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Abstract: Over the past two decades, the study of model-based dependability analysis has 

gathered significant research interest. Different approaches have been developed to automate 

and address various limitations of classical dependability techniques to contend with the 

increasing complexity and challenges of modern safety-critical system. Two leading 

paradigms have emerged, one which constructs predictive system failure models from 

component failure models compositionally using the topology of the system. The other 

utilizes design models - typically state automata - to explore system behaviour through fault 

injection. This paper reviews a number of prominent techniques under these two paradigms, 

and provides an insight into their working mechanism, applicability, strengths and challenges, 

as well as recent developments within these fields.  We also discuss the emerging trends on 

integrated approaches and advanced analysis capabilities. Lastly, we outline the future 

outlook for model-based dependability analysis. 
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1 Introduction  

Integrated and effective dependability analysis has become increasingly important as modern 

safety-critical systems become more heterogeneous and complex. Dependability can be 

defined as the “the ability of an entity to perform one or several required functions under 

given condition” (Villemeur, 1991). The study of system dependability covers four properties 

safety, reliability, availability, and maintainability. Safety is the ability of the system to avoid 

causing hazards for people and the environment.   Reliability is the ability of the system to 

perform its intended functions satisfactorily for a given time interval. Availability studies the 

readiness of the system to perform its function at a given instance of time. And 

maintainability is the ability of the system to be maintained or restored to a state in which it 

can perform its function, when maintenance is performed as specified.  In this paper, 

emphasis is placed on safety and reliability due to the context of safety-critical systems in 

which many of the techniques are situated. However, references are made to work within 

these techniques to address availability and maintainability, e.g. as in (Papadopoulos, 

Nggada, & Parker, 2010). The integration between analysis techniques and advanced system 

engineering and modelling is also beneficial for the functionality, accessibility, and usability 

dimensions of the system development.  

Dependability  assessment should  begin  early  in  the  design  phase  so  that potential  

problems  can  be  identified  and rectified  early  to  avoid  expensive  changes  in the later 

phase of the  system lifecycle. Traditional dependability analysis techniques like fault tree 

analysis (FTA) (Vesely, Dugan, Fragola, Minarick, & Railsback, 2002) and Failure Modes 

and Effects Analysis (FMEA) (US Department of Defense, 1980) are well-established and 

widely used during the design phase of safety-critical systems. FTA is a deductive analysis 

technique which utilizes graphical representation based on Boolean logic to show logical 



connections between different failures and their causes. FMEA is an inductive technique 

which tries to infer the unknown effects on the system of known component failure modes.  

 These techniques are typically applied manually and often performed on an informal system 

model which may rapidly become out of date as the system design evolves. This presents 

challenges in maintaining the consistency and completeness of the assessment process.  

Over the past 20 years, new developments in the field of dependability engineering have led 

to a body of work on model-based assessment and prediction of dependability. Model-based 

techniques offer significant advantages over traditional approaches as they utilise software 

automation and integration with design models to simplify the synthesis and analysis of 

complex safety-critical systems. These techniques can be applied from early stages of 

expressing requirements and until detailed architectural design.  

Emerging model-based dependability analysis (MBDA) techniques can be conceptualized 

and classified according to different criteria. In (Aizpurua & Muxika, 2012), classification 

criteria include the type of traditional limitations overcome by new techniques, recovery 

strategies, and the approach to design verification. Classical FTA and FMEA are static in 

nature and do not take into consideration the time or sequence dependencies. They are also 

traditionally manual processes which rely heavily on the analysts' skills and are susceptible to 

human errors. Certain MBDA techniques have been developed to address the temporal and 

dynamic limitations, while other techniques focus on making the analysis process more 

manageable. Different techniques may also employ different recovery strategies, including 

heterogeneous redundancies, homogeneous redundancies, shared redundancies, graceful 

degradation, and implicit redundancies. Techniques have also been classified based on the 

type of design verification, i.e. whether it is based on fault injection or an integrative 

approach. In (Lisagor, Kelly, & Niu, 2011), MBDA are categorized based on the model 

provenance and the engineering semantics of the component interfaces. Model provenance 



categorizes techniques based on the construction of safety model and its relationship with the 

system design. Safety analysis models can be defined either through extension to the design 

model, or as a dedicated model defined by safety engineers. Regarding the engineering 

semantics of components, categorization is possible with respect to the type of modelling of 

component dependencies. These dependencies can be captured in terms of either deviations 

from design intent, or abstracted nominal flow (for example energy, matter and information).  

The classification of MBDA techniques in this paper is based on the general underlying 

formalism and the types of analysis performed. Based on this, model-based techniques 

typically gravitate towards two leading paradigms. The first paradigm, termed Failure Logic 

Synthesis and Analysis (FLSA), focuses on the automatic construction of predictive system 

failure analyses, such as fault trees or FMEAs, on the basis of information stored in the 

system model. These approaches are typically compositional, where the system-level models 

of failure propagation can be generated from component-level failure logic and the overall 

topology of the system. This compositionality lends itself well to automation and reuse of 

component failure models across applications, and this is beneficial to dependability analysis 

in ways similar to those introduced by reuse of trusted software components in software 

engineering. Techniques which follow this approach include Hierarchically Performed 

Hazard Origin and Propagation Studies (HiP-HOPS), Component Fault Trees (CFT), State-

Event Fault Trees (SEFT), and the Failure Propagation and Transformation Notation and 

Calculus (FPTN and FPTC). 

The second paradigm, termed Behavioural Fault Simulation (BFS), automatically analyses 

potential failures in a system and the development has led to a group of formal verification 

based techniques. These generally work by injecting possible faults into simulations based on 

executable, formal specifications of a system and studying the effects of those faults on the 

system behaviour. The results are then used by model checking tools to verify whether 



system dependability requirements are being satisfied or whether violations of the 

requirements exist in normal or faulty conditions. Techniques in this category include 

AltaRica, The Formal Safety Analysis Platform/New Symbolic Model Verifier (FSAP-

NuSMV), Safety Analysis Modelling Language (SAML), and Deductive Cause Consequence 

Analysis (DCCA).  

Much of this recent work on dependability analysis has a natural synergy with a wider trend 

towards model-based design, particularly domain-specific languages. In many industries, 

particularly transport and aerospace, designers are increasingly adopting Architecture 

Description Languages (ADLs) to encapsulate both architectural and behavioural information 

about the system. Such ADLs may not only represent the system itself, but also the functional 

and non-functional requirements and properties of the system; they may also provide 

facilities for the refinement of the system throughout the design lifecycle, showing how the 

requirements are being met at each stage. One key aspect of such ADLs is to represent the 

safety requirements and the failure logic of the system, and these areas have often seen 

integration with model-based dependability analysis techniques. For instance, recent work 

has demonstrated that dependability analysis of automotive EAST-ADL models is possible 

via HiP-HOPS while dependability analysis of aerospace AADL error models is possible via 

conversion to classical artefacts e.g. combinatorial  and temporal fault trees or Generalised 

Stochastic Petri Nets (GSPNs). The integration of the comprehensive behavioural and 

architectural data offered by ADLs with model-based analysis engines also makes new forms 

of analysis possible. This has subsequently led to techniques that allow automatic 

optimisation of system attributes — such as dependability, cost, and performance — by 

means of meta-heuristics that can efficiently explore the huge design spaces involved.  

This work complements previous much less detailed discussions on classification and 

overview of model-based analysis techniques presented in (Lisagor, Kelly, & Niu, 2011)  and 



(Aizpurua & Muxika, 2013). We extensively explore various prominent techniques and study 

their recent updates and developments. The aim of this paper is not to define strict 

classification of techniques, but to review the state-of-the-art in this field, explaining the 

fundamental concepts involved and comparing the key techniques that have been developed 

in terms of their features, achievements, applicability, and scalability. We also discuss the 

current challenges faced by these techniques, including representativeness and completeness 

of models, modelling and analysis structure, the scalability of models and analyses, and 

obstacles in practicability and uptake of this work. We conclude with a discussion on the 

future outlook of this work, looking at how these challenges may be addressed and how 

research is already being developed to address new problems, including separation of 

hardware/software concerns in embedded systems, and efficient multi-objective optimisation 

of different system attributes.  

The remainder of this paper is structured as the following: Section 2 discusses a number of 

prominent FLSA techniques. Section 3 discusses a number of techniques employing 

Behavioural Fault Simulation. As techniques mature, further development tends to blur the 

lines of categorization, and techniques often extend into a hybrid or integrated approach. 

Section 4 studies a number of emerging integrated techniques and challenges, while Section 5 

concludes and outlines future outlook.  

2 Failure Logic Synthesis and Analysis 

In FLSA, system failure models are constructed from component failure models using a 

process of composition. System failure models typically comprise, or can be automatically 

converted into, well-known dependability evaluation models such as fault trees, stochastic 

Petri-nets and Markov chains. These types of techniques therefore model the deviation from 

the design intent rather than nominal (normal) behaviour of the system.  



Techniques based on FLSA include the Failure Propagation and Transformation Notation 

(FPTN), Failure Propagation and Transformation Calculus (FPTC), Hazard Origin and 

Propagation Studies (HiP-HOPS), Component Fault Trees (CFT), and State-Event Fault 

Trees (SEFT). Architecture Description Languages (ADLs) are widely adopted in the recent 

years to support the integration between analysis models in FLSA and system design models 

expressed in the language. An introduction to an ADL called Architecture Analysis and 

Design Language (AADL) is therefore included in this section.  

2.1 Failure Propagation and Transformation Notation (FPTN) 

Failure Propagation and Transformation Notation (FPTN) (Fenelon & McDermid, 1993) is 

among the pioneering MBDA methods designed to address limitations of FTA and FMEA in 

specifying system failure behaviour. It was developed as part of the Software Safety 

Assessment Procedures (SSAP) project.  It uses a modular, hierarchical notation to describe 

the propagation of faults through the modules of system architecture. FPTN module is 

represented as a box with a set of inputs and outputs, which can be connected to other 

modules. To form a hierarchical structure, each module can contain a number of sub-

modules. Failures can be propagated or transformed from one type to another. The relation 

between the inputs and outputs is expressed by a set of logical equations equivalent to the 

minimal cutsets (smallest and necessary combination of failures which cause a higher-level 

fault) of the fault trees describing the output failure modes of the module. Therefore, each 

module represents a number of fault trees describing all the failure modes for that module. 

These equations can also contain more advanced constructs, allowing FPTN to represent 

recovery mechanisms and internal failure modes. This type of notation enables FPTN to be 

used both inductively (to create an FMECA) and deductively (to create an FTA). 

FPTN is designed to be developed alongside the design of the system. Information collected 

can then be used to identify potential flaws and problems in the system design so that they 



can be eliminated or compensated for in the next design iteration. In its classical form, FPTN 

is limited to static analysis, but recent work on Temporal-FPTN (Niu, Tang, Lisagor, & 

McDermid, 2011) extended FPTN with temporal information to allow dynamic analysis by 

using Failure Temporal Logic to specify failure relationship, and produces Minimal Cutset 

Sequences. However, although FPTN provides a systematic and formal notation for 

representing the failure behaviour of a system (a distinct improvement on traditional ad hoc 

approaches), it lacks full automation, and the fact that each analysis must be conducted 

manually hampers the opportunity for it to be used in an iterative design process.  

2.2 Failure Propagation & Transformation Calculus 

Failure Propagation & Transformation Calculus (FPTC) (Paige, Rose, Ge, Kolovos, & 

Brooke, 2008) is a method for the representation and analysis of the failure behaviour of the 

software and hardware components of a system. It allows annotation of an architectural 

model of a system with concise expressions describing how each component can fail; these 

annotations can then be used to compute the failure properties of the whole system 

automatically. 

FPTC is primarily designed for real-time software systems where a statistically schedulable 

code unit is considered as the primary unit of the architectural description. The data and 

control flow behaviour of the system is defined by connecting these units using 

communications protocols like handshakes and buffers. FPTC assumes that all the threads 

and communications are known in advance and are not created or destroyed dynamically 

during the system operation. FPTC also offers the capability to describe the allocation of 

these units and their communications to different physical processing devices and networks. 

This makes it possible to describe how, for example, one faulty processor can affect all 

software units running on it. 



FPTC represents the system architecture using a RTN (Real-Time Network) style notation, 

consisting of a graph of arcs and nodes representing hardware and software units and the 

communications between them. Communications are typed according to protocol (e.g. 

blocking / non-blocking). RTN offers significant capabilities, including the ability to refine 

graphs hierarchically, to define code units as state machines, and to automatically generate 

Ada code from the design. An example RTN graph and associated key to some 

communications protocols are illustrated in Figure 1.  

 

Figure 1 Example of FPTC Representation in RTN (Walker et al., 2008) 

Similar to FPTN, components may respond to failures in one of two ways: by propagating the 

failure or by transforming the failure. Components may also initiate or terminate failures, e.g. 

by failing silent or by detecting and correcting failures. These failures are typed similarly to 

FPTN e.g. timing, value, omission failures, but the types are not fixed and can be extended as 

required. 'Normal' is also a type, indicating the lack of a failure.  

The reaction to failure is described by a simple pattern-based notation. Once components are 

annotated with FPTC expressions, the resulting RTN graph can then be thought of as a token-



passing network in which failure tokens flow from one node to another, being created, 

transformed, and destroyed along the way. Each arc in the graph can then be further 

annotated with the set of possible failures that may propagate along it. This is done by 

'running' each expression in reaction to the 'normal' type and listing the resulting output 

failures on the output communication arcs; each component is then re-run in response to any 

new input failure types. The process terminates when no more new output failures are 

generated and all possible input/output combinations have been considered. 

One advantage of FPTC is the fact that it uses the full architectural models used for 

developing the software code and can adapt much more readily to changes . This helps ensure 

the FPTC model is synchronised with the design and offers significant advantage compared 

to FPTN which is annotated according to known failures, and so any new failure to be added 

requires the whole model to be manually reannotated. It also handles cycles in architectures 

by using fix-point calculations. There is also support for model transformation from AADL 

and SysML models through Epsilon (Paige, Rose, Ge, Kolovos, & Brooke, 2008). Recently, a 

probabilistic type known as Failure Propagation and Transformation Analysis (FPTA) is 

proposed in (Ge, Paige, & McDermid, 2009). This method links architectural models with 

probabilistic model checkers specified in PRISM and allows FPTC to capture non-

deterministic failure behaviour. FI
4
FA (Gallina & Punnekkat, 2014)is the most recent 

extension of FPTC which allows FPTC to consider more types of failure behaviour e.g. 

incompletion, inconsistency, interference and impermanence and also analysis of mitigating 

behaviours. The primary disadvantage of FPTC is the necessity of performing a different 

analysis for each failure or combination of failures to be considered. Each originating failure 

must be specified at a component and then the model must be re-analysed to determine how 

this failure will propagate through the system and what failure modes will be communicated 

to critical components.  



2.3 Component Fault Tree 

Component Fault Trees (CFTs) (Kaiser, Liggesmeyer, & Mackel, 2003) is an extension to 

traditional fault trees which aims to provide better association between the hierarchy of faults 

and the architectural hierarchy of the system components. Although traditional fault tree 

allows modularization, it provides little information on the hierarchical decomposition of the 

physical system. CFTs define smaller fault trees for each component, thus incorporating the 

fault trees as part of the hierarchical component model of the system. Like traditional fault 

trees, CFTs use basic events, logical gates as well as input and output ports. The fact that 

CFTs are still logical structures linking output failures to input causes means that they can be 

analysed qualitatively and quantitatively using standard fault tree algorithms. 

CFTs differ from traditional fault trees in the sense that they allow multiple top events and by 

representing repeating (or common cause) failures only once. CFTs also form directed 

acyclic graphs called Cause Effect Graphs (CEGs), as illustrated in Figure 2, instead of 

traditional tree structure. The use of CEGs makes the CFTs smaller and easier to analyse, 

both significant benefits when modelling large systems. It also makes the diagrams clearer, as 

the fault tree nodes can be displayed as part of their components.  



 

Figure 2 Example of Component Fault Tree (Kaiser, Liggesmeyer, & Mackel, 2003) 

The main advantage of CFTs is its capability of hierarchical decomposition of systems to 

manage the complexity of modern systems. CFTs create smaller fault trees for each of the 

components and neatly capture the hierarchical system architecture. Consequently, different 

parts of the system can be developed and stored separately as part of the component 

definition in a library, and this facilitates greater degree of reusability. Conceptually, this 

hierarchical decomposition also makes it possible for the failure behaviour of the system to 

be modelled at different levels, e.g. for the top level subsystems first, and then once the 

design has been refined further, for the sub components as well. 

A windows-based tool, ESSaReL (ESSaRel, 2005) is available to perform minimal cut set 

analysis and probabilistic evaluation of CFTs. Recently another tool called ViSSaAn (Visual 

Support for Safety Analysis) (Yang, Zeckzer, Liggesmeyer, & Hagen, 2011) has been 

developed based on a matrix view to allow improved visualisation of CFTs and efficient 

representation of information related to minimal cut sets of CFTs. (Adler, et al., 2011) have 



developed a metamodel to extract reusable CFTs from the functional architecture of systems 

specified in UML.  

2.4 State-Event Fault Tree 

One of the limitation of FTA is its inability to adequately account for the temporal order of 

events, whether in terms of a simple sequence or a set of states and transitions. This limits the 

capability to analyse complex systems, particularly real-time embedded and software based 

systems. Fault trees are fundamentally a combinatorial technique and are not well suited to 

modelling the dynamic behaviour in such systems. State-Event Fault Trees (SEFTs) 

(Grunske, Kaiser, & Papadopoulos, 2005) are developed to address this limitation by 

combining elements from fault trees with Statecharts and Markov chains. This is done by 

adding states and events to fault trees, allowing the use of system state-based models as the 

basis for the analysis, as well as enabling the use of more sophisticated analysis methods (e.g. 

Markov chains). SEFTs can also be seen as an evolution of CFTs in that they allow 

decomposition and distribution across the components of the system, and represent inputs and 

outputs as visible ports in the model.  

SEFTs make a distinction between causal transition and sequential relation, and therefore 

provide corresponding separate types of ports. A sequential transition applies to states which 

specify a predecessor or successor relation between states, whereas a causal transition applies 

to events which define a causal (trigger/guard) relationship between events. Because events 

are explicitly represented (and do not always have to be state transitions), it is also possible 

for one event to cause another event. These events can also be combined using traditional 

fault tree gates (e.g. AND and OR) so that a combination of events is necessary to trigger 

another event. SEFTs also offer more advanced features for modelling timing scenarios. For 

example, events can be assigned deterministic or probabilistic delays by means of Delay 

Gates and SEFTs also allow the use of NOT gates. Sequential and causal modelling is further 



refined by means of History-AND and Priority-AND gates, which can check whether an 

event has occurred in the past and in what order it occurred, and other gates are also possible, 

e.g. Duration gates to ensure that a state has been active for a given amount of time. 

In SEFTs, a state is graphically represented as a rounded rectangle and considered as a 

condition that lasts over a period of time whereas an event is graphically represented as a 

solid bar and considered as an instantaneous phenomenon that can cause state transition. Each 

component has its own state space and each component can only be in one state at any point 

in time (the 'active state'). For the purposes of quantitative analysis, probabilities can be 

assigned to each state to reflect its chance of being the active state at any time. Similarly, 

events may be assigned probability densities for quantitative analysis. 

SEFTs follow the same general procedure as standard FTA in the modelling of system failure 

behaviour. Analysts begin with the occurrence of a system failure and trace it back through 

the components of the system to determine its root causes. SEFTs offer a greater level of 

detail during this analysis , e.g. by considering the effect of states in fault propagation. SEFTs 

also allow a greater degree of reuse than traditional fault trees because pre-existing state 

charts from the design can be used, as can Markov chains, which can be similarly integrated 

into the SEFTs. 

Unlike CFTs, SEFTs can no longer be analysed using traditional FTA algorithms. The 

inclusion of states and the different modelling of events means that different techniques are 

needed, such as the conversion to Petri Nets, to allow for the calculation of probabilities of 

system failures. Steiner, Keller, & Liggesmeyer (2012) have proposed a methodology to 

create and analyse SEFTs based on the ESSaRel tool (ESSaRel, 2005). SEFT models are 

converted to Deterministic Stochastic Petri Nets (DSPNs) (Marsan & Chiola, 1987), then the 

analysis of the DSPN models can be performed using a DSPN analyser like TimeNET 

(German & Mitzlaff, 1995).  The conversion process requires the consideration of the entire 



system, which can lead to an explosion of state-spaces and thus performance problems for 

larger system models. This issue can be alleviated to some degree by using both 

combinatorial FTA-style algorithms and dynamic state-based algorithms to analyse different 

parts of the system, e.g. using the faster techniques for simple, static subsystems and using 

slower but more powerful techniques for the dynamic parts of the system. The effectiveness 

of this dual-analysis technique will depend heavily on the type of system being analysed. 

2.5 Hierarchically Performed Hazard Origin & Propagation Studies 

Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) (Papadopoulos 

& McDermid, 1999) is one of the pioneering MBDA techniques, and amongst the well-

supported advanced compositional safety analysis techniques. It provides a greater degree of 

automation compared to CFT or FPTN. HiP-HOPS also supports automatic optimisation of 

designs (Adachi, Papadopoulos, Sharvia, Parker, & Tohdo, 2011) (Papadopoulos, et al., 

2011) which can be employed for selection among alternatives for components and 

subsystems  as well for optimal decisions  on the level and location of replicated components. 

Recently HiP-HOPS has also been extended with capabilities for top-down automatic 

allocation of safety requirements in the form of Safety Integrity Levels (SIL). The latter  

automates some of the processes for Automotive SIL (ASIL) allocation as specified in the 

safety standard ISO26262. 

HiP-HOPS works in conjunction with commonly-used system modeling tools, for example 

Matlab Simulink or Simulation X. Failure editors are integrated into these modelling tools to 

allow system designers to annotate components with failure information. This failure 

information includes failure modes (internal malfunction) and output failure expressions, and 

describes how the component fails and its relationship with other component failures, i.e. 

whether and how the component responds or not to effects of failure received at the 

component  inputs. HiP-HOPS takes this information and examines how the component 



failures propagate through the system topology, producing sets of interrelated fault trees and 

eventually an FMEA. This approach also enables the hierarchical structure of the system to 

be captured neatly in the fault trees. There are three main phases in HiP-HOPS: model 

annotation, fault tree synthesis, and fault tree and FMEA analysis phase.  

The model annotation phase provides information to HiP-HOPS on how the component can 

fail. It takes the form of a set of expressions which are manually added. These local failure 

expressions describe how failures of the component outputs can be caused by a combination 

of failures received at the component's inputs and/or by internal malfunctions of the 

component itself. Common cause failures are also supported, as are failures propagated via 

other means, e.g. from allocated components. In this way it is possible to model more 

sophisticated scenarios — for instance, the effects on a software function, and consequently 

the software architecture, when the processor shown in the hardware architecture to be 

executing that function fails. 

The synthesis phase produces an interconnected network of fault trees which link system-

level failures (i.e., failures of the system's output functions) to component-level internal 

failures by using the model topology and component failure information. These fault trees 

show how component failures propagate from one component to another and how ultimately 

they may affect the wider system, whether individually or in combination with other 

component failures. 

In the analysis phase, the synthesized fault trees are analyzed via automated algorithms to 

generate minimal cut sets. Minimal cut sets describe the necessary and sufficient combination 

of events which lead to the undesired events. Eventually the data is combined into a multiple 

failure mode FMEA which shows both direct effects of failure modes on the system, as well 

as the further effects of the failure modes caused in conjunction with other failure modes 

occurring in the system. The resultant FMEA is presented in tables which are conveniently 



displayed through a web browser. These main phases of HiP-HOPS are illustrated in Figure 

3.  

 

Figure 3 Main Phases in HiP-HOPS 

Quantitative data can also be entered for the component to estimate the probability of internal 

failures occurring and the severity of output deviations. This data can then be used in the 

quantitative analysis phase to calculate the unavailability, i.e. failure probability, of the top 

event. HiP-HOPS assists reusability by enabling failure-annotated components to be stored in 

a library. This allows other components of a similar type to reuse failure data, and avoids the 

designer having to enter the same failure data multiple times. Recently, HiP-HOPS has also 

been extended with advanced features, including the capability to accommodate temporal 

analysis and perform multi-objective optimization.  

2.5.1 Temporal Analysis in HiP-HOPS using Pandora  

HiP-HOPS fundamentally inherits the static nature of FTA and this includes the lack of 

capability to capture time information or sequence-dependent behaviour. While the 



compositional failure model may be sufficient to describe the systems behaviour in many 

scenarios, it may not be adequate to describe the complete behaviour of complex systems. 

This drawback is particularly limiting in a system where functions and failure modes change 

according to different states.  In addition to this, the ability to understand and capture the 

order of failures can be important in producing an accurate failure model. Pandora (Walker, 

Bottaci, & Papadopoulos, 2007) was proposed to extend traditional fault trees with dynamic 

analysis capability by introducing new temporal gates and temporal logic. This technique can 

be used to obtain minimal cut sequences (the smallest necessary sequences of events to cause 

the top events) of temporal fault trees. Pandora is based around the redefinition of the long-

established Priority-AND (PAND)  (Fussel, Aber, & Rahl, 1976)  gate and aims to solve the 

ambiguities in the original PAND gate whilst maintaining the simplicity and flexibility of 

FTA. It allows the temporal ordering of events to be represented as part of the fault tree 

structure, and uses temporal logic gates Priority-AND (PAND), Priority-OR (POR), and 

Simultaneous-AND (SAND) to represent the temporal relations.  

Pandora provides better modelling for precise failure behaviour of dynamic systems than 

ordinary fault tree analysis. Because Pandora is designed to integrate with existing Boolean 

logic, it can be used in existing tools such as HiP-HOPS, extending it with additional 

dynamic FTA capabilities. The solution proposed by (Merle, Roussel, Lesage, & Bobbio, 

2010) is used as an analytical solution to Pandora’s PAND gate. Quantitative analysis of 

Pandora is recently discussed in (Edifor, Walker, & Gordon, 2012) and (Edifor, Walker, 

Gordon, & Papadopoulos, 2014) 

2.6 Architecture Analysis and Design Language 

The Architecture Analysis and Design Language (AADL) (Feiler & Rugina, 2007) is a 

domain-specific language developed for the specification and analysis of hardware and 

software architectures of performance-critical real-time systems. AADL enables an array of 



modelling capabilities including structural description of the system as an assembly of 

software components mapped onto an execution platform, functional description of interfaces 

to components, and performance description of critical aspects of components. AADL allows 

both architectural modelling and error modelling. Architectural modelling describes the 

nominal architecture of the system, including the components, and their connections and 

interactions. Interactions show structural and behavioural aspects without considering the 

presence of faults. In contrast, error modelling captures the behaviour of components in the 

presence of internal faults, repair events, as well as external propagations of faults from other 

components.   

An AADL error model consists of a model type and, at least, one error model 

implementation. The form of error models is described in the AADL error model annex, 

which was intended to support the qualitative and quantitative analysis of dependability 

attributes.  The error model is a state machine that can be associated with an AADL element, 

i.e. component or connection, in order to describe its behaviour in terms of logical error states 

in the presence of faults. The error model can be associated with software (e.g. process, data, 

thread), hardware (e.g. processor, memory, device) and composite component (e.g. system) 

component and connection (Feiler, Gluch, & Hudak, 2006).  In AADL, systems may be 

represented as collections of components, hierarchies of components, or systems of systems. 

Therefore an AADL error model extends from system to subsystem to component, and the 

system error model is a composition of the error models of its subsystems or components. 

This captures hazards at system level, risk mitigation architecture at subsystem level and 

failure modes and effects analysis models at component level.  

Each AADL error model can be stored in a library and can be reused for different AADL 

components. Propagation of errors between components is determined by their 

interdependencies and the AADL Error Model Annex has defined a set of dependency rules 



(Feiler and Rugina, 2007) to define interdependencies between components. For example, 

propagations may occur from a component to any outgoing connections and between all sub-

components of the same process which is conceptually similar to Papadopoulos’s dual 

approach to propagations in his integration of HiP-HOPS and Matlab Simulink models 

(Papadopoulos & Maruhn, 2001).  

One limitation of the language lies in the incomplete support, at least in its core concepts, of 

analysis of the runtime architectures. This is compensated by extensions to accommodate 

analysis specific notations that can be associated with components. Error modelling for 

instance is supported through an annex that has been added to the standard. AADL error 

models can be analyzed through an automated translation into a standard fault tree (Joshi, 

Vestal, & Binns, 2007), or by generating Generalized Stochastic Petri Nets (GSPNs) from 

error model specifications and using a GSPN tool for quantitative analysis (Rugina, Kanoun, 

& Kaaniche, 2007).  

2.7 System Dynamics and Temporal Considerations 

A number of techniques have been developed to address the temporal and dynamic limitation 

of classical FTA and FMEA. The Dynamic Fault Tree (DFT) (Dugan, Bavuso, & Boyd, 

1992) approach introduced new gates and temporal notions to account for ordered events and 

handle probabilistic timed behaviour in fault trees. Some techniques which are based on 

Monte Carlo Simulation (MCS) (Rao et al., 2009)  offer alternatives by modelling temporal 

failure and repair through state-time diagrams. Dynamic Reliability Block Diagram (DRBD) 

(Distefano & Puliafito, 2007) model component failures and repairs based on their 

dependencies using state machines, while coloured Petri Nets have been used to analyzed 

DRBD in (Robidoux, Lu, Xing, & Zhou, 2010). Other researchers like (Hura & Atwood, 

1988), and Helmer et al. (2007) have used Petri Nets to solve classical fault trees. The 

combination of state and event based formalisms has been adopted in Boolean Logic Driven 



Markov Processes (Bouissou, 2007) and State-Event Fault Trees (SEFT). The temporal 

extension to HiP-HOPS which is implemented through Pandora also aims to address temporal 

dynamics.  

3 Behavioural Fault Simulation 

In Behavioural Fault Simulation, system failure models are produced by injecting faults into 

executable formal specifications of a system, thereby establishing the system level effects of 

faults. This fault injection technique was developed in the ESACS (Bozzano et al, 2003) and 

ISAAC (Akerlund et al. 2006) projects. As opposed to the dedicated analysis model 

commonly used in FLSA, Behavioural Fault Simulation uses an extended model which is 

automatically constructed from a system design model. The extended model typically 

contains both the nominal input flow as well an input related to the fault, which is taken into 

consideration when activated. System behaviour is observed when faults are activated. The 

fundamental analysis of this approach is similar to the exhaustive search through activation of 

all possible combinations of failures.  

Model checking is often used to verify the system safety properties in the extended model. 

Model checking performs exhaustive exploration to check whether a safety property – which 

is usually expressed in temporal logic – holds. The tool produces counterexample when 

safety properties do not hold to show traces of simulation on how the breaching condition is 

reached.   

3.1 Formal Safety Analysis Platform - New Symbolic Model Verifier  

The Formal Safety Analysis Platform - New Symbolic Model Verifier (FSAP/NuSMV-SA) 

(Bozzano & Villafiorita, 2003) consists of a set of tools including a graphical user interface 

tool, FSAP, and an extension of  model checking engine NuSMV. The aim of this platform is 

to support formal analysis and safety assessment of complex systems and allows failure 



injection into the system. The effects of that failure on the system behaviour are then 

observed.  

The FSAP/NuSMV-SA platform has different modules to perform different tasks. The central 

module of the platform is the SAT Manager which control the other modules of the platform. 

It stores all the information related to safety assessment and verification which includes the 

extended system model, failure modes, safety requirements and analyses. System models are 

described as finite state machines using the NuSMV language as plain text. A model can be a 

formal safety model or a functional system model and the user has the flexibility to use their 

preferred text editor to design or edit the system model. The Failure Mode Editor and Fault 

Injector modules allow the user to inject failure modes in the system model to create an 

extended system model. The expressions of the failure modes can be stored in a library to 

provide greater degree of reusability. The system model is then augmented with safety 

requirements in the Safety Requirement Editor. Temporal logic is used to express the safety 

requirements and can also be stored in a library to facilitate future reuse. The Analysis Task 

Manager defines the analysis tasks that are required to be performed, i.e. specification of the 

analyses. The next step is to assess the annotated system model against its functional safety 

requirements.  This task is done based on the model checking capability incorporated in the 

NuSMV-SA Model Checker module. This module also generates counter examples and 

safety analysis results by means of fault trees.  The Result Extraction and Displayer modules 

process all the results generated by the platform and present to the user. The fault trees can be 

viewed in the Displayer that is embedded in the platform or using commercial tools, and 

counter examples can be viewed in textual or graphical or tabular fashion.       

Although the FSAP/NuSMV-SA platform provides multiple functionalities; it does also have 

some limitations, especially in handling fault trees. Fault trees generated by this toolset show 

the relation between top events and basic events. However fault trees are flat and don't show 



propagation of failure which could make the fault trees for complex systems unintuitive. The 

tool enables qualitative FTA, but it does not have the ability to perform probabilistic 

evaluation of FTs. Like other model checking based approaches, this platform also suffers 

from state space explosion while modelling large or complex systems.  

3.2 AltaRica 

AltaRica (Point & Rauzy, 1999) is a description language designed to be able to formally 

describe complex systems. AltarRica allows systems to be represented as hierarchies of 

components and subcomponents and models both events and states. Unlike FSAP/NuSMV, 

AltaRica uses dedicated safety models. AltaRica models can be analysed by external tools 

and methods, e.g. for the generation and analysis of fault trees, Petri nets, and model-

checking (Bieber, Castel, & Seguin, 2002). 

In AltaRica, components are represented as nodes, and each node possesses a number of 

states and variables (either state variables or flow variables). The values of the state variables 

are local to the node they are in, and change when an event occur, i.e. events are triggering 

state transitions, thus changing the values of state variables. Flow variables are visible both 

locally and globally and are used to provide an interface to other nodes in the model.    

Each basic component is described by an interfaces transition system, containing the 

description of the possible events, possible observations, possible configurations, mappings 

of what observations are linked to which configurations, and what transitions are possible for 

each configuration. A small example of AltaRica node is shown in Figure 4.  



 

Figure 4 Small Example of AltaRica Node 

The behaviour of a component (node) is defined through assertions and transitions. 

Assertions specify restrictions over the values of flow and state variables whereas transitions 

determine causal relations between state variables and events, consisting of a single trigger 

(event) and a guard that constraints the transition; guards are assertions over flow and state 

variables. In the example, the node 'block' contains three flow variables (O, I, A) and one 

state variable (S). There is one event, failure, that causes the state to transition to false. The 

assertion links the flow variables such that output only occurs when input is present, an active 

signal is present, and the component is functioning (i.e. S = true, which is the initial state). 

After defining the nodes, these can be organized hierarchically to reflect system 

decomposition and architecture. The top-level node represents the system itself, and it 

consists of other lower-level nodes. Nodes can communicate either through interfaces or 

though event dependencies. The first process is done by specifying assertions over interfaces 

and the second one is done by defining a set of broadcast synchronisation vectors. These  

broadcast  synchronisation  vectors  allow  events  in  one  node  or  component  to  be 

synchronised with those in another node. Vectors can contain question marks to indicate that 

an event is not obligatory (e.g. a bulb cannot turn off in response to a power cut if it is already 

off). Additional  constraints  can  be  applied  to  the  vectors  to  indicate  that  certain  

combinations  or numbers of events must occur, particularly in the case of these 'optional' 



events, e.g. that at least one of a number of optional events must occur, or that k-out-of-n 

must occur.  

Two main variants of AltaRica have been designed so far. The primary difference between 

the variants is how the variables are updated after firing of transitions. In the original 

AltaRica (Arnold, Point, Griffault, & Rauzy, 2000) , variables are updated by solving 

constraints, and thus consume too much computational resource. Therefore, this approach is 

not scalable for industrial application although it is very powerful.  To make AltaRica 

capable of assessing industrial scale applications, AltaRica Data-Flow (Boiteau, Dutuit, 

Rauzy, & Signoret, 2006) is introduced where variables are updated by propagating values in 

a fixed order, and the order is determined at compile time. This approach takes fewer 

resources, however, it cannot naturally model bidirectional flows through a network, cannot 

capture located synchronisation, and faces difficulties in modelling looped systems. Recent 

work on AltaRica 3.0 (Batteux, Prosvirnova, Rauzy, & Kloul, 2013) is under specification. It 

improves the expressive power of the second version without reducing the efficiency of 

assessment algorithms. The main improvement is: it defines the system model as a new 

formalism - that of Guarded Transition Systems (GTS) - which allows modelling systems 

with loops, and can easily model bidirectional flows. AltaRica 3.0 provides a set of 

assessment tools, e.g.  a Fault Tree generator, a Markov chain generator, and stochastic and 

stepwise simulators.  

3.3 Safety Analysis Modelling Language 

The Safety Analysis Modelling Language (SAML) (Güdemann & Ortmeier, 2010) is a tool-

independent modelling framework that can be used to construct system models with both 

deterministic and probabilistic behaviour. It utilises finite state automata with parallel 

synchronous execution capability with discrete time steps to describe system models 

consisting of hardware, software components and environment inputs. In the state automata, 



transitions can be defined both as probabilistic and non-deterministic. From a single SAML 

model both qualitative and quantitative analysis can be performed.  

A SAML model consists of at least one module description and declarations of zero or more 

constants and formulas. Figure 5 shows an example of SAML model.  

 

Figure 5 Example of SAML Model 

This example has two modules (A and B), four constants, and one formula. The modules are 

declared as state automata, so every module has at least one state variable and at least one 

rule to update the state variable. Every state variable is represented as a range of integer 

values and initialised with a value. Every update rule defines either at least a probabilistic 

assignment or at least one non-deterministic choice of assignments, and they are conditioned 

on a Boolean activation condition.  

SAML models can be transformed automatically to the input format of other model-based 

safety analysis techniques. Therefore SAML can work as an intermediate language for 

MBDA techniques, i.e. if models designed in any other higher-level language can be 



converted to SAML models (extended system models) then the resultant models can be 

transformed to input format of other targeted analysis tools, and, thereby analysed with 

different targeted tools.  

Güdemann & Ortmeier (2011) have shown ways of transforming SAML model into the input 

language of probabilistic model checker PRISM (Kwiatkowska, Norman, & Parker, 2011). In 

the same work, the above researchers have also shown ways of transforming SAML modules 

to NuSMV although the former supports both non-deterministic and probabilistic update 

rules whereas the later one supports only non-deterministic update rules.   

In addition to being a high-level modelling and specification language, SAML can also be 

used as an intermediate language. Its formal qualitative and quantitative semantics allows 

different analyses to be performed in the same model.  

3.4 Deductive Cause Consequence Analysis  

Deductive Cause Consequence Analysis or DCCA (Ortmeier, Reif, & Schellhorn, 2005) is a 

formal method for safety analysis which uses mathematical methods to determine whether a 

given component fault is the cause of a system failure. It is a formal generalization of FMEA 

and FTA, but it is more formal than FTA and more expressive than FMEA. DCCA represents 

the system model as finite state automata with temporal semantics using Computational Tree 

Logic (CTL). It assumes that all the basic component failure modes are available, and then 

defines a set of temporal properties that indicate whether a certain combination of component 

failure modes can lead to system failure. This property is known as criticality of a set of 

failure modes which are analogous to cut sets of classical fault trees. Similar to FTA, DCCA 

aims at determining the minimal critical sets of failure modes which are necessary and 

sufficient to cause the top event (system failure).  

DCCA also faces state explosion problem because to determine minimal critical sets it has to 

consider all possible combinations of component failure modes. This problem can be 



alleviated to some extent by using results from other informal safety analysis techniques like 

FTA which are believed to be generating smaller but good initial guesses for solutions. 

However, by doing this, DCCA also inherits the shortcomings of FTA, i.e. inability of  

capturing dynamic behaviour where order of events is important. Deductive Failure Order 

Analysis (Güdemann, Ortmeier, & Reif, 2008) is a recent extension which enables DCCA to 

deduce temporal ordering information in critical sets. In this extension, Pandora style 

temporal gates like PAND and SAND are used to capture temporal behaviour. Temporal 

logic laws are also provided to make the temporal ordering deduction process automated.  

4 Towards Integrated Approaches 

This section explores the strengths and limitations often shared by different techniques within 

the FLSA and BFS fields. There has been a paradigm shift in recent years where research 

work and efforts have been channelled into extending and integrating different techniques to 

address identified limitations.   

4.1 Applicability and Challenges of FLSA  

FLSA techniques generally use a dedicated model developed for the purpose of the analysis 

(or annotations that augment the design model), which makes it easier to analyse the effect of 

failures on the system. This allows safety engineers to modify level of details avoiding 

unnecessary complexity while ensuring that the model is sufficient for dependability analysis 

purposes. Unintentional interactions (e.g. short circuits of electrical systems) can also be 

taken into consideration.  

The true benefits of this type of approach are most apparent when used as part of an iterative 

design process. As the failure behaviour of the system components is modelled in a 

compositional fashion, it is easier to determine the effects of design changes. This is 

particularly true for automated or partly automated techniques, which speed up the analysis 



process and make it possible to rapidly evaluate speculative changes to the design. This 

efficient nature of FLSA also means that valuable analysis can be started early in the design 

process when concrete system details are still scarce. FLSA produces safety artefacts which 

are familiar to safety engineers (e.g. FTA and FMEA).  

However, dedicated models also mean that additional effort is required to create these new 

models or extend any normal system model with the required information, and further effort 

may be required to harmonise these disparate models. This may also hamper the traceability 

between design and analysis models. 

Another limitation of FLSA is the lack of support for formal verification. FLSA are also  

fundamentally  static analyses, which do not take into consideration the changes in system 

states and are therefore limited in their ability to capture dynamic behaviour (although this 

limitation is, to a certain extent, addressed by some extended techniques as previously 

mentioned). 

4.2 Applicability and Challenges of BFS 

The strength of BFS lies in its ability to facilitate automated formal verification and capture 

the system dynamic behaviours. It is also possible to distinguish between transient and 

permanent failures and model the temporal ordering of failures. However, the fault simulation 

techniques have a number of limitations. The valuable safety artefacts such as fault trees 

(which are obtained through model checking) tend to have a ‘flat structure’, representing 

disjunction of all minimal cut-sets. This may hamper the understanding of the fault trees. 

Model-checking based techniques are computationally expensive, inductive in nature, and 

therefore suffer from state-space explosion problems. The exhaustive assessment of the 

effects of combinations of component failures is not feasible in large systems.  

Fault injection is also typically applied to executable design models, which are typically 

produced at a later development process stage when design changes are costly to implement. 



The analysis results therefore often lose the opportunity to drive the design process itself. 

While the construction of the extended model supports the consistency of the safety analysis, 

it may impose constraints on the safety analysis as explained in (Lisagor, Kelly, & Niu, 

2011). Extended models are inadequate in covering failures resulting from unintentional 

interactions or unintended dependencies between seemingly unrelated components. The 

techniques also rely on the set of predefined failure modes to be injected, and therefore the 

completeness of the analysis depends on the completeness of the failure list, which is difficult 

to guarantee.  

4.3 Towards Integrated Approaches 

As MBDA techniques develop and mature, various extensions are introduced to address the 

limitations identified. One of the increasing trends in integrated approaches is that between 

Architecture Description Languages (ADLs) and FLSA techniques. FLSA techniques aim to 

overcome the problems associated with a ‘pure’ dedicated model by automatically or semi-

automatically constructing the dependability analysis model (by partially utilizing the 

architecture of the design model). Translations from high-level ADLs to FLSA techniques 

allow tighter integration between the design and analysis process, and therefore a better 

traceability between design and analysis models. Recent work on FPTC in (Paige, Rose, Ge, 

Kolovos, & Brooke, 2008) uses a metamodel to support model transformations from SysML 

and AADL models. Metamodels have also been developed in (Adler, et al., 2011) to obtain 

CFT models from architectural models specified in UML. HiP-HOPS has been integrated 

with Matlab Simulink and Simulation X for many years (Papadopoulos & Maruhn, 2001). 

Recent integration work between HiP-HOPS and EAST-ADL is discussed in (Chen, 

Mahmud, Walker, Feng, Lonn, & Papadopoulos, 2013) and (Sharvia S. , Papadopoulos, 

Walker, Chen, & Lonn, 2014), and model transformation between HiP-HOPS and AADL is 

presented in (Mian, Bottaci, Papadopoulos, Sharvia, & Mahmud, 2014).  



Another trend on integration aims to enable the verification capabilities in FLSA. A number 

of integrated approaches have emerged where compositional FLSA techniques are merged  

with fault injection approaches. In this integrated approach, system structure and behaviour 

(nominal and failure) is expressed using a compositional model of architecture, and model 

transformation is performed to obtain a model which can be formally verified (verification 

model). The transformation can be carried out through direct transformation rules, or through 

an intermediate transformation where the intermediate model is used to achieve consistency 

and traceability between different design, analysis and verification approaches. The outline of 

this structure is illustrated in Figure 6. With the use of the intermediate transformation, high 

level models can be reused for different target approaches. Counter examples which are 

obtained from fault injection techniques can also be transformed back into dependability 

analysis models, for example as minimal cut-sets of fault trees. Failure Propagation and 

Transformation Analysis (FPTA) (Ge, Paige, & McDermid, 2009) links FPTC architectural 

models with probabilistic model checkers specified in PRISM. This enables FPTC to capture 

non-deterministic failure behaviour, and perform verification. Combined application between 

HiP-HOPS and NuSMV is described in (Sharvia & Papadopoulos, 2011). This work 

describes how dependability analysis results from HiP-HOPS can be used to systematically 

guide the construction of verification models specified in NuSMV, allowing early verification 

of functional behaviour and formulation of system degradation states.   



 

Figure 6 Model-based Integrated Approach (Aizpurua & Muxika, 2013) 

Integration through direct transformation is used in COMPASS project (COMPASS, 2013) 

which utilizes the System Level Integrated Modelling (SLIM) language (Bozzano, Cimatti, 

Katoen, Nguyen, & Noll, 2011). SLIM semantics covers nominal and error behaviour of 

AADL, and contains an extended model which allows verification via model checking. 

SAML is an example of an integrative approach via intermediate transformation. This is 

illustrated in Figure 7. A specification can be written in high-level CASE tool like SCADE or 

Matlab Simulink, transformed into a SAML model, and verified using NuSMV or PRISM. 

However, work on this is still in progress and there are transformation-related issues which 

need to be addressed (for example, implementation of high level to intermediate level model 

transformation). Another example is the Topcased project (TOPCASED, 2013) which 

transforms SysML, UML and AADL models into an intermediate model specified in 

FIACRE language (Berthomieu, et al., 2008).  



 

Figure 7 SAML as an Intermediate Language (Güdemann, Lipaczewski, Struck, & Ortmeier, 

2012) 

Challenges in these integrated approaches include the state-space explosion problem due to 

the size of verification model. There is also need to find an efficient way to feed the analysis 

results into the design model in order to maintain consistency, and a need to construct a user 

friendly toolset due to the range of models and analyses. 

The following table summarizes the approaches discussed in this paper:  

Technique  Features Limitations  Tool Support Extension/ 

Integrated Work   

FPTN Formal notation for 

system behavior; 

Temporal extension 

Lack of full 

automation  

SSAP toolset  N/A 

FPTC  Integration with 

probabilistic model 

checker  

Manual identification 

of all potential failure 

modes of interest 

Epsilon AADL, SysML, 

PRISM  

CFT Associations between 

fault and architectural 

hierarchies 

Lack of dynamic 

behavioral analysis 

ESSaRel tool  UML  



SEFT Capture system dynamic 

behavior  

Conversion to state-

based models for  

analysis; State- 

explosion 

ESSaRel, 

TimeNET 

N/A 

HiP-HOPS  Automated dependability 

analysis; Temporal 

extension; Multi-

objective optimization  

Lack of  mature 

dynamic behavioral 

analysis  

HiP-HOPS tool  EAST-ADL, 

AADL, Simulink, 

Simulation X,  

NuSMV 

FSAP/NuSMV Formal verification; 

Library of failure modes 

Flat fault tree 

structure; State-

explosion 

FSAP/NuSMV N/A 

AltaRica Formal verification; 

Timed automata and 

GTS extension 

State-explosion AltaRica tools AADL 

SAML  Captures deterministic 

and probabilistic 

behavior  

Manual extension of 

nominal model 

S
3
 tools  NuSMV, ADL 

(ongoing)  

SLIM  Integrated formal 

verification and 

dependability analysis 

Manual extension of 

nominal model; 

State-explosion 

ESA toolset 

(Internal) 

ESA toolset 

(Internal)  

 

4.4 Conclusions and Future Outlook  

Various MBDA techniques have been developed over the past 20 years, and these techniques 

tend to gravitates towards two different paradigms. This paper discussed the characteristics of 

both paradigms, and reviewed a number of prominent techniques, exploring their working 

mechanism, strengths, limitations and recent developments. These techniques have also 

evolved with recent extensions and integrations (as discussed in section 4.3) and utilize 

different strengths to address various challenges outlined earlier. In line with the increasing 



adoption of ADLs which encapsulate both architectural and behavioural information of the 

system, recent work has seen a number of model transformations between pioneering MBDA 

techniques and ADL models to enable greater analysis capabilities and consistency between 

design and analysis. This addresses the challenges arising from the use of dedicated model 

and improves the traceability between design and analysis models. Other types of integration 

aim to extend the analysis capabilities of the MBDA technique itself, particularly to enable 

verification in conjunction with dependability analyses. With the increasing popularity of 

model-driven engineering, metamodels for techniques have also been constructed to assist 

automation of code generations and model transformations.  

Future trends are likely to yield more robust integrations between existing paradigms and 

techniques. Efforts should also be placed into exploring ways to utilize different strengths in 

a complementary manner. The dependability community will also benefit from integrated 

automated tools to support adoptions of various techniques with minimum overhead caused 

by disjoint and dysfunctional tool chains. Separation concerns for hardware and software 

within design of complex embedded systems have, to a certain extent, been supported 

through the integration of analysis techniques with ADLs. Concerns still exist about 

traceability between models and analysis and focus should be given to feeding analyses 

effectively back to the design. The state-space explosion problem, which is inherently part of 

state-based techniques, can be addressed with abstraction techniques (although this is a 

largely complex subject in itself).  

Advanced capabilities to support the development and design decision of safety-critical 

systems are also important, particularly in a modern competitive engineering environment. 

The design of dependable systems must often address both cost and dependability concerns. 

The availability of different component alternatives and architectural configurations means 

that the task to find optimal or near optimal solutions is not a trivial one. It is also possible 



that no architectural configuration is able to meet all design requirements. In this case, the 

optimal trade-offs between dependability and cost need to be established. This opens the field 

to multi-objective optimization. MBDA techniques like HiP-HOPS have been extended with 

multi-objective optimization capabilities to assist design decisions (Adachi, Papadopoulos, 

Sharvia, Parker, & Tohdo, 2011); and Eclipse-based tool, ArcheOpterix, allows evaluation 

techniques and optimization heuristics for AADL specifications (Aleti, Bjornander, Grunske, 

& Meedeniya, 2009). Other works which look into the use of reconfigurable architectures for 

fault tolerant design and recovery strategies are discussed in (Aizpurua & Muxika, 2013) and 

(Papadopoulos, et al., 2011). There is also opportunity for model-based allocation of 

dependability requirements to be used as a tool for driving design refinement itself. This topic 

is for example studied in recent works within HiP-HOPS (Azevedo, Parker, Walker, 

Papadopoulos, & Araujo, 2013) where the automated allocation of safety requirements in the 

form of Safety Integrity Levels is investigated.   
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