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Abstract 

 

A simple, environmentally friendly and cost-effective method has been developed to prepare 

a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-

soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the 

solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 

and starch. The silver nanoparticles are also more uniform in shape with the greater the 

diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, 

hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an 

antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton 

fibers, using a simple dip-coating process using water as the solvent, in order to study the 

dependence of the antibacterial properties of these nanoplatelets on their size.  
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1 Introduction 

 

Noble metal nanoparticles have attracted strong interest for their potential applications as 

catalytic, electronic, optical, environmental and biomedical materials. [1-5] Silver is one of 

the most studied noble metal elements due to its attractive physical properties and wide 

potential applications. [6-12] Various chemical methods have been developed to prepare 

silver nanoparticles with different sizes and shapes, such as spherical nanoparticles, nanobelts, 

nanowires, nanocubes and nanoplates. [13-26] However, these procedures suffer from a range 

of disadvantageous features: undesirable reagents, such as hydrazine hydrate, as the reducing 

agent; volatile organic chemicals as the solvent; surfactants and/or polymer stabilising agents; 
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the production of powders or colloidal solutions with only relatively low concentrations of 

silver nanoparticles and, as a result, unsuitability for large-scale production.  

 Therefore, it is important to develop “green chemistry” approaches [27] to prepare silver 

nanoparticles of the desired size, shape, and aspect ratio as stable aqueous colloidal solutions 

with a high concentration for practical applications, such as in antibacterial coatings for 

bedding, wound dressings, hospital uniforms, etc. Generally, three aspects should be 

considered for a green method to prepare silver nanoparticles: environmentally friendly 

solvent medium and reducing agent and a non-toxic material for the stabilization of the 

nanoparticles. When water is used as the solvent, polysaccharides often serve as a reducing 

reagent or a capping reagent or, in some cases, as both a reducing and a capping reagent. [28-

32] Starch-capped silver nanoparticles with particle sizes below 25 nm have been prepared in 

aqueous solution by ultrasound-mediated, glucose reduction, [33] or normal thermal 

reduction [34, 35]. Khan et al. has reported the preparation of silver nanoparticles using 

ascorbic acid and starch as reducing and stabilizing agents, respectively. [36] Starch as a 

combined reducing and stabilizing agent has also been used to prepare silver nanoparticles 

(10 nm ≤ d ≤ 34 nm) in an autoclave. [37]   

      Silver ions and silver compounds have been extensively utilised for their anti-septic and 

anti-microbial activity for more than 100 years, due to their toxic effect on some bacteria, 

viruses, algae and fungi.[4, 8, 38-39] Recently there has been much renewed interest in using 

silver as a broad-spectrum antimicrobial agent due to the increasing prevalence of anti-

microbial resistant infections such as MRSA, especially in hospitals. Recent examples 

include the application of an antimicrobial gel containing silver nanoparticles in the size 

range of 7-20 nm in the treatment of burn and wound victims.[40] Several devices containing 

silver nanoparticles have recently been proposed for use in the fields of dental implantology, 

periodontology, and alveolar bone regeneration, for example, membranes for guided tissue 

regeneration (GTR) and guided bone regeneration (GBR) applications, scaffolds for bone 

regeneration, and dental implant coatings. [41]  

Although small, spherical silver nanoparticles (4 nm ≤ d ≤ 40 nm) synthesised by green 

chemistry methods have been reported recently by us and other authors to show good 

antibacterial activity,[42-43] there appear to be no reports of the synthesis and evaluation of 

the antibacterial properties of large, anisotropic silver nanoparticles (d ≥ 200 nm), i.e., 

nanoplatelets, and of their deposition on substrates for practical applications. One of the main 

reasons for this lack of information is the fact that it is difficult to prepare relatively stable 

colloidal solutions of large size silver nanoparticles. In order to study the anti-microbial 
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properties of large silver nanoplatelets, we have developed a novel green chemistry method, 

using ascorbic acid as reducing agent in water, for the preparation of highly concentrated, 

aqueous colloidal solutions of large, starch-stabilised, silver nanoplatelets with a controlled 

size, shape and aspect ratio. These aqueous colloidal solutions can then used in a very simple, 

but efficient, water-based, non-impact, dip-coating process, based on our previous work,[42] 

to deposit and fix a coating of silver nanoplates on the surface of cotton fibers, without the 

use of chemical binders, surfactants, dispersants, a post-deposition curing step, etc. [44] 

These highly concentrated solutions of silver nanoplatelets of a defined size, shape and aspect 

ratio could also facilitate the study of the quantum-confined physical properties of such silver 

nanoplatelets, such as surface plasmon resonance (SPR). 

 

 

2 Experimental 

 

2.1 Materials 

 

Silver (I) nitrate (AgNO3, 99+%, product number 0696) and sodium borohydride (NaBH4, 

96%, product number 71321) were purchased from Lancaster and Fluka, respectively. Potato 

starch (product number S2004) and ascorbic acid (reagent grade, product number A7506) 

were sourced from Sigma-Aldrich. The cotton string fibers (diameter 1.2 mm, product 

number: 719.504) are from Lyerco, Telford, UK. Ultrapure water with a specific resistance of 

18.2 MΩ·cm was obtained by reversed osmosis followed by ion-exchange and filtration 

(UPQ PS system, ELGA, USA).  

 

2.2 Synthesis of starch-protected silver seeds  

 

Seeds of starch-protected, silver nanoparticles were prepared by a procedure similar to that 

developed by Zou et al. [25] A 2.95 M AgNO3 solution (0.5 cm3) was added to 0.5% aqueous 

starch solution (99 cm3). Then a 0.5 M NaBH4 solution (1.0 cm3), which had been aged for 2 

h, was added all at once. The resultant solution was stirred for 1 h and then aged for 24 h at 

room temperature to give a stable yellow silver colloidal solution (S0). The solution exhibits a 

SPR band at 400 nm on the UV-vis spectrum. The silver seeds are nearly spherical with a 

diameter of 8.8 nm ± 2.0 nm according to analysis using Transmission Electron Microscopy 

(TEM).  
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2.3  Stepwise seed-mediated synthesis of silver nanoparticles 

 

Method 1: Silver nanoparticles with different sizes and shapes were prepared using a 

stepwise, seed-mediated, growth strategy using ascorbic acid as a mild reducing agent in a 

dilute aqueous solution of soluble starch. Eight samples were prepared in total. A fresh 

AgNO3-0.5% starch solution (29.5 mM) was prepared by dissolving AgNO3 (0.50 g) in an 

aqueous 0.5% starch solution (100 cm3). For the first reaction step, a portion of the S0 silver 

nanoparticle seed solution (5.0 cm3) and a freshly prepared 1.0 M ascorbic acid solution (0.6 

cm3) were added to a 0.5% aqueous starch solution (15 cm3). A freshly prepared aqueous 

AgNO3-0.5% starch solution (10 cm3) was then added dropwise to the resultant silver-

seed/starch/ascorbic acid reaction solution under strong stirring. A clear brown solution (S1) 

was obtained after stirring at room temperature for 1 h. For the following steps, Sn samples 

were prepared by adding a portion of the Sn-1 solution (10 cm3) and ascorbic acid solution 

(0.6 cm3) into a 0.5% starch solution (10 cm3) followed by dropwise adding of a freshly 

prepared 0.5% AgNO3-starch solution (10 cm3). All the reactions were carried out by stirring 

at room temperature for 1 h. Each of these experiments was repeated three times.  

Method 2: A fresh AgNO3-0.5% starch solution (29.5 mM) was prepared as described in 

method 1. For the first reaction step, a freshly prepared 1.0 M ascorbic acid solution (0.6 cm3) 

was added to the S0 silver nanoparticle seed solution (5.0 cm3) and then a freshly prepared 

aqueous AgNO3-0.5% starch solution (10 cm3) was added dropwise to the resultant silver-

seed/ascorbic acid reaction solution under strong stirring. A clear brown solution (S1) was 

obtained after stirring at room temperature for 1 h. For the following steps, Sn samples were 

prepared by adding ascorbic acid solution (0.6 cm3) to a portion of the Sn-1 solution (10 cm3) 

followed by dropwise adding of a freshly prepared 0.5% AgNO3-starch solution (10 cm3). All 

the reactions were carried out by stirring at room temperature for 1 h.  
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2.4 Coating of silver nanoparticles on cotton fibers 

 

A thin film of silver nanoparticles was coated and fixed on the surface of cotton fibers 

(diameter: 1.2 mm) by a simple immersion procedure, e.g., cotton fibers (0.23 g) were 

immersed in one of the S0-S8 colloidal solutions of silver nanoparticles (15 cm3), prepared 

according to the method described above, for 4 hours at room temperature. The resultant 

silver-coated fibers were then washed carefully with copious amounts of water, with no 

observable loss of silver nanoparticles, and then dried under vacuum overnight. 

 

2.5 Characterization methods 

 

UV–vis spectra were recorded in the range between 300 and 700 nm using a Perkin Elmer 

Lambda 25 spectrometer. The aqueous silver colloidal solutions, prepared as described above, 

were diluted by a factor of 100 so that their absorption could be measured in a quartz cuvette 

with a 1 cm optical path. Scanning electron microscopy (SEM) images were obtained using 

Carl Zeiss SMT ‘EVO60’ SEM operating at 20 kV and EDX data were obtained using an 

Oxford Instruments ‘INCA’ Energy Dispersive X-ray Spectrometer. TEM images were 

collected using a Jeol 2010 TEM instrument running at 200 kV. Images were recorded using 

a Gatan Ultrascan 4000 digital camera. The liquid sample for TEM analysis was mixed well 

in a vial and then a 5 μL aliquot was placed on a hydrophilic carbon coated copper grid and 

allowed to dry in air. Fourier Transform Infrared spectroscopy (FT-IR) for silver powder 

samples were recorded on a Nicolet Magna-500 FTIR spectrometer. X-ray powder diffraction 

(XRD) analyses were either performed using a SIEMENS D5000 instrument for analysing 

silver powder samples or a Bruker AXS D8 Discover with GADDS detector for analysing 

silver-coated cotton fibers. The silver powder samples for FTIR, XRD and SEM were 

obtained by centrifugation (Sigma Laborzentrifugen 2-15 Howe in combination with Fisher 

oak ridge 28 mL centrifuge tubes) at 10000 rpm for 15 min, washing (x3) with water and then 

drying under vacuum overnight. The concentration of the silver nanoparticles present on the 

surface of the fibers was determined using an inductively coupled Perkin Elmer plasma 40 

emission ICP instrument. The solutions for ICP were prepared by dissolving the samples (100 

mg) in 3 ml concentrated nitric acid (Romil Ltd, Cambridge UK, SpA grade) then heated to 

200 C in a sealed Teflon digestion vessel (CEM Xpress vessels) and, when cool, they were 

diluted to 15.0 g.  
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2.6 Antimicrobial testing 

 

The antimicrobial activity of the silver-nanoparticle-coated cotton fibers was determined 

using the diffusion method against isolates of meticillin-resistant Staphylococcus aureus 

(MRSA) (NCTC 12493) and extended-spectrum β-lactamase (ESBL) producing Escherichia 

coli (NCTC 11560), purchased from Pro-lab Diagnostics, Wirral, UK. Acinetobacter 

baumannii (NCTC 12156) and Stenotrophomonas maltophilia (NCTC 10258) were 

purchased from the Health Protection Agency laboratories, Porton Down, UK. These 

bacterial isolates were chosen due to their high levels of antibiotic resistance and potentially 

life-threatening infections in a hospital and community environment. Individual plates of Iso-

Sensitest agar (Oxoid, Basingstoke, UK) were inoculated with each of the bacterial isolates, 

using the standardized method by Moosden et al., (1988). [45] Samples of cotton fibers were 

added to the surface of the agar of each plate using sterile forceps. The agar plates were then 

incubated at 37 C for 24 hours, with the exception of those inoculated with S. maltophilia, 

which were incubated at 30 C for 24 hours. Six replicates were performed for each agar 

plate produced in order to confirm any apparent results. Zones of inhibition, i.e., the absence 

of bacterial growth surrounding the fibers, was then measured and recorded. Microtitre assays 

were performed in order to determine the antimicrobial performance of each colloidal 

solution of cellulose-stabilized silver nanoparticles in a liquid culture and also to determine 

their minimum inhibitory concentrations against specific bacterial isolates. The concentration 

of each of the S0-S8 cellulose-stabilized nanoparticle colloidal solutions was adjusted to give 

1000 g/cm-3 stock solutions. A double dilution from these stock solutions was performed a 

total of nine times into sterile, distilled water to give ten different concentrated solutions for 

each silver nanoparticle size. A sample (100 L) of each of these solutions of S0 silver 

nanoparticles was then pipetted into 10 horizontal wells of a 96-well cell-culture plate (1 well 

per concentration) and sterile distilled water (100 L) was added as a control to well 11. This 

process was repeated for each of the S1-S8 aqueous colloidal solutions of silver nanoparticles. 

An isolate of MRSA was pipetted into each well as a 100 L volume of a 0.5 MacFarland 

suspension in IsoSensitest broth. The entire procedure was repeated using E. coli, A. 

baumannii or S. maltophilia as the bacterial inoculant. Microtitre plates were incubated in a 

rocking incubator at 37 C for 24 hours with the exception of those inoculated with S. 

maltophilia that were incubated at 30 C for 24 hours. MICs were taken as the lowest 

concentrations not showing any visible growth. Six repeat experiments were conducted for 

each organism in order to confirm the validity of each result. 
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3 Results and discussion 

 

3.1 Preparation of starch-stabilised, silver-nanoparticle colloidal solutions  

 

Ascorbic acid was used as a reducing agent to facilitate the formation of the silver 

nanoparticles and starch was used as a capping agent to stabilise them during and after 

formation. Ascorbic acid (C6H8O6) is a mild reducing agent, but its redox potential is low 

enough to reduce silver ions to metallic silver, [46-47] according to the following equation: 

 

 
 

When ascorbic acid is added drop-wise to solutions containing the silver seeds Sn-1, prepared 

in the previous step, and fresh silver ions, a significant colour change can be observed, 

especially in the first four steps. Figure 1 shows each of the silver colloidal solutions, S1-S8, 

prepared in each of the eight steps and the initial seed sample solution, S0. The samples S1-S4 

exhibit colours ranging from brown to red to purple due to their SPR absorption. Sample S6 

exhibits a magnolia colour, whereas the samples S7 and S8 are colourless, turbid solutions. 

Sample S0 is stable for more than three weeks. Very small amounts of precipitates can be 

observed for the solutions S1-S4 after two days, which are then stable thereafter, whereas the 

colloidal solutions S5 and S6 are still stable up to 12 hours, and S7 and S8 to four hours, when 

a small amount of precipitation can be observed. The S1-S8 samples can be returned to clear 

colloidal solutions again upon light shaking by hand and these regenerated solutions are then 

stable for similar times to those of the fresh solutions. 

 

 
 

Figure 1 Photograph of colloidal solutions of silver nanoparticles prepared in a series of 

consecutive steps. A fresh 0.5% aqueous starch solution was added at each step. Each of the 

solutions has been diluted 50 times to facilitate analysis. 
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Figure 2 TEM images of the solid products obtained from the starch-stabilised silver 

nanoparticle colloidal solutions S0-S8. 

 

 

Table 1 Summary of the results for starch-stabilised silver nanoparticles.  

 

Sample Approximate silver 

nanoparticle size (nm) 

Morphology 

   

S1 8-24  some nanoparticles are similar to those of S0 and 

some have irregular shapes 

S2 15-45 hexagonal nanoplates, nanorods and 

irregularly shaped nanoparticles (majority) 

S3 25-60 many hexagonal nanoplates  

S4 47-73 hexagonal nanoplates (majority) 

S5 68-114 hexagonal nanoplates (majority) 

S6 83-190 hexagonal nanoplates 

S7 136-340 hexagonal nanoplates 

S8 148-467 hexagonal plates (majority at ~ 230 nm) 

 

 The TEM images of the samples S1-S8, as well as the seed sample S0, are shown in Figure 2. 

The results obtained from analysis of these images are summarized in Table 1 for the starch-

stabilised silver nanoparticles present in each of the aqueous colloidal solutions. It can be 
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seen that the silver nanoparticles are more uniform in shape for nanoparticles with a large 

diameter. The majority of nanoparticles in S1 are similar to those observed in S0, although 

some have grown to 24 nm in diameter. Some nanorods and hexagonal nanoplates have been 

formed in S2, but the majority of nanoparticles exhibit an irregular shape. The amount of 

hexagonal nanoplates increases with the increase in the size of the nanoparticles present in 

the samples from S3 to S5. Finally, nearly all the nanoparticles in samples S6-S8 are hexagonal 

nanoplates. Most of the hexagonal plates in sample S8 are ca. 230 nm in breadth, although the 

nanoparticle sizes range from 148 to 467 nm at low concentration at the extremes of this 

range.  

 

 

 

 

 

 
 

Figure 3 UV-vis absorption spectra of the starch-stabilised silver nanoparticle colloidal 

solutions prepared in the different steps S1-S8. 

 

Figure 3 shows the UV-vis absorption spectra of the starch-stabilised silver nanoparticle 

colloidal solutions prepared in the nine different steps in the process. It can be seen that there 

is an absorption peak centred at 400 nm in the UV-vis absorption spectrum of the silver 

nanoparticle seed solution S0, indicating the presence of spherical silver nanoparticles. After 

the first reaction step, S1, the main peak shifts to 428 nm, accompanied by shoulders at 378 

and 345 nm, suggesting the formation of polygonal structures of silver nanoparticles.[48] The 

solutions S2 and S3 exhibit strong peaks at 465 nm and 498 nm, respectively, accompanied by 

two much weaker absorption intensities at about 378 nm and 346 nm. A strong peak at 539 

nm accompanied by one shoulder at about 443 nm and two weak peaks (373 and 347 nm) can 

be observed for solution S4. The presence of two or more surface plasmon resonance bands 
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(SPR) is due to the formation of anisotropic, rather than spherical, nanoparticles. The 

frequency and intensity of the SPR absorption bands are mainly related to their diameter, 

size-distribution, the shape of the nanostructures, volume concentration (aggregated or 

isolated assembly) and the environment surrounding them.[49] 

Omission of the 0.5% starch solution from the reactions above results in silver colloidal 

solutions with similar colour changes. However, in this case it takes twelve steps to produce a 

colourless, turbid solution. The TEM image of this colourless solution shows that the silver 

nanoparticles are not hexagonal nanoplates and that the nanoparticle size distribution is very 

broad (Figure 4).  

 

 
 

Figure 4 TEM image of the colourless aqueous colloidal solution of silver nanoparticles 

prepared by a method in which fresh 0.5% starch solution was not added in each step.  

 

 The exact mechanism for the growth of hexagonal nanoplates in this system is yet to be fully 

understood. The preparation of silver nanoplates, using sodium citrate, cetyl 

trimethylammonium bromide and glycyl glycine as capping agents, has been reported.[22, 25, 

50-51] It has also been demonstrated that these capping agents play a crucial role in the two-

dimensional growth of silver nanoplates. Since the {111} lattice plane of face-centered cubic 

silver may possess the lowest surface energy, the adsorption of these chemical species to this 

plane may further reduce the surface energy and, as a result, the nanoplates grow with {111} 

as a basal plane. Suber et al. also reported that slow addition of ascorbic acid solution to a 

silver nitrate solution in the presence of Daxad 19 as capping agent led to the formation of 

hexagonal tabular anisotropic particles.[52] In our system, starch is the only capping agent 

present in the reaction solution. Although there appears to be no report of the adsorption 

abilities of starch on the different silver crystal faces, the evolution process of the silver 

structures from spherical nanoparticles into hexagonal nanoplates, as shown in Figure 2, 
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suggests that the nanoplates may grow using {111} as a basal plane. The weak peaks from 

2810 to 3000 cm-1 in the IR spectra of the S6, S7 and S8 powders, which were obtained after 

centrifuging separation from the corresponding colloidal solutions, confirmed the attachment 

of starch on the silver particles surfaces (Figure 5). The hydrophilic poly-OH groups were 

mainly responsible for the adsorption of starch onto the surface of silver nanoparticles 

through electrostatic interactions.[36, 37] However, these hexagonal nanoplatelets formed in 

the aqueous starch solution disappear after removal of water by centrifugation and drying 

under vacuum, as shown in the SEM image in Figure 6. The powder XRD pattern of sample 

S8 also shows no preferred orientation (Figure 7), despite the fact that the data was collected 

in flat plate (Bragg-Brentano) geometry. The sample S6 and S7 have very similar XRD 

spectra to that of S8 (not shown), however no XRD spectra can be recorded for the samples 

from S0 to S5 because no corresponding powders could be obtained from the colloidal 

solutions by centrifugation.  Larger nanoplates would have been expected to lie flat during 

sample preparation, so this result also suggests that they do not survive the dehydration and 

drying process. However, the nano-platelets are preserved intact, if the silver nanoparticles 

are directly coated on the substrate using the aqueous colloidal solutions, as shown in the 

TEM images. 

 

 

Figure 5  IR spectra of the starch-stabilised silver nanoparticle powder S6, S7 and S8 after 

removal of the water from the corresponding solutions and drying under vacuum. 
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Figure 6 SEM image of the starch-stabilised silver nanoparticle powder after removal of the 

water from the S8 solution and drying under vacuum. 

 

 
 

Figure 7 XRD pattern of the starch-stabilised silver nanoparticle powder S8 after drying 

under vacuum. 

 

 

3.2 Surface coating of fibres with silver nanoparticles  

 

The cotton fibers coated by a simple immersion method using each of the S0-S8 solutions 

exhibit different colours corresponding to the original colours of the silver nanoparticle 

colloidal solutions. The results of ICP analysis of the fibers SFn (n = 0-8) coated using the 

corresponding silver nanopartcle colloidal solutions, Sn, are shown in Table 2. Generally, the 
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concentration of silver on dried silver-coated cotton fibers increases gradually from 0.37% on 

SF1 to 0.66% on SF8. The nature and amount of the coatings of silver nanoparticles on the 

cotton fiber surface were also confirmed by using XRD analysis, see Figure 8. It can be seen 

that the relative intensity of the peak at 2θ = 37.68˚ to peak at 2θ = 45.01˚ is higher for the 

fibers coated from the S8 solution than the fibers coated from the S2 solution. The preferred 

intensive peak at 2θ = 37.68˚ corresponds to the {111} lattice plane of face-centered cubic 

silver, suggesting that the silver nanoplatelets from the S8 solution have been preserved after 

being coated on the cotton fibers.[25] The SEM images of the cotton fibers and silver-coated 

cotton fibers, shown in Figure 9, reveal that thin coatings of individual silver nanoparticles 

are present on the fiber surfaces, although some aggregates of a number of the silver 

nanoparticles can be also observed on the surfaces.  

 

Table 2 The precentage of silver nanoparticles present on the SF0-SF8 cotton fibers coated 

using the corresponding colloidal solutions S0-S8.  

 

Fibres SF0 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 

Ag (%) 0.142 0.369 0.372 0.384 0.341 0.460 0.578 0.516 0.663 

 

 

 

 

 
 

Figure 8 XRD patterns of silver-coated cotton fibers. (a) untreated cotton fibers, (b) silver-

nanoparticle-coated cotton fibers using the S2 solution and (c) silver-nanoparticle-coated 

cotton fibers using the S8 solutions. 
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Figure 9 SEM images of cotton fibers and silver-coated cotton fibers: (a) untreated cotton 

fibers (b) SF2, (c) SF6 and (d) SF8 cotton fibers coated with silver nanoparticles using the 

corresponding aqueous colloidal solutions of silver nanoparticles, S2, S6 and S8, respectively. 

 

 

 

3.3 Antimicrobial effects of starch-stabilised silver nanoparticles  

The antibacterial performance of the silver-coated, cotton fibers against S. maltophilia, E. coli, 

A. baumannii and MRSA was tested using a diffusion assay. Cotton fibers produced by 

soaking in the S0-S4 silver aqueous colloidal solutions created zones of inhibition against 

isolates of S. maltophilia, E. coli, A. baumannii and MRSA, indicating good antibacterial 

activity. The strongest antibacterial activity was observed with SF0 (Figure 10) where a zone 

of 9 mm (excluding width of the fiber) was produced. No zones of inhibition were observed 

around the corresponding SF5-SF8 cotton fibers coated using the S5-S8 aqueous colloidal 

solutions incorporating larger silver nanoplates, against any bacterial isolate. However, no 

bacterial growth was observed on or under the fibers suggesting antibacterial activity was still 

produced.  
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Figure 10 Antibacterial effect of the cotton fiber coated using the starch-stabilised silver 

nanoparticles present in the aqueous colloidal solution S0 against MRSA, represented by a 

zone of bacterial growth inhibition (no growth) surrounding the fiber. 

 

The results from the microtitre assay tests show a high level of antibacterial activity 

for the aqueous colloidal solutions containing the S0-S6 silver nanoparticles against MRSA 

with minimum inhibitory concentrations (MIC) of 7.81 g cm-3 determined for the S0 

nanosphere colloidal solution, increasing to MIC values of up to 500 g cm-3, when using S6 

colloidal solution of nanoplates, see Table 3. No antibacterial action was observed when 

using the S7 silver colloidal solution of nanoplates against MRSA. However, antibacterial 

action was observed using the S8 aqueous silver nanoplatelet colloidal solution giving a 

minimum inhibitory concentration of 250 g cm-3, which is half the MIC value observed 

using the corresponding S5 and S6 colloidal solutions of silver nanoplatelets.  

All the silver nanoparticle colloidal solutions (S0-S8) show antibacterial action, when 

used against A. baumannii and S. maltophilia. The S0 colloidal solution of spherical silver 

nanoparticles produces the lowest MIC value (7.81 g cm-3). The MIC values increase with 

increasing nanoparticle size, as well as a change in shape to flat, hexagonal nanoplates, up to 

a maximum value observed for the S8 colloidal solution of the largest silver nanoplates, 

where the MIC value drops to ≤ half the MIC value observed for the S7 colloidal solution of 

slightly smaller nanoplates. E. coli appears to be the most resistant to silver nanoparticles 

sizes S2 and above with no antibacterial action observed when using S6-S8 aqueous colloidal 

solutions of silver nanoplates.  
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The difference between the antimicrobial activity observed for the silver nanoparticle 

colloidal solutions (S0-S8), in the presence of either E. coli or MRSA, could be due to the 

differences in the cell walls of these two different types of bacteria.[8] However, the 

difference in antibacterial action observed for the aqueous silver nanoparticle colloidal 

solutions (S0-S8), in the presence of either E. coli, A. baumannii or S. maltophilia, is not 

likely be attributable to differences in their cell walls, as all three bacterial species are gram 

negative. The difference in activity could, perhaps, be due to other differences in their cell 

physiology, such as variance of porins, or differences in their mechanisms of active efflux. 

 

Table 3 Minimum inhibitory concentrations of stabilized silver nanoparticles against 

bacterial isolates (g cm-3). 

 

 

Ag nanoparticle 

Bacterial isolate 

MRSA E. coli A. baumannii S. maltophilia 

S0 7.81 7.81 7.81 7.81 

S1 31.25 125 125 62.5 

S2 62.5 250 125 125 

S3 125 250 125 125 

S4 250 500 250 250 

S5 500 500 500 250 

S6 500 N/A 500 250 

S7 N/A N/A 500 250 

S8 250 N/A 250 62.5 

 

N/A - Not applicable, MIC not reached. All MIC values are expressed as a mean of 6 individual results. 

 

The antibacterial activity of the starch-stabilised S0 silver nanoparticles observed in this 

report is at least as good as that reported in the literature using different methods of 

synthesis.[37, 53] The antibacterial action of the S1-S2 silver nanoparticles produced in this 

research is also comparable to previous work, where galactose was used as the stabilising 

agent.[5] The poorer antibacterial action of the larger silver nanoplates, especially against the 

gram negative isolates, is probably be due to a lower surface area-to-volume ratio of 
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nanoplates compared to analogous nanospheres and especially compared to the very small 

nanospheres, see Table 1, present in the seed nanoparticle solution, S0. The relatively small 

surface area of the larger nanoplates should lead to a lower diffusion of silver ions, 

responsible for the antibacterial activity of silver nanoparticles, from the larger nanoplates. 

Another possible reason is reduction in silver permeability through bacterial cell wall/cell 

membranes, due to the larger size of the nanoplates, and a consequent blocking of their mode 

of action. However, this explanation is not consistent with the higher antibacterial action of 

S8 silver nanoparticles, which is seen in all bacterial isolates with the exception of E. coli. 

However, a possible, alternative explanation for this difference in activity could be that the 

larger silver nanoplates present in the S8 colloidal solution may break into smaller 

nanoparticles, while diffusing through the bacterial cell wall/cell membranes, taking into 

account the fact that these large nanoplates are easily broken, as discussed above, see Figures 

6 and 7. However, further investigation is required to determine the exact mechanism behind 

the higher degree of activity observed for the S8 solution compared to the activity for the 

colloidal solutions S5-S7 containing smaller silver nanoplates, see table 2. We believe this is 

the first occasion where large stable Ag NPs have been shown to produce antibacterial 

activity against multidrug-resistant bacteria such as S. maltophilia, an opportunistic hospital 

pathogen.  

  

4 Conclusions 

 

A novel, environmentally friendly, sustainable method has been developed for the synthesis 

of large, starch-stabilised, silver nanoplatelets, which uses water-soluble starch, in the 

presence of ascorbic acid as a reducing agent of silver nitrate, to influence the shape, size and 

aspect ratio of the silver nanoplatelets, as well as acting as a crystallising, stabilising and 

solubilising agent. The presence of the starch is crucial to the preparation of a series of stable, 

aqueous colloidal solutions containing large, flat, hexagonal silver nanoplates, whose size 

depends on the number of sequential seeded reaction steps. These highly concentrated, 

aqueous colloidal solutions can be used to deposit and fix a coating of starch-stabilised silver 

nanoparticles on cotton fibers, using a simple dip-coating process in water at room 

temperature, with a pronounced antibacterial activity against antimicrobial resistant bacteria, 

such as S. maltophilia and MRSA.  
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