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ABSTRACT

Non-axisymmetries in the Galactic potential (spiral arms and bar) induce kinematic groups such as the Hercules stream.Assuming
that Hercules is caused by the effects of the Outer Lindblad Resonance of the Galactic bar, we model analytically its properties
as a function of position in the Galaxy and its dependence on the bar’s pattern speed and orientation. Using data from the RAVE
survey we find that the azimuthal velocity of the Hercules structure decreases as a function of Galactocentric radius, ina manner
consistent with our analytical model. This allows us to obtain new estimates of the parameters of the Milky Way’s bar. Thecombined
likelihood function of the bar’s pattern speed and angle hasits maximum for a pattern speed ofΩb = (1.89± 0.08)× Ω0, where
Ω0 is the local circular frequency. Assuming a Solar radius of 8.05 kpc and a local circular velocity of 238 km s−1, this corresponds
to Ωb = 56± 2 km s−1kpc−1. On the other hand, the bar’s orientationφb cannot be constrained with the available data. In fact, the
likelihood function shows that a tight correlation exists between the pattern speed and the orientation, implying thata better description
of our best fit results is given by the linear relationΩb/Ω0 = 1.905+ 0.0044

(

φb(deg)− 47.7
)

, with standard deviation of 0.02. For
example, for an angle ofφb = 30 deg the pattern speed is 54.0 ± 0.5 km s−1kpc−1. These results are not very sensitive to the other
Galactic parameters such as the circular velocity curve or the peculiar motion of the Sun, and are robust to biases in distance.

Key words. Galaxy: kinematics and dynamics – Galaxy: structure – Galaxy: disc – Galaxy: evolution –

1. Introduction

The existence of a bar in our Galaxy is supported by a variety of
studies using data from HI 21cm and CO emission, star counts
in the Galactic Centre (GC), IR observations from DIRBE
(Diffuse InfraRed Background Experiment) on COBE (COsmic
Background Explorer) and GLIMPSE (Galactic Legacy Infrared
Mid-Plane Survey Extraordinaire) with Spitzer, or microlens-
ing surveys (see Gerhard 2002 for a review). However, pre-
vious research has revealed inconsistent results regarding the
characteristics of the bar. For example, estimates of its pat-
tern speed range from 40 to 65 km s−1kpc−1 (Gerhard 2011)
while the estimates of its orientation with respect to the Sun

range from 10 deg (López-Corredoira et al. 2000; Robin et al.
2012) to 45 deg (Hammersley et al. 2000; Benjamin et al. 2005).
The presence of a secondary bar in our Galaxy is also
currently under debate (Martinez-Valpuesta & Gerhard 2011;
Romero-Gómez et al. 2011).

Kalnajs (1991) presented an indirect method to measure the
bar properties based on the location of kinematic structures in
the Solar neighbourhood. He related the velocities of the Hyades
and Sirius moving groups to the two types of orbits expected
around the Outer Lindblad Resonance (OLR), and in this way
constrained the bar’s pattern speed and its orientation.

Many more substructures in the local velocity distribution
were unveiled by the ESA’s astrometric mission Hipparcos (e.g.
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Dehnen 1998; de Zeeuw et al. 1999; Chereul et al. 1999). Most
of these groups were initially thought to be remnants of disrupted
clusters (Eggen 1996). However, there is evidence of a large
scatter in age and metallicity in some of them (Raboud et al.
1998; Dehnen 1998; Skuljan et al. 1999; Famaey et al. 2005;
Bobylev & Bajkova 2007; Antoja et al. 2008). Therefore, it is
likely that these substructures formed as a response to the non-
axisymmetries of the gravitational potential rather than being
groups of stars of a common origin.

Several studies after Kalnajs (1991) have attempted to use
these local velocity groups to better constrain the properties of
the Galactic bar (e.g. Dehnen 2000, hereafter D00), and also
of the spiral structure (e.g. Quillen & Minchev 2005). However,
Antoja et al. (2009, 2011) have shown that the groups detected in
the Solar vicinity can be reproduced by models with different pa-
rameters, including bar or/and spiral structure, highlighting that
local estimates are subject to degeneracies.

The simulations of Antoja et al. (2011, 2009) as well as those
of e.g. Quillen et al. (2011) have shown that the groups’ kine-
matics change across the disc. Recently, using action-angle mod-
elling McMillan (2013) showed how the local Hyades stream
can be due to the effects of different resonances such as the Inner
Lindblad Resonance or OLR of a non-axisymmetric pattern in
the disc. But these models predict differences in the stream kine-
matics throughout the disc.

With the advent of data from new surveys such as RAVE
(RAdial Velocity Experiment, Steinmetz et al. 2006) the detec-
tion of kinematic groups is no longer limited to the Solar vicin-
ity. The first example was given by Antoja et al. (2012) (here-
after A12) where wavelet transform techniques were used to de-
tect kinematic groups beyond the Solar neighbourhood in the
RAVE survey. The sampled volume allowed the demonstration
that some local groups can be traced at least up to 1 kpc away
from the Sun in certain directions and that their velocitieschange
with distance. These discoveries point toward the excitingpos-
sibility of using observed velocity distributions in a number of
regions of the Galaxy to break degeneracies and eventually con-
strain the properties of the spiral arms and the bar.

A12 showed that Hercules, a local group of stars moving
outwards in the disc and lagging the Local Standard of Rest, has
a larger azimuthal velocity inside the Solar circle and a smaller
one outside. Here we quantify this trend in more detail with the
new RAVE DR4, showing that it is consistent with the effects of
the bar’s OLR, and we use it to constrain the properties of the
Galactic bar.

In Sect. 2 we review the properties of the local Hercules
stream and its relation with the effects of the bar’s OLR. Also
by extending the modelling work of D00, we derive an analytic
expression for the variation of the azimuthal velocity of Hercules
as a function of Galactocentric radius for different bar properties.
We then use simulations of a barred disc to test this model and
the recovery of the simulation’s parameters (Sect. 3). In Sect. 4
we measure the observed azimuthal velocity of Hercules as a
function of radius for RAVE stars. We finally compare these
measurements with the predictions of the effects of the bar’s
OLR and we derive the best fit parameters of the bar (Sect. 5).
Section 6 contains a final discussion and conclusions.

2. The Hercules stream

2.1. The local Hercules stream and the OLR

The Hercules moving group (also refereed to as theU-anomaly)
was initially identified by Eggen (1958) as a group of 22 stars

Fig. 1. Heliocentric velocities of the Solar Neighbourhood from
the RAVE local sample of A12. We have marked the loca-
tion of the most important kinematic modes, named here OLR
(Hercules stream) and MAIN modes

with velocities similar to the high velocity starξ Herculis.
Also Blaauw (1970) noticed an excess of negativeU veloc-
ities (with U directed to the Galactic centre) for stars with
V ∼ −50 km s−1, that is a stream of stars with eccentric or-
bits with a mean outward radial motion. The Hercules stream
is also evident in the Solar Neighbourhood velocity distribu-
tion of RAVE stars (Fig. 1). By using photometric data for a
sub-sample of Hipparcos stars Raboud et al. (1998) showed that
the Hercules metallicity distribution covers the whole range ob-
served in the old disc (−0.6 dex to+0.6 dex) and a heterogeneous
distribution of ages between 6 to 10 Gyr. Similar conclusions
were obtained using colour as a proxy for age (Dehnen 1998),
with isochrones for giant stars (Famaey et al. 2005), with ages
from Strömgren photometry and spectro-photometric metallici-
ties for F and G dwarfs (Helmi et al. 2006; Bobylev & Bajkova
2007; Antoja et al. 2008), and also with high-resolution abun-
dances for F and G dwarf stars (Bensby et al. 2007). Although
there is some discrepancy regarding the lower age limit of the
group, which ranges from 1 to 6 Gyr, it is now clear that this
group does not originate in a single population or cluster.

The first dynamical models for Hercules were presented in
D00 and Fux (2001), and were based on the effects of the bar on
the local velocity distribution. D00 proposed that Hercules con-
sists of stars that have been scattered by the OLR. In particular,
for certain ranges of pattern speeds and orientations of thebar, a
group of unstable orbits (x∗1(2) orbits) divides the velocity distri-
bution into two main groups (bi-modality) separated by a valley
(Fig. 1, see also Sect. 3). One group is approximately centred on
the U–V velocity plane (MAIN mode) and the other one has a
slower rotation, mean outward radial motion and is associated to
the Hercules moving group (OLR mode).

D00 simulated the velocity distribution at the Solar position
of a barred potential using two-dimensional (in-plane) test parti-
cle orbital integrations with the backwards integration technique.
The bar model was a quadrupole potential (his Eq. 3) rotating
with speedΩb and orientation angleφb with respect to the line
Sun-GC. He used a simple underlying potential (his Eq. 2b) with
a power-law rotation curve of the form:

vc = v0 (R/R0)β, (1)

whereR0 denotes the Sun’s distance from the GC andv0 the local
circular speed. Figure 2 shows the rotation curves in this model
for different values ofβ.

By considering only these axisymmetric power-law poten-
tials (thus neglecting the effect of the quadrupole bar), whose
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Fig. 2. Rotation curves of Eq. 1 with different values forβ: flat
β = 0 (solid line), raisingβ = 0.2 (dashed line), and decreasing
β = −0.2 (dotted line) rotations curves. The dotted-dashed line
shows the rotation curve of the Allen & Santillan (1991) model
(A91).

Table 1. Best-fit values for (a, b, c) in Eq. 3 obtained in D00.

φb(deg) a b c
15 1.3549 0.0761 0.1362
20 1.2686 0.0642 0.1120
25 1.2003 0.0526 0.0892
30 1.1424 0.0406 0.0711
35 1.0895 0.0298 0.0538
40 1.0420 0.0200 0.0423
45 1.0012 0.0103 0.0316
50 0.9653 0.0012 0.0238

orbital frequencies can be derived analytically and by dismiss-
ing terms of O(v3/v3

0), D00 showed that the stars on unstable
resonant orbits exactly on the OLR of the rotating frame forma
parabola in velocity space (the valley) described by:

V +
U2

2v0
� ṼOLR ≡

1+ β
1− β















1− Ωb/Ω0

1+
√

(1+ β)/2















, (2)

where U and V are the velocities with respect to the Local
Standard of Rest andΩ0 is the local circular frequency. This
parabola has a maximum atV = ṼOLR occurring atU = 0 (a sad-
dle point). However, in his simulations including the quadrupole
bar the saddle point between the two modes appears shifted in
U and also inV with respect to the analytic estimate given by
Eq. (2). Then he found that theV-velocity of the saddle-point
VOLR could be fitted by:

VOLR ≈ a ṼOLR − (b + c β) v0, (3)

where the values ofa, b and c are reproduced in Table 1 and
depend on the bar’s orientationφb. Using Eqs. 2 and 3 we find:

VOLR ≈ a v0
1+ β
1− β















1− Ωb/Ω0

1+
√

(1+ β)/2















− (b + c β) v0, (4)

which relates the position of the Hercules saddle pointVOLR to
the pattern speed of the bar, its orientation (through parameters
a, b andc) and the slope and normalization of the rotation curve.
Using the local observed velocity distribution of Hipparcos stars
D00 found this saddle point to be atVOLR = (−31± 3) km s−1.

2.2. Analytic model for the Hercules stream across the
Galaxy

Our purpose is now to generalise Eq. 4 to different
Galactocentric radiiR (i.e. not necessarily the Solar neighbour-

Fig. 3. Position ofvφ,OLR as a function ofR for several bar param-
eters and rotation curves. The normalization of the rotation curve
is herev0 = 238 km s−1 and the Solar radius isR0 = 8.05 kpc.

hood). For this, we replace the quantities describing the Solar
neighbourhood by their respective functional forms, that is v0
by v0(R/R0)β and Ω0 by v0(R/R0)β/R (Eq. 1). In cylindrical
Galactocentric coordinates (vφ = V + v0), Eq. 4 becomes:

vφ,OLR(R) ≈ a v0 (R/R0)β
1+ β
1− β















1− ΩbR
v0(R/R0)β

1

1+
√

(1+ β)/2















−(b + c β − 1)v0 (R/R0)β.(5)

In this way, the position of the saddle point between the Hercules
and the MAIN mode is a functionvφ,OLR = f (Ωb, v0, β, φb,R).
Nowφb is the angle between the considered region (not necessar-
ily the Solar neighbourhood) and the bar. As explained in D00,
a higher (lower) force of the bar creates more (less) pronounced
features in the velocity plane but does not influence significantly
vφ,OLR, and, therefore, it does not appear explicitly in Eqs. (2) and
(3).

Figure 3 showsvφ,OLR as a function of Galactocentric radius
R for different bar properties and different rotation curves. For
this plot we have set a Galactocentric radius of the Sun ofR0 =

8.05 kpc and a circular velocity at the Sun ofv0 = 238 km s−1

following recent results by Honma et al. (2012) based on VLBI
astrometry of Galactic maser sources. We see that the position of
the saddle point decreases withR. This is in agreement with what
was reported by A12 for Hercules in the RAVE data. According
to the model, the position of the saddle point decreases linearly
for β = 0 as:

vφ,OLR(R) ≈ (a − b + 1)v0 −
aΩb

1+
√

1/2
R. (6)

We see also that for a given angle (shown by lines with the same
colour), a higher pattern speedΩb (lower group of curves) pro-
duces a smallervφ,OLR at a given radius compared to lowerΩb (up-
per group). For a fixed pattern speed, larger bar orientations (red
curves) lead to a relation between saddle pointvφ,OLR andR that
has a different slope compared to smaller angles (blue curves).
We also notice a slight dependence on the slope of the rotation
curveβ: depending on the pattern speed, decreasing (dotted) or
increasing (dashed) rotation curves give smaller or largervφ,OLR

compared to flat (solid) rotations curves. This dependence is due
to the resonances moving closer or farther away from the Sun as
the rotation curve is changed.
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3. Validating the analytical model with simulations

In the previous section we presented an analytical model forthe
Hercules stream which relied on specific assumptions on the po-
tential, namely the shape of the rotation curve, and on the derived
frequencies of the orbits. To test the validity of this model, espe-
cially Eq. (5), in this Section we use an independent simulation
that has been run using a different potential.

3.1. Test particle simulations

We use a simulation similar to that of Antoja et al. (2009), in
which the bar’s pattern speed isΩb = 47.5 km s−1kpc−1. Our
simulation uses the same quadrupole bar as in D00 and is also
two-dimensional. However, our axisymmetric potential is given
by Allen & Santillan (1991) (A91), and composed of a bulge
and a flattened disc modelled as Miyamoto-Nagai potentials,
and a spherical halo. This axisymmetric model uses a value1 of
R0 = 8.5 kpc for the Solar radius and a local circular speed of
v0 = 220 km s−1. The resulting circular velocity of the model is
shown in Fig. 2 (dotted-dashed line). This curve is fairly different
than the power-law models of Eq. 1 by D00, and presents sec-
tions with different slopes and normalizations. The inner peak is
due to the presence of the bulge. This different underlying model
does not have the same orbital frequency dependencies used to
derive Eq. 2 and, therefore, allows us to test if the approxima-
tions are nonetheless valid for other potentials.

Another important difference of our simulation as compared
with D00 is that we use different initial conditions and a differ-
ent integration scheme. Instead of the backwards integration, we
start with 12· 106 test particles with an initial distribution func-
tion that satisfies the collisionless Boltzmann equation asdis-
cussed in Hernquist (1993). The density follows an exponential
disc and the velocity distribution is adopted as a Gaussian with
a radial velocity dispersion decaying exponentially with radius,
with value of∼ 50 km s−1 at the Solar radius. The azimuthal
velocity dispersion is related with the radial one through the
epicyclic approximation and the asymmetric drift is also taken
into account. The initial conditions generated in this way are not
fully consistent with the potential and we expect these to change
in time until reaching stationarity. To avoid these transient effects
we first let our initial conditions evolve in the axisymmetric po-
tential for several Gyr (see Monari et al. 2013 for a discussion).
Afterwards, we introduce the bar abruptly in the potential and
the final distribution is obtained through forward integration of
the orbits for 0.4 Gyr (equivalent to∼ 3 bar’s rotation). We con-
sider the particles in a given volume to study the velocity distri-
bution of a particular position in the disc. This is in contrast to
D00, whose results correspond to a single position in configura-
tion space.

Figure 4 shows a sketch of the face-on view of the simula-
tion, with the Sun atX = −8.5 kpc andY = 0, the bar oriented
with φb = 20 deg with respect to the Sun, and the Galaxy rotat-
ing clockwise. From this simulation we have selected the parti-
cles located in 4 different bands with orientations of 20 deg (the
assumed Sun’s position), 40 deg, 60 deg and 80 deg with respect
to the bar. The width of these bands is∆φ = 4 deg and we add the
particles in the symmetric bands at respective angles of 200deg,
220 deg, 240 deg and 260 deg, which are dynamically equivalent.

1 Note that these values are different from the recent ones by
Honma et al. (2012) that we used for Fig. 3 and that we will alsouse
for the RAVE data in Sect. 4. However, this does not affect our results
or conclusions as our analytical formula is general and can be used for
any set of parameters.

Fig. 4. View of the simulated disc with the different bands se-
lected. The bar is indicated as an ellipse with an orientation of
20 deg with respect to the Sun (at X=-8.5 and Y=0).

We now aim to explore the velocity distribution (vR, vφ) of these
bands as a function of Galactocentric radius. We setvR posi-
tive towards the GC asU. We take bins in radius of a width of
∆R = 600 pc every 600 pc. The number of stars per bin ranges
between 2000 stars for the outermost bins to 10000 stars for the
innermost ones (Figure 6 top).

In the first column of Fig. 5 we show these velocity distribu-
tions for the band with 40 deg orientation (blue band in Fig. 4).
These panels reveal a bimodal distribution, with the structure at
lowervφ and negativevR being the modelled Hercules group. For
this band, we take bins fromR = 7.6 kpc toR = 10.6 kpc as this
is the range for which Hercules can be traced. Simple visual in-
spection shows that, as predicted by our model, thevφ velocity of
Hercules (or equivalently the velocity of the saddle pointvφ,OLR)
decreases as a function ofR. In the next section we show how
we measure the velocity of the saddle pointvφ,OLR.

3.2. Measuring vφ,OLR in the simulations

We measure the position of the saddle pointvφ,OLR as illustrated
in Fig. 5 for the band at 40 deg:

1. We rotate the (vφ, vR) velocities to align the Hercules struc-
ture with the horizontal axis, leading to the new coordinates
(vθR, vθ

φ
). Visual inspection shows the rotation angleθ to be

between 10 deg and 20 deg depending on the band and ra-
dius considered. To simplify the method we use the same
angle for all bins and we choose a value of 15 deg for rea-
sons specified in step 3.

2. We estimate the probability density in this velocity space
using the Epanechnikov adaptive kernel density estimator
method (Silverman 1986) with an adaptability exponent of
0.1. (Fig. 5 second column).

3. We integrate overvθR, only inside the rangevθR=[-130,-
10] km s−1 (within the black vertical lines in the second col-
umn) to avoid contamination from other groups or regions of
the velocity plane. The distribution alongvθ

φ
is shown in the

third column. We clearly see the presence of the two peaks
separated by a valley. The Hercules peak is indicated with
an orange dashed line. We see how for smallR, Hercules
is stronger than the MAIN mode, while as we move out-
wards in the disc it becomes weaker. Of all rotation angles
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Fig. 5. Illustration of the steps followed to locate the saddle point vφ,OLR for the band at 40 deg. First column: scatter plot of the
velocities in bins in radius as indicated in the top right part of the panels. The red cross in these panels shows our determination of
the saddle point. Second column: velocity distribution computed with the kernel adaptive method after a rotation of coordinates by
an angleθ = 15 deg. Third column: distribution ofvθφ inside the region limited by black vertical lines shown in the second column.
The red dashed line and red error bar show the position of the minimum corresponding to thevθφ velocity of the saddle point and its
errorebst. The orange dashed line indicates the Hercules peak. Fourthcolumn: distribution invθR inside the green rectangle shown in
the second column. The green dashed line and green error bar shows the position of the maximum which corresponds to thevθR,OLR

velocity of the saddle point and its errorebst.

θ = 10, 15, 20, 25 deg, the angle ofθ = 15 deg gives the max-
imum height of Hercules (orange dashed line) for most of
the bands and radial bins. This means that for this angle the
structures are better aligned with the horizontal axis. In step
6 we estimate the error on the final location of the saddle
point derived by assuming this value. Then we locate the po-
sition of the minimumvθ

φ,OLR
(red dashed line).

4. We estimate the error invθ
φ,OLR

by generating 500 bootstrap
samples, repeating steps 1 to 3, and computing the standard
deviation of the obtained set ofvθ

φ,OLR
, which is typically very

small (∼ 2 km s−1, red error bars in Fig. 5 third column).
Fig. 6 (second panel) showsvθ

φ,OLR
as a function ofR for the 5

radial bins (blue diamonds). These velocities decrease with
R. Additionally, we showvθ

φ,OLR
for the other bands at 20 deg,

60 deg and 80 deg in different colours which depict the same
behaviour.

5. To get thevθR of the saddle point, we derive the distribu-
tion alongvθR (fourth column) inside the green rectangles
of Fig. 5. These are centred in the valley (vθφ,OLR

) with a
width of 20 km s−1. We then find the maximum of the curve
vθR,OLR

(green dashed line). We also estimate the error invθR,OLR

through the bootstrapping technique and it is typically of
5 − 10 km s−1 (green error bars). The position ofvθR,OLR

as
a function ofR is shown in the third panel from the top of
Fig. 6 (blue diamonds). In general, this velocity becomes

more negative with radius. For larger radii the distribution
in vθR is noisier and has several maxima (bottom panels of
Fig. 5). This is because the number of particles for largeR
decreases and the valley is wider and contains less particles
(only 24 particles were inside the green rectangle of the last
radial bin). In this case our determination ofvθR,OLR

may not
be accurate. For instance, the last bin of the band at 40 deg
does not follow the overall trend.

6. We convert (vθR,OLR
, vθφ,OLR

) back to (vR,OLR, vφ,OLR) by rotating an
angle−θ. The position of the saddle point is indicated with
red bars in the first and second columns of Fig. 5. The value
vφ,OLR is the observable needed in our modelling. To obtain
the errors invR,OLR andvφ,OLR we must consider two contribu-
tions. First, the statistical errors which, as explained above,
we get from the bootstrapping method (ebst). Second, the er-
ror made by using a fixed value for the rotation angleθ (eθ).
To estimate the latter we repeat steps 1 to 6 using the two
extreme angles ofθ = 15± 5 deg, we compute the maximum
difference between the new determinations ofvR,OLR andvφ,OLR

and the ones forθ = 15 deg and assign this difference to the
error, which turns out to be. 5 km s−1. Finally, we add both
errorsebst andeθ in quadrature.

The measured velocitiesvφ,OLR are shown Fig. 6 (bottom) for
the four bands. For all bands, the velocity decreases withR.
Overlaid on the points are the theoretical curves from Eq. 5 for
the input parameters of the simulation (Ωb = 47.5 km s−1kpc−1,
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Fig. 6. Several measurements for the bands at different bar an-
gles of the simulation as a function of radiusR. Top panel: num-
ber of stars per bin. Second panel: measuredvθ

φ,OLR
. Third panel:

measuredvθR,OLR
. Bottom panel: final determination ofvφ,OLR and

expected theoretical curves.

v0 = 220 km s−1 and R0 = 8.5 kpc), along with the four bar
orientations of the bands. As the slope of the rotation curve
changes with radius for the A91 model (Sect. 3.1), we plot for
each band three curves corresponding toβ = 0.2, 0,−0.2. We
see that our measuredvφ,OLR are consistent with the predictions
of Eq. 5, given the errors. We see more discrepancies at large
radii where it is more difficult to detect reliably the position of
the saddle point for the reasons mentioned above. Note that the
discrepancy between the estimated value in the last radial bin for
the band at 40 deg and that expected is due to the poor determi-
nation ofvθR,OLR

(step 5) and we shall reject this data point in our
analysis of Sect. 3.4.

We have also validated the analytical model with other sim-
ulations with different values of the pattern speed, which moves
the resonances to other positions of the disc, and the bar’s force
and obtained similarly satisfactory results. We will now recover
the input model parameter from the simulated data.

Fig. 7. Two-dimensional marginalized likelihood (over the pa-
rameterβ) of the model parameters for the simulated bands
at 40 deg (left) and 60 deg (right). Dotted, dashed and solid
red lines show the 1σ, 2σ and 3σ confidence regions, respec-
tively. The input parameters of the simulation are shown with
a light blue cross. The maximum and the expected value of the
two-dimensional pdf are indicated with a red cross and aster-
isk, respectively. The red triangle is the maximum of the one-
dimensional marginalized pdf’s.

3.3. Maximisation and parameter space sampling

We compare the determined values of the position of the saddle
point vφ,OLRi with the estimates obtained from Eq. 5 through the
chi-square statistic:

χ2 =
∑

i















vφ,OLRi − vφ,OLRi
model

σi















2

. (7)

We assume that the noise associated with the data points can be
represented as a Gaussian process and, therefore, we can approx-

imate the likelihood function byprob ∝ exp
(

− χ
2

2

)

. In the max-

imisation of the probability, we consider the pattern speedΩb
in units ofΩ0, i.e. in practice we fitΩb/Ω0. We take a range of
[0, 3.4]Ω0, which corresponds to [0, 100] km s−1kpc−1, in steps
of 0.0025 or∼ 0.07 km s−1kpc−1. This range is large enough not
to influence the posterior probability density function (pdf). For
the slope of the rotation curveβ we use the range [−0.2, 0.2] in
steps of 0.01. These limits are the ones considered in D00 for
which the fit given in Eq. 3 is valid. The bar’s angleφb is ex-
plored in the range of [0, 80] deg in steps of 0.5 deg. Outside this
range, the model of Eq. 4 is not valid as the Hercules structure
does not exist or there is just a counterpart atvR > 0 in the
velocity plane (e.g. Fig. 2 in D00). Note that this range is actu-
ally larger than the limits considered in D00 to obtain the fitof
Eq. 3 (he used up to 50 deg). However, as we showed in Sect. 3.2
(Fig. 6) the extrapolation to larger angles is valid.

3.4. Recovering the parameters of the model

Figure 7 shows the pdf for our toy model in theφb-Ωb plane
for the bands at 40 and 60 deg. This pdf has been marginal-
ized overβ, since we do not expect to constrain the slope of
the rotation curveβ to a single value as it varies in our simula-
tions over the distance range considered. Indeed, we find a very
flat pdf in the direction ofβ. In Table 2 we give the maximum
of the probability, the mean or expectation of each parameter
E(φb,Ωb), together with the standard deviation of the pdfσφb

andσΩb/Ω0, and the correlation coefficientρφbΩb for each band.
In Fig. 7 the 1σ, 2σ and 3σ confidence regions are delimited
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Table 2. Results of the fits for the toy model. The input pattern speed isΩb = 1.836Ω0 = 47.5 km s−1kpc−1 for all cases.

Input φb(MAX) E(φb) σφb Ωb/Ω0(MAX) E(Ωb/Ω0) σΩb/Ω0 ρφbΩb E(Ωb/Ω0|φb = input) E(Ωb|φb = input)
(deg) (deg) (deg) ( km s−1kpc−1)

40 deg 29. 32. 12. 1.79 1.80 0.06 0.98 1.84± 0.01 47.7± 0.3
60 deg 80. 55. 13. 1.90 1.81 0.06 0.97 1.83± 0.02 47.4± 0.4

by the dotted, dashed and solid red lines, respectively. Themax-
imum of the probability is indicated with a red cross whereas
the mean E(φb,Ωb) is shown with a red asterisk. There is a high
correlation between orientation and pattern speed (also noticed
in D00) with a correlation coefficient aroundρφbΩb ∼ 0.98, with
higher values ofΩb preferred for larger bar angles.

For the band at 40 deg the maximum and the mean of the pdf
are similar. They are also close to the input value of the model
(light blue cross), which is in the limit between the 1σ and 2σ
confidence regions. However, if we remove the (problematic)
last bin inR for this band, the input value lies well inside the
1σ region. For the band at 60 deg, the mean and the maxima of
the pdf differ significantly. This is because the probability distri-
bution is flatter and more asymmetric, and in this case the mean
can be considered a better estimate and more representativeas
it takes into account the skewness of the pdf. The input valueis
close to the mean value and falls well inside the 1σ region. From
the values in Table 2 we see that the recovered values can present
an offset with respect to the input parameters of around∼ 10 deg
in the orientation but only of 0.04Ω0 or ∼ 1 km s−1kpc−1 for the
pattern speed. Nevertheless, input and recovered values are con-
sistent given the standard deviations. We obtain similar results
for the other bands.

The two-dimensional pdf contours are approximately ellip-
tical and can be locally well approximated by a multivariate
Gaussian centred on the expected values and with a covariance
matrix given by the values of Table 2. This approximation al-
lows us to establish a tighter joint constraint on the set of param-
eters (orientation and pattern speed). Furthermore, if we have
independent constraints on the bar’s orientationφb = φb1, our
conditional best estimate forΩb would be:

E(Ωb/Ω0|φb = φb1) = E(Ωb/Ω0)+
ρφbΩbσΩb/Ω0

σφb

(

φb1 − E(φb)
)

(8)

with a variance:

Var(Ωb/Ω0|φb = φb1) = σ2
Ωb/Ω0

(

1− ρ2
φbΩb

)

(9)

This linear relation is shown as a green line in Fig. 7. For ex-
ample, we might put a prior onφb to be the exact input value,
i.e. 40 or 60 deg. The resulting conditional expected valuesare
indicated in the last two columns of Table 2 (in units ofΩ0 and
in km s−1kpc−1) and we see that we recover with high accuracy
(1%) the input pattern speed. This can also be seen in Fig. 7
where the light blue cross almost lies on top of the green line.

If we marginalize the pdf’s of Fig 7, we obtain the best es-
timates for each individual parameter independently on therest
of parameters and their corresponding confidence intervals. The
maxima of the individual marginalizations are shown with a red
triangle in Fig. 7. Whereas for the band at 40 deg, this yieldsa
peak that is close to the maximum in the two-dimensional pdf,
for 60 deg the new peak is completely off. This is because the
global pdf is highly degenerate and asymmetric, and the one-
dimensional pdf’s do not capture the main correlation between
the parameters, giving unsatisfactory results. Thereforeour best
results are given when the two parameters are simultaneously
estimated.

4. Hercules in the RAVE data

We use now the RAVE survey data to measure the position of
the saddle pointvφ,OLR as a function of R. Our aim is to establish
whether the observed trend is consistent with the analytic model
developed in Sec. 2.2 and to constrain the bar properties through
best fits to the observations.

4.1. The RAVE data

We use the RAVE DR4 (Kordopatis et al. 2013, submitted)
and the distance determination method by Zwitter et al. (2010),
which leads to a new data set with 315572 stars2. The stellar
atmospheric parameters of the DR4 are computed using a new
pipeline, based on the algorithms of MATISSE and DEGAS,
and presented in Kordopatis et al. (2011). Compared to DR3,
DR4 is 5 times larger and the spectral degeneracies and the
2MASS photometric information are better taken into consid-
eration, improving the parameter determination (and hencethe
distance estimation) with respect to previous data releases. We
select 274103 stars in the plane with|Z| ≤ 1 kpc, as for this
range of heights we expect to be able to detect the effects of
the bar (Monari et al. 2013). We use proper motions from differ-
ent catalogues, mainly PPMX (Röser et al. 2008) and UCAC2
(Zacharias et al. 2004), choosing from each catalogue the val-
ues with the smallest errors. Following Honma et al. (2012) we
use a position of the Sun of (X, Y) = (−8.05, 0) kpc and a circu-
lar velocity at the Sun ofv0 = 238 km s−1 to compute the posi-
tions and cylindrical velocitiesvR andvφ of the stars. We adopt
the velocities of the Sun with respect to the Local Standard of
Rest of (U⊙,V⊙,W⊙) = (10, 12, 7) km s−1 from Schönrich et al.
(2010).We examine later on the implications of these adopted
values on our results. Figure 8 (grey dots) shows the positions of
these selected RAVE stars.

From the stars within 1 kpc from the plane, we select a band
of stars at 6 deg with respect to the line Sun-GC with a width of
∆φ = 6 deg (blue dots in Fig. 8). There are in total 71605 stars in
this band, of which 94% are giants. We choose this band because
it covers a large range ofR while keeping the errors in distance
and kinematics small. Bands at other angles have less stars and
larger kinematic errors or cover smaller range of radii. Theme-
dian relative error in distance for this band is 27%, the median
error in transverse velocity is 20 km s−1, whereas radial velocity
errors are smaller than 1.5 km s−1 for 90% of the stars. Ifφb is the
orientation of the bar with respect to the Solar neighbourhood,
the orientation of this band with respect to the bar isφb + 6 deg.
As in Sec. 3, we divide the band in bins ofR but we now take
bins every 0.2 kpc with a width of∆R = 0.2 kpc. In Fig. 9 (top)
we show the number of stars per bin. The range of radii that we
probe for this band is [7.8, 8.6] kpc (red asterisks in the figure).
Outside this range we fail to detect the Hercules structure.This
may be due to observational errors, to the fact than Herculesis
masked by the other groups and due to the number of stars which
decreases substantially. On the other hand, the average height of

2 In A12 we used DR3 and distances by Burnett et al. (2011) with
202843 stars with 6D phase-space information.
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Fig. 8. Positions of the RAVE DR4 stars selected with|Z| ≤
1 kpc (grey dots) together with the stars selected in the bandat
φb + 6 deg with respect to the bar (blue dots). The Sun is at X=-
8.05 and Y=0. A schematic bar with an (arbitrary) orientation of
φb = 20 deg is also shown.

Fig. 9. Number of stars per bin inR (top) and medianZ coor-
dinate (bottom) as a function ofR for the band selected in the
RAVE DR4. The red asterisks are the bins used in our analysis.

the stars (bottom panel of Fig. 9) increases significantly outside
the mentioned range due to the RAVE fields selection. For large
heights above the plane the kinematic structures may be also
diluted and, additionally, the behaviour of the orbital frequen-
cies can be different from those in-plane which may invalidate
Eq. (5).

4.2. Measuring vφ,OLR in the RAVE data

We now follow the steps outlined in Sect. 3.2 using the RAVE
data. The process is shown in Fig. 10. The first column shows
that the Hercules stream is not as clear as in the simulations
depicted in Fig. 5. This may be due to several reasons. First,
the presence of observational errors dilutes velocity structures.
Second, the bins in the RAVE data are located at relatively large
heights from the plane (Fig. 9) which can also wash out the
Hercules signal. Third, the test particle simulation of Sect. 3

shows a particularly conspicuous OLR mode but Monari et al.
(2013) have shown recently that for longer integration times
(i.e. older bars) the distinction between the MAIN and the OLR
modes is less clear and more similar to observations.

Due to the above limitations we introduce a change in our
method with respect to Sect. 3. This is because the adaptive ker-
nel density estimator produces a weak signature of the Hercules
peak, sometimes seen only as an inflection point. We there-
fore prefer to use the wavelet transform (WT) instead. This
is especially suitable to enhance overdensities and underden-
sities (Fig. 10 second column), and has been applied exten-
sively for the detection of kinematic groups (Skuljan et al.1999;
Antoja et al. 2008, A12)3. We use here a range of scales between
22− 45 km s−1 (see A12). The WT detects also other peaks such
as Hyades or Sirius apart from the Hercules group in the dis-
tribution of vθ

φ
(third column in Fig. 10). Figure 11 shows the

vφ,OLR for the different bins which decreases withR as expected
if Hercules is caused by the bar’s OLR.

5. Results: application of the analytic model to the
RAVE data

We proceed to obtain the most likely bar properties consistent
with the RAVE data. We use the maximisation parameter ranges
as explained in Sect. 3.3. Note that we had to assume values for
v0, V⊙, U⊙ andR0 to compute the individualvφ, vR andR from the
observables. In Sect. 5.1 we keep these parameters fixed, while
in Sect. 5.2 we consider also changes in these parameters. In
Sect. 5.3 we discuss the effect of the observational errors and
possible biases in distance.

5.1. Results for fixed Solar parameters

Figure 12 shows the two-dimensional marginalized pdf’sφb-Ωb
(left), β-Ωb (middle) andφb-β (right). The first panel presents
a well defined peak. By contrast, the other panels show flatter
distributions, especially for the slopeβ of the rotation curve for
which we do not obtain any constraint. In Table 2 (Model 1)
we give the details of the pdf ofφb − Ωb, that is the maximum
of the probability, the expectation of each parameter E(φb,Ωb),
the standard deviations of the distributionσφb andσΩb/Ω0, and
the correlationρφbΩb. From Fig. 12 we can observe (as in the
simulations of Sect. 3.4) the strong correlation betweenφb and
Ωb with a correlation coefficient of ρφbΩb = 0.98. Correlations
between other parameters are much smaller:ρβΩb = −0.03 and
ρφbβ = 0.05.

The maximum of the pdf is the red cross in Fig. 12 and is
located at (φb,Ωb/Ω0) = (44.5 deg, 1.89). The expected values
are shown as a red asterisk. For the choice of the parameters
v0 = 238 km s−1 andR0 = 8.05 kpc, the pattern speed of 1.89Ω0
corresponds toΩb = 56.0 km s−1kpc−1. There are no significant
differences between the maximum and the mean of the pdf for
Ωb, as they differ only by 1%. For the bar’s orientationφb we
obtain a broader likelihood distribution than forΩb. In the left
panel of Fig. 12 we see that the 1σ region (dotted red line) covers
almost the whole range ofφb (from ∼ 20 deg to∼ 80 deg). The

3 For our simulations of Sect. 3, we also tried the WT but concluded
that the kernel density estimator performed better. The reason is that the
WT overestimates the position of the gapvθφ,OLR for the cases where the
Hercules structure is remarkably separated from the MAIN mode or,
in other words, where the gap is wider than 60 km s−1 (for bins at the
outermost radii). As this is not the case of any bin of the RAVEdata,
we are not affected by this WT bias here.
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Fig. 10. Same as Fig. 5 but for the band atφb + 6 deg for the RAVE data. The velocity distribution of the second column is obtained
through the wavelet transform (see text).

Fig. 11. Position of thevφ,OLR as a function ofR for the band at
φb+6 deg for the RAVE data. Several fits from Table 3 (see text)
are overplotted.

maximum of the pdf and its mean differ by 6%. The fit given by
the maximum of the two-dimensional pdf is plotted on top of the
data points in Fig. 11 (black curves) labelled as “2d max”, for
three different values ofβ.

The fact that we can constrain the value of the pattern speed
but not the orientation is probably because we only have data
for a small range of radii (∼ 500 pc) compared to the toy model
(2− 3 kpc) and also because of the large errors in the measure-
ment ofvφ,OLR. This is also expected qualitatively from inspection
of Fig. 3, where we see that different pattern speeds occupy dis-
tinct regions, while curves for different angles or slopes of the
rotation curve can be rather close for certainR and may become
undistinguishable due to the observational errors.

One could marginalize the pdf’s of Fig 12 to obtain the best
estimates for each individual parameter. If we proceed in this
way, we get the maxima of the individual marginalizations as
shown with a red triangle in Fig 12 left. ForΩb the maximum
of the two-dimensional pdf is similar to the one-dimensional
maximum, differing only by 4%. However, note that forφb the
maximum of the one-dimensional pdf is quite different (55%)
from that obtained from the two-dimensionalφb − Ωb panel.
This is analogous to what happened in the case of our simula-

tions in Sect. 3, and is due to the global pdf being degenerate
and skewed especially in theφb direction. The resulting fit of the
one-dimensional pdf’s is the red curve shown in Fig. 11 labelled
as “1d max”. This curve fits very poorly our data, showing once
more that the one-dimensional pdf’s do not capture the main cor-
relation between the parameters and give incorrect results.

Because of the tight correlation betweenΩb andφb and the
large dispersion in the probability forφb, we actually obtain a
better fit and a tighter constraint when we use the appropriate
combination of parameters. In the same manner as in Sect. 3,
under the bivariate normal approximation, using Eq. 8 and Eq. 9
we can establish a linear relation betweenφb andΩb that allows
us to obtain the best estimate ofΩb given a particular value of
φb. We obtain:

E(Ωb/Ω0|φb = φb1) = 1.905+ 0.0044
(

φb1(deg)− 47.7
)

(10)

with standard deviation of 0.02. In units of km s−1kpc−1 this is:

E(Ωb|φb = φb1) = 56.33+ 0.1316
(

φb1(deg)− 47.7
)

(11)

with standard deviation of 0.5 km s−1kpc−1. The green line in the
left panel of Fig.12 indicates this linear relation. An example is
shown in the last two columns of Table 2 (in units ofΩ0 and in
km s−1kpc−1). For the angle ofφb = 30 deg we obtain a pattern
speed of 54.0 ± 0.5 km s−1kpc−1. This model is shown on top
of the data points in Fig. 11 (blue curves) labelled “30 deg” for
three different values ofβ. We see that these curves fit better the
data points, compared to the curve for the maxima of the one-
dimensional marginalized pdf’s (black curve). In the rangeof
10− 45 deg, which as explained in Sect. 1 encompasses the bar
orientations independently estimated in the literature, we would
obtain a range of pattern speed of 51.4− 56.0 km s−1kpc−1.

Figure 13 shows the 1σ confidence limits for slices of the
three-dimensional probability at different values ofβ compared
to Model 1 (marginalized overβ). The curves do not differ sig-
nificantly, meaning that the dependence on theβ parameter is not
strong. For instance, when we fix our model toβ = 0 (Model 2 in
Table 3)4, we obtain similar results for the pdf ofφb andΩb when

4 In principle, we do not expect our Galaxy to have a rotation curve
similar to the power laws in the model with a singlev0 andβ and that
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Fig. 12. Two-dimensional marginalized likelihoods (over the 3rd parameter) for the model parameters for the RAVE data. Dotted,
dashed and solid red lines show the 1σ, 2σ and 3σ confidence regions, respectively. In the left panel the maximum and the expected
value of the two-dimensional pdf are indicated with a red cross and asterisk, respectively. The red triangle is the maximum of the
one-dimensional marginalized pdf’s.

Table 3. Results of the fits for the RAVE data.

Model φb(MAX) E(φb) σφb Ωb/Ω0(MAX) E(Ωb/Ω0) σΩb/Ω0 ρφbΩb E(Ωb/Ω0|φb = 30 deg) E(Ωb|φb = 30 deg)
(deg) (deg) (deg) ( km s−1kpc−1)

1 standard 45. 48. 17. 1.89 1.91 0.08 0.98 1.83± 0.02 54.0± 0.5
2 β = 0. 65. 48. 17. 1.97 1.90 0.07 0.99 1.83± 0.01 54.0± 0.3
3 V⊙ = 5 km s−1 59. 47. 18. 1.90 1.85 0.08 0.98 1.78± 0.02 52.6± 0.5
4 freev0 45. 48. 17. 1.89 1.91 0.08 0.97 1.83± 0.02 54.1± 0.6
5 evR ,vφ < 15 km s−1 41. 48. 17. 1.89 1.92 0.08 0.97 1.84± 0.02 54.4± 0.5
6 Binney dist. 44. 45. 19. 1.89 1.90 0.09 0.98 1.83± 0.02 54.1± 0.5
7 overest. dist. 30% 33. 34. 22. 1.86 1.87 0.10 0.99 1.85± 0.02 54.7± 0.5
8 underest. dist.−30% 50. 48. 18. 1.92 1.92 0.08 0.95 1.84± 0.03 54.3± 0.8

Fig. 13. Two-dimensional likelihood in theφb-Ωb space
marginalized overβ (red) and for slices of the three-dimensional
probability at different values ofβ. The dotted lines show the 1σ
confidence regions.

compared to Model 1 (blue and red curves in Fig. 13). Forβ , 0
the curves are similar only forφb around the two-dimensional
maxima (red cross). This is why the fit obtained with the two-
dimensional maximum (marginalized overβ) fits the trend in
Fig. 11 for different values ofβ. For other angles (away from the
2D maximum), there is though a slight dependence onβ. Under
the assumption that the parametrization of the rotation curve of
Eq. 1 is valid, this figure demonstrates thatφb = 30 deg, and
β = 0.2 (or in general positiveβ) are favoured by the data only if
the pattern speed is higher. As clearly shown in Fig. 11 with the
blue-dashed curve, the linear relation of Eq. 10 is not validfor
positiveβ.

is the reason why in Model 1 we marginalized overβ. However, recent
studies point to a rather flat rotation curve. For instance, Honma et al.
(2012) using observations of masers claimβ = 0.022± 0.029 (their
parameterα).

5.2. Varying the Solar parameters

To turn parameters such asv0 or R0 into free parameters in our
model fitting, we need to compute, for each of these, the new
(vφ,vR) andR for the data. In particular,vφ (which is one of the
required observables) is obtained by adding to the “measured”
heliocentric velocities the adopted values ofv0 andV⊙ and rotat-
ing them by an angle that depends on the position of the star in
the disc (which in turn depends on the positions in the sky, dis-
tances from the Sun and the adopted value ofR0). As a short-cut
to this time-consuming process, one can see that for a particular
angular band the change on the individualvφ of a star due to a
change inv0 andV⊙ will translate into a shift of the measured
vφ,OLR. This results in thatv0 andV⊙ become free parameters. On
the other hand, for the band considered here (only at 6 deg from
the line GC-Sun) the parameterU⊙ has little influence on the
computation ofvφ.

For Model 3 of Table 3 we changed the value ofV⊙
to 5 km s−1 (e.g. Dehnen & Binney 1998). We see that this
slightly reduces the expected value ofΩb to 1.85Ω0 (Ωb =

54.7 km s−1kpc−1). Also the conditional value ofΩb for φb =

30 deg is reduced to 52.6± 0.5 km s−1kpc−1.

Model 4 in Table 3 is the best fit obtained whenv0 is
a free parameter. We explore this parameter in the range of
[224, 252] km s−1 (Honma et al. 2012) using bins of 1 km s−1.
This change, however, does not affect the determinations of
Ωb/Ω0 and φb with respect to Model 1. Figure 14 shows the
pdf in theΩb-V⊙ plane, with a correlation coefficient ofσΩbV⊙ =

−0.03. Forv0 of 224 or 252 km s−1 we get similar best fit pattern
speeds in the combinedφb−Ωb pdf (1.88Ω0 and 1.90Ω0, respec-
tively). However, once scaled to the respectiveΩ0, the pattern
speeds become 52.4 and 59.5 km s−1kpc−1. On the other hand,
the pdf forv0 is very flat as can be seen in Fig. 14.

10



T. Antoja et al.: Constraints on the Galactic Bar from the Hercules stream as traced with RAVE across the Galaxy

Fig. 14. Two-dimensional (marginalized over the other parame-
ters) likelihood function in thev0-Ωb plane for the RAVE data.

Fig. 15. Position of thevφ,OLR as a function ofR for the band at
φb + 6 deg for different cases of RAVE data.

Fig. 16. Two-dimensional (marginalized overβ) likelihood in the
φb-Ωb space for different cases of RAVE data. Dotted lines show
the 1σ confidence regions and the different symbols are the two
dimensional maxima of the likelihood.

5.3. Analysis of errors and biases

Here we explore the influence of the observational errors and
biases on the analysis of Sect. 5.1 by considering four possible
cases. In the first case (Model 5) we consider only stars with ve-
locity errors in thevR andvφ directions smaller than 15 km s−1.
This contains 35% of our initial sample and has a total of 26076
stars. In the second case (Model 6), we use the distances ob-
tained with the method by Burnett et al. (2011), instead of those
by Zwitter et al. (2010). Finally, we also explore how a bias in
distance would affect our results. We redo the analysis consid-
ering the extreme cases of having distances overestimated (thus
we reduce the original values) and underestimated (thus we in-
crease the original values) by 30%. These are Models 7 and 8,
respectively. The new measured values ofvφ,OLR for these four
cases are shown in Fig. 15 with different symbols and colours.
Using the same symbols, in Fig. 16 we show the maximum in
theφb − Ωb plane, and the respective 1σ confidence limits are

marked with a dotted line. In Table 3 we give the details of the
two-dimensional pdf’s in the same manner as the previous cases.

The results for these four additional cases are similar to
Model 1. For example, for the distance method by Burnett et al.
(2011) (Model 6) we find an almost identical two-dimensional
maximum and 1σ contour. For the four cases, the two-
dimensional maxima are all located inside or very close to the
1σ contour of our standard Model 1. Moreover, the maxima are
only shifted along the direction of degeneracy of Model 1 and
their confidence regions also follow the same degeneracy. We
do see, however, that the bar’s orientation is more sensitive to
observational errors and biases. For instance, the sample with
the smaller errors (Model 5, blue diamond) has a maximum for
a bar orientation that is 4 deg smaller than for Model 1 but the
same expectation value. We also find a smaller (larger) bar’sori-
entation in Model 7 and 8 when we correct the distances sup-
posing that they were overestimated (underestimated), although
they are consistent within the errors. These differences are be-
cause biases in distance systematically change the slope ofthe
relation betweenvφ,OLR andR. We obtain similar results for the
best pattern speed, whereas the value for a fixed orientationof
30 deg changes at most by 0.7 km s−1kpc−1.

6. Discussion and conclusions

We have derived the pattern speed of the Galactic bar from the
analysis of the kinematics of the Hercules stream at different
Galactocentric radii, assuming that Hercules is caused by the ef-
fects of the bar’s OLR. The crucial observable for this measure-
ment is the azimuthal velocity of the saddle point that separates
Hercules from the main part of the velocity distribution.

In particular, starting from the model by D00, we have de-
rived an analytical expression for how the azimuthal velocity
of the saddle point changes as a function of position in the
Galaxy and its dependence on the properties of a barred poten-
tial, namely, the bar’s pattern speed, orientation, and theslope
and normalization of the rotation curve. We then used data
from the RAVE survey to measure this velocity as a function
of Galactocentric radius. We have found that it decreases with
radius in a manner that is consistent with our analytic model.
By fitting the measured trend, we have derived the best fit pa-
rameters of the Galactic bar. To our knowledge, this is the first
time that the information on how a moving group changes as a
function of radius is used in deriving the parameters of the non-
axisymmetries of the disc.

We tested the reliability of our analysis by comparing the
model predictions with the “measurements” of the velocity of
the saddle point in a toy model consisting of a test particle simu-
lation. Although the analytical model was derived using thestel-
lar orbital frequencies for simple power-law Galactic potentials,
it was found to reproduce well the trends found with a more
complex Galactic potential (with three components: halo, bulge
and disc). Our method to locate the velocity of the saddle point
successfully finds velocities that are consistent with the predic-
tions and we recover the input parameters of our simulation in
most cases inside the 1σ confidence region. We emphasise that a
much accurate constraint is obtained when the proper combina-
tion ofΩb andφb (which are largely degenerate) and some prior
information onφb are used.

Our model has provided new constraints for the parame-
ters of the Milky Way bar. The likelihood function of the pat-
tern speed and the bar’s angle is highly degenerate. We find
that the combined likelihood is maximum for a bar’s pattern
speed ofΩb = (1.89 ± 0.08) × Ω0, where the latter is the
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local circular frequency. Assuming a Solar radius of 8.05 kpc
and a local circular velocity of 238 km s−1, this corresponds
to a pattern speed of 56 km s−1kpc−1 with a standard deviation
of ∼ 2 km s−1kpc−1. Also, because of the high correlation be-
tweenφb andΩb, we find that a better description of our best
fit results is given by the linear relationE(Ωb/Ω0|φb = φb1) =
1.905+0.0044

(

φb1(deg)− 47.7
)

with standard deviation of 0.02.
For the angle ofφb = 30 deg we obtain a pattern speed of
54.0± 0.5 km s−1kpc−1, reducing further the uncertainty in this
determination. In the range of bar’s orientation of 10−45 deg, as
other independent studies suggest, we obtain a range of pattern
speed of 51.4− 56.0 km s−1kpc−1.

The determination ofΩb in units ofΩ0 is not very sensi-
tive (typically only by a few centesimal digits) to the assumed
Galactic parameters such as the circular velocity curve, the pe-
culiar motion of the Sun, or to different distance determination
methods or biases in distance. For instance, using a smallervalue
for the peculiar velocity of the SunV⊙ reduces the best estimate
for the pattern speed of the bar by∼ 2 km s−1kpc−1.

Our result agrees well with the pattern speed derived
with other methods compiled in Gerhard (2011). For in-
stance, with a direct determination of the pattern speed us-
ing the Tremaine-Weinberg method a value of 2.15 ± 0.54Ω0
was obtained (Debattista et al. 2002). Several studies (e.g.
Englmaier & Gerhard 1999; Fux 1999) that fitted hydrodynam-
ical models to the observed COlv-diagram give a combined
value of 1.89± 0.36Ω0. Other determinations that are also con-
sistent with ours come from the analysis of the kinematics of
Solar neighbourhood stars. For example, the observed trendwith
velocity dispersion of the Oort constant C could be due to the
bar’s effects with a pattern speed of 1.87± 0.04Ω0 according to
Minchev et al. (2007). Also a value of 1.82± 0.07Ω0 could be
responsible for the existence of several low-velocity streams in
the Solar neighbourhood such as Pleiades and Coma Berenices,
or Pleiades and Sirius (Minchev et al. 2010). Compared to the
value of D00 of 1.85± 0.15Ω0, who fitted the same stream as in
the present work but only locally, we have obtained a consistent
value but a tighter constraint.

On the other hand, we find that the bar’s orientation cannot
be constrained well as the 1σ confidence region extends from 20
to 80 deg. We suspect that this is due to limitations in the data, in
particular its small range of radii and also because of largeerrors
in the distances and proper motions. This conclusion stems from
the fact that we could constrain better this parameter for our toy
model, which can be studied for a larger range of radii and is
free of observational errors.

Alternative interpretations and models to explain the
Hercules stream have been proposed in the literature. Fux (2001)
in his study with test-particle and N-Body simulations suggested
that near the external regions of the OLR the bar generates an
overdensity of stars in velocity space that is made of chaotic or-
bits, which is a different interpretation to the scattering mech-
anism proposed by D00. Quillen et al. (2011) showed that fea-
tures similar to Hercules can be associated to the coupling of
several spiral structures. Also Antoja et al. (2009) found agroup
similar to Hercules in test-particle simulations containing only
spiral arms, although a bar was required to move this featureto
negativeU. Our findings of the trend of Hercules with radius
provide evidence that this stream may indeed be due to the ef-
fects of the bar’s OLR, but whether these other models can ac-
count for such a trend remains to be seen.

An analysis withi) a sample covering larger range in radius
and regions with different bar’s orientation,ii) with more stars
per bin, andiii) with smaller errors in distances and proper mo-

tions should allow us to constrain the bar’s orientation andeven
better the pattern speed. The astrometric data from the ESA’s
Gaia mission will provide us with such numerous, extended and
precise observations. A clear benefit would also be obtained
when observations spanning several bands in azimuth could be
used at the same time for tighter constraints.
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