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A B S T R A C T   

Herein, we report a simple fluorescence-enhanced system for the selective recognition and determination of the 
insecticide pymetrozine. 1H NMR spectroscopic data indicate that 1,2-bis(4-pyridyl)ethylene (BPE) is partially 
encapsulated in the cavity of the cucurbit[8]uril (Q[8]) in aqueous solution, forming a stable 1:2 host-guest 
inclusion complex. Good evidence is also provided by other characterization techniques including single 
crystal X-ray diffraction, UV–Vis and fluorescence spectroscopies. This host-guest inclusion complex shows weak 
fluorescence in aqueous solution. Interestingly, the addition of pymetrozine greatly enhanced the fluorescence of 
the host-guest inclusion complex. In contrast, no significant fluorescence enhancement was observed on addition 
of 10 other pesticides. The concentration of pymetrozine in aqueous solution was easily detected based on the 
linear relationship between fluorescence intensity and pymetrozine concentration. Therefore, this paper reports a 
new method to identify and determine pymetrozine by fluorescence enhancement.   

1. Introduction 

Cucurbit[n]urils (n=5–8,10,13–15, abbreviated as Q[n]s, Fig. 1) are 
composed of 2n methylene-bridged n-hydroxyurea units with a nega-
tively charged portal hydroxyl oxygen and a positively charged outer 
surface structure [1–3]. Q[n]s are a relatively new class of macrocyclic 
hosts, which when compared to other macrocyclic moieties such as cy-
clodextrins, calixarenes and pillararenes, exhibit excellent properties in 
aqueous solution. Indeed, previous studies have shown that cucurbit[n] 
urils can bind to a variety of guests in aqueous solution, including 
organic molecules, metal ions, amino acids, peptides and a number of 
pesticides [4–16]. Q[n]s have found many applications in areas such as 
molecular recognition, [17–20] supramolecular polymers, [21–24] su-
pramolecular hydrogels, [25,26] supramolecular organic frameworks 
[27–31] and adsorbing and separating materials [32–35]. 

The structure of the 1,2-bis(4-pyridyl)ethylene molecule (BPE) is 
characterized by the presence of an unsaturated group С=С, which al-
lows it to undergo cis-trans photoisomerization [36]. Secondly, the 
presence of nitrogen atoms at both ends of the molecule can act as a 
"bridge" between two metal complexes or other structural units [37]. 
Given its structural properties, BPE is often used as a raw material for 

synthesis, as a catalyst for a particular reaction, and for the construction 
of metal-organic frameworks (MOF), solid coordination frameworks 
(SOF), polymers, clusters, etc. [38–45]. BPE does not show intrinsic 
fluorescence in aqueous solutions, however, when BPE interacts with Q 
[8], the resulting host-guest complexes weakly fluoresce. Although there 
are many reports of interactions by BPE and Q[n]s, there appear to be 
few reports relating to the detection of pesticides utilizing host-guest 
interactions. Based on this, we decided to investigate whether BPE can 
be encapsulated within the cavity of Q[8] to form an inclusion complex 
and whether the resulting BPE2@Q[8] can be employed for the detec-
tion of pesticides. We note that in the case of paraquat, a review has 
recently appeared describing the various analytical techniques 
employed for its determination [46]. 

In this study, the binding properties of Q[8] with BPE were investi-
gated using a variety of techniques including 1H NMR, UV–Vis and 
fluorescence spectroscopies, single crystal X-ray diffraction techniques 
and isothermal titration calorimetry (ITC). The results revealed the 
formation of a 1:2 host-guest inclusion complex which exhibited weak 
fluorescence. More importantly, when pymetrozine (Fig. 1) was added 
to the 1:2 host-guest inclusion complex of BPE2@Q[8], the fluorescence 
intensity of the inclusion complex was greatly enhanced. However, no 
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significant fluorescence enhancement was observed when any of the 
other 10 pesticides (methomyl, tricyclazole, praziquantel, carbendazim, 
paraquat, pyrimethanil, butachlor, thiamethoxam, acetamiprid, 
metoxazon; for the structures of the pesticides see Fig. S1 in the sup-
plementary material) were added to the same inclusion complex. These 
observations suggest that the system can be used for the selective 
detection and determination of pymetrozine in aqueous solutions. 

2. Experimental Section 

2.1. Materials 

Q[8] used in the experiments was prepared according to the litera-
ture method [47]. BPE and the pesticides were purchased from Aladdin 
(Shanghai, China). All other reagents used were of analytical grade and 
were used without further purification. Double-distilled water was used 
throughout the experiments. 

2.2. Measurement of absorption, mass and fluorescence spectra 

UV–visible spectroscopy was performed using an Agilent 8453 
spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) at 
ambient temperature. The fluorescence spectra were obtained using a 
Varian RF-540 fluorescence spectrophotometer. Stock solutions of Q[8] 
(1.00×10− 4 mol⋅L− 1), trans-1,2-bis(4-pyridyl)ethylene (BPE,1.00×10− 3 

mol⋅L− 1) and all pesticides (2.00×10− 2 mol⋅L− 1) were prepared using 
doubly-distilled water. A solution of the required concentration for the 
test was obtained by diluting the stock solution. For characterization by 
fluorescence emission spectroscopy, aqueous solutions of the BPE2@Q 
[8] complex (BPE: 2.00×10− 5 mol⋅L− 1) were prepared. Known con-
centrations of pesticides were added to the BPE2@Q[8] complex to 
obtain the fluorescence spectra. The fluorescence spectra were obtained 
by excitation at 296 nm with an emission and excitation bandwidth of 5 
nm, and the emission intensity was monitored at 478 nm at room tem-
perature. The maximum emission wavelength was found to be λem =

478 nm for the BPE2@Q[8] complex. To obtain the titration fluores-
cence spectra, pymetrozine (3.0, 6.0...60.0 μL, 2.00×10− 2 mol⋅L− 1) was 
added to the BPE2@Q[8] complex (3 ml 2.00×10− 5 mol⋅L− 1) in quartz 
cells. 

2.3. 1H NMR measurements 

All NMR spectroscopic data were recorded on a JEOL JNMECZ400s 
spectrometer in D2O at 293.15 K. The observed chemical shifts are given 
in parts per million (ppm) relative to that of the internal tetrame-
thylsilane (TMS) standard (0.0 ppm). 1H NMR spectroscopic experi-
ments were conducted using a Q[8] concentration of 5.0 × 10− 4 mol/L. 

2.4. Crystallization and structure determination 

A Bruker D8 VENTURE diffractometer employing graphite mono-
chromatic Mo-Kα radiation (λ = 0.71073 Å) at 200(2) K was used to 
collect the data. Empirical absorption corrections were applied by using 
the multiscan program SADABS. Structural solution and full matrix 
least-squares refinement based on F2 were performed with the SHELXL- 
2018 and Olex2 packages [48–49]. Anisotropical thermal parameters 
were applied to all non-hydrogen atoms. Hydrogen atoms were treated 
as riding atoms with an isotropic displacement parameter equal to 1.2 
times that of the parent atom. The SQUEEZE was used due to the pres-
ence of disordered solvent water molecules [50]. CCDC 2243977 con-
tains the supplementary crystallographic data for this paper. These data 
can be obtained free of charge from The Cambridge Crystallographic 
Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

2.5. Preparation of the complex 

To a solution of trans-1,2-bis(4-pyridyl)ethylene (10.0 mg, 0.05 
mmol) in 6 M HCl solution (2.5 ml) was added Q[8] (15.08 mg, 0.010 
mmol). The mixture was stirred for 10 min at 60 ◦C and then filtered off. 
The filtrate was allowed to evaporate slowly (about 15 days) in air. 
Colourless crystals in the form of rhombic blocks of the complex were 
obtained. The data suggest that the guest trans-1,2-bis(4-pyridyl) 
ethylene is partially encapsulated in the cavity of the host Q[8], both in 
aqueous solution and in the solid state. This forms a highly stable in-
clusion complex. 

3. Results and Discussion 

3.1. Formation of the 1:2 inclusion complex in aqueous solution 

To investigate the binding properties of Q[8] to BPE in aqueous so-
lution, 1H NMR spectroscopic titration experiments were carried out. 
The 1H NMR spectroscopic data for BPE in neutral D2O solution in the 
absence and presence of different equivalents of Q[8] is shown in Fig. 2. 
The continuous addition of Q[8] caused a significant upfield shift of the 
guest BPE Ha, Hb and Hc protons. The fact that the pyridine ring, as well 
as the double bond, is encapsulated within the cavity of the host can be 
used to rationalise this behaviour. 

Fig. 1. The molecular structures of Q[8], BPE and Pymetrozine.  

Fig. 2. . 1HNMR spectra of BPE (2.0 mmol/L) (A) in the absence of Q[8]; (B) 
with 0.23 equiv. of Q[8]; (C) with 0.53 equiv. of Q[8]; (D) with 0.78 equiv. of Q 
[8]; (E) with 1.05 equiv. of Q[8]; (F) neat Q[8] in D2O at 20 ºC. 
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3.2. UV–vis and fluorescence spectroscopy 

UV–Vis (Fig. 3) and fluorescence (Fig. 4) spectroscopic titration ex-
periments were carried out to further investigate the binding properties 
of Q[8] toward BPE in aqueous solution. BPE exhibits a characteristic 
absorption peak at 310 nm as shown in Fig. 3a. As the Q[8] is gradually 
added, the absorbence of BPE decreases more significantly. This in-
dicates a high binding affinity of Q[8] for BPE. Fig. 3b shows that the 1:2 
(host-guest) binding model based on the molar ratio approach closely 
fits the binding interaction between Q[8] and BPE. Further confirmation 
that Q[8] forms a stable inclusion complex with BPE with a 1:2 stoi-
chiometry is provided by the continuously varying Job’s plot (Fig. S2 in 
the supplementary material). 

The fluorescence spectrum of BPE also changed significantly after the 
addition of Q[8], as shown in Fig. 4. We know that the guest has no 
intrinsic fluorescence in aqueous solution, but with the gradual addition 
of Q[8], the aqueous fluorescence intensity of the guest was somewhat 
enhanced. This is due to the formation of a 1:2 host-guest inclusion 
complex, in which the Q[8] host provides the guest with a hydrophobic 
microenvironment. 

3.3. Isothermal titration calorimetry (ITC) 

To better understand the properties of the host-guest complex 
formed on interaction of Q[8] with BPE, isothermal titration calorimetry 
(ITC) experiments were performed in neutral aqueous solution at 
ambient temperature (Fig. 5). Both enthalpy and entropy values (ΔH=

-29.14 kJ⋅mol− 1, TΔS= 5.40 kJ⋅mol− 1, ΔG= -34.54 kJ⋅mol− 1) 
contribute to the formation of the complex as shown in Fig. 5. Reasons 
include ionic dipole interactions between positively charged guest ni-
trogen atoms and Q[8] host oxygen atoms, and van der Waals in-
teractions between the guest surface and Q[8] host inner wall, which 
provide a favourable enthalpy for host-host complexation. Alternatively, 
an important factor in the increase in entropy may be due to the removal 
of water molecules from the cavities and portals of the Q[8] and the 
solvation shell of the BPE. The large binding constant of (3.67 ± 0.2) ×
105 M− 2 for Q[8] and the BPE is derived from the van’t Hoff equation 
(lnK = -ΔH/RT + ΔS/R) as well as the enthalpy and entropy values, 
which were also evaluated by considering the following complexation 
equilibria 2[BPE]+{Q[8]}⇋{[BPE]2@Q[8]}, K={[BPE]2@Q[8]}/ 
{[BPE]2{Q[8])} [51]. 

3.4. Crystal structure of the complex 

X-ray diffraction has been used to study the binding behaviour of Q 
[8] to the guest 1,2-bis(4-pyridyl)ethylene in the solid state. Many at-
tempts were made to form suitable crystal samples and here we present 
the crystal structure of the host-guest complex [(C48H48N32O16)@2 
(C12H12N2)4(Cl)]. The crystal structure determination revealed that the 
complex crystallises in an orthorhombic crystal system with the 
centrosymmetric space group Pbca. There is essentially no coherent X- 
ray scattering beyond about 0.95 Å and no data were used for the 
refinement beyond this point. The components of the structure were 
clearly visible using data to 0.95 Å; the SI contains a plot (Fig. S3) 
showing electron density around the guest molecule which highlights 
the positions of hydrogen atoms. 

As shown in Fig. 6, the guest 1,2-bis(4-pyridyl)ethylene is partially 
encapsulated by the cavity of the Q[8], which is consistent with the 
observations using 1H NMR spectroscopy in aqueous solution. 

It is clear that the encapsulated guest 1,2-bis(4-pyridyl)ethylene 
forms a series of hydrogen bonds with the Q[8] (Fig. 7a): the 
hydrogen bonding interactions between the carbon atom on the pyridyl 
group and the portal oxygen atom of the Q[8] have a distance of 2.589 Å 
for C(35)-H(35)…O(1), 2.822 Å for C(35)-H(35)…O(8), 2. 451 Å for C 
(36)-H(36)…O(6) and 2.899 Å for C(36)-H(36)…O(7). In addition, in-
teractions between adjacent Q[8] molecules were found (Fig. 7b) for C 
(19)-H(19A)…O(7) for 2.776 Å, C(18)-H(18)…O(7) for 2.635 Å, C(16)- 
H(16)…O(6) for 2.498 Å and C(13)-H(13A)…O(6) at a distance of 
2.462 Å. 

In addition, Fig. 8a shows that the encapsulated guest 1,2-bis(4-pyr-
idyl)ethylene also has a large number of hydrogen bonds with the 
adjacent host Q[8]: the hydrogen on the protonated N atom of the 
pyridyl group interacts with the portal carbonyl oxygen atom of the 
adjacent Q[8] in a hydrogen bonding interaction with a N(17)-H(17)…O 
(3) distance of 2.039 Å and an N(17)-H(17)…O(4) distance of 2.363 Å. 
Moreover, the hydrogen bonding interaction between Q[8] and the free 
Cl− atom has a C(19)-H(19B)…Cl(2) distance of 2.982 Å. Meanwhile, in 
Fig. 8b, it can be seen there is a hydrogen bonding interaction between 
the H atom on the C atom attached to the N atom on the pyridine ring of 
the guest 1,2-bis(4-pyridyl)ethylene and the carbonyl oxygen atom of 
the Q[8] host, as shown by the C(29)-H(29)…O(3) at a distance of 2. 
619 Å and C(25)-H(25).. .O(4) distance of 2.332 Å. The large number of 
hydrogen bonding interactions present here contribute to the formation 
of the stable inclusion complex. 

Squeeze reveals two pockets of electron density associated with 
disordered solvent in the structure. These are contained within two 

Fig. 3. (a) UV–vis titration of BPE (2×10− 5 mol⋅L− 1) on increasing concentrations of Q[8]; (b) The molar ratio plot of the absorbence data of NQ[8]/NBPE.  

P.-H. Shan et al.                                                                                                                                                                                                                                



Journal of Molecular Structure 1294 (2023) 136418

4

voids of volume about 2260 Å3, each corresponding to about 19 % of the 
cell volume in total. The total volume of disordered solvent is thus 
around 38% of the crystal volume. Each void corresponds to around 913 
electrons, consistent with around 90 water molecules (45 H2O per 
asymmetric unit). Disordered water corresponds to approximately one 
half of the electron density in this crystal. The structure should be 
formulated as [(C48H48N32O16)@2(C12H12N2)4(Cl)].90H2O. 

3.5. Fluorescence enhancing of Q[8]/BPE by pymetrozine 

In aqueous solution, the guest BPE shows no intrinsic fluorescence, as 
mentioned above. However, the resulting host-guest complex shows a 
weaker fluorescence enhancement when BPE interacts with Q[8]. 
Fluorescence measurements were performed to determine whether this 
BPE2@Q[8] complex could be used to detect common insecticides. 
Interestingly, when pymetrozine (1×10− 4 mol⋅L− 1) was added to the 1:2 
inclusion complex of Q[8] with BPE (2×10− 5 mol⋅L− 1), the fluorescence 

Fig. 4. (a) Fluorescence titration of BPE (2×10− 5 mol⋅L− 1) on increasing concentrations of Q[8]; (b) A plot of fluorescence intensity, at a wavelength of 478 nm, as a 
function of NQ[8]/NBPE. 

Fig. 5. ITC profile of host Q[8] with guest BPE at 298.15 K.  
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properties of the inclusion complex BPE2@Q[8] appeared to change 
dramatically and a further enhancement of fluorescence was observed. 
However, the addition of 10 other pesticides (1×10− 4 mol⋅L− 1) (met-
alaxyl, tricyclazole, pyroquilon, dodine, paraquat, pyrimethanil, dino-
tefuran, thiamethoxam, acetamiprid, metoxazon) did not result in any 
significant fluorescence enhancement (Fig. 9). These observations sug-
gest that the pymetrozine can be selectively detected in aqueous solu-
tions using the BPE2@Q[8] system. 

3.6. Effect of pymetrozine concentration on the fluorescence intensity of 
the Q[8]/BPE complex 

The effect of different concentrations of pymetrozine on the fluo-
rescence intensity of the complex BPE2@Q[8] was also investigated. As 
shown in Fig. 10a, the fluorescence intensity of the inclusion complex 
BPE2@Q[8] gradually increased on increasing the concentration of 
pymetrozine, while Fig. 7b shows the corresponding fluorescence 

intensity of the inclusion complex BPE2@Q[8] when the concentration 
of pymetrozine was 0–2.0×10− 5 mol⋅L− 1. 

The value of fluorescence intensity change (ΔI) showed a good linear 
relationship with pymetrozine concentration over a range of concen-
trations, as shown in Figure S4 in the supplementary material. The linear 
range was 0–2×10− 5 mol⋅L− 1, and the linear regression equation was 
ΔI=35.4025C+12.6771 (C denotes the concentration (mol⋅L− 1) of 
pymetrozine) with a correlation coefficient of 0.9903, indicating good 
linearity. The detection limit (DL) for pymetrozine was calculated as 
8.01×10− 7 M. 

3.7. The response mechanism of the fluorescent enhancing 

The 1H NMR spectrum of pymetrozine bound to the inclusion com-
plex BPE2@Q[8] was also recorded in order to understand the reaction 
mechanism of the enhanced fluorescence of the inclusion complex 
BPE2@Q[8] upon addition of pymetrozine. The results show that the 
proton peaks H1, H2, H3 of the pymetrozine move to higher field and the 
proton peaks H4, H5, H6, H7 move to lower fields relative to free 
pymetrozine, suggesting that the methyl group of the pymetrozine and a 
portion of its attached ring are encapsulated within the cavity of the Q 
[8] (Fig. 11). These observations are consistent with the replacement of 
an encapsulated BPE molecule by a pymetrozine molecule. Thus, BPE 
and pymetrozine are simultaneously bound within the lumen of Q[8], 
forming a 1:1:1 ternary inclusion complex. In other words, a certain 
percentage of the BPE molecule is extruded from the Q[8] cavity and 
replaced by the pymetrozine molecule. 

In the present study, the large Q[8] cavity can accommodate 2.0 
equiv. of BPE, forming the 1:2 host-guest inclusion complex BPE2@Q 
[8]. The protection invoked by the Q[8] host leads to an enhancement of 
the fluorescence intensity of the BPE. When pymetrozine was added to 
the host-guest system of BPE2@Q[8], the pymetrozine competed for 

Fig. 6. X-ray crystal structure of the inclusion complex 1 (a) side view; (b) 
top view. 

Fig. 7. Ball-and-stick representation of the compound showing guest molecules encapsulated into the Q[8] host, generating an inclusion complex. Solvate water 
molecules are omitted for clarity; only one guest molecule is shown here. C = light grey, O = red, N = blue and H = light green. (a) Hydrogen bonding interactions 
between the BPE and the Q[8]; (b)interactions between adjacent Q[8] molecules. 

Fig. 8. (a) Hydrogen bonding interactions between the guest BPE and the adjacent Q[8] as well as the free chloride ion; (b) Hydrogen bonding interactions between 
the guest BPE and the adjacent Q[8] . C = light grey, O = red, Cl= green, N = blue and H = light green. 
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occupancy of the Q[8] cavity. As observed in the 1H NMR spectra, the 
result is that the Q[8] cavity accommodated one BPE and one pyme-
trozine simultaneously. On the basis of the 1H NMR spectra, we specu-
late that a π...π interaction is formed with the pyridine ring portion of 
BPE by the methyl ring portion of pymetrozine which is encapsulated by 
Q[8]. This ternary inclusion complex may be more stable than the 
BPE2@Q[8] inclusion complex. The stable ternary inclusion complex 
resulted in a greater increase in fluorescence intensity. Due to the 
addition of pymetrozine, the charge transfer between two BPE molecules 
bound within the cavity of Q[8] is inhibited. At the same time, the 
formation of a 1:1:1 ternary complex further inhibits the intramolecular 
rotation of the BPE molecule, so as to increase the fluorescence of the 
pymetrozine@BPE @Q[8] system. For the other 9 pesticides tested, no 
enhancement of fluorescence was observed. 

4. Conclusions 

This paper investigates the binding properties of Q[8] with BPE in 
aqueous solution by various experimental methods. It was confirmed 
that the guest BPE can be encapsulated in the cavity of the host Q[8] to 
form a stable 1:2 host-guest inclusion complex, and that the inclusion 
complex BPE2@Q[8] exhibits low intensity fluorescence in aqueous 

solution. Interestingly, enhanced fluorescence was observed following 
the addition of the pesticide pymetrozine. At the same time, no signifi-
cant enhancement of fluorescence was observed after the addition of 10 
other pesticides under the same conditions. Thus, a fluorescence probe 
based on Q[8] and BPE was developed, and this probe is capable of 
detecting pymetrozine. 
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