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Abstract

This paper investigates a mixed H−/H∞ linear parameter varying (LPV)
fault estimator using an LPV reference estimator. LMIs are used to calcu-
late the affinely parameter-dependent gains of the LPV fault estimator. The
design strategy is applied to a high fidelity nonlinear aircraft model provided
by AIRBUS for use within the EU-FP7 project ADDSAFE, to estimate the
yaw rate sensor faults in the Air Data Inertial Reference System in the pres-
ence of the parametric uncertainties. The fault detection performances in
various flight conditions are evaluated using the parametric simulation.

Keywords: Fault detection and diagnosis, Mixed H−/H∞ optimisation,
Reference model

1. Introduction

1.1. Background and Motivation

Model-based fault detection and diagnosis (FDD) has already became a
mature subject and has developed from well structured theory in the aca-
demic control community with a large amount of work described in (Patton,
Frank & Clark, 2000; Isermann, 1997; Gertler, 1998; Chen & Patton, 1999;
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Isermann, 2005; Ding, 2008; Bokor & Szabo, 2009). Aerospace application-
based FDD studies have also been well summarized, e.g. see the book chap-
ter ’Fault detection and diagnosis for aeronautic and aerospace missions’ by
Henry, Simani and Patton (Edwards, Lombaerts & Smaili, 2010). An ap-
proach to model-based FDD has already been implemented in the AIRBUS
industry practice for detecting a Electronic Flight Control Systems failure
known as oscillatory failure case (OFC) , which can cause a significant in-
crease in the structural load due to erroneous oscillation. When coupled with
the flexible modes of the structure, OFC can generate resonance phenomenon
and cause unacceptably hight vibration and loads (Goupil, 2010b). Neverthe-
less, industrial applications of model-based FDD theory for aerospace systems
are very limited or restricted (Zolghadri, 2012).The most recent study on the
potential of FDD to aircraft flight control industry is the EU-FP7 project
ADDSAFE (Advanced Fault Diagnosis for Sustainable Flight Guidance and
Control). The aim of the project is to highlight the link between aircraft sus-
tainability and fault detection, it can be demonstrated that improving the
fault diagnosis performance in flight control systems facilitates the optimiza-
tion of the aircraft structural design (resulting in weight saving), which in
turn helps to improve aircraft performance and to decrease its environmental
footprint (e.g. fuel consumption and noise) (Goupil & Marcos, 2011, 2012).

The motivation of this paper is to develop and apply a robust fault esti-
mation scheme to estimate and detect the ADDSAFE actuator/sensor faults
in above fault scenarios at an early stage of each fault development, in the
presence of parametric uncertainties. Especially, the estimator is developed
in an affine LPV manner. In recent years, LPV based FDD has been widely
developed in the literature (Bokor & Balas, 2004; Henry, 2008). The most
obvious benefit is that the analysis of the performance and stability, together
with the synthesis method are established over a wide range of changing pa-
rameters. Besides, the LPV design scheme can be considered as an extension
of the LTI design scheme. For example, based upon the vertex property (Ap-
karian et al., 1995), the LPV solution can be calculated by combining multiple
LTI solutions calculated on the vertices of the polytope. This property fits
well in aerospace gain scheduling designs. Additionally, a trade-off between
computational load and design performance can be established by defining
a number of suitable scheduling parameters (Marcos & Balas (2004)). This
trade-off is an important part of the industry assessment of the design.

However, from a practical view point, robustness issues associated with
plant-model mismatch, aerodynamic database uncertainties, sensor noise and
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imperfect measurements of the scheduling parameters have to be taken into
account. The desired performance of the LPV-based design is thus unattain-
able and the miss detection and false alarm will be generated.

In this paper, above uncertainties are considered parametrically bounded
and an LPV reference model based design scheme is derived, based upon
using an H−/H∞ optimisation technique, to deal with these practical con-
cerns. The purpose of combining H− (Hou & Patton, 1996) with H∞ is
to allow a trade-off to be established, between sensitivity and robustness of
the residual against the fault and disturbance, respectively. In the litera-
ture, H−/H∞ based approaches can be divided into two categories. One
category combines the H− index and H∞ performance as a multi-objective
criterion (Ding et al., 2000; Wang et al., 2007). In another category, the
mixed H−/H∞ is transformed into a uniform H∞ problem (Henry & Zol-
ghadri, 2005), which was extended to an LPV framework by (Grenaille et al.,
2008; Henry, 2012). Recent work by Li et al. (2012) proposed a specific H−

index which allows the fault estimation to be achieved in the presence of
external disturbances. The parameterizable solution of the fault estimator is
then used to construct an H∞ optimisation procedure.

The idea of using a reference model based design scheme for FDD can
be found in Zhong et al. (2003); Frisk & Nielsen (2006). In design scheme,
the reference fault estimator is developed first in the absence of the modeling
uncertainty, and the robust fault estimator is then developed to minimize the
distance between the reference and robust designs, based upon using the so-
lutions of the reference estimator gains. The parametric uncertainties is thus
restrained. Also, non-unique reference designs allow the robustness and sta-
bility properties of the robust design to be tuned. Compared with the other
state-of-art approaches, this scheme is practical from an engineering point
of view as the reference and robust design steps satisfy the requirements of
different industrial evaluation phases. In this scheme, a fault estimator with
good estimation performance is selected as the reference design evaluated in
a preliminary phase of the ADDSAFE project. Also, reference estimator will
not be implemented in advanced design phase, which does not generate the
extra computational load.

1.2. Main contribution

This paper extends the LTI based H−/H∞ technique (Li et al., 2012) to
LPV system, therefore ensuring wide coverage of the operation conditions.
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On the other hand, an LPV reference model based design scheme is first intro-
duced to mitigate the degradation of the LPV fault estimation performance
in the presence of the parametric uncertainties, which includes the imperfect
measurements of the LPV system scheduling parameters and aerodynamic
uncertainties. This paper applies the proposed scheme to ADDSAFE bench-
mark problems and demonstrates the robustness of the design via paramet-
ric simulation. The fault estimation and detection results have already been
evaluated on an industrial benchmark system.

1.3. Outline of the paper

The remainder of the paper is outlined as follows: Section 2 introduces
some preliminaries associated with ADDSAFE benchmark problem. The
fault estimation problem formulation and the technical development are dis-
cussed in Section 3. Section 4 describes the design scheme of the proposed
fault estimation approach. The ADDSAFE model and the parametric simu-
lation results based upon various fault scenarios of a high-fidelity nonlinear
aircraft benchmark model are given in Section 5.

1.4. Notation

The notation and definitions used in the paper are summarized here. For a
matrix A with a compatible dimensions, A′, A−1 and A† denote its transpose,
inverse and pseudo-inverse respectively. A > 0(A ≥ 0) denotes that A is
positive (semi-positive) definite. He{A} denotes a shorthand notation for
A + A′. ‖v‖2 denotes the frequency domain 2-norm of the signal v. L2,Ω

is the Lebesgue 2-space, wherein the signal is square integrable and norm
bounded in a given finite frequency domain Ω, given by

L2,Ω = {v : ‖v‖2,Ω < ∞} (1)

where ‖v‖22,Ω = 1
2π

∫

Ω
v′(−jω)v(jω)dω. The Lebesgue 2-space becomes infinite-

horizon when Ω = [−∞,∞]. Let a system to be denoted in boldface upper
case, for example, a parameter dependent system G(ρ) : u 7→ y is given by

ẋ =A(ρ)x+B(ρ)u

y =C(ρ)x+D(ρ)u
(2)

where x, u, and y denotes the system states, inputs and outputs, respectively.
A(ρ), B(ρ), C(ρ), and D(ρ) are affinely parameter-dependent matrices with
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compatible dimensions. ρ = [ρ0, ρ1, . . . , ρnρ
]′ ∈ Θ ⊂ Rnρ are the available

time-varying scheduling parameters, where Θ is a compact polytope.
The frequency-domain H∞ performance and H− index appropriate to a

given finite frequency range Ω, are defined based upon the LPV system G(ρ),
as follows

‖G(ρ)‖∞,Ω = sup
∀ρ∈Θ,∀u∈L2,Ω

‖G(ρ)u‖2,Ω
‖u‖2,Ω

, u 6= 0 (3)

‖G(ρ)‖−,Ω = inf
∀ρ∈Θ,∀u∈L2,Ω

‖G(ρ)u‖2,Ω
‖u‖2,Ω

, u 6= 0 (4)

Remark 1.1. In the literature (see Hou & Patton (1996); Ding et al. (2000);
Jaimoukha et al. (2006); Liu et al. (2005); Henry & Zolghadri (2005); Wang
et al. (2007)), the H∞ performance and H− index have been defined via using
a singular value property to measure the sensitivity of the residual against
faults corresponding to a given LTI system. The work in Wei & Verhaegen
(2011) is extended in the study of Wang et al. (2007) to one compatible with
parameter-varying systems. The H− index over a finite frequency range is
also denoted by ‖ · ‖e (Ding et al., 2000; Henry, 2012).

2. ADDSAFE benchmark

2.1. Benchmark problem

The ADDSAFE benchmark is highly representative of a generic twin
engine civil commercial aircraft including the nonlinear rigid-body aircraft
model with a full set of control surfaces, actuator models, sensor models,
flight control laws and pilot inputs (Goupil & Puyou, 2011). The model
is highly representative of the aircraft flight physics and handling qualities.
Three fault scenarios are established within benchmark (Goupil, 2010a).

The Air Data and Inertial Reference System (ADIRS) Monitoring fault
scenario defined within the ADDSAFE benchmark is selected as case studies
in this paper. Figure.1 shows that the ADIRS in the benchmark contains
triplex dedicated sensor redundancy, i.e. three Air Data and Inertial Refer-
ence Units (ADIRUs), to measure the states of the aircraft, such as anemo-
metric and inertial data (e.g. angle of attack, load factor and yaw rate).
A consolidation process monitors these three redundant measurements and
by majority voting chooses the most reliable one as the input of the FCC.
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Figure 1: ADIRS monitoring localization in the flight control computer (Goupil, 2010a)

Without successful consolidation, faults occurring on the ADIRUs cause er-
roneous commands to be sent to the FCC, thereby causing abnormal aircraft
behaviour.

Two ADIRS failure cases are defined in scenario, associated with the yaw
rate measurement. These are: Case A: Single sensor fails due to the malfunc-
tion of an electronic component. Case B: Two sensors fail simultaneously.
For Case B, the current industrial practice for fault detection (consolidation
process) becomes unreliable, which requires at least two data channels to
be fault-free. The robust fault estimation approach proposed in this paper
detects and isolates failures for both cases in the presence of parametric un-
certainty so that the reliable sensor measurement can be selected as the input
of the flight control computer. Several fault types are tested, such as e.g. os-
cillations, jamming, Non-Return to Zero (NRZ) and noise signals occurring
in both case A and case B. Drift and runaway faults occur in case B. All sen-
sor faults in ADDSAFE are modeled in an additive manner, i.e. y = y0 + f ,
where y and y0 denote the faulty and fault-free sensor measurements. f is
the additive sensor fault to be estimated.

2.2. ADDSAFE LPV model

The ADDSAFE benchmark is highly representative of a generic twin
engine civil commercial aircraft including the nonlinear rigid-body aircraft
model with a full set of control surfaces, actuator models, sensor models,
flight control laws and pilot inputs (Goupil & Puyou, 2011).

The affine state-space LPV aircraft rigid body model is established by
Hecker (2010), based on using a multivariate polynomial fitting (Pfifer &
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Hecker, 2011). To build the ADDSAFE LPV model, a set of linear time-
invariant (LTI) state-space systems linearized at certain trim points are ob-
tained at first. Then a least-squares multivariable polynomial fitting is used
to interpolate the multiple LTIs to find an LPV model. Since the ADDSAFE
fault scenarios are defined only in cruise condition, the LPV modelling us-
ing polynomial fitting should not generate large plant-model mismatch. In
ADDAFE, the affine LPV model is provided, in particular:

A(ρ) = A0 + A1ρ1 + . . .+ Anρ
ρnρ

B(ρ) = B0 + A1ρ1 + . . .+Bnρ
ρnρ

C(ρ) = C0 + A1ρ1 + . . .+ Cnρ
ρnρ

D(ρ) = D0 + A1ρ1 + . . .+Dnρ
ρnρ

(5)

The selected scheduling parameters are

ρ = [m(kg), Xcg(%), Vc(kt), h(ft)] (6)

where m is the weight of the aircraft, Xcg is the x-axis center gravity, Vc

denotes the calibrated airspeed and h is the altitude. Instead of using h and
Vc, one may also choose another set of parameters such as true airspeed,
Mach number, dynamic pressure to describe the flight envelope. However,
the choice of the scheduling parameters was fixed during ADDSAFE project.
Since these scheduling parameter are independent from each other, the effec-
tive affine LPV region is hyper-rectangular and the scheduling parameters
satisfies the polytopic property and vary inside a convex polytope. Suppose
Θ is a compact polytope of vertices ν1, ν2, . . . , νr, that is

ρ ∈ Θ := Co{ν1, ν2, . . . , νr, r = 2nρ} (7)

where nρ = 4 in ADDSAFE. Using vertex property (Apkarian et al., 1995),

A(ρ) =

r∑

i=1

αiA(νi),

r∑

i=1

αi = 1, ρ =

r∑

i=1

αivi, αi ≥ 0 (8)

2.3. Evaluation progress

The performance robustness of the proposed FDD designs are evaluated
using the Functional Engineering Simulator (FES). FES is a term used in
Space Systems Engineering to describe a software simulator describing the
components of a system (including its operating environment) at a functional
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level. FES systems are used in support of the specification, design, verifica-
tion and operations of space systems, and can be used across the spacecraft
development life-cycle, including activities such as system design validation,
software verification and validation, spacecraft unit and sub-system test ac-
tivities (Fernandez et al., 2010). The FES developed by Deimos Space S.L.U.
for the ADDSAFE project (Fernandez & Ramon, 2011) is a non-real-time
simulator based on Simulink, Matlab and XML that includes the Airbus
benchmark model as well as the robustness and performances metrics for all
the fault scenarios defined in the project (Goupil & Marcos, 2012).

The evaluation process requires repeated closed-loop parametric simula-
tions with various uncertainties and flight conditions to demonstrate robust
stability over the whole flight envelope considered. The parametric sim-
ulation is thus used to provide an initial robustness verification based on
multiple fixed shots inside the flight envelope, listed in Table 1. The units
of the shots are widely adopted in aviation use, which are already defined in
the ADDSAFE FES. A single shot corresponds to the result of simulation
runs with a selected uncertain parameter set.

Table 1: Multiple shots inside flight envelope chosen for parametric simulation

Parameter Shots inside envelope
Altitude (ft×103) 8 18 28 38

Calibrated airspeed (kts) 160 220 300
Mass (ton) 120 180 233

Center of gravity (%) 17 30 41

For each of the simulation shots in the flight envelope, error bounds on
the uncertain aerodynamic parameters, sensor measurements and estimation
of physical parameters are applied, according to the information given in
Table 2.

Table 2: Aerodynamic database uncertainty bounds, sensor measurements and estimation

Parameter Variable Min Max
Aerodynamic δCx, δCy, δCz −5% 0 5%
coefficients δCl, δCm, δCn

Measurements δVcas, δh −10% 0 10%
Estimation δm, δXcg −10% 0 10%
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After combining four altitude values, three various values of calibrated
airspeeds, mass and center of gravity, and the upper and lower uncertainty
bounds of uncertainty listed in Table 1 and Table 2, for each fault, a para-
metric simulation will cover 324 grid points.

The parametric simulation results are then evaluated based upon the
predefined evaluation metrics, including detection time performance (DTP),
false alarm rate (FA), missed detection rate (MD) and computational load
(ET), etc.

A zero false alarm rate has to be guaranteed in the fault-free situation.
Here, six flight conditions or manoeuvres are chosen to be simulated as fault-
free. These are: Nose up (abrupt longitudinal manoeuvre), Angle of attack
(AOA) protection (triggering of angle of attack protection), Pitch protec-
tion (triggering of pitch protection), Yaw angle mode (corresponding to an
enhanced auto-pilot hold mode), Turn coordination (coordinated turn) and
Cruise phase. For each flight manoeuver, 158 runs are executed for the para-
metric simulations.

3. Problem formulation and technical solution

Consider an affine LPV system subject to actuator and sensor faults and
parametric uncertainties, given by

ẋ = (A(ρ) + δA(ρ))x+ (B(ρ) + δB(ρ))u+Bf (ρ)f +Bd(ρ)d

y = (C + δC)x+ (D + δD)u+Dff +Ddd
(9)

where A(ρ) ∈ Rn×n, δA(ρ) ∈ Rn×n, δB(ρ) ∈ Rn×m, B(ρ) ∈ Rn×m, Bf (ρ) ∈
Rn×q, Bd(ρ) ∈ Rn×k, C ∈ Rp×n, δC ∈ Rp×n, D ∈ Rp×n, δD ∈ Rp×n,
Df ∈ R

p×q, Dd ∈ R
p×k, x ∈ R

n, u ∈ R
m, and y ∈ R

p represent the system
states, inputs and outputs respectively. f ∈ Rq ⊂ L2,Ω is the vector of
sensor or actuator faults. d ∈ Rk ⊂ L2,Ω represents the external disturbance.
Assume the parametric uncertainties can be written as

[
δA(ρ) δB(ρ)
δC δD

]

=

[
F1

F2

]

∆
[
E1 E2

]
(10)

where F1 ∈ Rn×n, F2 ∈ Rp×n, E1 ∈ Rn×n and E2 ∈ Rn×m. ∆ ∈ Rn×n

represents the uncertainty matrix which satisfies ∆∆′ ≤ I.

Assumption 3.1. (i) (C,A(ρ)) is detectable, ∀ρ ∈ Θ.(ii) Matrix Df is full
column rank. (iv) Gf (ρ) : f 7→ y has no zeros on the extended imaginary
axis, ∀ρ ∈ Θ.
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Remark 3.1. In Assumption 3.1, (i) guarantees that, ∀ρ ∈ Θ, there exists
L(ρ) such that A(ρ)+L(ρ)C is negative, which can be verified on all vertices
of the polytope. (ii) is necessary for the existence of the solution of the LPV
fault estimator, which is relaxed by Wang & Yang (2008). (iv) is necessity
of the existence of a stable fault estimator.

Consider an faulty LPV system without external disturbances or para-
metric uncertainties, i.e. d = 0, and ∆ = 0. The reference fault estimator is
in the form of

˙̂xf = A(ρ)x̂f +B(ρ)u− L1(ρ)(yf − ŷf)

ŷf = Cx̂f +Du

rf = L2(yf − ŷf)

(11)

where L1(ρ) ∈ Rn×p and L2 ∈ Rq×p are reference estimator gains. yf ∈ Rp

is the reference system output and rf ∈ Rq is the reference fault estimate.
Let ef = x− x̂f ∈ R

n, it is shown that,

ėf = (A(ρ) + L1(ρ)C)
︸ ︷︷ ︸

Ā(ρ)

ef + (Bf (ρ) + L1(ρ)Df)
︸ ︷︷ ︸

B̄(ρ)

f

rf =L2C
︸︷︷︸

C̄

ef + L2Df
︸ ︷︷ ︸

D̄

f
(12)

Define Grff(ρ) : rf 7→ f , an ideal fault estimator requires that Grff(ρ) = I

which is equivalent to finding a fault estimator to achieve a specific H− index
‖Grff (ρ)‖− ≥ 1 since ‖I‖− ≥ 1. Since L2 6= 0, the necessary and sufficient
condition to achieve Grff(ρ) = I is B̄(ρ) = 0 and D̄ = I, ∀ρ ∈ Θ. It follows
from the work in (Li et al., 2012) that the corresponding solutions of L1(ρ)
and L2 are given by

L1(ρ) = −M(ρ) + Z1D
⊥
f (13)

L2 = D†
f + Z2D

⊥
f (14)

where Z1 ∈ Rn×q and Z2 ∈ Rq×q are free matrices. M(ρ) ∈ Rn×p and
D⊥

f Df = 0, M(ρ) = Bf(ρ)D
†
f . The methodology of finding Z1 and Z2 for

the LTI system is proposed in (Li et al., 2012), which can be easier extended
into an LPV framework using vertex property. The details are ignored here
due to the length of the paper.
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In the following, the parametric uncertainties are considered. The robust
fault estimator is defined as

F(ρ) :







˙̂xa = A(ρ)x̂a +B(ρ)u− L∗
1(ρ)(ya − ŷa)

ŷa = Cx̂a +Du

ra = L∗
2(ya − ŷa)

(15)

where L∗
1(ρ) ∈ Rn×p and L∗

2 ∈ Rq×p are robust estimator gains. ra ∈ Rq

is the robust fault estimate. ya ∈ Rp is uncertain system output. Let
ea = x− x̂a ∈ Rn, it follows

ėa = (A(ρ) + L∗
1(ρ)C)

︸ ︷︷ ︸

Āa(ρ)

ea + (δA(ρ) + L∗
1(ρ)δC

︸ ︷︷ ︸

δĀax(ρ)

)x

+ (δB(ρ) + L∗
1(ρ)δD

︸ ︷︷ ︸

δB̄au(ρ)

)u+ (Bf(ρ) + L∗
1(ρ)Df )

︸ ︷︷ ︸

B̄af (ρ)

f

+ (Bd(ρ) + L∗
1(ρ)Dd)

︸ ︷︷ ︸

B̄ad(ρ)

d

ra =L∗
2C

︸︷︷︸

C̄a

ea + L∗
2δC

︸ ︷︷ ︸

δC̄ax

x+ L∗
2δD

︸ ︷︷ ︸

δD̄au

u+ L∗
2Df

︸ ︷︷ ︸

D̄af

f + L∗
2Dd

︸ ︷︷ ︸

D̄ad

d

(16)

The robust fault estimator can also be written as

ra = Grax(ρ)x+Grau(ρ)u+Graf (ρ)f +Grad(ρ)d (17)

where Grax(ρ) : x 7→ ra, Grau(ρ) : u 7→ ra, Graf(ρ) : f 7→ ra, and Grad(ρ) :
d 7→ ra. Note that the robust fault estimate depends not only on faults,
but also on the inputs and states. Therefore, the design of a robust fault
estimator to mitigate the performance degradation caused by parametric
uncertainties is the main design objective of this work. The robust fault
estimation problem can now be formulated as an H∞ model mismatching
problem:

Problem 3.1. Given a system in Eq.(9), find a stable robust fault estimator
with gain matrices L∗

1(ρ) and L∗
2 to generate a fault estimate ra, achieving

the following infimum for Eq.(17):

γ := inf
∀ρ∈Θ

{‖Grew(ρ)‖∞,Ω : ‖Graf(ρ)‖−,Ω ≥ 1} (18)
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where re = ra − rf and w = [u′ f ′ d′]′ ∈ Rm+k+q ⊂ L2,Ω, w 6= 0, Grew(ρ) :
w 7→ re. Recall that the dynamics of the robust and reference fault estimators
shown in Eq.(17) and Eq.(16) and augment the states to be [ea ef x]′, then

‖Grew(ρ)‖∞,Ω = ‖[Grau(ρ) Graf(ρ)− I Grdd(ρ)]‖∞,Ω (19)

In Eq.(19), Grau(ρ) = F(ρ)Gu(ρ), Graf (ρ) = F(ρ)Gf (ρ), and Grdd(ρ) =
F(ρ)Gd(ρ), where Gu(ρ) : u 7→ y, Gf (ρ) : f 7→ y, and Gd(ρ) : d 7→ y. Based
upon Lemma 3.1, ‖Graf (ρ)‖−,Ω ≥ 1 is equivalent to Graf(ρ) = I, which
allows the ideal fault estimation to be achieved.

Lemma 3.1. (Extension of the work of Li et al. (2012)) Suppose that there
exists stable fault estimators F̃(ρ) and F(ρ) to achieve infimum γ and γ′,
such that

γ := inf
∀ρ∈Θ

{‖G̃rew(ρ)‖∞,Ω : G̃raf (ρ) = I} (20)

γ′ := inf
∀ρ∈Θ

{‖Grew(ρ)‖∞,Ω : ‖Graf (ρ)‖−,Ω ≥ 1} (21)

where G̃ represents systems which contain estimator F̃(ρ). Then, γ = γ′.

Proof. As defined in Eq.(11), let F̃(ρ) and F(ρ) be two stable reference fault
estimators, satisfying Eq.(20) and Eq.(21), respectively. There always exists
an invertible system transformation X(ρ), such that F̃(ρ) = X(ρ)F(ρ). Since
G̃raf (ρ) = F̃(ρ)Gf (ρ) = I, X(ρ)F(ρ)Gf (ρ) = I and X(ρ) = (F(ρ)Gf (ρ))

−1.
Note that ‖F(ρ)Gf (ρ)‖−,Ω ≥ 1, then ‖X−1(ρ)‖−,Ω ≥ 1. It is not hard to
show that

‖I‖∞,Ω ≥ ‖X(ρ)‖−,Ω‖X
−1(ρ)‖∞,Ω (22)

Therefore, ‖X(ρ)‖∞,Ω < 1. According to Eq. (19),

‖G̃rew(ρ)‖∞,Ω = ‖F̃(ρ)[Gu(ρ) 0 Gd(ρ)]‖∞,Ω

= ‖X(ρ)F(ρ)[Gu(ρ) 0 Gd(ρ)]‖∞,Ω

≤ ‖X(ρ)‖∞,Ω‖F(ρ)[Gu(ρ) 0 Gd(ρ)]‖∞,Ω

≤ ‖F(ρ)[Gu(ρ) 0 Gd(ρ)]‖∞,Ω

Hence, γ ≤ γ′. Since ‖ I‖− ≥ 1 implies γ ≥ γ′, it concludes that γ = γ′.

The structure of the fault estimator is unchanged, allowing the design
freedom to be further exploited. The solutions of L∗

1(ρ) and L∗
2 to approxi-

mate a fault estimation Graf (ρ) = I are given by

L∗
1(ρ) = −M(ρ) + Z∗

1D
⊥
f (23)
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L∗
2 = D†

f + Z∗
2D

⊥
f (24)

where Z∗
1 ∈ Rn×q and Z∗

2 ∈ Rq×q are free design matrices.
Suppose the reference design is available, Theorem 3.1 is now proposed

to determine the robust solutions.

Theorem 3.1. γ defined in Eq.(18) is achieved iff there exists s.p.d matrices
P1 ∈ Rn×n, P2 ∈ Rn×n and P3 ∈ Rn×n, full matrices S∗ ∈ Rn×q and Z∗

2 ,
such that

N(ρ)[8×8] < 0 (25)

where N(ρ) is symmetric and N(ρ)[a,b] represents the (a, b) block element of
N(ρ). Z1 and Z2 are known matrices calculated at the reference estimator
design step and Z∗

1 = P−1
1 S∗. In (25), for a ≤ b:

N(ρ)1,1 = He{P1(A(ρ)−M(ρ)C) + S∗D⊥
f C}

N(ρ)1,6 = P1(Bd(ρ)−M(ρ)Dd) + S∗D⊥
f Dd

N(ρ)1,7 = (D†
fC)′ + (Z∗

2D
⊥
f C)′

N(ρ)1,8 = P1(F1 −M(ρ)F2) + S∗D⊥
f F2

N(ρ)2,2 = He{P2(A(ρ)−M(ρ)C + Z1D
⊥
f C)}

N(ρ)2,7 = −(D†
fC)′ − (Z2D

⊥
f C)′

N(ρ)3,3 = He{P3A(ρ)}+ E ′
1E1, N(ρ)3,4 = P3B(ρ) + E ′

1E2

N(ρ)3,5 = P3Bf(ρ), N(ρ)3,6 = P3Bd(ρ), N(ρ)3,8 = P3F1

N(ρ)4,4 = −γI + E ′
2E2, N(ρ)5,5 = −γI N(ρ)6,6 = −γI

N(ρ)6,7 = D′
d((Z

∗
2 − Z2)D

⊥
f )

′, N(ρ)7,7 = −γI

N(ρ)7,8 = (D†
f + Z∗

2D
⊥
f )F2,

N(ρ)a,b are null, for all other indices.

Remark 3.2. Due to the vertex property, the same result can be found by a
combination of a limited number of solutions calculated using

[N(νi)]8×8 < 0, i = 1, 2, . . . , r (26)

where νi denotes the set of scheduling parameters on the ith vertex.

Remark 3.3. Li et al. (2012) points out that the resulting gain matrices may
not able to stablise the observer. In this case, an inner-outer factorization

13

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



must be performed and the fault estimation thus cannot be achieved. However,
by selecting various Z1 and Z2 for reference model, various robust design
gains L∗

1(ρ) and L∗
2 could be deduced to avoid losing the estimation property.

The systematic tuning procedure is not exploited in this paper.

4. Design scheme

The design scheme mainly contains two steps:

• Step 1 (ADDSAFE preliminary phase): Reference fault estimator de-
sign.

In this step, let d = 0 and matrices δA(ρ), δB(ρ), δC, and δD be null.
Calculate the matrices Z1 and Z2 using the vertex property and the
method proposed in (Li et al., 2012), and substitute them into (13) and
(14) to find out L1(ρ) and L2. Implement the reference fault estimator
in (11) to generate the reference fault estimation signal rf and then
evaluate the fault estimation performance in preliminary phase of the
project.

• Step 2 (ADDSAFE advanced phase): Robust fault estimator design.

In Step 2, matrices δA(ρ), δB(ρ), δC, and δD are assumed not null. Set
the reference fault estimator deduced in Step 1 as the reference design,
i.e. only save the matrices Z1 and Z2 calculated in Step 1. Then
solving the LMI in (25) to calcuate the matrices Z∗

1 and Z∗
2 . Substitute

matrices Z∗
1 and Z∗

2 to (23) and (24), respectively, to calculate the LPV
observer gains L∗

1(ρ) and L∗
2. Implement observer (15) to generate the

robust fault estimate ra for the isolation and decision making purposes.

The FDD structure of the proposed approach is shown in Fig. 2.

5. ADDSAFE simulation results

In ADDSAFE sensor fault scenario, the external disturbances are as-
sumed to be zero. An open-loop LPV state-space aircraft rigid body model
(A(ρ), B(ρ), C(ρ) and D(ρ)) is obtained through using the multivariable
polynominal interpolation as discussed in Section 2.2. Then, Eq.(9) can be
written as

ẋ = (A(ρ) + F1∆E1)x+ (B(ρ) + F1∆E2)u

y = (C + F2∆E1)x+ (D + F2∆E1)u+Dff
(27)
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Figure 2: FDD system structure of reference model based design

where matrices F1, F2, E1, E2 and ∆ (defined in Eq.(10)) are calculated by
Pulecchi &Marcos (2011), based on using a Linear Fractional Transformation-
based realization. y = [φ, p, r1, r2, r3]

′ and x = [φ, vy, p, r]
′ are the aircraft

body axis outputs and states, respectively. φ is bank angle, p is roll rate, r1,
r2 and r3 are yaw rate signals senses on three ADIRUs, wherein r1 and r2
are two measurements possibly corrupted by the additive sensor fault f in
Case A or Case B, and r3 is always fault-free. States vy and r represent the
aircraft velocity along y-axis and the yaw rate signal after the consolidation
logic, respectively, which are assumed to be unavailable. ub contains the set
of all lateral control surface deflections (i.e. four ailerons, eight spoilers plus
one rudder) together with a horizontal wind speed input along the aircraft
body axis uw

1. Note that for the ailerons and spoilers, the control surface
sensors are massing, the deflections information are measured via using their
rod sensors.

The parametric simulation results are all generated under the cruise ma-
noeuvre with various flight conditions and the parametric uncertainties listed

1In ADDSAFE, the wind effect is delivered (i.e. uw = 0)
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in Table 1 and Table 2. A combination of Table 1 and Table 2 leads to a
total 324 simulation runs for each type of the fault. All faults are assumed
to be occurred from 2sec. All fault types within ADDSAFE sensor fault sce-
nario described in Section 2.1 are investigated. In this section, only the fault
estimation results and the fault detection metric results are presented due
to the large amount of the data generated within the parametric simulation.
Note that the numerical results are not included here. This is due to the
industrial restricts. As described in Section 2.1, the oscillations, jamming,
NRZ and noise occur in both case A and case B. Drift and runaway faults
occur in case B. For the oscillation cases A and B, the fault amplitudes are
1.25% and 3.75% of the admissible range. For the jamming cases in A and
B, the fault amplitudes are 1.25% and 5% of the admissible ranges. The
fault amplitude of the NRZ fault is 320% of the admissible range. Also, for
the noise cases A and B, the covariances of the noise signals are 0.5 and 20,
respectively.

The normalized parametric simulation results are shown in Figs. A.3, A.4
and Fig. A.5. For various fault types and cases, the top figures always show
the fault estimation signals associated with the first yaw rate ADIRU fault
(added on r1) and the bottom figures always depict the fault estimation sig-
nals associated withe the second yaw rate ADIRU faults (added on r2). It
is clear from Figs. A.3 that, for oscillation fault and jamming fault types,
the fault amplitudes and fault occurrence time are well estimated and the
case A and the case B can be isolated. Note that the oscillation appears in
case B with jamming fault, this is due to the unexpected closed-loop aircraft
behaviour affected by the jamming faults. The fault estimation results asso-
ciated with the drift and runaway fault types are shown in Figs. A.4, the fault
occurrence time and the rate of the runaway/drift are correctly estimated.
For noise A, noise B, NRZ A and NRZ B fault types, Fig. A.5 shows that
the faults are estimated despite various NRZ frequencies and covariances of
the noise signals, and case A and case B can be well isolated. Above all
simulation results show that the actual FDD estimator is robust so that the
parametric uncertainty does not significantly affect the estimation results.

The corresponding evaluation results of the parametric simulation are
given in Table 3. Clearly, both the false alarm rate (FA) and miss detection
rate (MD) are zero at various flight points despite various parametric uncer-
tainties. For detection time performance (DTP), the value of ‘1’ indicates
that the fault is detected at the required detection time, and any value be-
tween ‘0’ and ‘1’ indicates a faster detection time. Table 3 shows that the

16

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



detection time performance is small enough for all types of the faults, which
implies that the faults can be detected rapidly after their occurrences. The
mean and variance of the fault estimation bias, associated with two sensor
channels (r2 and r2), are also listed in Table 3.

6. Conclusion

This paper describes the applications of robust FDD the ADIRS yaw
rate sensor fault scenario defined in the ADDSAFE project. An H−/H∞

LPV fault estimation approach is proposed, based on using a reference de-
sign. Simulation results demonstrate the robustness of the fault estimation
against the parametric uncertainties caused by aerodynamic database uncer-
tainties and measurement/estimation errors of the physical parameters. The
reliability of proposed method is also evaluated via parametric campaign.
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Appendix A. Proof of Theorem 3.1

Proof. Define

Â(ρ) =





Āa(ρ) 0 δĀax(ρ)
0 Ā(ρ) 0
0 0 A(ρ) + δA(ρ)





B̂(ρ) =





δB̄au(ρ) B̄af (ρ) B̄ad(ρ)
0 B̄(ρ) 0

B(ρ) + δB(ρ) Bf(ρ) Bd(ρ)





Ĉ =
[
C̄a −C̄ δC̄ax

]

D̂ =
[
δD̄au D̄af − D̄ D̄ad

]
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Table 3: Fault estimation performance evaluation results

Fault type
Evaluation results

FA(%) MD (%) Min/Mean Mean value (r1/r2) Estimation Variance (r1/r2)
/Max DTP (Estimation BIAS) Variance (Estimation )

Oscillation
A 0 0 0.002 1.139e-5/-1.795e-20 6.899e-4/7.102e-19
B 0 0 0.333 3.853e-5/1.140e-5 2.331e-4/6.899e-4

Jamming
A 0 0 0.002 -0.0115/-1.795e-20 0.012/7.102e-19
B 0 0 0.333 -0.030/-0.030 0.070/0.070

Drift 0 0 0.333 0.377/0.377 0.100/0.100
Runaway 0 0 0.233 4.032/4.032 1.373/1.373

NRZ
A 0 0 0.002 -7.303e-4/-1.381e-20 8.629e-4/7.657e-19
B 0 0 0.333 -0.342/-0.342 0.675/0.675

Noise
A 0 0 0.002 -3.908e-4/-1.795e-20 0.083/7.102e-19
B 0 0 0.333 -3.9075e-4/-3.908e-4 0.083/0.083
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Let e = [ea ef x]′ and combine Eq.(12), Eq.(13), Eq.(14), Eq.(16), Eq.(23)
and Eq.(24) to yield

ė = Â(ρ)e+ B̂(ρ)w

re = Ĉ(ρ)e + D̂(ρ)w
(A.1)

Based on the Bounded Real Lemma (Apkarian et al., 1995), a sufficient
condition to ensure stability of Eq.(A.1) and H−/H∞ performance γ shown
in Eq.(18) is given by

M̂BRL = MBRL + δMBRL < 0 (A.2)

where,

MBRL =













He{P1Āa(ρ)} 0 0
∗ He{P2Ā(ρ)} 0
∗ ∗ He{P3A(ρ)}
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

0 P1B̄af (ρ) P1B̄ad(ρ) C̄ ′
a

0 P2B̄(ρ) 0 −C̄ ′

P3B(ρ) P3Bf (ρ) P3Bd(ρ) 0
−γI 0 0 0
∗ −γI 0 D̄′

af − D̄′

∗ ∗ −γI D̄′
ad

∗ ∗ ∗ −γI













(A.3)

δMBRL =













0 0 P1δĀax(ρ) P1δB̄au(ρ) 0 0 0
∗ 0 0 0 0 0 0
∗ ∗ He{P3δA(ρ)} P3δB(ρ) 0 0 δC̄ ′

ax

∗ ∗ ∗ 0 0 0 δD̄′
au

∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0













(A.4)

19

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Let

Fτ =













P1F1 + P1L
∗
1(ρ)F2

0
P3F1

0
0
0

L∗
2F2













(A.5)

Eτ =
[
0 0 E1 E2 0 0 0

]
(A.6)

Then, δMBRL can then be rewritten as

δMBRL = Fτ∆Eτ + E ′
τ∆

′F ′
τ (A.7)

Since ∆∆′ ≤ I, substituting Eq.(A.7) into Eq.(A.2) and using the Schur
complement to yield [

MBRL + E ′
τEτ Fτ

F ′
τ −I

]

< 0 (A.8)

Substituting Eq.(A.3), Eq.(A.5) and Eq.(A.6) into Eq.(A.8) leads to:













He{P1Āa(ρ)} 0 0
∗ He{P2Ā(ρ)} 0
∗ ∗ He{P3A(ρ)}+ E′

1E1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

0 P1B̄af (ρ) P1B̄ad(ρ) C̄ ′
a P1F1 + P2L

∗
1F2

0 P2B̄(ρ) 0 −C̄ ′ 0
P3B(ρ) + E′

1E2 P3Bf (ρ) P3Bd(ρ) 0 P3F1

−γI + E′
2E2 0 0 0 0

∗ −γI 0 D̄′
af − D̄′ 0

∗ ∗ −γI D̄′
ad 0

∗ ∗ ∗ −γI L∗
2F2

∗ ∗ ∗ ∗ I














< 0

(A.9)

The proof can be completed by substituting Eq.(23) and Eq.(24) into Eq.(A.9)
to get Eq.(25). S∗ is defined as S∗ = P1Z

∗
1 .
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Figure A.3: Fault estimation results of oscillation and jamming fault in Case A and Case
B
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 Drift Runaway

Figure A.4: Fault estimation results of drift and runaway faults in Case B
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Figure A.5: Fault estimation results of NRZ and Noise faults in Case A and Case B
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