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Abstract. Protein-protein interaction networks and protein folding net-
works represent prominent research topics at the intersection of bioin-
formatics and network science. In this paper, we present a study of these
networks from combinatorial optimisation point of view. Using a com-
bination of classical heuristics and stochastic optimisation techniques,
we were able to identify several interesting combinatorial properties of
biological networks of the COSIN project. We obtained optimal or near-
optimal solutions to maximum clique and chromatic number problems
for these networks. We also explore patterns of both non-overlapping
and overlapping cliques in these networks. Optimal or near-optimal so-
lutions to partitioning of these networks into non-overlapping cliques and
to maximum independent set problem were discovered. Maximal cliques
are explored by enumerative techniques. Domination in these networks
is briefly studied, too. Applications and extensions of our findings are
discussed.
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1 Introduction

Bioinformatics has been a rapidly growing field in the last years. Certain bio-
logical problems can be modelled using networks, most notably gene regulatory
networks [1] and protein-protein interaction (PPI) networks [2]. Solutions to net-
work problems, which are relatively well studied in computer science, are often
regarded as valuable for biologists [3].

In this paper, we present a unified study of combinatorial optimisation prob-
lems in analysis of PPI and protein folding (PF) networks. The aim of this paper
is to explore the unique area at the intersection of two areas of applied evolu-
tionary computation and computational intelligence in general. On one hand, it
spans the computational intelligence in bioinformatics and on the other hand, we
explore the biological networks using methodologies of evolutionary computation
and heuristics in combinatorial optimisation.



Contributions. Using a combination of classical and randomised search heuris-
tics, we obtain high-quality solutions to some of the well-known combinatorial
optimisation problems in PPI and PF networks, which are known to be NP-hard
in general [4, 5].

Experimental results are presented for networks of the European COSIN
project [6]. For four different PPI networks, we obtain optimal solutions to max-
imum independent set and minimum vertex clique covering problem. We used a
combination of greedy approximation algorithm for maximum independent set
in sparse graphs [7] with a hybrid of iterated greedy (IG) clique covering and
randomised local search (RLS) for maximum independent set [8]. For three of
four PPI networks, we obtain optimal solutions to maximum clique and chro-
matic number problems using a hybrid of Brélaz’s heuristic [9] with iterated
greedy graph colouring algorithm [10]. To explore the minimum dominating set
problem, we use a classical greedy approximation algorithm [11].

In addition, we apply the same techniques to a PF network, which is con-
siderably larger than PPI networks. A reduced variant of this PF network is
explored, too. We obtain that PF network has slightly different properties than
PPI networks, which is probably related both to its size and structure. How-
ever, we obtained a very small gap between bounds for maximum clique size and
chromatic number of this network, too.

The paper is organised as follows. In Section 2, we present an overview of the
topic from several relevant perspectives. In Section 3, we present our approach to
study of PPI and PF networks. In Section 4, we present the experimental results
and their possible application. Finally, in Section 5, we formulate conclusions
and summarise scientific problems, which remain open.

2 Combinatorial Optimisation Problems in
Protein-Protein Interaction and Protein Folding
Networks

There is a body of work concentrating on computer-scientific aspects of study of
biological networks. In this section, we present an overview of relevant research
and perspectives on our topic.

Protein-protein interaction (PPI) networks. Vertices of a PPI network represent
proteins and edges represent interactions between them. These are constructed
by molecular biologists usually as an outcome of two-hybrid screening exper-
iments [3]. Analysis of PPI networks and their comparison represent common
research topics [12], along with development of analytical software for biological
networks [13]. In our experiments, we study public domain PPI network data of
the European COSIN project [6]. These include PPI networks for bacterium
Escherichia Coli, commonly found in gastrointestinal tract; nematode worm
Caenorhabditis elegans; Helicobacter pylori, a bacteria associated with gastri-
tis, usually found in upper gastrointestinal tract; and Saccharomyces cerevisiae,



a commonly used species of yeast. PPI network data for yeast are a common
subject of study [14, 15].

Clustering of PPI networks. Probably the most well-known topic in computer-
scientific research of PPI networks is represented by clustering of these networks,
i.e. decomposition into relatively dense subgraphs. In PPI networks, this is moti-
vated by the problems of complex and functional module detection, which aim to
identify groups of mutually interacting proteins, which might often be involved
in the same biological processes [16, 17].

It is worth noting that biologists tend to distinguish between the term “com-
plex” and “module”. Complex in PPI network refers to a molecular machine of
proteins, which bind to each other at the same time and space, while the term
module refers to a group of mutually interacting proteins, which control certain
cellular function, without taking the spatial and temporal aspect into account
[18]. However, experimentally obtained PPI data often do not incorporate this
information in the network. PPI network data are valuable in reconstruction of
metabolic and signalling pathways [3], understanding of cell regulation, predic-
tion of role of uncharacterised proteins and for possible therapy [18]. Multifunc-
tional proteins have previously been revealed [19], i.e. discovery of overlapping
modules is a relevant topic for PPI networks, too [20]. One way how they can
be detected, is the use of clique merging [21].

Clustering of PPI networks has many similarities with detection of com-
munity structure in social networks [22]. Both areas suffer from existence of a
large number of diverse clustering algorithms, using ideas ranging from infor-
mation flow simulation [23], spectral properties of adjacency matrices [24, 25],
cost-based clustering [26], to stochastic optimisation techniques [18]. However,
quality of such a clustering algorithm can be evaluated using a wide spectrum of
metrics and multiple objective functions can be considered [27]. Both clustering
quality and applicability of developed methods to large networks seem to be
important [28]. It can be observed that different clustering algorithms may out-
put very different clusters, each having a different desirable property of a dense
or well separated network substructure [29]. Therefore, multiobjective optimi-
sation was successfully applied to network community detection [30]. However,
assessing quality of a clustering of a biological network [31] remains hard and
often requires to fall back to usage of a reference solution [30, 18] or simply re-
questing verification from a biologist. Additionally, clustering or partitioning of
a network [32] might often lead to NP-hard combinatorial optimisation problems
[33], which generally require specific attention [4, 5].

Protein folding (PF) network beta3s. This network represents conformation
space of a 20 residue antiparallel β-sheet peptide investigated by NMR spec-
troscopy. Vertices represent conformations and edges represent transitions. The
network seems to represent a complex system, in which spontaneous folding of
protein is modelled as a (weighted) random walk on the conformation space net-
work. Due to space and methods being used, we only consider the structure of
the network and omit the weights [34].



PPI and PF networks have also been previously studied in the context of
centrality metrics and their stability and potential decomposition [35]. Enumer-
ative and spectral analytical methodologies were also used to study their struc-
ture [24]. Statistical analysis of complex networks helps in understanding of the
large-scale properties of these networks, too [36].

Combinatorial optimisation problems in networks. We investigate five different
classical NP-hard combinatorial optimisation problems [4, 5]. For simplicity, we
describe these problems only less formally.

Maximum clique is the largest subgraph, in which each pair of vertices is
adjacent. In the context of PPI networks, it is the largest group of proteins,
in which all proteins mutually interact. Maximum clique size is denoted by ω.
There is a spectrum of algorithms for this problem [37].

Graph colouring is an assignment of colours to vertices such that each for each
edge, its vertices are differently coloured. Minimum number of colours needed
to obtain a graph colouring is called chromatic number and is denoted by χ.
Chromatic number is useful, since for each graph, it holds that ω ≤ χ [38],
i.e. maximum clique and chromatic number represent bounds for each other.
Randomised algorithms are frequently used to solve graph colouring, too [39].

Maximum independent set is the largest subgraph, in which no pair of vertices
is adjacent. Maximum independent set size is denoted by α. In a PPI network,
independent set is the largest set of mutually non-interacting proteins.

Minimum vertex clique covering is a partitioning of the network into as few
non-overlapping cliques as possible. In PPI networks, it represents a problem of
finding the minimum number of clusters such that within each cluster, all pro-
teins must be mutually interacting. The number of cliques in a minimum vertex
clique covering is denoted by ϑ. Similarly to maximum clique and graph colour-
ing, it holds that α ≤ ϑ [8]. Hence, maximum independent set and minimum
vertex clique covering represent bounds for each other, too.

The last studied problem is the minimum dominating set problem. Minimum
dominating set is the smallest subset of vertices such that each vertex is either
in the dominating set or has a neighbour in it. Minimum dominating set size is
denoted by γ. For PPI networks, dominating set represents a set of “central”
proteins such that all other proteins interact with at least one protein of the
dominating set.

3 Our Experimental Approach

Graph-theoretical approaches represent a vital part of the tools used to analyse
biological networks [43]. We aim to provide an approach for their exploration,
which ensures solid generalisation and computes properties, which are naturally
related to functional module identification. Indeed, large cliques, independent
sets and dominating sets represent such properties. Additionally, these problems
have clear definitions and approaches, which can easily be applied to previously
unexplored PPI or possibly other biological networks. The aim is to provide



Algorithm 1: Experimental Approach for Analysis of Combinatorial Optimisation
Problems in Large Networks

Input: network modelled as a graph G = [V,E]
Output: maximum clique and chromatic number bound interval [ωL, χU ]
maximum independent set and clique covering number bound interval [αL, ϑU ]
minimum dominating set interval [γL, γU ]

1 find a lower bound ωL ≤ ω using the following greedy algorithm
for construction of a clique Q

2 Q = ∅
3 order vertices in G from the largest degree to the smallest
4 for vertex v in this ordering
5 if v is adjacent to all vertices in C
6 Q = Q ∪ {v}
7 ωL = |Q|
8 find a colouring C and an upper bound χU ≥ χ using Brélaz’s heuristic [9]

with binary heap [40, 41]
9 if ωL 6= χU

10 use IG graph colouring heuristic [42, 10] starting with C,
combined with RLS for maximum clique starting with Q
to compute new bounds ωL and χu

11 find an independent set I and a lower bound αL ≤ α using the greedy
approximation algorithm for maximum independent set in sparse graphs [7]

12 use IG heuristic for minimum vertex clique covering, combined with RLS
for maximum independent set [8], starting with independent set I,
to compute bounds αL and ϑU

13 use the greedy approximation algorithm for minimum dominating set,
based on minimum set covering [11] to compute upper bound γU

14 compute the number of connected components c

15 compute the lower bound γL = min

{
c,
|V |
∆+ 1

,
γU

ln∆+ 1

}
,

where ∆ is the maximum degree of a vertex



a hybrid technique, providing bounds for several well-defined valuable proper-
ties of an unknown network, which lead to NP-hard combinatorial optimisation
problems.

This way, we are able to characterise the structure of the networks using
cliques, independence and domination and avoid the broad notion of general
clustering.

To carry out our investigations, we use a collection of classical heuristics,
as well as order-based stochastic algorithms to find high-quality solutions to
our combinatorial optimisation problems. The main process of mining from the
network data is characterised by the pseudocode of Algorithm 1.

Let us now describe the steps in a slightly more detailed way. Due to lack of
space, we are not able to review all aspects of the algorithms we used. However,
an interested reader may refer to the referenced work.

In steps 1-7, we use a simple greedy clique algorithm. It starts with an empty
clique and orders vertices from largest degree to the smallest. It puts the current
vertex to the clique if and only if the clique property is not violated by adding
the new vertex. In fact, this approach is equivalent to use of greedy algorithm
for independent set [7] for the complement of our graph.

In step 8, we use Brélaz’s heuristic implemented with binary heap to find a
colouring of the network in O(m log n) time, where n is the number of vertices
and m is the number of edges.

If maximum clique from steps 1-7 and number of colours used in step 8
are not equal, we use iterated greedy (IG) graph colouring search heuristic [42,
10], combined with randomised local search (RLS) for maximum clique. This
is represented by steps 9-10 of Algorithm 1. We start with clique and colouring
found in steps 1-8. IG uses randomised block-based moves to possibly reduce the
colouring. RLS for maximum clique has not previously been used. Therefore, we
describe it in more detail.

RLS for maximum clique uses the same algorithm for clique construction as
in steps 1-7. However, it works with a predefined permutation instead of ordering
the vertices by their degrees. In the beginning, vertices of clique Q are put into
a permutation first and other vertices are ordered at random after that. In each
time step of RLS, jump move is attempted. The jump move simply takes a
uniformly random vertex from the permutation and puts it to the first position
in the permutation. The other vertices are then shifted to the right. Resulting
permutation is used to construct a new clique and is accepted if the new clique
is at least as large as the current one.

In step 11, we use the greedy approximation algorithm for maximum inde-
pendent set in sparse and bounded degree graphs [7]. We use binary heap as a
priority queue.

In step 12, we apply the recently proposed IG heuristic for minimum vertex
clique covering with RLS for maximum independent set [8].

In step 13, the greedy approximation algorithm for dominating set is used to
compute an upper bound for minimum dominating set size [11]. Additionally, a
lower bound for the size of minimum dominating set is computed in steps 14-15.



This lower bound represents a maximum of three different lower bounds. One
of them is the number of components c, the second bound is a general bound
derived from maximum degree ∆ and the third bound is implied by logarithmic
approximation guarantee of the greedy algorithm.

Note that our approach is not specifically restricted to PPI and PF networks.
It can easily be applied to social networks or other complex network data. How-
ever, for the purpose of this study, we focus specifically on its suitability to
explore biological network data.

4 Experimental Results and Discussion

We performed the evaluation in two parts. We first used the approach without
the stochastic techniques based on IG and RLS (i.e. we omitted steps 10 and
12). Hence, we used only greedy algorithms. To provide an upper bound for ϑ,
we used Brélaz’s heuristic applied to complementary graph G. G contains edges
between pairs of vertices, which are not adjacent in G and vice versa. In Table
1, we present the best results obtained by this approach in 20 independent runs.

For evaluation of the impact of stochastic components of the approach, we
then used the full approach, as specified by Algorithm 1. These results are pre-
sented in Table 2. Similarly, we performed 20 independent runs for PPI net-
works and the reduced PF network beta3s.reduced and present the best results
obtained. For the large PF network beta3s, we performed only one long run.

The stochastic subroutines of our approach were parameterised as follows. For
IG for graph colouring and RLS for maximum clique, we used a simultaneous
implementation with 5 iterations of RLS per one iteration of IG. Stochastic
optimisation was stopped when 100n iterations without improvement of neither
clique nor colouring were encountered. Similarly, IG for minimum vertex clique
covering and RLS for maximum independent set were used in an implementation
with 5 iterations of RLS per one iteration of IG. Stopping criterion was similar,
too. Optimisation was stopped when 100n iterations without improvement of
neither clique covering nor independent set were encountered. Interestingly, these
stopping criteria led to results with good quality and solid scalability for all four
of these problems.

Both Table 1 and Table 2 have the following structure. The first column
contains the name of the network. Its number of vertices n, number of edges m,
number of connected components c and the number of triangles τ are specified
along with the name. The next columns present the maximum clique size ω,
chromatic number χ, maximum independent set size α, minimum clique covering
size ϑ and minimum dominating set size γ. If a cell contains only one value,
it means that the value is a numerically proven optimum for the particular
characteristic. If it contains two values separated by −, it means that the value
is located within the interval specified by presented values. Symbol n in the table
means that the value is upper bounded only by the number of vertices n. Bold
numbers in Table 2 represent values, which were obtained only by the stochastic
approach, i.e. randomised search techniques were beneficial for these instances.



Table 1. Experimental results obtained for PPI and PF networks by using only greedy
algorithms (i.e. without steps 10 and 12 in Algorithm 1).

G ω χ α ϑ γ

PPI networks

ecoli [44] 5-6 5-6 160-161 160-161 20-69
n = 270, m = 716, c = 20, τ = 478

elegans [45] 3 3 293-294 293-294 20-71
n = 375, m = 405, c = 20, τ = 13

helico [45] 3 3-4 521-528 521-528 33-163
n = 732, m = 1403, c = 16, τ = 76

yeast [45] 3-8 3-8 2641-2673 2641-2673 146-959
n = 4142, m = 7839, c = 99, τ = 1562

PF networks

beta3s.reduced [34] 37-39 37-39 229-301 229-301 11-70
n = 1287, m = 23948, c = 1, τ = 219165

beta3s [34] 37-39 37-39 64053-n 64053-n 5375-40323
n = 132168, m = 228967, c = 2, τ = 241209

Table 2. Experimental results obtained for PPI and PF networks by using the full
stochastic approach, including IG and RLS algorithms (i.e. full Algorithm 1, including
steps 10 and 12). Bold values represent instances, for which IG and RLS provided
improved results compared to purely greedy algorithms.

G ω χ α ϑ γ

PF networks

ecoli [44] 6 6 161 161 20-69
n = 270, m = 716, c = 20, τ = 478

elegans [45] 3 3 294 294 20-71
n = 375, m = 405, c = 20, τ = 13

helico [45] 3 3-4 528 528 33-163
n = 732, m = 1403, c = 16, τ = 76

yeast [45] 7 7 2673 2673 146-959
n = 4142, m = 7839, c = 99, τ = 1562

PF networks

beta3s.reduced [34] 38-39 38-39 259-282 259-282 11-70
n = 1287, m = 23948, c = 1, τ = 219165

beta3s [34] 38-39 38-39 64497-69667 64497-69667 5375-40323
n = 132168, m = 228967, c = 2, τ = 241209



Additionally, we also performed listing of maximal cliques for each network
[46]. A clique is maximal if it is not a subgraph of some other clique. The reason
is to confront of the number of maximal cliques and maximum (i.e. largest)
cliques and to further analyse the cliques as building blocks of the networks.

Network ecoli contains a maximum clique of 6 mutually interacting proteins.
Using emumeration based on triangles, we found that there are 657 maximal
cliques of size at least 3. There are 5 of these cliques, which consist of 6 proteins.
The network ecoli can be partitioned into ϑ = 161 non-overlapping cliques, with
an average size of such a clique being 1.678. There also is a dominating set of 69
proteins, for which it holds that all other proteins interact with at least protein
of this set.

For network elegans, we have that its maximum clique size is 3 and there
are 39 triangles representing maximum cliques. It can be partitioned into 294
non-overlapping cliques. The average size of such a clique is 1.276, which makes
it the network with the smallest average clique size in minimum vertex clique
covering. This is understandable, since this network is the sparsest. It contains
a dominating set consisting of 71 vertices.

For network helico, we obtained a clique of size 3, while we were only able
to find a 4-colouring. This is the only PPI network, for which we obtained a
gap between an estimate for maximum clique size and chromatic number. Using
enumeration, we found that there is no 4-clique and the number of triangles of
mutually interacting proteins is 76. However, this confirms that while chromatic
number can be used as a good upper bound on the size of the maximum clique
of mutually interacting proteins, it seems that one cannot guarantee that these
values for PPI networks will be equal. Network helico can be partitioned into
528 non-overlapping cliques of average size 1.386. It also contains a dominating
set of size 164.

Instance yeast contains 1872 maximal cliques, which is the largest num-
ber of maximal cliques among the studied PPI networks. However, only 12 of
them are also maximum cliques, which contain 7 vertices. These will shortly be
discussed below. Network yeast can be partitioned into 2673 non-overlapping
cliques, which have average size 1.550. Dominating set on 959 vertices for this
network is the largest among the PPI networks, too.

It is not surprising that numbers of maximal and maximum cliques, as well as
the properties of non-overlapping and overlapping cliques seem to vary between
different networks. Hence, it might be interesting to discuss the properties of
large clique a bit further.

Table 3 presents a listing of 12 maximum cliques of size 7 in the yeast PPI
network. One can notice that the first clique and the last two cliques consist of
proteins, which are not present in other cliques. On the other hand, all other
cliques represent extensions of clique CEF1, SEC28, SET1, SFA1, SFB2. This
indicates that some interesting substructures might be relatively isolated, while
other substructures form larger clusters. These structures can be modelled e.g. by
merging cliques [21]. Additionally, large cliques seem to comprise smaller cliques.
This suggests that some PPI networks might have a hierarchical structure [47].



Table 3. Listing of 12 maximum cliques of size 7 in yeast PPI network.

ALD3, ALG2, ALG9, ANC1, ANP1, AOS1, APA1
CEF1, LIP5,MKK2, SEC28, SET1, SFA1, SFB2
CEF1, LIP5,MKK2, SEC28, SET2, SFA1, SFB2
CEF1, LIP5, PUB1, SEC28, SET1, SFA1, SFB2
CEF1, LIP5, PUB1, SEC28, SET2, SFA1, SFB2
CEF1, LSM3,MKK2, SEC28, SET1, SFA1, SFB2
CEF1, LSM3,MKK2, SEC28, SET2, SFA1, SFB2
CEF1, LSM3, PUB1, SEC28, SET1, SFA1, SFB2
CEF1, LSM3, PUB1, SEC28, SET2, SFA1, SFB2
CEF1, PUB1, SEC28, SET1, SFA1, SFB2, SIN3
GRE2, HIR2, HIR3, HIS6, HIS7, HIT1, HMG1
SPA2, Y AP1802, Y AP3, Y AP5, Y AP6, Y AR003W,Y AR009C

While functional modules are formed by groups of cliques, it seems that one
can even identify smaller cliques as low-level building blocks of the network.
Interestingly, while labels of proteins are naturally dependent on conventions of
biologists, some of the identified maximum cliques seem to consist of proteins
with lexicographically similar labels.

PF networks have slightly different characteristics. Network beta3s.reduced
is atypical due to its reduced representation, which features a drastic cutoff in
vertices with low degree. As a consequence, both beta3s and beta3s.reduced
contain maximum clique of size 38-39, while the average size of a clique needed
to partition beta3s.reduced into non-overlapping cliques is 4.564-4.969. This is
a value range previously observed in variations of random graphs and graphs
with planted cliques [8]. The original network beta3s requires cliques of size
1.897-2.049 to obtain a minimum vertex clique covering. However, it is worth
mentioning that this value is still somewhat higher than the values obtained for
PPI networks. This indicates a denser structure of PF networks with some large
embedded cliques found in the “core” of the network. Such a phenomenon has
not been observed in the studied PPI networks.

Summarising the above results, combinatorial optimisation properties seem
to vary between different PPI networks. Comparison between a purely greedy
and a stochastic approach confirms that stochastic optimisation techniques help
in combinatorial optimisation for PPI and PF networks. Figure 1 indicates that
to a certain extent, PPI networks seem to have similar structure. This figure
shows colourings obtained for the PPI networks and groups vertices to layers,
based on distance from a vertex with maximum degree. Visualisations reveal
dense subgraphs in the proximity of the vertex with maximum degree, while this
property seems to be more accentuated for large networks. Figure 2 presents
a similar visualisation for the PF networks. This visualisation reveals slightly
“layered” structure of beta3s.reduced. In this context, it is not surprising that
large cliques are located within beta3s.reduced, while the “outer” layer of beta3s
is sparser and seems to contain much smaller cliques.



Fig. 1. Visualisation of colourings found for protein-protein interaction networks
elegans (upper, on the left-hand side), helico (upper, on the right-hand side), ecoli
(lower, on the left-hand side) and yeast (lower, on the right-hand side). These colour-
ings represent good upper bounds for the size of maximum clique of mutually inter-
acting proteins for these PPI networks. Based on the availability of protein labels
and expected visual quality, labels or indices of vertices are presented for some of the
networks and vertices.



While yeast network contains relatively large cliques of size 7, networks
elegans and helico do not contain a clique larger than a simple triangle. Large
cliques may both heavily overlap and represent relatively “isolated” substruc-
tures. Properties of cliques in network yeast seem to indicate hierarchical struc-
ture. For this purpose, data reductions might represent a promising research
direction. A specific case is represented by the large beta3s PF network, which
might further be studied in this context, too. Dominating sets were explored
using an approximation algorithm. More interesting results might be obtained
using a nature-inspired heuristic for this problem, e.g. algorithms based on ant
colony optimisation [48].

Fig. 2. Visualisation of beta3s protein folding network (on the left-hand side), which
is the largest of studied networks, with over 105 vertices and its “core” beta3s.reduced
(on the right-hand side). One can easily see that beta3s.reduced is the subgraph, which
requires a high number of colours, while the visualisation of beta3s highlights mostly
the three colours, which are used to colour most of the vertices in the “outer layer” of
the network.

5 Conclusions

We presented an experimental study of combinatorial optimisation problems in
protein-protein interaction (PPI) and protein folding (PF) networks. Studied
problems included maximum clique, chromatic number, maximum independent
set, minimum vertex clique covering and minimum dominating set. We presented
a unified technique to estimate these properties of large networks, which lead
to NP-hard problems in general. Our experimental approach revealed several
interesting properties of four PPI networks of the European COSIN project, as
well as PF network beta3s and its reduced version. Even though the approach



was applied to biological networks, its ideas are general and can also be used
to analyse other complex networks, such as social networks or research citation
networks.

Our investigation found maximum cliques for all PPI networks and provided
a very small interval for the maximum clique of PF network beta3s. For all four
PPI networks, we found the optimal solution to the problem of their partition-
ing into non-overlapping cliques. We confronted our method with the use of
stochastic elements of iterated greedy (IG) and randomised local search (RLS)
algorithms to its variant without the elements of stochastic optimisation. This
confrontation revealed that stochastic optimisation approaches provide results
of better quality for maximum clique, chromatic number, maximum independent
set and minimum vertex clique covering.

Overlapping cliques were investigated using enumerative methods, too. This
investigation suggests that some of the studied PPI networks have a hierarchical
structure, with large overlapping cliques possibly consisting of smaller cliques.
We also identified the dominating sets of these networks. In the context of PPI
networks, these are the sets of “central” proteins such that all other proteins
interact with at least one protein of the dominating set.

We believe that this approach might be beneficial especially in exploration
of new biological networks. Most of the studied problems are closely related to
functional module detection. However, unlike network clustering, studied char-
acteristics are clearly defined and can be used as a systematic basis for further
investigations.
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