parameters from future radio surveys
are discussed in Sections 4 and 5. Finally, Sections 6 and 7 contain
further discussions and a summary of our main conclusions.

Throughout this work, we assume a flat Universe and adopt
the cosmological parameters from Planck (Planck Collaboration
2013c).

2 2 1 C M E M I S S I O N F RO M M I N I H A L O E S

The 21 cm spectral line can appear in either emission or absorption
against the CMB depending on the spin temperature, Ts, determined
by the balance between collisional and radiative excitations of the
hydrogen atoms. The interactions between a hydrogen atom and
photons, electrons and other atoms couple the spin temperature to

1 http://www.lofar.org
2 http://www.mwatelescope.org
3 http://gmrt.ncra.tifr.res.in
4 http://www.skatelescope.org

the temperatures of the surrounding gas and radiation field as (Field
1958)

Ts = TCMB + yαTα + ycTk

1 + yα + yc
, (1)

where Tα is the colour temperature of Lyα photons, Tk is the kinetic
temperature, and yα and yc are the radiative and collisional excitation
efficiencies (Madau, Meiksin & Rees 1997). We assume that bright
UV and X-ray sources have yet to form or that the MHs are isolated
from such sources. Thus, we can neglect the radiative coupling and
set yα = 0.

The amplitude of the 21 cm signal from a virialized halo depends
on the density profile, velocity and temperature of the halo. We
adopt as our model the truncated isothermal sphere (TIS; Shapiro,
Iliev & Raga 1999; Iliev & Shapiro 2001), in which a MH of a given
mass is described by its radius rt, temperature Tk, density profile
ρ(r) and velocity dispersion σ V. In this model, each MH is modelled
as a non-singular sphere of dark matter and baryons in virial and
hydrostatic equilibrium, so that ρ(r) describes both the dark matter
and gas profiles.

The observed brightness temperature along a line of sight,
through a halo at comoving distance r from the centre of the halo,
is given by

Tb(r) = TCMB(z)e−τ (r) +
∫ τ (r)

0
Tse

−τ ′
dτ ′, (2)

where τ (r), the total optical depth of neutral hydrogen to photons
at frequency ν, can be expressed as (Furlanetto & Loeb 2002)

τ (ν) = 3c2A10T∗
32πν2

0

∫ ∞

−∞

nH I(�)φ(ν, �)

Ts(�)
dR. (3)

Here, R and � are radial comoving distances satisfying
�2 = R2 + (αrt)2; α is the impact parameter in unit of rt and
nH I is the number density of neutral hydrogen. φ(ν) is the intrinsic
Doppler-broadened line profile given by

φ(ν) = 1


ν
√

π
exp

[
−

(
ν − ν0


ν

)2
]

, (4)

with 
ν = (ν0/c)
√

2kBTk/mH.
When the line profile is unbroadened; φ(ν) = δ(ν − ν0), the

optical depth corresponds to that of the Intergalactic medium (IGM)
at redshift z and can be expressed as (Madau et al. 1997)

τIGM(ν; z) = 3c3A10T∗nH I(z)

32πν3
0Ts(z)H (z)

, (5)

where A10 and ν10 are the spontaneous decay rate and the rest-frame
frequency for the 21 cm transition, T∗ is the equivalent temperature
defined as T∗ ≡ hpν10/kB. The total optical depth can be written as

τ (ν, R) = τIGM(ν) + 3c2A10T∗
32πν2

0

∫ R

−∞

nH I(�′)φ(ν, �′)
Ts(�′)

dR′. (6)

The first and second terms represent the contributions from IGM
and the MH, respectively.

The differential 21 cm brightness temperature, δTb, measured
with respect to the CMB temperature, is given by

δTb = 1

1 + z

(∫
dATb(r)

A
− TCMB(z)

)
, (7)
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The 21 cm line with isocurvature modes 1127

where Tb is averaged over the halo cross-section A = πr2
t . The

mean 21 cm emission from an ensemble of MHs in the mass range
[Mmin,Mmax] is thus given by (Iliev et al. 2002)

δTb = c(1 + z)4

ν0H (z)

∫ Mmax

Mmin


νeffδTb(M)A
dn

dM
dM, (8)

where νeff = [φ(ν0)(1 + z)]−1 is the effective redshifted line width.
We take Mmax to be the virial temperature corresponding to temper-
ature, 104 K and Mmin to be the Jeans mass, MJ.

The rms fluctuations in the 21 cm emission for a pencil-beam
survey with bandwidth 
ν and angular size 
θ is given by

〈δT 2
b 〉1/2 = σp(z, 
ν, 
θ )β(z)δTb(z), (9)

where σ p is the variance in a cylinder and β is the flux-weighted
average of the halo bias.

The variance in a cylinder is given by

σp(z, 
ν, 
θ ) = 2π

∫
dkz

kz

[
k3

zP (kz)

2π2

]

×
∫ ∞

1/R

dkr

[
2

krR(z)
j0

(
kzL(z)

2

)
J1 (krR(z))

]2

, (10)

where L and R represent, respectively, the width along the line of
sight and the spatial resolution of survey, P(k) is the matter power
spectrum and ν0 = 1.42 GHz is the rest-frame frequency for a 21 cm
transition.

The flux-weighted average of the halo bias is given by

β(z) =
∫ Mmax

Mmin
b(M, z)F (M) dn

dM
dM∫ Mmax

Mmin
F (M) dn

dM
dM

, (11)

where F (M) ∝ Tbr
2
t σV is the effective flux from the MHs and b(M,

z) is the halo bias. We adopt the bias expression of Sheth, Mo &
Tormen (2001) in this work. According to Iliev & Shapiro (2001),
the non-linear bias approach of Scannapieco & Barkana (2002)
can be robustly reproduced by the linear bias obtained in Mo &
White (1996). We have checked that our choice of b(M, z) closely
reproduces the result using the bias of Mo & White (1996) or that
of Chongchitnan & Silk (2012a) in the Gaussian case.

3 E F F E C T S O F IS O C U RVAT U R E
P E RT U R BAT I O N S

As a first step in calculating the effects of isocurvature perturbations,
we parametrize the primordial power spectrum for isocurvature
fluctuations as

PSi
(k) ≡ PSi

(k0)

(
k

k0

)ni
s−1

, (12)

where i = c or b, indicating CDM and baryon isocurvature modes.
PSi

(k0) and n(i)
s are, respectively, the amplitude and the spectral

index for the mode i defined at reference scale k0. In this paper, we
take k0 = 0.05 Mpc−1.

We define the primordial isocurvature fractions as

rcdm ≡ PSc (k0)

Pζ (k0)
, rbar ≡ PSb (k0)

Pζ (k0)
, (13)

where Pζ (k0) is the amplitude of the primordial power spectrum for
the adiabatic (curvature) perturbation ζ . For simplicity, we adopt
a single value for both the spectral indices of CDM and baryon
isocurvature spectra, and denote this by niso

s (i.e. nc
s = nb

s = niso
s ).

The total matter isocurvature perturbation, Sm is given by the com-
bination of the isocurvature fluctuations (with respect to radiation)
in CDM and in baryon (Sc and Sb), as Sm = fcSc + fbSb, where
fc = �c/�m and fb = �b/�m. It is worth noting that if CDM and
baryons contribute equally to the total isocurvature fluctuations, the
initial amplitude of power spectrum for the baryon mode must be
larger than that of CDM by a factor of (�c/�b)2.

The evolution of isocurvature fluctuations is influenced by two
main factors; evolution of the metric perturbations and the ampli-
tudes of initial fluctuations. Although the evolution of the metric
perturbations is almost same between the CDM and baryon isocur-
vature modes, the difference in the initial fluctuations between the
CDM and baryon isocurvature modes can lead to observable effects,
as will be shown in this work (see also Kawasaki et al. 2011).

Let us first consider the effects of isocurvature modes on the mat-
ter power spectra. The case of a pure CDM isocurvature mode is
shown in Fig. 1 at redshifts z = 6, 10, 20 and 40 (from left-hand col-
umn to right) with isocurvature fraction rcdm = 10−1 (dashed/green),
10−3 (dotted/blue) and 10−5 (dot–dashed/magenta), with varying
spectral index niso

s = 1, 2 and 3 (from top row to bottom). The
solid/red line in each panel shows the adiabatic spectrum.

We see that for very blue-tilted spectrum (niso
s = 3), the effects

of the CDM isocurvature mode can be identified clearly on small
scales, whereas the contribution from a scale-invariant isocurvature
spectrum (niso

s = 1) is much smaller than the adiabatic component
even with relatively large isocurvature fractions.

Fig. 2 shows the changes in the halo mass function due to the
contribution from isocurvature fluctuations with respect to the adi-
abatic case. Each curve is derived from the corresponding matter
power spectrum shown in Fig. 1, using the prescription of Press
& Schechter (1974). We clearly see that the effects of the isocur-
vature modes are prominent on small-mass scales and at high red-
shifts. In particular, we see that very blue-tilted isocurvature spectra
(niso

s = 3) exhibit very different features from the other spectra with
niso

s = 1 or 2. The changes in the halo mass function do not vary
monotonically with increasing fractional amplitudes rcdm. In gen-
eral, blue-tilted isocurvature spectra show enhanced fluctuations on
small scales, and lead to the increase of the number of small haloes.
However, if the contribution of isocurvature modes increases be-
yond some critical value, small haloes can become incorporated
into larger haloes. This explains the unexpected features seen in
the last row of Fig. 2, where the abundances of massive haloes are
enhanced, but those of smaller mass haloes are suppressed. Such a
feature appears in the typical mass range of MHs, i.e. [Mmin, Mmax],
and it is expected that the 21 cm signal from MHs will also exhibit
such a trend.

Finally, we calculate the rms fluctuations in the 21 cm emission
from MHs, 〈δT 2

b 〉1/2, as a function of redshift (Fig. 3). Again, we
assume the contribution from only the CDM type of isocurvature
fluctuations. The sensitivity curves are for LOFAR, SKA and FFTT
(details of the sensitivities are explained in the next section). We see
that when the isocurvature spectrum is flat (niso

s =1), the difference
in 〈δT 2

b 〉 compared to the adiabatic mode is �10−4 mK even with
rcdm = 0.1. This suggests that such isocurvature components would
be extremely difficult to observe through MHs. Even with bluer
isocurvature spectrum (niso

s = 2), the difference is still small: the
model with rcdm = 0.1 enhances the signal by not much more than
a few per cent around the z ∼ 10.

If the isocurvature spectrum is very blue (niso
s = 3), large differ-

ences can be seen, especially at high redshifts. However, a slight
trend reversal is seen around z � 20, where rcdm = 10−3 boosts the
signal more effectively than when rcdm = 10−1. This again can be
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1128 Y. Takeuchi and S. Chongchitnan

Figure 1. The matter power spectra generated by adiabatic or pure CDM isocurvature fluctuations, at redshifts z = 6, 10, 20 and 40 (from left-hand column to
right). The spectral indices of the isocurvature mode are as niso

s = 1, 2 and 3 (from top row to bottom). In each panel, the different curves represent the matter
power spectrum of the adiabatic fluctuations (solid/red) and the CDM isocurvature fluctuations with rcdm = 10−1 (dashed/green), 10−3 (dotted/blue) and 10−5

(dot–dashed/magenta). The isocurvature spectra shown have no contribution from adiabatic fluctuations.

Figure 2. Deviation of the halo mass function for the case with CDM isocurvature fluctuations from the pure adiabatic case at redshifts z = 6, 10, 20 and 40
(from left to right). (dn/dM)tot represents the halo mass function for the total (adiabatic+CDM isocurvature) fluctuation; (dn/dM)adi is the mass function for
the pure adiabatic case. Thick (thin) lines represent positive (negative) values. The spectral indices of the isocurvature perturbations are niso

s = 1, 2 and 3 (from
top to bottom). Different line types represent different values of rcdm (same as those in Fig. 1).
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The 21 cm line with isocurvature modes 1129

Figure 3. Top panels: the rms fluctuations in the 21 cm emission from MHs, 〈δTb
2〉1/2, with the sensitivity curves for LOFAR (orange), SKA (cyan) and FFTT

(purple). The curves in each panel represent the same cases as in the previous figures. Lower panels: deviation from the adiabatic case, with isocurvature spectral
indices niso

s = 1, 2 and 3 (from left to right). 〈δTb
2〉1/2

tot and 〈δTb
2〉1/2

adi , respectively, represent the signal for the case with adiabatic and CDM isocurvature
fluctuations and that for the case with adiabatic fluctuations alone. The unusual trend in the last column is discussed in the text.

understood in terms of the incorporation of small-mass MHs into
larger haloes, as previously discussed.

Our calculation shows that the detection of isocurvature contri-
bution to the fluctuations in the 21 cm MH emission is possible with
future telescopes such as the SKA and FFTT. If isocurvature fluctua-
tions have a very blue spectrum with rcdm 
 10−3, such isocurvature
signals may be detected at low redshifts even by LOFAR. However,
further increase in rcdm suppresses the signal at z � 20 due to the
incorporation of small MHs into larger haloes. We shall discuss
other uncertainties in the calculation of the 21 cm signal from MHs
in Section 6.

4 FO R E C A S T S

We now perform a Fisher-matrix analysis on the cosmological pa-
rameters derived from measurements of the CMB and the fluctu-
ations in the 21 cm signal from MHs. We define the total Fisher
matrix by combining the CMB and the 21 cm surveys as

Fαβ = F
(CMB)
αβ + F

(21 cm)
αβ , (14)

where α, β refer to the model parameters, and F
(CMB)
αβ and F

(21 cm)
αβ

represent the contributions from the CMB and 21 cm observations.
We adopt following 12 parameters in our analysis:

p={�bh
2, �ch

2, ��, τ reion, ns, As, w, Yp, αs, rcdm, rbar, niso
s },
(15)

where �b, �c and �� are the density parameters for baryons, CDM
and cosmological constant, respectively; h is the dimensionless
Hubble constant; w is the equation of state for dark energy; Yp

is the primordial abundance of Helium; τ reion is the optical depth
at the EoR;5 ns and As are the spectral index and the amplitude of

5 We treat τ reion as a model parameter only in the CMB measurement since
τ reion does not affect the 21 cm signals in our analysis.

the primordial power spectrum for the adiabatic mode; αs is the
running of the spectral index; rcdm and rbar are CDM and baryon
isocurvature fractions; niso

s is the spectral index for the isocurvature
perturbations.

4.1 CMB Fisher matrix

The Fisher matrix for a CMB survey is given by (Tegmark, Taylor
& Heavens 1997)

F
(CMB)
αβ = f CMB

sky

lmax∑
�=2

2� + 1

2
Tr

[
C�;αC

−1
� C�;βC

−1
�

]
, (16)

where f CMB
sky is the sky coverage of the CMB survey, C� is the

covariance matrix and C�;α represents its derivative with respect
parameter pα; C�;α ≡ ∂C�/∂pα . The CMB observables include the
temperature anisotropies (T), the E-mode polarization (E) and the
CMB lensing potential (ψ). The covariance matrix constructed from
these observables is given by

C� ≡

⎛
⎜⎜⎝

CT T
� + NT T

� CT E
� C

T ψ
�

CT E
� CEE

� + NEE
� C

Eψ
�

C
T ψ
� C

Eψ
� C

ψψ
� + N

ψψ
�

⎞
⎟⎟⎠ , (17)

where C� and N� represent the angular power spectrum and the
noise spectrum, respectively. For simplicity, we assume that the
cross-correlation between the E-mode polarization and the CMB
lensing potential can be neglected (i.e. C

Eψ
� = 0).6

6 This is because E-mode polarization is generated via Thomson scatter-
ing around the last-scattering surface, whereas the sources of CMB lens-
ing are the large-scale structures between us and the last scattering sur-
face. However, such correlation, though small, is not exactly zero since the
E-mode polarization can also be generated during the EoR, and structures in
this era can also act as lensing sources (Lewis, Challinor & Hanson 2011).
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Table 1. The specifications for a mid-cost CMBPol (EPIC-2m type)
mission adopted in this paper. Here ν refers to the frequency of each
channel, θFWHM is the angular resolution, 
T

ν and 
P
ν are the sensitiv-

ities for the temperature and polarization measurements.

ν (MHz) θFWHM (arcmin) 
T
ν (μK arcmin) 
P

ν (μK arcmin)

45 17 5.85 8.27
70 11 2.96 4.19

100 8 2.29 3.24
150 5 2.21 3.13
220 3.5 3.39 4.79

The noise spectrum for a CMB experiment is given by (Knox
1995)

NT ,P
� =

[∑
ν

{(

T ,P

ν θFWHM

)2
e−�(�+1)θ2

FWHM/8 ln 2
}−1

]−1

, (18)

where 
T ,P
ν denotes the sensitivity of the temperature or polar-

ization measurement and θFWHM represents the angular resolution
(the so-called full width at half-maximum). We calculate the noise
spectrum for the lensing-potential measurement using the formal-
ism outlined in Hu & Okamoto (2002) and Okamoto & Hu (2003).
In particular, we assume the projected sensitivities of the CMBPol
mission (Baumann et al. 2009), with f CMB

sky =1 and �max=4000. We
use specifications for a mid-cost CMBPol (EPIC-2m type) mission,
as shown in Table 1.

4.2 21 cm Fisher matrix

For a 21 cm survey, we define the Fisher matrix as

F
(21 cm)
αβ = f 21 cm

sky

∑
i

∑
pixel

(
∂Si

∂pα

)
1

2(Si + Ni)2

(
∂Si

∂pβ

)
, (19)

where i runs over all redshift slices, f 21 cm
sky is the sky coverage for

the 21 cm survey, Si and Ni represent the signal and noise in the ith
redshift slice. We define the signal and the noise as Si ≡ 〈δT 2

b (zi)〉1/2

and Ni ≡ δTN(zi), respectively, and δTN(z) is given by (Furlanetto,
Oh & Briggs 2006)

δTN (z) = 20 mK
104m2

Atot

[
10′


θ

]2 [
1 + z

10

]4.6 [
MHz


ν

100 h

tint

]1/2

,

(20)

where Atot is the effective collecting area of the radio array, 
θ is
the angular resolution, 
ν is the frequency bandwidth and tint is the
total integration time. The sensitivity curves shown in Fig. 3 assume
Atot = 104 m2 (LOFAR), Atot = 105 m2 (SKA) and Atot = 107 m2

(FFTT), with tint = 1000 h in all cases.
As a fiducial survey, we use the specifications of FFTT, with

Atot = 107 m2, 
θ = 9 arcmin, 
ν = 1 MHz and tint = 1000 h.

5 R ESULTS

5.1 The rcdm−rbar plane

Fig. 4 summarizes the results from our Fisher analysis. The contours
show the projected 1σ (68 per cent) and 2σ (95 per cent) constraints
in the rcdm−rbar plane expected from CMBPol alone and from com-
bining with either the SKA or FFTT. We perform the analysis over
the redshift range 6 ≤ z ≤ 40 in equally spaced bins centred at
zi with bin separation 
zi = 1. Within each bin, we assume the
bandwidth resolution of 
ν = 1 MHz.

As shown in the previous section, the contribution from a scale-
invariant (niso

s = 1) isocurvature spectrum to the 21 cm MH signal
is small. This is also evident from the contours, which are only mod-
estly tightened by when 21 cm constraints are added to those from
CMBPol. The improvement is more dramatic for bluer isocurvature
spectra, especially in the bottom-right panel, where we can see that

Figure 4. Projected 1σ (68 per cent) and 2σ (95 per cent) constraints in the rcdm−rbar plane from the CMB alone (solid/blue line) and CMB+21 cm (shaded/red
region). We assume CMBPol specifications and the SKA (top panels) or FFTT (bottom panels) for the observation of 21 cm MH signal. For the fiducial model,
we used niso

s = 1, 2 and 3 (from left to right), and the fiducial isocurvature fractions are (rcdm, rbar) = (0.1, 0) in all cases.
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it is possible to break parameter degeneracies by the combining
CMB and 21 cm constraints. Comparing the constraints from SKA
and FFTT, both sets of constraints show similar results, except in
the case with niso

s = 3, where the constraint from FFTT is clearly
much tighter than that from the SKA.

The constraint on the case with niso
s = 3 from a combination of

CMBPol and FFTT shows larger error of rbar than that of rcdm.
The difference of the amplitude of errors between CDM and baryon
isocurvature fluctuations comes from the fact that the baryon isocur-
vature fluctuations are required the larger amplitude by a factor of
(�c/�b)2 to realize the same amount of isocurvature fluctuations
with that of CDM.

5.2 Dependence on zmax

Next, we consider the dependence of the constraints on the redshift
range used in the Fisher analysis. Fig. 5 shows the 1σ contours ex-
pected from CMBPol+FFTT, where the maximum redshift varies

from zmax = 20 to 40. We show the results in both the rcdm−rbar and
the rcdm−niso

s planes. The contours suggest that if information up to
zmax ∼ 40 can be utilized, there is some hope of differentiating the
CDM and baryon isocurvature perturbations. Incidentally, we noted
that the constraints from the SKA are saturated when zmax ∼ 20,
beyond which point the signal-to-noise ratio for the SKA falls
below 1.

5.3 Information in redshift slices

We further investigate the information content in each redshift slice,
to determine which redshifts constrain the isocurvature perturba-
tions most effectively. In Fig. 6, we plot the diagonal components
for the inverse Fisher matrix, (F−1)αα , in the cases when the errors
are marginalized (top row) and unmarginalized (bottom row), with
α = rcdm, rbar and niso

s . The 21 cm survey is again taken to be the
FFTT, and we use the CMBPol prior in each redshift slice.

Figure 5. The effects of varying zmax (maximum redshifts probed by the 21 cm experiment) on the 1σ constraints from the CMBPol+FFTT in the rcdm−rbar

plane (left-hand panel) and the rcdm−niso
s plane (right). The fiducial model is the adiabatic model plus CDM isocurvature with rcdm = 0.1 and niso

s = 3.
Different colour contours represent different values of zmax, where zmax = 20 (outer/red), 30 (middle/blue) and 40 (inner/orange).

Figure 6. The unmarginalized (top panels) and marginalized (bottom panels) 1σ errors in each redshift slice. The fiducial model is the adiabatic model
plus CDM isocurvature fluctuations with (rcdm,rbar) = (0.1,0) and niso

s = 3.0, and specifications of CMBPol+FFTT are assumed. The spatial and frequency
resolutions are 
θ = 9 arcmin and 
ν = 1 MHz, respectively. The observed trends are discussed in the text.
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Figure 7. The effects of varying fsky on the projected 68 per cent CL isocurvature constraints from CMBPol+FFTT, where fsky = 0.01 (outermost/red), 0.1
(green), 0.5 (blue) and 1.0 (innermost/orange). The fiducial model is the adiabatic model plus CDM isocurvature fluctuations with rcdm = 0.1 and niso

s = 3,
and zmax = 40.

For the unmarginalized error, the minimum of the 1σ errors
appears around z = 20, which is slightly higher than the peaks
of the 21 cm signal from MHs (z ∼ 10). This is because the effects
of isocurvature modes are more prominent at higher redshifts. On
the other hand, the marginalized errors show the opposite trends
from the unmarginalized errors for rcdm and rbar. This is due to the
strong degeneracy between CDM and baryon isocurvature modes,
as well as degeneracies with the other cosmological parameters.
As discussed in Kawasaki et al. (2011), the differences between
CDM and baryon isocurvature modes become more distinct on
large scales. Since observations at higher redshift include larger
correlation lengths with the same angular scale, the marginalized
errors in rcdm and rbar are reduced with increasing redshift.

5.4 Dependence on fsky

Finally, we examine the dependence of the isocurvature constraints
on the sky coverage. We compare the constraints from the fluctua-
tions in the 21 cm MH emission using fsky = 0.01, 0.1, 0.5 and 1,
and show the 1σ error contours in Fig. 7. The constraints in both
the rcdm−rbar plane (left-hand panel) and the rcdm−niso

s plane (right)
are shown.

We see that in order to rule out rcdm = 0 with 68 per cent confi-
dence, more than half the sky must be surveyed using the combined
CMBPol and FFTT and probing MHs up to zmax = 40. We also see
that the spectral index niso

s can be constrained with accuracy up to a
few per cent if fsky is at least 0.1.

6 D ISCUSSIONS

MHs are generally small, non-linear objects and their dynamics are
governed by non-linearity on small scales. N-body simulations are,
therefore, the most reliable way to study their dynamics. It is, how-
ever, a challenging task to resolve small MHs in N-body simulations
(see e.g. Shapiro, Iliev & Raga 2004; Richardson, Scannapieco &
Gray 2013 for previous simulations).

Following (Chongchitnan & Silk 2012b), we now discuss two
additional factors concerning MH dynamics which may affect the
results presented in the previous section; (i) uncertainty in the halo
mass function and (ii) uncertainty of mass range of MHs. Our results
are summarized in Figs 8 and 9.

6.1 Uncertainty in the mass function

The left-hand column of Fig. 8 shows the 21 cm fluctuations for
(rcdm, rbar) = (0.1, 0) (top) and (rcdm, rbar) = (10−3, 0) (bottom)
using various prescriptions for the halo mass functions, namely,
(Press & Schechter 1974, hereafter PS), (Sheth & Tormen 1999,
hereafter ST), Tinker et al. (2008) and Warren et al. (2006).

We see that when the isocurvature fraction is small (rcdm = 10−3),
the PS and Tinker prescriptions give similarly high amplitudes of
the signal from MHs, whereas the Warren and ST prescriptions both
give lower amplitudes. The trends are reversed for high redshifts.
These behaviours agree with those found by Chongchitnan & Silk
(2012b). When the isocurvature fraction is large (rcdm = 0.1), the
PS prescription shows an unexpectedly low 21 cm signal at z � 10.
Nevertheless, these mass functions generally predict similar trends
and amplitudes that do not differ significantly.

The left-hand column in Fig. 9 shows the 1σ contours in
the rcdm−rbar plane (top) and the rcdm−niso

s plane (bottom) using
CMBPol+FFTT, when different mass functions are adopted. We
observe that mass functions which predict larger amplitudes of
〈δTb

2〉1/2 show relatively tighter constraints, as one might expect.
The PS mass function shows a particularly tight constraint in the
niso

s −rcdm plane, and one could interpret this as an overestimation
of the constraining power of the MHs on isocurvature parameters
when the PS formalism is used.

6.2 Uncertainty in Mmin

Another uncertainty is the mass range [Mmin, Mmax] of MHs. Whilst
we have so far taken Mmin to be the Jeans mass, MJ, large relative
velocities between dark matter and baryons can cause the advection
of baryons out of dark matter potential and result in Mmin > MJ

(Tseliakhovich, Barkana & Hirata 2011; McQuinn & O’Leary
2012). The uncertainty in Mmax is, in comparison, far less seri-
ous since the sharp decline in the halo mass function ensures that
the number of very massive MHs is suppressed.

The 21 cm signal from MHs using Mmin = 10, 50 and 100 times
the Jeans mass are shown in the right-hand column of Fig. 8. We
see that the increasing Mmin suppresses the signal over all redshifts,
with the suppression more prominent at higher redshifts. This is, of
course, due to the reduction in the number of MHs. The right-hand
column in Fig. 9 shows the corresponding effects on the 1σ con-
straints, which, as expected, become poorer when Mmin is increased.
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Figure 8. The effects of changing the halo mass function (left) or the minimum mass of MHs, Mmin (right), on the fluctuations in the 21 cm emission from
MHs. Top panels show the cases with large CDM isocurvature fraction (rcdm = 0.1) whilst the lower panels show the cases with rcdm = 10−3.

There are of course other uncertainties in the theoretical mod-
elling of MHs which have not been pursued here, including the
interaction of MHs with external UV sources through Lyα pump-
ing (Chongchitnan & Silk 2012b), as well as deviations of MHs
from the TIS profile. Indeed, dark matter and gas in MHs could
possibly take on different, more complex profiles than those postu-
lated by the TIS model. A more numerical approach than presented
here would be required however (see e.g. Ricotti, Pontzen & Viel
2007; Ricotti 2009).

7 C O N C L U S I O N S

We have investigated the effects of isocurvature perturbations on the
21 cm emission from MHs at high redshifts. Our results showed that
if the isocurvature power spectrum is flat (niso

s ≈ 1), the 21 cm MH
signal (as measured by the rms differential brightness temperature)
changes only by less than a few per cent around its peak. However,
strongly blue-tilted spectrum (niso

s ≈ 3) gives rise to a significant
increase in the amplitude of the 21 cm signal compared with the
adiabatic case. The next generation of large radio telescopes such
as the SKA and FFTT has the potential to detect these 21 cm imprints
from a blue isocurvature spectrum.

The characteristic signatures of isocurvature perturbations on the
MH abundances were explored in detail. In particular, we found
an unexpected deficit in small-mass MHs when the isocurvature

fraction increases beyond a certain threshold. We explained this
phenomenon in terms of the incorporation of small-mass MHs into
larger haloes.

A detailed Fisher-matrix analysis was performed to study quanti-
tatively how the 21 cm signals from MHs can constrain the isocurva-
ture amplitude and spectral index. We found that if the isocurvature
spectrum is flat, (1) the combination of CMB and 21 cm experi-
ments fares no better than the CMB alone and (2) the CDM and
baryon types of isocurvature fluctuations are unlikely to be distin-
guishable, even with the futuristic CMBPol+FFTT specifications.
However, if niso

s ≈ 3, there are realistic prospects for distinguishing
between different isocurvature types, but only if the 21 cm signal
from redshifts up to ∼40 can be utilized. Some physical models
which predict very blue isocurvature spectrum with niso

s = 2−4 are
discussed in Kasuya & Kawasaki (2009).

Two sources of uncertainty in the MH population were discussed,
namely, the halo mass function and the mass range of MHs. The am-
plitudes of the 21 cm emission from MHs were shown to be fairly
sensitive to the halo mass function, although signals from a blue
spectrum remain strong enough to be detected by the SKA and FFTT
regardless of the mass function. We also explored the uncertainty
in the minimum MH mass, and showed that increasing Mmin sup-
presses the 21 cm signal over a large range of redshifts, especially
at high redshifts where an order-of-magnitude suppression was
seen.

MNRAS 439, 1125–1135 (2014)

 at U
niversity of H

ull on February 12, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1134 Y. Takeuchi and S. Chongchitnan

Figure 9. The effects of changing the halo mass function (left) or the minimum mass of MHs, Mmin (right), on the projected 1σ constraints in the rcdm−rbar

plane (top) and the rcdm−niso
s plane (bottom).

For the two sources of uncertainty above, we also obtained the
error contours in the rcdm−rbar and the rcdm−niso

s planes. These
constraints are sensitive to the choice of the mass function: the
Press–Schechter prescription, in particular, can be construed as giv-
ing overly optimistic constraints. Increasing Mmin suppresses the
MH signal strongly at high redshifts, hence the error contours are
also significantly widened.

In summary, the fluctuations of the 21 cm emission from MHs
are a viable tool in the search for isocurvature perturbations, and
have the potential to rule out inflation models which predict a very
blue-tilted isocurvature spectrum. When combined with CMB con-
straints, future 21 cm experiments have the potential to distinguish
between the CDM and baryon types of isocurvature perturbations.
This will be extremely useful in the understanding of physics in the
inflationary era.

Our analysis focused on uncorrelated CDM and baryon isocur-
vature modes, but it is plausible that there may be a non-trivial
correlation between the two. Such a correlation gives rise to addi-
tional degrees of freedom. In future work, it will be interesting to
explore the parameter space allowed by certain inflationary theories
which predict correlated isocurvature modes.

Note added. Prior to the publication of this work, we became
aware of the work by Sekiguchi et al. (2013), which significantly
overlaps with our work. The conclusions in their work are similar
to ours.
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