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Abstract. The validity of the Rayleigh hypothesis has been a long-standing issue

in the applicability of the T -matrix method to near-field calculations, and despite

numerous theoretical works, the practical consequences for numerical simulations have

remained unclear. Such calculations are increasingly important in the field of nano-

optics, for which accurate and efficient modeling tools are in high demand. We here

tackle this challenge by investigating numerically the convergence behavior of series

expansions of the electric field around spheroidal particles, which provides us with

unambiguous examples to clarify the conditions of convergence. This study is made

possible by the combination of alternative methods to compute near-fields accurately,

and crucially, the recent improvements in the calculation of T -matrix elements free

from numerical instabilities, as such errors would otherwise obfuscate the intrinsic

convergence properties of the field series. The resulting numerical confirmation for the

range of validity of the Rayleigh hypothesis, complemented by a better understanding

of the convergence behavior of the field expansions, is a crucial step toward future

developments.

Submitted to: J. Opt.

1. Introduction

The T -matrix formulation, introduced by Waterman [1, 2], can be viewed as a

generalization of Mie theory [3] to non-spherical particles. It is an elegant and powerful

approach to describe electromagnetic scattering, where the incident and scattered

electric fields are expanded as a series of multipoles such as,

Esca(r) =
∑
n,m

pnmMnm(r) + qnmNnm(r) (1)
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where Mnm and Nnm are magnetic and electric multipole fields, and form a complete

basis for the solution of the Helmoltz equation obtained via separation of variables in

spherical coordinates [4, 3, 5]. The coefficients of the series expansion for the scattered

field depend linearly on those of the incident field, and this relation defines the so-called

T -matrix [5]. Knowledge of the T -matrix provides in theory the complete solution of

the scattering problem at a specific wavelength, for any incident field. The T -matrix

method has been extensively studied and successfully applied to compute the scattering

properties of particles of various shapes in a wide variety of contexts, ranging from

astrophysical and atmospheric studies to nano-optics [6].

However, the applicability of the T -matrix approach to near-field calculations

remains somewhat questionable, and certainly less well-understood than for far-fields.

Many fewer studies have considered this aspect [7, 8, 9, 10], and misconceptions still

persist in the literature. With an ever-growing interest in nano-optics and plasmonics

in particular, the demand for fast and accurate light scattering calculations in close

proximity to nanostructures is setting new challenges for computational tools. In the

context of the T -matrix, its numerical accuracy in near-field studies is often linked to a

long-standing issue known as the Rayleigh hypothesis (RH) [11, 12, 13, 14, 15, 5, 16], the

validity of which is known to be limited. In essence, the Rayleigh hypothesis postulates

that the series expansion for the scattered field (outside the particle) remains valid

everywhere outside the particle, including arbitrarily close to the particle surface. In

standard derivations of the T -matrix theory, however, it is only proved to be valid

outside the circumscribing sphere (see Fig. 1). The intermediate region, inside the

circumscribing sphere but exterior to the particle, is the subject of this work: can we

use the series expansion for the scattered field to compute the near-field everywhere in

this region?

It could be argued that the validity of the Rayleigh hypothesis for electromagnetic

scattering was fully investigated theoretically and settled 40 years ago [14, 15], yet one of

the reasons why it is still much debated today is that those mathematical considerations

do not easily translate to practical computations, where numerical instabilities/errors

prevent reliable numerical investigations. This was in fact recently highlighted in

the case of diffraction by a grating [17], the context in which the RH was originally

formulated [18, 19]. As noted in several reviews and monographs [5, 20, 21, 16], there

is still considerable uncertainty regarding the exact range of validity of the RH, and

whether it affects the applicability of the T -matrix method for accurate near-field

computations. The main obstacle to detailed investigations into the RH is arguably due

to the numerical difficulties in obtaining an accurate T -matrix, and therefore accurate

expansion coefficients, for relatively large multipole orders.

The extended boundary-condition method (EBCM), also known as null-field

method, is a standard method to compute the T -matrix of a scatterer, with close

connections to the analytical Mie solution for spherical particles; for the general case of

non-spherical particles, the T -matrix elements are obtained by solving a linear system

involving many surface integrals on the particle surface [1, 2, 22, 23, 24, 5, 25, 16]. This



Numerical investigation of the Rayleigh hypothesis 3

Particle

Incident 
medium,

Incident field

Scattered field

Internal field

1

2

3

ε1

ε2

RH region

Figure 1. Schematic description of the scattering problem. A scatterer embedded

in a non-absorbing medium (with relative dielectric functions ε2 and ε1, respectively)

is excited by an incident field, e.g a plane wave, at a free-space wavelength λ. Three

regions of space may be distinguished. (1) outside a circumscribing sphere, the total

(incident + scattered) field is rigorously expanded in a series of multipole fields as

in Eq. 1. (2) (“Rayleigh Hypothesis region”) Within the circumscribing sphere, but

outside the particle, the RH assumes that an expansion of the form of Eq. 1 is valid,

which is not always true. For spheroids, we will indeed show that this is only true

outside the focal circle (dashed red circle). Region (3) is the interior of the particle,

where the internal field can be described as a convergent series of regular multipoles

as in Eq. 2.

approach, sometimes simply called the T -matrix method or formalism, was developed

in the 1960-70s [26, 2, 22] and remains one of the most efficient techniques for the

study of electromagnetic scattering, particularly by axisymmetric particles, for which

the formulas and computational efforts simplify considerably.

Despite its performance and almost analytical rooting, the EBCM suffers from

numerical instabilities for large multipole order and/or elongated particles. Recently,

we have identified the origin of those problems in the special case of spheroids [27] and

proposed an improved algorithm to overcome them [28]. This new implementation, for

which user-friendly codes are freely available [29], provides unprecedented accuracy for

the computation of the T -matrix and the field expansion coefficients [30]. It therefore

provides a reliable basis, enabling us to study the range of validity of the RH in the

context of near-field computations without the interference of numerical instabilities.

To this end, we first describe and test a general method to accurately compute the

near fields within the T -matrix framework. Those results are then used as benchmark

to study the convergence of field expansions in the RH region, thus providing a rigorous

numerical confirmation of its region of validity. Explicit illustrations of the failure of

the RH and of the consequences in near-field calculations are readily apparent in such

example calculations. Although our results will be based on specific examples and thus

not fully general in a strict mathematical sense, this numerical study provides a much

clearer and practical picture of the validity of the T -matrix method and associated field
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expansions. Our approach also provides further information, as it allows us to study

the convergence properties of the field expansions, an important information for any

numerical application of the method. We hope this discussion will help clarify some of

the contradictions found in the literature and provide a solid base from which to explore

further these issues numerically, or from a more rigorous and general perspective.

2. Computing accurate near-fields

Within the T -matrix/EBCM framework, the internal field (inside the scatterer) is also

written as a series expansion, which for physical reasons involves regular vector spherical

wavefunctions RgM and RgN [5], explicitly:

E(r) = E0

∑
n,m

cnmRgMnm(k2r) + dnmRgNnm(k2r), (2)

where the expansion coefficients cnm and dnm of the internal fields are calculated using

the EBCM in a similar fashion as those of the scattered field [5, 31], and k2 = 2π
√
ε2/λ

is the wave vector inside the particle. It is generally accepted that this internal field

expansion is valid everywhere inside the scatterer [2, 7, 8, 5] and in particular on the

internal side of its surface. Recent works [32] however suggest that this is only true

for convex particles and that the entire T -matrix/EBCM framework may fail for some

types of non-convex scatterers. We avoid this issue here by restricting our discussion to

convex scatterers (spheroids) and to the Rayleigh hypothesis for the scattered (external)

field.

To circumvent the RH, three general approaches have so far been proposed to

compute near-fields in the RH region. The first one consists in calculating the field

exactly on the surface [7, 8, 9, 10, 29], as computed from the field expansion of the

internal field (Eq. 2). Standard boundary conditions can then be applied to obtain the

surface field immediately outside the particle. This approach yields accurate results,

but is obviously limited to the particle surface only. To obtain the near-field elsewhere

in the RH region, a second approach has been proposed [33, 34] based on a scattered

field expansion in terms of both irregular and regular multipolar fields. Point matching

techniques are used to find the coefficients of this alternative expansion in the region of

interest, from a knowledge of the fields on the boundaries of this region. The accuracy

and numerical convergence of this method has not been studied and assessed in detail.

We will here use an alternative exact approach introduced in [33] and based on

the standard surface-integral formulation of the EM scattering problem. Within this

framework, the scattered field can be written as the following surface integral (Eq. 5.168

in Ref. [5]), also known as Stratton-Chu formula,

Esca(r) =

∫
S

dS
{
iωµ0 [n×H(r′)] ·

←→
G (r′, r)

+ [n× E(r′)] ·
[
∇×←→G (r′, r)

]}
(3)
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Figure 2. Example of near-field computations using the integral formulation of Eq. 4

for a silver prolate spheroid of semi-axes 40 × 20 nm (aspect ratio of 2) in water

(refractive index 1.33). The T -matrix is calculated up to multipole order N = 20

using 40 Gauss-Legendre nodes for the integrals. In (a) and (b) the field enhancement

factor on the surface M = |E/E0|2 is calculated from the internal field expansions for

incident excitation polarized along the long axis. The predicted spectral dependence of

the extinction cross-section and the surface-averaged 〈M〉 are shown in (a), along with

the orientation-averaged extinction cross-section. The peaks at 552 nm correspond to

the main plasmon resonance of this metallic nanoparticle. The surface-field distribution

at resonance (λ = 552 nm, where the relative refractive index is s = 0.0556 + 2.53i)

is shown in (b). (c) Near-field intensity of the scattered field calculated at a distance

d along the x = z, y = 0 line, either using a fully-numerical surface-integral equation

solution with the mesh shown in the inset, or using Eq. 4 with 402 and 1602 integration

points. The surface field (d = 0) obtained from (b) is shown as a purple arrow. (d)

Relative error in the computation of the near-field. The T -matrix results of Eq. 4

with 12802 integration points were also calculated and taken as reference for error

calculations. The shaded area in (c-d) corresponds to the RH region (inside the

circumscribing circle).



Numerical investigation of the Rayleigh hypothesis 6

where
←→
G is the dyadic Green’s function. This formula expresses the scattered field in

terms of the tangential electric and magnetic fields on the particle surface, or equivalently

and more physically, as the field created by induced electric (p = n×H) and magnetic

(m = n× E) dipoles. This is rewritten for convenience as

Esca(r) = E0

∫
S

dS

{
k2

[
n× H(r′)

H0

]
·
←→
G (r′, r)

+

[
n× E(r′)

E0

]
·
[
∇×←→G (r′, r)

]}
(4)

where H0 = k2E0/(iωµ0). The surface fields are obtained from the series expansions of

the internal field, i.e. Eq. 2 for the electric field and

H(r) = H0

∑
n,m

dnmRgMnm(k2r) + cnmRgNnm(k2r) (5)

for the magnetic field [5].

The dyadic Green’s function in the embedding medium has the standard form [5]:

←→
G (r′, r) =

(
←→
I +

1

k21
∇⊗∇

)
exp(ik1|r′ − r|)

4π|r′ − r|
(6)

with k1 = 2π
√
ε1/λ the wave vector in the surrounding medium. Using the shorthand

notations R = r′ − r, R = |R|, and eR = R/R, explicit expressions for the terms

appearing in Eq. 4 read as:

p ·
←→
G (r′, r) =

eik1R

4πR

{
[p− (eR · p)eR]

+ [3(eR · p)eR − p]

(
1

(k1R)2
− i

k1R

)}
, (7)

m ·
[
∇×←→G (r′, r)

]
= ik1

eik1R

4πR
[eR ×m]

(
1− 1

ik1R

)
. (8)

Equations 4-8 were used to compute the scattered field in the near-field region.

In practice, the surface integral in Eq. 4 is carried out using a Gaussian quadrature

over both θ and φ, and we used for convenience the same quadrature order Nq for

both (therefore giving N2
q quadrature points for the surface integral). This method of

calculating the near-field is also implemented in our freely-available codes [29].

By combining this surface-integral approach with the improved T -matrix

formulation for spheroids, high accuracy in the near-field region can be achieved reliably.

To illustrate this, we consider an example relevant to plasmonics, where near-fields

are crucial, namely an elongated silver nanoparticle modeled as a prolate spheroid of

semi-axes 40 × 20 nm (aspect ratio of 2) embedded in water. Using the accurate T -

matrix/EBCM implementation discussed previously [28, 30, 29], we can calculate most
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relevant properties efficiently and accurately, as illustrated in Fig. 2(a-b). The maximum

relative error obtained for the predicted far-field and surface-field data shown in Fig. 2(a)

and (b) is 10−14 (as estimated by changing the multipole order and number of quadrature

points [29]), attesting to the extreme accuracy of the method. Those surface fields are

then used in Eq. 4 to calculate the near-field in the vicinity of the particle, including in

the RH region. Those are compared to a fully numerical solution of the same problem

using state-of-the-art Surface-Integral Equation (SIE) methods [35]. The results of this

comparison, shown in Fig. 2(c), readily demonstrate that Eq. 4 provides accurate near-

fields, including in the RH region, although it progressively fails when approaching the

particle too closely (below 1 nm in this example). This inaccuracy is expected since

the Green’s function becomes large and ultimately singular as the observation point

approaches the surface. In order to compensate for this approaching singularity, more

integration points are needed in the numerical calculation of the integral, as shown in

Fig. 2(c-d). Note that the SIE solution is arguably one of the best fully numerical

tools to solve this problem [35], yet despite the finesse of the mesh (which is close to

the limits of what is currently tractable on a standard personal computer), a relative

accuracy of 1% only is achieved for the near-fields. In contrast, almost-perfect (within

double precision) ∼ 10−14 precision is obtained with the T -matrix method. Moreover,

the T -matrix solution is about 600 times faster than the SIE. With N2
q = (160)2

integration points, this high-precision is achieved down to ∼ 3 nm away from the surface,

and a precision better than 1% remains down to d = 0.5 nm. Since the surface-field

(d = 0) is easily obtained from the internal field, these results should be sufficient

for the vast majority of applications, and smooth interpolation may be used if sub-

nanometer distances are of interest, such as in surface-enhanced Raman scattering [36].

We note that a more optimized implementation of this approach could be developed

using an adaptive numerical quadrature, which would efficiently cope with the Green’s

function singularity for small d by increasing the number of quadrature points around

the singularity only. Alternatively, singularity-suppression techniques may be applied

to further improve the accuracy of integration [37].

In the context of light scattering by spheroidal particles, we mention the existence

of analytical solutions obtained by Asano and Yamamoto [38] and Farafonov [39] based

on the separation of variables method in spheroidal coordinates. This method can also

provide accurate results, and could be used as an alternative benchmark for comparison,

but the T-matrix/EBCM method has been the subject of many more studies and

its numerical stability and convergence is better established than for spheroidal wave

functions. We therefore consider the converged T-matrix results as our reference, with

independent confirmation of their validity provided by the SIE method.

3. Numerical verification of the Rayleigh hypothesis

The remarkable stability of the new T -matrix implementation also allows the accurate

calculation of the field expansion coefficients up to large multipole orders, as illustrated
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Figure 3. (a) Relative error in the computed scattered field expansion coefficients,

pnm and qnm as a function of multipole order n for the same example as in Fig. 2, i.e.

a 40× 20 nm silver prolate spheroid in water at 552 nm. The error is computed for all

|m| ≤ n and the maximum error is retained. (b) Relative error in the partial series

(summed up to multipole order P ) of the scattered field, see Eq. 9, at selected points

along the x = z, y = 0 line. In both cases, the T -matrix computations are first carried

out up to maximum multipole order N = 55, with 100 quadrature points. The relative

error is then estimated by comparing the results to those obtained with N = 85 and

135 quadrature points. (c) Schematic showing the location of the points where the

convergence is studied on the x = z, y = 0 line. The semi-axes are here a = 20 nm and

c = 40 nm, so the surface corresponds to r ≈ 25.3 nm and the focal distance from the

origin is f ≈ 34.6 nm.

in Fig. 3(a). It is clear that the scattered field expansion coefficients (pnm and qnm, see

Eq. 1) can be computed to a relatively high accuracy (∼ 10−12) up to large multipole

orders (at least n = 50 in the example of Fig. 3). As a consequence, as shown in Fig. 3(b),

a similar accuracy of better than ∼ 10−12 is also obtained for the corresponding partial

series EP (r), i.e. the sum in Eq. 1 truncated at a maximum multipole order P :

EP (r) =
n=P∑
n=1
|m|≤n

pnmMnm(r) + qnmNnm(r) ≡
P∑

n=1

En(r). (9)

This therefore opens the way for a detailed numerical investigation into the validity

of the Rayleigh hypothesis. The principle of the approach is simple: the partial series

EP (r) for the scattered field in the near-field region are calculated to a high accuracy and

their convergence is tested in comparison to the correct high-precision result obtained

using the independent method validated in the previous section. Such a study is

summarized in Fig. 4 for the same example as already considered. Those numerical

results (supplemented by many similar tests on different spheroidal geometries) suggest

that the convergence properties depend on the position with respect to the sphere

centred at the origin and going through the two spheroid focal points, i.e. r = f where 2f
is the interfocal distance. The scattered field expansions are only convergent for r > f ,

where they converge towards the correct results. The convergence can be quite slow for
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Figure 4. The convergence of the partial series expansions for the scattered field is

studied by considering the truncation order (P ) dependence of both (a) the amplitude

|EP |, and (b) the relative error |EP − Eex|/|Eex| with respect to the exact result Eex

obtained from Eq. 4 with 1602 integration points. Those are calculated for the same

example as in Fig. 2 along a line defined by θ = π/4 and φ = 0. Different positions

are considered by comparing r with the distance of the spheroid foci from the origin,

i.e. f =
√
c2 − a2 ≈ 34.6 nm in this example. Clear divergence is observed for r < f

(top), while convergence is obtained for r > f (bottom), albeit slowly when r is close

to f . An oscillatory behavior is obtained for r = f (middle).
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Figure 5. Maps of the relative errors (capped at a maximum of 1 for clarity) in the

fields computed from the series expansion, shown both on linear and log10 scales. The

relative error in the scattered field expansion (compared to the result of Eq. 4 with

1602 quadrature points) is shown outside the particle. The relative error in the internal

field expansion (as compared with the same expansion with 25 extra multipolar orders)

is shown inside the particle. The particle surface is shown as a black line, while the

red line corresponds to the sphere r = f delimiting the region of validity of the RH

for spheroids. Four representative cases are presented: (a) A silver prolate spheroid

of axes 40× 80 nm in water excited at its plasmon resonance at 552 nm along its long

axis (kx, Ez); (b) A low aspect-ratio (h = 1.3) low-absorbing (n = 1.5 + 0.02i) prolate

spheroid in air excited at 552 nm along its short axis (kz, Ex). (c) A high aspect-ratio

(h = 10) low-absorbing (n = 1.5+0.02i) oblate spheroid in air excited at 552 nm along

its long axis (kz, Ex). (d) A large non-absorbing dielectric (n = 1.5) oblate spheroid

of axes 2× 1µm in air excited at 552 nm along its long axis (kx, Ez).
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r close to f , but as we move further away, a relative accuracy of 10−15 can be obtained

provided enough multipoles are included. In contrast, the series expansion appear to

diverge for r < f . Note that this divergence cannot here be attributed to numerical

instabilities, since as we showed in Fig. 3, those partial series are very accurate. They

simply reflect the fact that those series are divergent and cannot be used to evaluate the

scattered field. At the boundary between those two regimes, the partial series show an

oscillatory behavior, from which we cannot infer its ultimate divergence/convergence.

Similar conclusions are obtained, perhaps more visually, when considering the maps of

the error in the fields computed from the series expansions, as illustrated in Fig. 5.

4. Origin of convergence/divergence

These numerical investigations also allow us to better understand the cause of the series

divergence in regions where the RH fails. The convergence properties of these series can

conveniently be studied by the standard ratio test, explicitly:∑
n

an converges ⇔ lim
n→∞

|an+1|
|an|

< 1 (10)

∑
n

an diverges ⇔ lim
n→∞

|an+1|
|an|

> 1 (11)

and we therefore need to understand the asymptotic behavior (for large n) of the terms

in our expansions, i.e. En(r) in Eq. 9. In the example considered so-far, the terms

corresponding to m = 0 and to the electric multipoles Nnm are dominant and we

therefore focus on those for simplicity, but the conclusions naturally extend to the

general case. In this case, the terms in the scattered field expansion can be approximated

as |En(r)| ≈ |qn0Nn0(k1r)|. The asymptotic expression of the multipole field for large n

is [40]:

|Nn0(r)| ∼ (2n− 1)!!

(k1r)n+2
fn(θ, φ), (12)

where !! refers to the double factorial and the exact expression for fn(θ, φ) will be

irrelevant, except for the fact that for large n

fn+1(θ, φ)

fn(θ, φ)
→ 1. (13)

This leads us to introduce normalized expansion coefficients as follows:

q̃n0 = (2n− 1)!!qn0 (14)

Thanks to the expressions above, the convergence study can be reduced to studying the

asymptotic behavior of q̃n0, and in particular of the ratio:

Q(r) = lim
n→∞

1

(k1r)2
|q̃n+2,0|
|q̃n,0|

(15)
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Figure 6. Convergence and approximations of the terms in the series expansions

for the same example as in Fig. 3. (a) n-dependence of the amplitude of the

dominant scattered field expansion coefficients |qn,m=0|. Other coefficients exhibit

similar behavior as shown here for |pn,m=1|. Note that those coefficients are zero

for even n for spheroids under plane wave excitation. (b) Approximation of the

electric multipole field: the computed amplitude |Nn,m=0(k1, r)| is shown for three

positions (symbols) along with their approximation as (2n− 1)!!/(k1r)
n+2 (solid lines).

We also compute in each case the ratio fn = |Nn,m=0(k1, r)|(k1r)n+2/(2n− 1)!! and

show the convergence of fn+1/fn (dashed lines). (c) Reduced expansion coefficients

(Eq. 14), |q̃n,m=0| and |p̃n,m=1| (symbols) along with their postulated asymptotic form

as A(k1f)n (solid lines). The asymptotic geometric-like nature of those coefficients

is also evident in the convergence of the ratio of consecutive terms (dashed lines).

(d) n-dependence of the amplitude of each term in the scattered field series, |En(r)|
(symbols), along with their geometric approximation (lines).
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(note that for spheroids qn0 = 0 if n is even, and the ratio test is carried out on

consecutive non-zero terms). If Q(r) < 1, the series converges approximately like

a geometric series of common ratio
√
Q(r), while if Q(r) > 1, it diverges like the

corresponding geometric series. For Q(r) = 1, the series may diverge or converge but in

the latter case the convergence is slower than geometric.

With these definitions, the series convergence can again be investigated numerically

as illustrated in Fig. 6. The n-dependence for the expansion coefficients qn0 (which are

independent of r) is shown in (a) and the asymptotic form of |Nn0(r)| is compared to

the exact result in (b). In (c), we study the convergence of q̃n+2,0

q̃n,0
, which suggests (along

with similar studies for different spheroidal geometries) that

lim
n→∞

|q̃n+2,0|
|q̃n,0|

= (k1f )2,⇒ Q(r) =

(
f
r

)2

(16)

where f is the focal distance from the origin. We then easily deduce from the ratio

test that the series converge for r > f and diverge for r < f and that the “speed”

of this convergence/divergence is directly related to the ratio f /r, i.e. it behaves

like the geometric series of common ratio f /r as shown explicitly in Fig. 6(d). The

convergence/divergence regions of the field expansions and the validity of the Rayleigh

hypothesis therefore appear as a natural consequence of the asymptotic properties of

the expansion coefficients. These considerations moreover provide a simple practical

criterion for when those expansions should be used in numerical computations. For

example, if f /r = 0.95, although convergent, the expansion should not be used in

practical calculations as almost 100 multipole orders will be needed for an accuracy of

the order 1%. Alternative methods discussed earlier should therefore be preferred.

5. Discussion and Conclusion

These results should not be surprising in view of earlier studies [14, 15], which were very

recently reinforced for a similar framework [32] corresponding to the low-frequency limit

(electrostatic approximation) of the standard T -matrix method. We can summarize

those conclusions as follows:

• As illustrated here, the RH for the scattered field is neither always valid nor always

invalid as this will depend on the scatterer shape (and this is true not only for

spheroids, but also for any smooth convex shapes).

• Even when the RH is not valid all the way down to the surface of the scatterer,

the T -matrix method remains valid (for convex particles) and the scattered field

expansion remains valid where it converges.

• For convex and sufficiently smooth scatterers, the range of validity of the RH

is outside a sphere centered at the origin and containing all the singularities of

the analytic continuation of the field expansion. Finding the location of those

singularities a priori is not straightforward, but in the special case of spheroidal
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particles, they are located at the foci of the ellipse defining the particle [14, 41].

For spheroids, the RH is therefore valid inside part of the circumscribing sphere,

down to the sphere intersecting the foci (r = f ), inside which it then fails. As

a consequence, for spheroidal scatterers the RH is valid all the way down to to

the surface only when the aspect ratio (long axis divided by short axis) is smaller

than
√

2. All these points were vividly illustrated and confirmed by our numerical

investigations (see Fig. 5 for example).

• We have also clearly highlighted the reasons behind the failure of the RH: the series

expansions are valid everywhere in their region of convergence and the RH fails in

the regions where those series become divergent. This interpretation then supports

the argument that the analytic continuation of the scattered field expansion is in

general a valid mathematical description of the scattered field all the way down to

the surface. The Rayleigh hypothesis would therefore be valid everywhere when

interpreted in the wider sense of analytic continuation of series [14, 15].

In practice, computing explicitly the analytic continuation of such series is

challenging. Our proposed and demonstrated method of calculating the near-field should

therefore be preferred in regions where the RH fails (r < f for spheroids) and even when

approaching this region (r & f ) to avoid issues with slowly-convergent series.

We hope that this study will help clarify the understanding of the Rayleigh

hypothesis in the context of electromagnetic scattering by particles, and lead to

improvements and a wider dissemination of near-field calculations using the T -

matrix/EBCM framework.
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[41] Maystre D and Cadilhac M 1985 J. Math. Phys. 26 2201–2204


