
Fuzzy Temporal Fault Tree Analysis of Dynamic Systems

Sohag Kabira,∗, Martin Walkera, Yiannis Papadopoulosa, Erich Rüdeb, Peter Securiusb
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Abstract

Fault tree analysis (FTA) is a powerful technique that is widely used for evaluating system safety and
reliability. It can be used to assess the effects of combinations of failures on system behaviour but is unable
to capture sequence dependent dynamic behaviour. A number of extensions to fault trees have been proposed
to overcome this limitation. Pandora, one such extension, introduces temporal gates and temporal laws to
allow dynamic analysis of temporal fault trees (TFTs). It can be easily integrated in model-based design and
analysis techniques. The quantitative evaluation of failure probability in Pandora TFTs is performed using
exact probabilistic data about component failures. However, exact data can often be difficult to obtain.
In this paper, we propose a method that combines expert elicitation and fuzzy set theory with Pandora
TFTs to enable dynamic analysis of complex systems with limited or absent exact quantitative data. This
gives Pandora the ability to perform quantitative analysis under uncertainty, which increases further its
potential utility in the emerging field of model-based design and dependability analysis. The method has
been demonstrated by applying it to a fault tolerant fuel distribution system of a ship, and the results are
compared with the results obtained by other existing techniques.

Keywords: Reliability Analysis, Fault Tree Analysis, Dynamic Fault Trees, Temporal Fault Trees,
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1. Introduction

Safety critical systems are widely used in many industries, e.g., aerospace, automotive, and energy
sectors, and the failure of such systems has the potential to cause catastrophic effects on human life as well
as the environment. An increasing amount of effort is now often devoted to ensuring that such failures
cannot occur, and this can be achieved through dependability engineering techniques. One of the key goals
in designing safety critical systems is to identify potential risks posed by such systems so that these risks
can then be minimised. System safety and reliability are two key aspects of system dependability. Their
estimation at design stage typically involves calculation of probabilities of system failures. In the case of
safety, the focus is on failures that are potentially severe in their effects and therefore a low probability of
occurrence must be demonstrated to keep risk at acceptable level. A wide variety of methods have been
developed to perform safety analysis and reliability evaluation of systems. Fault tree analysis (FTA) is a
well-established and widely used method for evaluating system safety and reliability. This is a graphical
method to show the logical connection between different faults and their causes. Fault trees use Boolean
logic and usually use AND and OR gates to show the combinations of component failures that are necessary
and sufficient to cause the system failure.

Both qualitative and quantitative analysis can be performed using fault trees. The qualitative analysis is
deductive in nature, i.e., the analysis starts with a system failure known as the top event and iteratively works
backwards to identify the root causes of the top event. Afterwards, Boolean logic is used to minimise the
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fault tree to obtain minimal cut sets (MCS) which are the smallest combination of the failure of components
that can cause the system failure. Once the MCSs are obtained, by using probabilistic data about system
components, quantitative analysis can be performed to estimate the probability of the system failure after
a specified period of time. The quantification of fault trees are typically performed by calculating the
probability of each MCS and by summing all the MCS probabilities. In addition to the top event probability,
importance of the basic events, the intermediate events, and the minimal cut sets can be obtained from the
fault tree quantification [1].

Increasingly, systems are growing more complex and their configurations becoming more dynamic, i.e., a
system can operate in different functional modes. With the change of mode the interactions and data flow
between components in the system architecture changes, and thus so does the propagation of faults through
the system. Due to the dynamic nature of the system behaviour, assessing the effects of combinations of
failure events is not enough by itself to fully capture the system failure behaviour; it is also necessary to
understand the order in which they fail to obtain a more accurate and informative failure model. Despite
the widespread use of FTA, the technique is not capable of capturing this sequence-dependent dynamic
behaviour [2, 3]. A number of extensions to combinatorial fault trees such as dynamic fault trees (DFTs)
[4] and Pandora temporal fault trees [5] have been introduced to address this limitation.

DFTs enable quantitative analysis of dynamic systems. They introduce a set of new dynamic gates, such
as the SPARE (to model redundant spare components), FDEP (to model functional dependencies), and SEQ
(to represent sequences) gates, and are usually evaluated by translating them into Markov chains. DFTs are
explained further in section 2.2.1. Pandora likewise extends fault trees by introducing three temporal gates
and a set of temporal laws to capture dynamic behaviour of systems. Temporal gates are used to determine
the minimal cut sequences (MCSQs), which are the smallest sequences of events that are necessary and
sufficient to cause the system failure.

The main idea behind introducing the Pandora temporal fault tree was to facilitate qualitative analysis
of dynamic systems by minimising the temporal fault trees into MCSQs using the temporal laws. One
of the advantages of Pandora is that by performing qualitative analysis, it can create useful insight into
system failures with limited or absent quantitative failure data, e.g., in the case of new system components.
Moreover, the technique is integrated well with model-based design and analysis. It has been shown in
[3] that Pandora logical expressions can be used to describe the local failure behaviour of components and
then enable compositional synthesis of TFTs from systems models using popular modelling languages, e.g.
Matlab Simulink, EAST-ADL, or AADL, that have been annotated with Pandora expressions. Chen et al.
[6] described an approach on dynamic fault tree analysis using temporal fault trees and Markov chains in
the context of the EAST-ADL domain specific architecture description language.

Although the primary goal of Pandora was to perform qualitative analysis of failure behaviour of dy-
namic systems, a number of recent efforts [7, 8] have been made to probabilistically evaluate the Pandora
TFTs. Similar to other probabilistic reliability evaluation methods, such as classical FTA, the quantification
methods for Pandora TFTs also assume that the components of a system are non-repairable, basic events
are statistically independent, and failure behaviour of components are described by precise probability dis-
tributions, i.e., these methods take it as guaranteed that precise probabilistic failure data of components are
always available. However, for many complex systems, it is often very difficult to estimate precise failure
data of components from past occurrences due to lack of knowledge, scarcity of statistical data, and changes
in operating environments of the systems [9, 10]. This situation is especially relevant in the early design
stages because at that time analysts may have to consider new or partially defined components which have
no available quantitative failure data, and thus precise failure data could not possibly be known. Therefore,
in the absence of precise failure data, it may be necessary to work with rough estimates of probabilities.
The existing evaluation methods for the Pandora TFTs are not capable of working with uncertain data of
this sort.

Fuzzy set theory has been proven effective in solving problems where precise data are not available
and in making decisions from vague information [11, 12, 13]. Fuzzy set theory was firstly used in FTA
by Tanaka et al. [10], where failure probabilities of the basic events of the fault tree were represented as
trapezoidal fuzzy numbers and the fuzzy extension principle was used to estimate the probability of the top
event. Further extensive research on fuzzy fault tree analysis was performed by Misra and Weber [12] and
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Liang and Wang [14] based on the work presented in [10]. At the same time, Gmytrasiewicz et al. [15]
and Singer [16] have also analysed fault trees based on fuzzy set theory. Fuzzy set theories and the expert
elicitation have been combined in [17] to evaluate the reliability of a robot drilling system. Some of the
early work on investigating the use of fuzzy logic on safety includes work on post-hoc deductive accident
investigation [18]. Fuzzy set theory based FTA (FFTA) has been used to analyse the reliability of a variety
of systems, for example, Yuhua and Datao [19] have used FFTA to evaluate the failure probability of oil
and gas transmission system. An intuitionistic fuzzy sets based method has been used in [20] for the failure
analysis of the printed circuit board assembly. Ferdous et al. [21] have proposed a computer-aided fuzzy
fault tree analysis method. Tyagi et al. [22] have applied FFTA in reliability analysis of an electric power
transformer. Recently, FFTA has been used to evaluate the probability of the fire and explosion in crude
oil tanks [23] and Rajakarunakaran et al. [24] have applied FFTA for risk evaluation of an LPG refuelling
station.

Although a significant amount of research has investigated how to use fuzzy set theory in classical FTA
to enable it to perform quantitative analysis with limited quantitative data, very limited research, such
as [25, 26, 27, 28] has been undertaken to allow the same in dynamic fault tree analysis. Recently, some
preliminary ideas on fuzzy set theory based Pandora temporal fault tree analysis were presented in [29].
Given the increasing importance of model-based design and analysis, and the potential benefits of Pandora
in this context, we believe that it is both theoretically and practically useful to explore possible ways to
incorporate uncertainty aspects in the quantitative analysis of Pandora TFTs. This could yield significant
advantages when analysing systems at early stages in the design process, for example, when firm quantitative
failure data is not available. It would allow the design to be refined on the basis of the results and then
further quantitative analysis can be conducted later on to confirm the results once solid data is available.
Therefore, in this paper, we propose a fuzzy set theory based quantification methodology for Pandora TFTs.
The proposed methodology is demonstrated by applying it to evaluate the dependability of a fault tolerant
fuel distribution system of a ship.

The rest of the paper is organised as follows: Section 2 presents some preliminary ideas on fuzzy fault
tree analysis, dynamic extensions of classical fault trees, more specifically, the fundamental basis of Pandora
temporal fault trees and the ways of quantifying Pandora TFTs. Section 3 describes the proposed method-
ology. The method is then illustrated by applying it to a case study in section 4. Finally, our concluding
remarks are presented in section 5.

2. Background

2.1. Fuzzy Set Theory and Fuzzy Fault Tree Analysis

Fuzzy set theory has been developed to deal with imprecise, vague or partially true information [11]. A
fuzzy number A can be thought of as a set of real numbers where each possible value has a weight between
0 and 1. This weight is referred to as degree of membership defined by a membership function. Let us
consider a function µA(x) : R→ [0, 1] as:

µA (x) =


µlA(x), for a1 < x ≤ b1
µrA(x), for b1 ≤ x < c1

0, otherwise.

(1)

Note that µA(x) has a left region µlA(x) and a right region µrA(x) connected at maximum, µlA(b1) = µrA(b1).
Now we can define a fuzzy number A by the function in equation (1) which is called the membership function
of the fuzzy number A, and write

A , µA(x) (2)

where , means is defined as.
Fuzzy set theory has been used in fault tree analysis in different ways. The basic idea of fuzzy fault

tree analysis is to use fuzzy representations of component failure data instead of the crisp representations
used in classical FTA. Among different forms of fuzzy numbers, the triangular fuzzy number (TFN) and
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the trapezoidal fuzzy number (TZFN) are widely used in reliability analysis to represent fuzzy failure rates
or probabilities of components. The triangular representation of the basic event failure probabilities can be
denoted by a triplet (a1, b1, c1) and the corresponding membership function is written as:

µA (x) =


x− a1
b1 − a1

, for a1 < x ≤ b1
c1 − x
c1 − b1

, for b1 < x < c1

0, otherwise.

(3)

A trapezoidal form of the failure probability can be denoted by a quadruple (a1, b1, c1, d1), and the mem-
bership function is defined as:

µA (x) =



x− a1
b1 − a1

, for a1 < x < b1

1, for b1 ≤ x ≤ c1
d1 − x
d1 − c1

, for c1 < x < d1

0, otherwise.

(4)

Fuzzy operators for the fault tree gates are defined to quantify the output probabilities of the gates based
on the fuzzy representation of the failure probabilities of input basic events. For example, if the probability
of a basic event BEi is represented as Pr{BEi}(t) = {ai(t), bi(t), ci(t)} then for all statistically independent
basic events, the fuzzy operators for the AND and the OR gate are defined as follows:

PAND =

{ N∏
i=1

ai(t),
N∏
i=1

bi(t),
N∏
i=1

ci(t)

}
(5)

POR =

{
1−

N∏
i=1

(
1− ai(t)

)
, 1−

N∏
i=1

(
1− bi(t)

)
, 1−

N∏
i=1

(
1− ci(t)

)}
(6)

where bi(t) is the most likely value of the probability of the basic event BEi at time t and ai(t) and ci(t)
are the lower and upper bound of the basic event probability respectively.

After the minimal cut sets (MCSs) in sum-of-products form are obtained from the qualitative analysis of
a fault tree, the fuzzy failure rates are provided for the basic events constituting the MCSs. Subsequently,
all the MCSs are quantified using equation (5) and the top event probability is quantified using equation (6).
As fuzzy representations of the basic event failure probabilities are used in the quantification process, the
top event probability is also obtained as fuzzy number. However, sometimes the fuzzy top event probability
is mapped to a crisp (non-fuzzy) value.

2.2. Dynamic Extensions of Classical Fault Trees

2.2.1. Dynamic Fault Trees

Dynamic Fault Trees (DFTs) [4] are an extension of static fault trees that enable a fault tree to capture
sequence dependent dynamic behaviour. To represent the dynamic behaviour of the systems, DFT introduces
two special gates: the Functional Dependency (FDEP) gate and SPARE gate. The FDEP gate helps to
model a scenario when functionalities of some system components are dependent on the operation of a
single component. For example, if a single power supply is used to provide power to many of the system
components then failure of the power supply would cause all the dependent components to fail as well. In
the FDEP gate there is only one trigger event (either a basic event or an intermediate event) but there could
be multiple functionally dependent events (see Fig.1(a)). The occurrence of the trigger event would force the
dependent events to occur; by contrast, the occurrence of a dependent event would affect neither the trigger
event nor the other dependent events. This gate is particularly convenient for modelling networked systems
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where communication between connected components take place through a common network element and
the failure of the common element isolates the other connected elements.

(a) Functional Dependency (FDEP) gate (b) SPARE gate

Figure 1: Dynamic fault tree gates

A SPARE gate is shown in Fig.1(b), with three basic event inputs. One of the basic events (left most)
acts as a primary component and other events act as secondary backup components. This gate models a
scenario where the spare components are activated in a sequence, i.e., if there are two spare components
then when the primary component fails, the leftmost spare component will be activated; if the first spare
fails then the second spare will be activated and so on. The SPARE gate can model three types of spares:
cold spares, warm spares, and hot spares. In the cold spare mode the spare components are deactivated
until they are required in any sort of system operation. In contrast, in the hot spare mode, the spare
components are always kept active but only serve their function when the primary fails. In warm spare
mode, the spare components are neither on nor off, instead they are kept in-between these two states, i.e.,
components are kept in a reduced readiness state until required. Multiple SPARE gates can share a pool of
spare components. In this case, if the primary component of any of the SPARE gates fails, it is then replaced
by the first available spare component (i.e., neither failed nor already occupied by another SPARE gate).
DFTs also use two other gates to model sequences of events: the Priority-AND (PAND) gate, which is true
only if its input events occur in a particular sequence (typically left to right), and the Sequence-Enforcing
gate (SEQ), which imposes a sequence on its events such that they must occur in that order. This latter
gate can be viewed as a type of cold SPARE gate and so is not often used.

DFTs are intended to perform quantitative reliability analysis of dynamic systems, and consequently they
have limited support for qualitative analysis. For probabilistic evaluation, DFTs are typically transformed
into equivalent Markov chains and quantified based on exponential distribution of failure behaviour of
components [30, 31]. Alternatives have also been proposed, such as an algebraic framework to model
dynamic gates of DFTs; this allows qualitative [32] and quantitative [33, 34] analysis of DFTs. Moreover,
Petri Nets based approaches [35, 36] and Bayesian Networks based approaches [37, 38, 39] are also developed
to quantify DFTs.

2.2.2. Pandora Temporal Fault Trees

As with DFTs, Pandora is intended to enable analysts to more readily capture sequence-related failure
behaviour in fault trees. Pandora extends conventional fault trees by defining three temporal gates: Priority-
AND (PAND), Priority-OR (POR), and Simultaneous-AND (SAND) (see Fig. 2). These gates allow analysts
to represent sequences or simultaneous occurrence of events as part of a fault tree.
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The PAND gate is not a new gate and has been used in FTA as far back as the 1970s [40]; it is also used
in the Dynamic Fault Tree methodology, as mentioned above. However, the semantics of the PAND gate
were not fully defined, particularly with regard to what happens when input events occur simultaneously
or when contradictory sequences are used (e.g. a PAND with repeated input events, suggesting an input
occurring before itself), and this ambiguity limited its usefulness in qualitative analysis. Later techniques
such as Pandora have defined its semantics in more depth. In Pandora, therefore, the PAND gate is used
to represent a particular sequence of events and is defined as being true only if:

• all input events occur;

• input events occur in sequence from left to right;

• and no input events occur simultaneously.

In this paper, for clarity, the symbol ‘C’ is used to represent the PAND gate in logical expressions, i.e.,
X C Y means X PAND Y where X and Y are both failure events.

(a) PAND (b) POR (c) SAND

Figure 2: Pandora temporal gates

Like the PAND gate, the POR gate also defines a sequence. It is used to indicate that one input event
has priority and must occur first for the POR to be true, but unlike PAND does not require all other input
events to occur as well. It can be used to represent trigger conditions where the occurrence of the priority
event means that subsequent events may have no effect. The POR is true only if its left-most (priority)
input event occurs and no other input event occurs before or at the same time as the left-most input event.
The symbol ‘o’ is used to represent the POR gate in logical expressions, thus X o Y means X POR Y .

The SAND gate is used to define situations where an outcome is only triggered if two or more events
occur approximately simultaneously, e.g., because of a common cause, or because the events have a different
effect if they occur approximately simultaneously as opposed to in a sequence. It is true only if all input
events occur and all events occur at the same time. The symbol ‘&’ is used to represent the SAND gate
in logical expressions. Pandora temporal fault trees also use the Boolean AND and OR gate. ‘∨’ and ‘∧’
are used to represent OR and AND gate in logical expressions respectively. The priority of the gates is as
follows: SAND is highest, then PAND, POR, AND, and OR.

Pandora considers events (failure of components) as persistent, i.e., once an event occurs, it remains
in the ‘true’ state indefinitely. It also considers that the transition from one state to another state occurs
instantly, i.e., there is no delay to go from ‘false’ to ‘true’ state. In addition to three temporal gates, Pandora
also defines a set of temporal laws that describe the behaviour of the gates and how they relate to each other
and to the standard Boolean AND and OR gates. The most important of these laws are the Completion
Laws [5], which relate the temporal gates to the Boolean gates:

• Conjunctive Completion Law: X ∧ Y ⇔ X C Y ∨ X&Y ∨ Y CX
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• Disjunctive Completion Law: X ∨ Y ⇔ X o Y ∨ X&Y ∨ Y oX

• Reductive Completion Law: X ⇔ Y CX ∨ X&Y ∨ X o Y

These laws allow us to reduce and minimise the temporal expressions to obtain minimal cut sequences
(MCSQs), which are analogous to minimal cut sets in classical fault trees. Temporal laws form the basis for
qualitative analysis of Pandoras temporal fault trees and can be proved with temporal truth tables [5].

2.2.3. Quantitative Evaluation of Pandora TFTs

Quantitative analysis of Pandora TFTs helps to estimate the probability of the top event occurring
from the given failure rates of basic failure modes (events) of the system. Quantification of TFTs requires
quantifying the gates, and various techniques are available for probabilistic evaluation of TFT gates. These
techniques include analytical solutions [40, 1, 33, 7, 34]; a Markov chain based solution [30]; Bayesian network
based solutions [41, 39, 8]; and Petri net based solutions [35, 36]. However, this paper considers analytical
solutions only as they are most compatible with the fuzzy set based approach. Note that the analytical
solutions above work based on the fixed value of components’ failure data and consider that the system
components have exponentially distributed failure rates.

The probability of an AND gate with N statistically independent events can be evaluated as [42]:

Pr{E1 ∧ E2 ∧ E3 ∧ · · · ∧ EN−1 ∧ EN} (t) =
N∏
i=1

Pr{Ei} (t) (7)

where Pr{Ei}(t) is the probability of failure of basic event Ei at time t.
If an OR gate has N input events, the probability of the OR gate is frequently approximated using the

following equation [43]:

Pr{E1 ∨ E2 ∨ E3 ∨ · · · ∨ EN−1 ∨ EN} (t) = 1−
N∏
i=1

(
1− Pr{Ei} (t)

)
(8)

In a minimal cut sequence (MCSQ), if there are N statistically independent input events in a PAND
gate and they occur sequentially, i.e., event 1 occurs first, then event 2, · · · , event N − 1, and finally event
N , then the probability of that PAND gate can be evaluated as [33]:

Pr{E1 C E2 C E3 C · · · C EN−1 C EN} (t) =

N∏
i=1

λi

N∑
k=0

[
e(ukt)∏N

j=0
j 6=k

(uk − uj)

]
(9)

where u0 = 0 and um = −
∑m
j=1 λj for m > 0.

For any minimal cut sequence of N statistically independent events in a POR gate with the expression
E1 o E2 o E3 o · · · o EN−1 o EN , the probability of that POR gate can be evaluated as [7]:

Pr{E1 o E2 o E3 o · · · o EN−1 o EN} (t) =
λ1

(
1−

(
e−(

∑N
i=1 λi)t

))
∑N
i=1 λi

(10)

In a continuous time domain, the probability of two exponentially distributed statistically independent
events occurring at the same time can be treated as zero [33]. For this reason, any minimal cut sequence
containing the SAND operator are usually ignored during the quantitative evaluation of Pandora TFTs. As
the MCSQs can contain any number of gates from AND, PAND, SAND and POR gates, although SAND
gate is quantified as zero, they are probabilistically evaluated using equation (7), (9), and (10) depending
on the nature of the gates the MCSQs contain. The top event of the TFTs is represented as the disjunction
of the MCSQs and hence the top event probability can be approximated closely using equation (8).
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3. Fuzzy Temporal Fault Tree Analysis

The main idea behind fuzzy temporal fault tree analysis is to use a fuzzy representation of the failure
data instead of single values and then evaluate the top event as a range of possible values. In this way,
important quantitative information about the dependability of a system can be obtained even if the exact
data about the system components are not known. To be able to use the fuzzy representation of the failure
data we have to define the fuzzy operators for the temporal fault tree gates. After the temporal fault tree is
obtained using qualitative analysis, the following steps are required to be able to use the fuzzy representation
of failure data in the quantitative analysis:

• Obtain fuzzy possibility of component failure data.

• Use fuzzy possibility values and the fuzzy operators of the TFT gates to obtain fuzzy top event
possibility and importance measures.

• Determine the crisp top event probability from the top event possibility.

3.1. Process of obtaining fuzzy failure data for system components

Before we can use the fuzzy set theory based methodology, we need to decide what form of the fuzzy
representation of the numbers we are going to use to represent the failure data for the components. After
that, we have to obtain the fuzzy failure possibility of components in the prespecified format. There are
different methods available to obtain fuzzy numbers such as expert knowledge elicitation or 3σσ expression
[9]. In this paper, we use the triangular form of the fuzzy number to represent the failure possibilities of
basic events and use the expert elicitation method to obtain the fuzzy failure possibility of components.
However, the users have the flexibility to use any other method to obtain the data.

3.1.1. Domain expert evaluation and fuzzification of the opinion

In this evaluation step, a set of qualitative data representing the failure possibility of basic events is
obtained. To obtain this, a set of experts is provided with a set of basic events from the TFT representing
the failure behaviour of the system and the mission time t. The experts will then subjectively evaluate the
failure possibility of the components after the specified mission time. An expert is a person who is familiar
with the system under consideration, have knowledge about the working environment of the system, and
have considerable training and knowledge of the system operation. The experts can be selected from different
fields like design, operation, maintenance, and management of the system.

As experts are human beings, they may have different levels of expertise, working experience and obvi-
ously their background may vary widely. The experts make decisions about different basic events based on
their experiences and their knowledge about the system. As a result, the opinions obtained from different
experts are subjective due to the varying perceptions of the experts about the system. In a real world
scenario, the opinion of an expert with higher experience and expertise should be given higher priority over
the opinion of the expert with relatively low expertise and experience. To facilitate this, a weighting factor
is used to define the relative quality of the opinion of the experts.

Due to the complexity of the systems and the vagueness of the events, the experts cannot provide the
exact numerical values regarding the failure possibility of components; instead they give their opinion in
linguistic terms. The values of linguistic variables are words or sentences in natural languages and they play
an important role in dealing with situations which are too complex or vague in nature, i.e., very difficult
to describe using conventional quantitative expressions. For instance, we can consider “failure possibility
of component” as a linguistic variable consisting of fuzzy sets like very low, low, fairly low, medium, fairly
high, high, very high as shown in the example Fig. 3.

Once an expert provides his/her opinion about the failure possibility of an event in linguistic terms, then
this must be mapped to corresponding quantitative data in the form of a membership function of fuzzy
numbers. As mentioned earlier, the membership functions could be of triangular or trapezoidal form. For
example, Fig. 3 shows membership functions of the linguistic variables in the triangular form. The system
analysts have to define the failure possibility distribution (values for membership functions) for different
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Table 1: Weighting scores for different experts [24]

Constitution Classification Score

Professional Position

Professor, GM/DGM, Chief Engineer, Director 5

Assistant Professor, Manager, Factory Inspector 4

Engineer, Supervisors 3

Foreman, Technician, Graduate apprentice 2

Operator 1

Professional Experience

(years)

≥ 20 5

15 to 19 4

10 to 14 3

5 to 9 2

< 5 1

Educational or

Technical qualification

Ph.D or M.Tech. 5

MSc or B.Tech. 4

Diploma or BSc 3

ITI 2

Secondary school 1

Figure 3: Fuzzy numbers representing linguistic variables

linguistic variables based on the nature of the system they want to analyse. However, this is a subjective
task and results may vary from analyst to analyst. Ross [44, 45] described six different methods – intuition,
inductive reasoning, inference, genetic algorithm, neural networks, and rank ordering to form membership
functions of fuzzy sets. Analysts can choose any of the above mentioned methods to define the values for
membership functions of the failure possibility of the basic events.

3.1.2. Aggregation of the opinions of the experts

In the domain expert evaluation process, failure possibility data for each basic event is obtained from a
set of M different experts. Since each expert may have different view about an event, their opinion about
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the event may be different. In order to achieve an agreement among the conflicted views of the experts, their
opinion should be aggregated into a single opinion. The aggregation could be done by simply taking the
arithmetic average of different opinions, but it will give all the experts equal weight and thus overlooks the
knowledge, expertise and experience of the experts. On the other hand, if we take the weighted average of
the opinions to obtain a single opinion then the opinion of the experienced experts (with higher score) would
dominate the result, and consequently the opinion of the less experienced experts (with a low score) will not
be properly reflected. To ensure that the expertise and experience of experts are taken into account and at
the same time the opinions of the less experienced experts are properly accommodated in the aggregated
opinion, the aggregation process is done in six different steps, described below:

Step 1: Similarity Measures
In this step, a matrix known as the similarity matrix (SM) is obtained in the following form by calculating
similarities between the opinions of different experts.

SM =


1 s12 s13 . . . s1M
s21 1 s23 . . . s2M
...

...
...

. . .
...

sM1 sM2 sM3 . . . 1

 (11)

If there are M experts then SM will be a M ×M matrix and each entry in the matrix will represent the
similarity between the opinions of two particular experts. For example, an entry sij in this matrix represents
the similarity between the opinions of experts Exi and Exj .

To determine similarity between the opinions of two experts, we use the concept described in [46]. Hsu
and Chen [46] used the following equation to obtain the similarity between two fuzzy sets.

S(Ãi, Ãj) =

∫
x

(
min{µÃi

(x), µÃj
(x)}

)
dx∫

x

(
max{µÃi

(x), µÃj
(x)}

)
dx

(12)

where S(Ãi, Ãj) is known as the similarity measure function introduced in [47]; and Ãi, and Ãj are the
opinion of expert i and j respectively. The formula in equation (12) calculates the ratio of the consistent
area (overlapped area) to the whole area for any form of fuzzy set.

As seen in the matrix SM, the diagonal entries are 1, because these entries represent, S(Ãi, Ãi), i.e.,
similarity of one expert opinion with itself. If the two opinions do not overlap at all, then the similarity
between them would be 0. As mentioned earlier, in this paper, we use the triangular form of the fuzzy set,
therefore we have to derive specific formulae for different cases of triangular fuzzy set with the help of the
formula of equation (12).
If two experts Exi and Exj provide their opinion as triangular fuzzy numbers Ãi and Ãj respectively, then
four possible scenarios can occur:

1. The two sets completely overlap each other.

2. Two sets do not overlap at all.

3. Two sets partially overlap where Ãi starts before Ãj (see Fig. 4(a)).

4. Two sets partially overlap where Ãj starts before Ãi (see Fig. 4(b))

In the first scenario, both the sets (opinions are same), i.e., similarity between them is 1. In the second
case, as the sets do not overlap at all, that means similarity between them is 0. In the other two cases,
the opinions partially overlap and the overlapped area is another triangular fuzzy set. Let us consider the
opinion of two experts Exi and Exj as Ãi = {ai, bi, ci} and Ãj = {aj , bj , cj} then the similarity between
the opinions can be calculated as follows:

1. If ci ≤ aj or cj ≤ ai then

S(Ãi, Ãj) = 0 (13)
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(a) Ãi precedes Ãj (b) Ãj precedes Ãi

Figure 4: Overlapping between two opinions in triangular form

2. If ai ≤ aj and ci > aj then

S(Ãi, Ãj) =
(ci − aj)2

ai(bi − bj − ci) + aj(ai + bi − bj − cj) + bi(−ci − cj) + cj(bj + ci) + bjci
(14)

3. If aj ≤ ai and cj > ai then

S(Ãi, Ãj) =
(cj − ai)2

aj(bj − bi − cj) + ai(aj + bj − bi − ci) + bj(−cj − ci) + ci(bi + cj) + bicj
(15)

Step 2: Average agreement calculation
Once the similarity matrix is obtained, then the average agreement, AA(Exi), for each of the experts is
obtained as:

AA(Exi) =
1

M − 1

M∑
j=1
j 6=i

SM(i, j) (16)

Step 3: Relative agreement calculation
After the average agreement for all the experts are calculated, then the relative agreement, RAD(Exi), for
all the experts is calculated as:

RAD(Exi) =
AA(Exi)∑M
i=1AA(Exi)

(17)

Step 4: Weighting factor calculation
Weighting scores for experts are defined in Table 1 based on their professional positions, years of working
experience and their educational qualifications. As a result, when we select M experts, each of them may
have different weighting score (WS). For example, if we choose a professor with a PhD degree and 20 years of
work experience, then his/her weighting score would be 15 (5+5+5=15). On the other hand, the weighting
score for an engineer with a MSc degree and 11 years of work experience would be 10 (3+3+4). So the
weighting factor for each of the experts is calculated as:

WF (Exi) =
WS(Exi)∑M
i=1WS(Exi)

(18)

where WS(Exi) is the weighting score of expert i and WF (Exi) is weighting factor for expert i.

Step 5: Aggregation weight calculation
Now we have relative agreement degree (RAD(Exi)) and weighting factor (WF (Exi)) for all the experts. To
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make balance between relative agreement and weighting factor, we calculate aggregation weight as follows:

AW (Exi) = α ·WF (Exi) + (1− α)RAD(Exi) (19)

where α (0 ≤ α ≤ 1) is a relaxation factor which represents the importance of WF (Exi) over RAD(Exi).
If α is set to zero, then no importance is paid on the WF (Exi); on the other hand, if α is set to 1, then no
importance is paid to RAD(Exi). If no importance is paid to RAD(Exi) by setting α to 1, then steps 1 to
3 are not required.

Step 6: Aggregation of opinions
This is the step where the opinions of the experts are aggregated to obtain a single opinion. The aggregation
is performed using the following formula.

Ã =
M∑
i=1

(AW (Exi)× Ãi) (20)

where Ã is the aggregated opinion (a fuzzy set) and Ãi is the opinion of expert i.

3.2. Defuzzification and top event probability calculation

As the fuzzy possibilities of basic events are used in the quantification of the TFTs, the possibilities of
the minimal cut sequences as well as the top event possibility would be obtained as fuzzy numbers. In order
to provide a single possibility instead of a range of possibilities, we need to map the fuzzy failure possibilities
to a crisp value known as the fuzzy failure possibility score (FFPS) through defuzzification. A number of
methods, e.g., the weighted average method, the centre of area method, mean max membership method,
the centre of maxima method, the mean of maxima method, centroid method, and so on are available to
perform the defuzzication operation [44, 48]. For simplicity, in this paper, we use the centre of area method
for defuzzification.
Defuzzication of a triangular fuzzy number, Ã = (a1, b1, c1) can be obtained using the following equation.

X =

∫
xµÃ(x)dx∫
µÃ(x)dx

=

∫
b1

a1

x− a1
b1 − a1

x dx+

∫
c1

b1

c1 − x
c1 − b1

x dx∫
b1

a1

x− a1
b1 − a1

dx+

∫
c1

b1

c1 − x
c1 − b1

dx

=
1

3
(a1 + b1 + c1) (21)

Using equation (21), we can obtain the top event possibility as a crisp value. However, in classical FTA,
the top event is quantified as a single probability value. So, we have to map the possibility value into a
probability value. Onisawa [49] has proposed a function to convert a crisp failure possibility value into a
probability value. Failure probability from failure possibility can be obtained as follows.

FP =


1

10K
, FFPS 6= 0,

0, FFPS = 0.
(22)

where FP is the failure probability, FFPS is fuzzy failure possibility score and

K =
( 1− FFPS

FFPS

)1

3 × 2.301 [49].

3.3. Fuzzy operators for TFT gates

Once the fuzzy failure possibilities of all the basic events are obtained, then we can use these values to
quantify the top event possibility. However, we first need to define the fuzzy operators for all the TFT gates.
One thing to note is that all the fuzzy operators for the TFT gates are defined for a continuous time domain
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and for exponential distribution of failure rates.

Fuzzy operator for the AND gate:
The outcome of an AND gate becomes true when all the input events are true. The output probability of
an AND gate with N inputs can be obtained as a probability of all N inputs occurring using equation (7).
Now, we do not have the probability values for the basic events, rather we have fuzzy possibility values for
the basic events. So, if the failure possibility of an event i is presented by a triangular fuzzy number as
Pi (t) = {ai (t) , bi (t) , ci (t)}, then the fuzzy operator for the AND gate for triangular representation of the
failure possibilities can be defined as:

PANDF = ANDF

{
P1(t), P2(t), · · · , PN (t)

}
=

N∏
i=1

Pi(t) =

{ N∏
i=1

ai(t),
N∏
i=1

bi(t),
N∏
i=1

ci(t)

}
(23)

Fuzzy operator for the OR gate:
The formula to probabilistically evaluate the OR gate with N statistically independent events is shown in
equation (8). This formula takes probability as input and returns probability as an output. In the absence
of the failure probability, if the failure possibility of an event i is presented by a triangular fuzzy number
as Pi (t) = {ai (t) , bi (t) , ci (t)}, then the OR gate fuzzy operator for the triangular representation of the
failure possibilities can be defined as:

PORF = ORF
(
P1(t), P2(t), · · · , PN (t)

)
= 1−

N∏
i=1

(
1− Pi(t)

)
=
(

1−
N∏
i=1

(
1− ai(t)

)
, 1−

N∏
i=1

(
1− bi(t)

)
, 1−

N∏
i=1

(
1− ci(t)

)) (24)

Formulae for probabilistic evaluation of the PAND and the POR gate are shown in equation (9) and (10)
respectively. As seen in these equations, to obtain probability of the PAND and the POR gate we need to
know the failure rate of components. However, at present we have the failure possibility of components in
the fuzzy form. So, we have to obtain the fuzzy failure rate of components from the fuzzy failure possibility
of the components. This can be done in two steps. In the first step, the fuzzy possibility will be converted
to failure probability (FP) using equation (22). In the second step, the failure rate can be obtained using
the following equation.

λ =
− ln(1− FP )

t
(25)

where λ is the failure rate and t is the mission time.

Fuzzy operator for the PAND gate:
If the failure rate of an event i is represented by a triangular fuzzy number as λi = (li,mi, ni), then using
equation (9) the fuzzy probability of the outcome of the PAND gate can be defined as:

PPANDF =

{
N∏
i=1

li

N∑
k=0

[
e(ukt)∏N

j=0
j 6=k

(uk − uj)

]
,
N∏
i=1

mi

N∑
k=0

[
e(ukt)∏N

j=0
j 6=k

(uk − uj)

]
,
N∏
i=1

ni

N∑
k=0

[
e(ukt)∏N

j=0
j 6=k

(uk − uj)

]}
(26)

Fuzzy operator for the POR gate:
If the failure rate of an event i is represented by a triangular fuzzy number as λi = (li,mi, ni), then using
equation (10) the fuzzy probability of the outcome of the POR gate can be defined as:

PPORF =

{
l1

(
1−

(
e−(

∑N
i=1 li)t

))
∑N
i=1 li

,
m1

(
1−

(
e−(

∑N
i=1mi)t

))
∑N
i=1mi

,
n1

(
1−

(
e−(

∑N
i=1 ni)t

))
∑N
i=1 ni

}
(27)
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We can see that the fuzzy operators for the Boolean gates use the failure possibility of events as input
and produce the output as fuzzy possibilities. On the other hand, the fuzzy operators for the temporal
gates use the fuzzy failure rate as input and produce the output as a fuzzy probability. As the top event is
represented as the logical OR of different MCSQs, we need to convert the fuzzy probability values obtained
by the temporal gates into fuzzy possibility value. Failure possibility from failure probability can be obtained
from equation (22) as follows:

FFPS =


1

1 +
( K

2.301

)3 , if FP 6= 0.

0, if FP = 0.

(28)

where FFPS is fuzzy failure possibility score, FP is failure probability, and K = log10

( 1

FP

)
.

3.4. Importance Measures

Importance measures determine the various contributions of basic or intermediate events to the occur-
rence of the top event or how a change in any of these events can affect the occurrence of the top event. This
information can be served as a useful source of data for resource allocation (upgrade, maintenance, etc.) and
helps stakeholders in improving system dependability (safety, reliability, availability etc.). In classical FTA,
Fussell-Vesely and Birnbaum importance measures [1] are widely used as a part of the quantitative analysis
based on the fixed failure rates of the components. In this section, a similar importance measure technique
is shown which is suitable to be applied to the systems having components with fuzzy failure data.

The evaluation of the contribution of different basic events to the top event probability is very important
in identifying the critical components. The importance measures used in the traditional probabilistic ap-
proaches are not applicable in the case of fuzzy set theory based approaches because in this case basic event
failure data is represented as fuzzy possibilities rather than crisp probabilities. So we have to define new
importance measures that are suitable for the fuzzy set theory based methodology. Different methodologies
(e.g., [13, 50, 22]) have already been proposed to quantify fuzzy importance measures.

In this paper, we calculate the fuzzy importance of a basic event by taking the difference between the
fuzzy top event possibilities with and without the presence of the basic event. Let P̃Ti=1 be the fuzzy failure
possibility of the top event with the basic event i fully unavailable, i.e., fuzzy possibility of the basic event
‘i’ is considered as {1, 1, 1}. On the other hand, P̃Ti=0 is the failure possibility of the top event when the
possibility of basic event ‘i’ is {0, 0, 0}, i.e., the basic event ‘i’ is fully available. In conventional approaches,
the Birnbaum importance is obtained by taking the difference between P̃Ti=1 and P̃Ti=0 where P̃Ti=1 and
P̃Ti=0 are crisp values . However, in this case, P̃Ti=1 and P̃Ti=0 are fuzzy numbers, hence, we need to
find distance between these numbers to find the fuzzy importance of a basic event. The distance between
two fuzzy numbers can be obtained using Euclidean or Hamming distance [51]. In this paper, we use the
Euclidean distance to obtain the distance between two fuzzy numbers. As a result, the fuzzy importance
measure (FIM) for a basic event ‘i’ is defined as:

FIM(Ei) = ED[P̃Ti=1, P̃Ti=0] (29)

where ED[P̃Ti=1, P̃Ti=0] is the Euclidean distance between P̃Ti=1 and P̃Ti=0.
If P̃Ti=1 = {a11, b11 , c11} and P̃Ti=0 = {a10, b10 , c10} then

FIM(Ei) = ED[P̃Ti=1, P̃Ti=0] =

√
(a11 − a10)2 + (b1

1 − b10)2 + (c11 − c10)2 (30)

Using the above equation, we can calculate importance measure for all the basic events and rank them in
accordance with their importance index. For two basic events Ei and Ej , if FIM(Ei) > FIM(Ej) then the
basic event Ei will have greater importance then the basic event Ej .
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4. Case Study and Evaluation

To show how the fuzzy temporal fault trees can be used to perform reliability analysis of dynamic systems,
we use the case study of a fault tolerant fuel distribution system of a ship, shown in Fig. 5.

Figure 5: Fault tolerant fuel distribution system of a ship

The system consists of:

1. Two identical fuel tanks to store fuel and they are connected to other system components using
polythene piping.

2. Three unidirectional fuel pumps to provide fuel to the engines from the tanks.

3. Four valves that can activate some paths or block some paths according to the requirements of the
system in different situations. These valves are software controlled.

4. Two flowmeters to measure the rate of fuel flow through the pipes and these measurements are used
in deciding the paths to activate and deactivate to maintain the proper fuel flow to the engines.

5. Two engines to provide thrust for the ship and are responsible for the manoeuvrability of the ship.

6. A central controller that controls different valves to activate and deactivate different paths to maintain
the proper fuel flow to the engines.

Under normal operating conditions, there are two primary fuel flows: Engine 1 receives fuel from Tank
1 through Pump 1 (P1), and Engine 2 receives fuel from Tank 2 through Pump 2 (P2). Pump 3 (P3) is
a standby pump which can take over the task of P1 or P2 in case one of them fails. Flowmeters F1 and
F2 monitor the rate of fuel flow to the Engine 1 and 2 respectively, and provide sensory information to the
Controller. In the presence of failure, if insufficient fuel flow to either of the engines is detected, then the
Controller introduces dynamic behaviour to this system by activating the standby pump and redirecting
the fuel flow accordingly through the valves V1 - V4. For instance, if insufficient fuel flow to Engine 1 is
detected, then the Controller can activate P3 and open valves V1 and V3, and thus maintain fuel flow to
Engine 1 through P3 instead of P1. On the other hand, if insufficient fuel flow to the Engine 2 is detected,
then the Controller will activate P3 and open valve V2 and V4 instead. So, we can see that P3 can take
over the task of either P1 or P2, but not both. A failure of both P1 and P2 will result in at least one engine
being starved of fuel. For example, if P1 fails and P3 replaces it, then P3 is no longer available to replace
P2 if that pump also fails. This results in degraded propulsion functionality for the vessel, as speed and
manoeuvrability will be reduced, and may result in grounding or a collision.

4.1. Qualitative analysis of the system to generate TFT

To be able to perform the quantitative analysis, the qualitative information about the failure behaviour
of the system must be obtained. Pandora temporal gates can be used to model the dynamic behaviour of
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the above mentioned system and helps to correctly capture the sequences of events that can lead to failure.
For simplicity, internal failure of the engines themselves and the failure of the tanks are left out of the
scope of this analysis. The Pandora temporal fault tree for the failure behaviour of the fault tolerant fuel
distribution system was constructed via model-based synthesis from Pandora descriptions of local failure
logic of the components. Failure modes of the different components of the systems are abbreviated and
shown in Table 2. At the top level, the causes of omission of fuel to Engine1 and 2 can be expressed using

Table 2: List of Basic Events for the fuel distribution system

Basic Events Description

P1 Failure of Pump 1

P2 Failure of Pump 2

P3 Failure of Pump 3

V1 Failure of Valve 1 (e.g. blockage or stuck closed)

V2 Failure of Valve 2 (e.g. blockage or stuck closed)

V3 Failure of Valve 3 (e.g. blockage or stuck closed)

V4 Failure of Valve 4 (e.g. blockage or stuck closed)

E1 Omission of fuel to Engine 1

E2 Omission of fuel to Engine 2

S1 Failure of Flowmeter sensor 1 (e.g. sensor readings stuck high)

S2 Failure of Flowmeter sensor 2 (e.g. sensor readings stuck high)

CF Failure of Controller

temporal gates as follows:

E1 = ((O-Pump1 o O-Pump2)∧ O-Valve3) ∨ (O-Pump2 C O-Pump1) ∨(O-Pump2 & O-Pump1)

E2 = ((O-Pump2 o O-Pump1)∧ O-Valve4) ∨ (O-Pump1 C O-Pump2) ∨(O-Pump1 & O-Pump2)

As E1 and E2 are caused by the same events in the opposite sequences, we focus on the failure behaviour of
Engine 1. Omission of fuel to Engine1 (E1) has three possible causes, depending on the sequence of events:

1. If there is no fuel from Pump1 (O-Pump1), then Pump3 replaces it, as long as Pump2 has not failed
first; this precondition can be represented using the POR gate. Thus in this situation, an omission of
fuel can be caused by omission of fuel from both Pump1 and Pump3 (via Valve3).

2. If Pump2 fails first, then Pump3 replaces it and will be unavailable to replace Pump1 if it also
fails. Thus sequential failure of Pump2 and then Pump1 will lead to an omission of fuel to Engine1
(represented using the PAND gate).

3. If both Pump2 and Pump1 fail at the same time (represented with the SAND gate), then Pump3 can
only replace one of them. Behaviour in this situation is non-deterministic (as Pump3 may replace
either Pump1 or Pump2, but not both), and thus as a pessimistic estimation, simultaneous failure of
Pump1 and Pump2 is given as a cause of failure for both engines.

Following the process outlined in [52], the expanded fault tree expressions for the failure of Engine 1 can be
derived as:

E1 = (P1∨P1oP2oCFoV1)o (P2∨P2oP1oCFoV2)∧(V3 ∨ P3 ∨ (V1CP1oP2oCF) ∨ (V1&P1oP2 oCF) ∨ (S1CP1oP2)
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∨ (CFCP1oP2) ∨ (S1&P1oP2) ∨ (CF&P1oP2) ∨ (V2CP2oP1oCF) ∨ (V2&P2oP1oCF) ∨ (S2CP2oP1) ∨
(CFCP2oP1) ∨ (S2&P2oP1) ∨ (CF&P2oP1)) ∨ (P2∨P2oP1oCFoV2)C (P1∨P1oP2oCFoV1) ∨ (P2∨P2oP1oCFoV2)
&(P1∨P1oP2oCFoV1)

After minimising the above expressions using Pandora temporal laws, the resulting minimal cut sequences
to cause the failure of Engine 1 are shown in Table 3.

Table 3: Minimal Cut Sequences to cause the failure of Engine 1

Minimal Cut Sequence Description

(P1 o P2) ∧ P3 Failure of Pump 1 before Pump 2 (if Pump 2 fails at all) and Pump 3

(P1 o P2) ∧ V 1 Failure of Pump 1 before Pump 2 (if Pump 2 fails at all) and Valve 1

(P1 o P2) ∧ V 3 Failure of Pump 1 before Pump 2 (if Pump 2 fails at all) and Valve 3

(S1 C P1) o P2
Failure of Flowmeter 1 before Pump 1, as long as Pump 2 has not

failed yet

(S1&P1) o P2
Simultaneous failure of Flowmeter 1 and Pump 1, as long as Pump 2 has

not failed yet

(CF C P1) o P2 Failure of Controller before Pump 1, as long as Pump 2 has not failed yet

(CF&P1) o P2
Simultaneous failure of Controller and Pump 1, as long as Pump 2 has

not failed yet

P2 C P1 Failure of Pump 2 before Pump 1

P1&P2 Simultaneous failure of both Pump 1 and Pump 2

As mentioned earlier, it is assumed that all events are independent and the probability of two independent
events occurring at the same time is effectively 0, therefore MCSQs consisting of SAND gate will not
be considered during the quantitative analysis. Thus for this example system, minimal cut sequences
(S1&P1) oP2 , (CF&P1) oP2 and P1&P2 are not considered further. Without these MCSQs the graphical
representation of the temporal fault tree of the failure behaviour of Engine 1 is shown in Figure 6.

4.2. Quantitative evaluation of the system reliability

In this paper, to illustrate the idea of using fuzzy temporal fault tree analysis to evaluate system reliability,
triangular fuzzy numbers are used to represent the failure possibility of basic events. The mission time of
the system is considered to be 10000 hours. That means, at the end of the analysis, we will obtain the fuzzy
possibility and overall probability of the system failure after 10000 hours. Due to the vagueness of the failure
rate data of the basic events, experts’ linguistic judgements are used to quantify the failure possibilities of
the basic events. For this study, a group of six experts is constituted to provide their opinion regarding
the failure possibility of the basic events and they are provided with different system related information,
e.g. mission time and system architecture. The weighting score and weighting factor of the chosen experts
are calculated by using Table 1 and shown in Table 4. Note that this scheme is used here for illustration
purposes; other schemes are also possible and can be adjusted to account for opinions that carry higher
weights because they are based on a stronger, more explicit and objective rationale if available. For example
an expert may have consulted published reliability databases of similar components.

In order to obtain the experts’ opinions about the failure possibilities of the basic events as linguistic
terms, seven levels of qualitative linguistic terms, i.e., Very Low (VL), Low (L), Fairly Low (FL), Medium
(M), Fairly High (FH), High (H), and Very High (VH) are defined (see Table 5). The conversion scale of
the linguistic terms to the fuzzy numbers are obtained using the methodology shown in [24].
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Figure 6: Temporal Fault Tree of failure behaviour of Engine 1

The opinions of the different experts regarding the failure possibility of the basic events are shown in
Table 6. As the experts are different and have different backgrounds and experiences, their opinions can
vary widely from one basic event to another. These variations are accounted for by the weighting process
so there is no need to discount particular values. It is therefore necessary to aggregate the results to obtain
an agreement among the conflicted views of the experts. Using the methodology shown in section 3.1.2, the
experts’ opinions are aggregated to obtain a single consensus about the failure possibility of basic events.
These aggregated results are shown in Table 7.

Now, from the qualitative analysis, we have the minimal cut sequences that are necessary and sufficient
to cause the system failure, i.e., no fuel to Engine 1 in this case. From the expert opinions we have the fuzzy
failure possibilities of the basic events in the triangular fuzzy form. Therefore, we can quantify the minimal
cut sequences using the values from Table 7 and the fuzzy operators defined in section 3.3. The results of
quantification of the minimal cut sequences are shown in Table 8.

Using equation (24) and the fuzzy possibilities of the MCSQs from Table 8, the fuzzy possibility of the
top event (no fuel to Engine 1) is obtained, which is also a triangular fuzzy number: (0.877, 0.952, 0.989).
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Table 4: Weighting factors of six experts

Expert
Professional

position
Experience (years)

Educational

qualification
Weighting score Weighting factor

E1 Professor ≥ 20 PhD 15 0.241935

E2 Asst. Professor 10 to 14 PhD 12 0.193548

E3 Engineer 5 to 9 M.Tech 10 0.161290

E4 Manager 15 to 19 MSc 12 0.193548

E5 Operator < 5 Diploma 5 0.080645

E6 Technician 5 to 9 B.Tech 8 0.129032

Table 5: Linguistic variables with conversion scales

Linguistic Variables
Triangular fuzzy numbers

A B C

Very Low (VL) 0 0.04 0.08

Low (L) 0.07 0.13 0.19

Fairly Low (FL) 0.17 0.27 0.37

Medium (M) 0.35 0.50 0.65

Fairly High (FH) 0.62 0.73 0.82

High (H) 0.81 0.87 0.93

Very High(VH) 0.92 0.96 1.0

Table 6: Expert Opinions on the Basic events

Basic Events
Experts Opinion

E1 E2 E3 E4 E5 E6

P1 H FH H M H M

P2 H FH H M H M

P3 H H VH H VH H

V1 FH M FH H VH M

V3 M FH H FL H M

S1 FH M H H M FH

CF FL FH FL FH M L

This fuzzy possibility of the top event can be mapped to a crisp value using the equation (21), and the
value calculated by equation (21) is 0.939. So, 0.939 represents the most likely possibility of the system
failure after 10000 hours. This value belongs to the set Very High (VH) with 47.5% membership, which
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Table 7: Aggregation of expert opinion in triangular fuzzy form for the basic events

Basic Events
Triangular Fuzzy Number

A B C

P1 0.660 0.750 0.839

P2 0.660 0.750 0.839

P3 0.831 0.887 0.943

V1 0.540 0.659 0.768

V3 0.529 0.637 0.743

S1 0.603 0.708 0.806

CF 0.369 0.473 0.568

Table 8: Fuzzy possibilities of the MCSQs for omission of fuel to engine 1

Set
Minimal Cut Sequences (MCSQs)

(P1 o P2) ∧ P3 (P1 o P2) ∧ V 1 (P1 o P2) ∧ V 3 (S1 C P1) o P2 (CF C P1) o P2 P2 C P1

A 0.548 0.356 0.349 0.146 0.094 0.161

B 0.663 0.493 0.476 0.205 0.134 0.222

C 0.788 0.642 0.621 0.296 0.189 0.321

provides a good insight about the reliability of the system. To be able to compare this value with the values
produced by other probability based TFT quantification approaches, we need to convert this value into
a probability value. The value is converted to a probability value using the equation (22), and the value
obtained is 0.119. So the probability of the system failure after 10000 hours is estimated to be 0.119.

For comparison purposes, these results can be contrasted against the results from various established
approaches that make use of statistical failure data. The TFT of the same case study is evaluated based
on fixed failure rates of components using an analytical approach [7], a Bayesian Network (BN) based
method [8] and a Petri Net (PN) based method [53], all considering mission time as 10000 hours. The
crisp failure rate values used by the above mentioned approaches are shown in Table 9 [7] and the system
unreliability values estimated by the approaches are shown in Table 10. As the analytical and the Petri Net
approaches both model time as continuous, these approaches produced a single value. On the other hand,
the Bayesian Network based approach divides the time into n equal intervals and therefore the table shows
system unreliability values for different numbers of intervals. The value of n must be at least equal to the
maximum order of the minimal cut sequences. The order of a minimal cut sequence (MCSQ) is the number
of basic events contribute to that MCSQ. The Difference column of Table 10 shows with what percentage the
value estimated by the proposed fuzzy approach deviates from the values estimated by the other approaches.

Although there are some small differences between the value estimated by the proposed fuzzy method
and the values estimated by other probability based methods, the important thing to note that the fuzzy
temporal fault tree analysis enables the analysts to perform reliability analysis of dynamic systems in the
presence of uncertain failure rate data of system components while still yielding a reasonably useful result.

In particular, one important aspect of quantitative reliability analysis of system designs is to identify the
critical components so that the designers can decide where to focus their efforts on those parts of the system
that require most improvement to satisfy the requirements, e.g., by applying fault tolerance strategies. The
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Table 9: Fixed failure rate values used in Analytical, BN based and PN based approaches

Basic Events Failure rate/hour(λ)

P1 3.2 E-5

P2 3.2 E-5

P3 3.2 E-5

V1 1.0 E-5

V3 6.0 E-6

S1 2.5 E-6

CF 5.0 E-7

Table 10: Comparison of system unreliability estimated by other approaches with the unreliability estimated by the proposed
approach

Approaches Unreliability

Unreliability

estimated by the

proposed approach

Difference

Analytical 0.135 11.85% lower

Petri Net Based 0.117 1.71% higher

Bayesian Network Based

with 3 intervals 0.111 7.21% higher

with 4 intervals 0.116 2.59% higher

with 5 intervals 0.119 0.119 same

with 6 intervals 0.121 1.65% lower

with 7 intervals 0.122 2.46% lower

with 8 intervals 0.123 3.25% lower

with 9 intervals 0.124 4.03% lower

with 10 intervals 0.124 4.03% lower

fuzzy importance measures of the fuel system components are calculated according to the method shown in
section 3.4.

The components are ranked according to their contribution to the occurrence of the top event (system
failure) and the results are shown in Table 11. As seen in the table, for the condition no fuel to Engine 1,
the most critical component is Pump 1 (P1) and the least critical component is the Pump 2 (P2). Next
most important are the Pump 3 (P3) and Valve 1 (V1).

5. Conclusion

Although FTA is a highly successful and widely-used technique for dependability analysis, it does have
a number of shortcomings, such as an inability to capture sequential failure behaviour. Extensions have
been proposed to address some of these issues, such as DFTs and Pandora, and thereby allowing qualitative
and/or quantitative analysis of sequential failure logic in fault trees.
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Table 11: Fuzzy importance ranking for the basic events

Basic Events (E) FIM (E) Rank

P1 1.722 1

P3 0.213 2

V1 0.147 3

V3 0.145 4

S1 0.103 5

CF 0.097 6

P2 0.018 7

In this paper, we presented a method to combine expert elicitation and fuzzy set theory with temporal
fault tree analysis using Pandora to enable reliability evaluation of dynamic systems with uncertain failure
probability data. Use of fuzzy set theory and elicitation of expert judgement, which is often provided in
natural language, can more explicitly highlight areas of uncertainty in the data. The effectiveness of the
proposed method has been evaluated by applying it to a case study and by comparing the results with
the results estimated by other existing temporal fault tree quantification methods. The results show that
the proposed fuzzy temporal fault tree analysis offers a useful way of evaluating the reliability of dynamic
systems when statistical quantitative failure data are unavailable or insufficient.

It is important to emphasise that the results can only be as reliable as the input data, and the inclusion
of fuzzy data cannot create accuracy where none previously existed. However our approach of channelling
expert judgement and capturing it into a formal approach that uses fuzzy sets will yield at least some
estimate of reliability in situations where when failure distribution data are unavailable and therefore any
estimation using classical techniques is impossible. Techniques such as importance measures also allow
analysts to see the relative contribution of different system elements to the overall failure without relying
on an accurate estimation of the system failure probability. In this way, the fuzzy approach enables us to
draw helpful conclusions about the failure behaviour of the system even in the absence of concrete failure
data, supporting an iterative design process by guiding the focus of future development on the most critical
areas of the system architecture.

As a further development to Pandora, the work described in this paper contributes to one of a few
techniques that define the state-of-the-art in the area of dynamic fault tree analysis. Furthermore Pandora
is part of an innovative and mature body of work on model-based safety analysis which has resulted to
commercial tools for analysis and optimisations of systems including the HiP-HOPS [54] and Safety Designer
[55] tools. In that sense, the work has the potential to contribute to the industrial state-of-practice in this
area.

Although the proposed approach can address the problem of unavailability of failure data, its application
presently contains an assumption of exponentially distributed failure probability for components. Therefore,
in future, it is worth trying to explore alternative options to allow assumption of other failure distributions
in the quantification process. One potential option is to extend this work by defining the fuzzy operators
for non-exponentially distributed data by modifying the operators defined in this paper. Another option
would be to incorporate uncertainty aspect of failure data in the Bayesian Network based approach which is
capable of performing system analysis with both exponentially and non-exponentially distributed data. In
future, we hope to extend this work by looking at how the system unreliability estimated by the proposed
approach be affected by the different choices of membership functions, weighting scores, expert opinions,
etc.
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