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Calix[3]benzofurans have been synthesized by a modified TosMIC coupling reaction, followed by acid 

treatment and an intramolecular cyclization reaction with TMSI (trimethylsilyl iodide); X-ray analysis 

established the structures of two samples, both showing a cone conformation. 1H NMR spectroscopic 

analyses of the calix[3]benzofurans reveal that they can adopt drastically different conformations in 

solution and undergo very fast conformational changes relative to the NMR time scale. 

Calix[3]benzofuran 4a exists as two conformers, namely the cone and saddle forms, in a ratio of 83:17 at 

-50 °C. A series of calix[3]benzofuran derivatives was synthesized by electrophilic aromatic 

substitutions, such as bromination, formylation and acylation, to investigate the influence of the 

substituents on the conformations of the calix[3]benzofurans. 1H NMR spectral analyses of the acyl 

derivatives at room temperature indicated that these macrocycles exist as a mixture of two isomers that 

are slowly interconverted on the 

1

H NMR timescale. The conformational isomers of the 

calix[3]benzofurans and their derivatives obtained from DFT methods (based on the crystal structure 

analysis results) were used to estimate the total energies of the different conformations. 

Introduction 

The design and synthesis of medium and larger sized ring systems is 

an area of current interest in supramolecular chemistry.1 In 

particular, macrocycles containing aromatic groups represent a vital 

class of synthetic receptors in molecular recognition due to the 

hydrophobicity and π-stacking interactions of their aromatic groups.2 

Calixarenes and their analogues are receiving considerable attention 

because of their design possibilities as host molecules in 

supramolecular chemistry.3 One of the characteristic properties of 

calixarenes is conformational variety.4 By using this variety and 

design possibilities, calixarenes and their analogues can be useful as 

basic skeletons for molecular device units in molecular 

nanotechnology.5  

     Calix[3]benzofurans are calixarene derivatives in which the 

benzene rings have been replaced by benzofuran rings. Among the 

arenofurans, benzofurans are very interesting O–heterocycles and 

numerous synthetic methods have been developed for their 

preparation.7–10 A major route for the synthesis of various arene ring-

fused furan derivatives is the intramolecular formation of a furan 

moiety starting from properly substituted arene compounds via 

dehydrative cyclization of a carbonyl group.6–11 The Prins cyclization 

reaction which generally involves a reaction between an aldehyde 

and a homoallylic alcohol promoted by acid is important for the 

construction of oxygen-containing heterocyclic units.12 Many 

reactions have utilized upper/lower rim modification for the 

synthesis of new functionalized calixarenes.13 Biali and co-workers 

have synthesized an interesting series of molecules, namely 

"bis(spirodienones)" prepared by the intramolecular oxidative 

cyclization through the phenolic hydroxyls of calix[4]arene.14 Black 

and co-workers reported for the first time that some activated 

benzofuranylmethanols undergo acid-catalyzed cyclo-

oligomerisation via electrophilic reactions to afford a range of 

calix[3]benzofurans and calix[4]benzofurans having π-electron rich 

cavities.15 Although there have been extensive studies of 

calix[4]arenes over the last few decades,16 reports on the preparation 

and characterization of calix[3]arenes have been very limited.15 
However, the synthetic potential of these molecules for the design of 

new macrostructures based on their structural features viz. calixarene 

analogues of metacyclophanes containing benzofuran rings linked by 

methylene bridges and DFT computational studies thereof, remains 

mostly unexplored. There are very few reports of DFT 

computational studies of calixarene analogues. Choe et al have 

reported DFT calculations on the conformational characteristics and 

hydrogen bonding of both p-tert-butylcalix[4]arene and p-tert-

butylcalix[5]arene using the B3LYP/6-31+G(d,p) method.17 

     In our laboratory, we are now focusing on synthesizing 

calixarene-type metacyclophanes, with particular interest in their 

conformations and potential application.18 The first objective of this 

research is to synthesize the calix[3]benzofurans and their 

derivatives by electrophilic substitution reactions such as 

bromination, formylation and acylation with a view to investigating 

their conformational properties. The second objective is to determine 

the energy of different conformational isomers of the calix[3]- 

benzofurans and derivatives using DFT computational studies. 

Results and Discussion 
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Scheme 1 Synthesis of 9,18,27-trimethoxy[3.3.3]MCP-2,11,20-triones 
2. 

The synthetic routes and yields of [3.3.3]MCP-2,11,20-triones 2a–b 

are shown in Scheme 1. The direct coupling reaction of (p-

tolylsulfonyl)methyl isocyanide (TosMIC) with 1a–b in the presence 

of NaH, followed by acid treatment, afforded the tri-ketones 2a–b 

along with the dimers anti/syn-[3.3]MCP-2,11-diones 3a–b, 

respectively.19 In general, a mixture of TosMIC and 1a–b in N,N-

dimethylformamide (DMF) was added dropwise to a suspension of 

NaH in DMF at room temperature. 6,15,24-Tri-tert-butyl-9,18,27-

trimethoxy[3.3.3]MCP-2,11,20-trione 2a has been reported 

previously (Scheme 1).19c The structure of 9,18,27-trimethoxy 
[3.3.3]MCP-2,11,20-trione 2b was elucidated by elemental analysis 

and spectral data. For instance, the mass spectral data for 2b (M+ = 

486.23) strongly supported a cyclic trimeric structure. The IR 

spectrum of 2b shows the absorption of the carbonyl stretching 

vibration at around 1716 cm−1. The 1H NMR spectrum of 

macrocycle 2b exhibits two single peaks at δ 3.28 and 3.63 ppm for 

the methoxy protons and the ArCH2COCH2Ar methylene protons.  

     The cyclization of ketones 2a–b with phenolic hydroxyl groups 

produced by treatment with TMSI (generated in situ from TMSCl 

and NaI in CH3CN) led to the formation of the furan moiety instead 

of the expected product 4′ (Scheme 2). Thus nucleophilic 

intramolecular cyclization of intermediate 4′ afforded the calix[3]- 

benzofurans, 4a and 5a (Scheme 3). Sawada and co-workers have 

reported hemisphere-shaped calixarene analogues via a single step 

reaction involving a pinacol rearrangement followed by an 

intramolecular acetalization from tetrahydroxy-tetramethoxy- 

[2.1.2.1]MCP.20 1H NMR spectroscopy demonstrates that calix[3]- 

benzofurans 4a and 5a adopt radically different conformations in 

solution at room temperature and undergo very fast conformational 

changes relative to the NMR time scale. To establish the 

conformation of 4a, we carried out variable temperature (VT) NMR 

spectroscopy over the range -50 °C to +70 °C (Fig. 1).   

Scheme 2 Synthesis of calix[3]benzofurans 4a and 5a. 

Scheme 3 Mechanism for formation of furan moiety. 

The 1H NMR spectrum at -50 °C suggests that the two conformers 

cone and saddle of calix[3]benzofuran 4a exist in a ratio of 83:17. 

The interconversion of the conformational structures in solution are 

readily studied by variable-temperature 1H NMR spectroscopic 

techniques by simply monitoring the change in the signals of the 

bridging methylene protons.2b The cone conformation was assigned 

by the observation of a set of doublets for the methylene protons at 

δ 4.1 and 4.7 ppm, whereas for the saddle, the methylene protons 

appear as a singlet at δ 4.2 at -50 °C (Fig. 1). The bridging 

methylene protons are in different chemical environments (axial and 

equatorial), but quickly interconvert on the NMR time scale at room 

temperature and appear as a singlet or broad peak.  

Fig. 1 Partial VT-NMR spectra of 6,14,22-tri-tert-butylcalix[3]- 

benzofuran 4a in CDCl3. 

50 °C

20 °C

-20 °C

-50 °C

cone = saddle =

7 5 4

cone saddle
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Fig. 2 Ortep drawing of 4a. Thermal ellipsoids are drawn at the 50 % 

probability level. All hydrogen atoms are omitted for clarity. 

When the temperature is dropped sufficiently, the conformation 

becomes more rigid and the interconversion is slower than NMR 

time scale, which causes the CH2 signal to resolve into a pair of 

doublets. Single crystals of 4a (CCDC-1456536) were grown from a 

hexane solution, and were investigated by X-ray crystallography to 

confirm the conformation; the crystal structure was found to belong 

to the trigonal crystal system with space group R-3 (SI Table S1). 

Although calix[3]benzofuran 4a forms drastically different 

conformations in solution at room temperature, it adopts a rigid cone 

type hemisphere shaped symmetrical structure in the solid state (Fig. 

2). 

Scheme 4 Reagents and conditions: (a) BTMA Br3, CH2Cl2, r.t. 24 h, 

52 %; (b) Cl2CHOCH3, TiCl4, CH2Cl2, r.t. 3 h, 49 %; (c) NaBH4, 

EtOH/CH2Cl2, reflux 24 h, 55 %; (d) AcCl, TiCl4, CH2Cl2, r.t. 3 h, 48 

%. 

Fig. 3 Partial VT-NMR of 4,12,20-tribromo-6,14,22-tri-tert-butyl-

calix[3]benzofuran 4b in CDCl3 (300 MHz).  

Thus, it freely interconverts between the cone and saddle 

conformations in solution. Since the conformation of 

calix[3]benzofuran is not clear at room temperature in solution 

where both the cone and saddle conformation exist, to investigate 

further the detailed conformational structure, a series of electrophilic 

substitution reactions was carried out, such as bromination, 

formylation and acetylation, at the furan moieties (Scheme 4).  

     To investigate the substituent effects on the conformation, we 

commenced our study by bromination of 6,14,22-tri-tert-butylcalix- 

[3]benzofuran 4a with benzyltrimethylammonium tribromide 

(BTMA-Br3) in CH2Cl2 at room temperature, which afforded only 

the rigid cone-4,12,20-tri-bromo-6,14,22-tri-tert-butylcalix[3]benzo- 

furan 4b. Two broad single peaks at δ 4.24 and 4.60 ppm in the 1H 

NMR (CDCl3, 400 MHz) spectrum were evidence for the formation 

of the fixed cone type conformer in solution at room temperature (SI, 

Fig. S9). However at 10 °C, the two broad peaks split into two 

clearly defined doublets established the formation of the cone 

conformation (Fig. 3). The structure of the macrocycle 4b was 

confirmed by single-crystal X-ray analysis (CCDC-1456535) and an 

ORTEP drawing is shown in Fig. 4. The analysis shows the well-

defined calixarene molecule lying around a threefold symmetry axis 

with, on one side, a CHCl3 solvent molecule (also on the symmetry 

axis and well-defined) and, on the other side, a complex ring 

structure, presumably of a disordered array of methanol molecules; 

in this region, 50 atoms have been refined as isotropic carbon atoms 

mostly with site occupancies of 0.5, about a point of -3 symmetry. 

Formylation of 6,14,22-tri-tert-butylcalix[3]benzofuran 4a with 

1,1-dichlorodimethyl ether in the presence of TiCl4 at room 

temperature afforded 6,14,22-tri-tert-butyl-4,12,20-triformylcalix[3]- 

benzofuran 4c. On replacement of bromine by a more electron 

withdrawing group (-CHO) at the furan moiety, it is seen that the 

conformation of 4c in solution at room temperature underwent very 

fast changes relative to the 1H NMR timescale and gave a broad peak 

for bridging methylene protons at δ 4.59 ppm (SI, Fig. S11), 

consistent with an equilibrium existing between the cone and the 

saddle conformations. However at low temperature (-30 °C), the 

isomerization between cone and saddle is slow and the saddle is the 

major conformation in solution (Table 1). Thus, different 

conformational properties of 6,14,22-tri-tert-butylcalix[3]benzofuran 

4a were observed upon changing the group at the furan moiety. 

We then introduced the medium-sized CH2OH group by reduction of  

Top view 

Side view 

8 7 6 5 4

10 °C 

28 °C 

45 °C 

75 °C 

Bridging -CH2- = Ar-H = 



Fig. 4  Ortep drawing of 4b. Thermal ellipsoids in the top view are 

drawn at the 50 % probability level and those in the side view at 30 %. 

In both views, the cluster of disordered solvent methanol molecules has 

been omitted. 

4c with NaBH4, which afforded 6,14,22-tri-tert-butyl-4,12,20-

trihydroxymethylcalix[3]benzofuran 4d. The CH2OH group has no 

significant electron withdrawing power and it is surprising that the 

conformation of the 6,14,22-tri-tert-butyl-4,12,20-trihydroxymethyl-

calix[3]benzofuran 4d dramatically converted to a fixed cone 

conformation as in compound 4b. The bridging methylene groups 

appear as broad singlets and gives peaks at δ 4.22 and 4.66 ppm (SI, 

Fig. S13).  

Table 1. Influence of substituents on the conformation of 
benzofurans.   

Compound Tc (°C) ∆G‡ (kJ mol-l) 
cone:saddle 

(-30 °C) 

4a; X = H 40a 61.9 (J = 14.8 Hz) 80:20 

4b; X = Br 45a 62.8 (J = 14.4 Hz) 100:0 

4c; X = CHO 28a 58.6 (J = 13.5 Hz) 40:60 

4d; X = CH2OH 50a 68.2 (J = 14.4 Hz) 100:0 

4e; X = COMe 75b 69.0 (J = 13.2 Hz) 20:80 

a Solvent: CDCl3; 
b Solvent: CDBr3. (300 MHz) 

Bromine is electron withdrawing in nature, but the multiple lone-

pairs of electrons are able to increase electron density at the furan 

moiety and fix the conformation of 4b to the cone conformation. 

Although the -CH2OH group has less electron withdrawing power 

than the formyl group (-CHO), the alcohol group (-CH2OH) is 

slightly larger, and so steric effects come into play and the molecule 

is generally locked in one conformation i.e. stabilization of the ring 

occurs. Thus, both the electron withdrawing ability and the steric 

hindrance play a significant role on the conformational preferences 

of calix[3]benzofuran derivatives. With these results in hand, we 

elaborated our study by introducing the larger acyl-group (-COMe), 

which has less electron withdrawing ability than CHO, but is larger 

than CH2OH, in order to investigate the effects on the conformation 

of the calix[3]benzofuran derivatives. Treatment of 6,14,22-tri-tert-

butylcalix[3]benzofuran 4a with acetyl chloride in the presence of 

TiCl4 at room temperature afforded 4,12,20-triacetyl-6,14,22-tri-tert-

butylcalix[3]benzofuran 4e. 
  1H NMR spectral analyses of the acylation derivatives indicate 

that these macrocycles exist as a mixture of two conformers that 

slowly interconvert on the 1H NMR timescale. This is evident from 

the two distinct 1H signals observed for the bridging methylene 

protons that appear as two sets of doublets at δ 4.62 and 4.49 ppm 

for the cone conformation and a single peak at δ 4.55 ppm for the 

saddle conformation (SI, Fig. S15). In this case, the acyl group (-

COMe) makes the furan ring electron deficient as in the case of the 

formyl group (-CHO), but due to the larger size of the acyl group (-

COMe), it is possible that steric hindrance prevents complete rapid 

isomerization at room temperature in solution. At -30 °C, the 

isomerization between cone and saddle is very slow and the major 

conformation is saddle (Table 1); a similar result was observed for 

the electron withdrawing formyl derivative of calixbenzofuran 4c. 

So, both electronic and steric effects of the substituents can play a 

significant role on the conformation of calix[3]benzofuran 

derivatives and can lead to interesting conformational changes in 

solution. In view of the encouraging results in conformational 

changes obtained by electrophilic substitution reactions of 4a, we 

extended our studies towards the calix[3]benzofuran 5a. 
     Similar types of phenomena were observed when calix[3]- 

benzofuran 5a was reacted with acetyl chloride at room temperature 

in the presence of TiCl4; the product was 4,12,20-triacetylcalix[3]- 

benzofuran 5b (Scheme 5). 1H NMR (SI, Fig. S17) spectroscopic 

analysis of 5b indicates that this macrocycle also exists as a mixture 

of two conformers that are slow to interconvert on the 1H NMR 

timescale at room temperature. This is evident by two distinct 

signals observed for the bridging methylene protons that appear as 

two doublets at δ 4.68 and 4.99 ppm for the cone conformer and a 

single peak at δ 4.58 ppm for the saddle conformation (SI, Fig. S17). 

Acylation of macrocycle 5a indicates that the furan ring in 

benzofuran is electron rich and electrophilic substitution occurs 

preferentially in this ring rather than the benzene ring and that the 

tert-butyl groups have no significant effect on the conformation of 

calix[3]benzofuran.  

Scheme 5 Acetylation of calix[3]benzofuran 5a.

Top view 

Side view 
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Fig. 5 DFT B3LYP/6-31G(d) optimized molecular structures of the 

cone (left) and saddle (right) of (i) 4a, (ii) 4b, (iii) 4c, (iv) 4d and (v) 4e 

in CHCl3 solvent. 

It is important to emphasize that all the synthesized calix[3]- 

benzofuran derivatives gave only two sets of distinct proton 

Fig. 6 DFT B3LYP/6-31G(d) optimized molecular structures of the 

cone (left) and saddle (right) of (i) 5a and (ii) 5b in CHCl3 solvent. 

resonances in their 1H NMR spectra for the methylene bridge. The 
1H NMR spectra indicated clearly that 4d adopts a shape-persistent 

cone conformation, whereas 4c derivatives exist as equilibrium 

mixtures in which various conformers (cone and saddle) undergo 

rapid interconversion relative to the 1H NMR time scale evident by a 

broad peak at δ 4.59 ppm. However, 4e underwent very slow 

interconversion relative to the 1H NMR time scale giving two sets of 

doublets at δ 4.62 and 4.49 ppm for the cone conformation and a 

single peak at δ 4.55 ppm for the saddle conformation.  

 The conformations of the present system have also been 

evaluated by means of dynamic 1H NMR spectroscopy. By 

observation of the resonances arising from the ArCH2Ar methylene 

protons, the coalescence temperatures (Tc) and free energy barriers 

(∆G‡) have been estimated (Table 1). This behavior indicates that the 

rate of conformational ring flipping of these macrocycles is faster 

than the NMR time scale above this temperature (Tc). Density 

functional theory (DFT) computational studies were carried out to 

determine the geometry-optimized energies of all the synthesized 

calix[3]benzofurans 4a–e and 5a–b (SI Table S2 and Table S3). The 

starting structures were generated with initial geometries based upon 

the X-ray structures of 4a and 4b and from the presumed structures 

of 4c–4d (derived from cone-4a and cone-4b) and 5a–b using 

SpartanPro'10 with the MMFF94 method.22 The individual 

geometry-optimized structures of these molecules in both CHCl3

solvent (Fig. 5 and Fig. 6) and in the gas phase were optimized using 

Gaussian 09 with the B3LYP level of theory and the 6-31G(d) basis 

set.23 The computed energies of the two distinct conformers and their 

energy differences (∆E, kJ mol-1), are listed in Tables 2 and 3 (and 

SI Tables S2 and S3). From the DFT-optimized B3LYP/6-31G(d) 

computed energies of all of the synthesized calix[3]benzofurans 4a–e 

and 5a–b, it is seen that both the cone and saddle-conformations 

have lower ground-state energies in the solvent system than in the 

gas phase (Table 3). Furthermore, the DFT optimized B3LYP/6-

31G(d) energies of tert-butylcalix[3]- benzofurans 4a and derivatives 

4b–e, suggest that the saddle conformer is energetically more stable 

than the cone isomer (Table 3). Although 4a and 4b adopt cone 

conformations in the solid state (Fig. 2 & 3), the DFT optimized 

B3LYP/6-31G(d) energies of these two conformers imply that the 

saddle conformers of 4a and 4b are –4 and –35 kJ mol-1, more stable 

cone-4a saddle-4a 

cone-4c 
saddle-4c 

cone-4b saddle-4b 

saddle-4d 
cone-4d 

cone-4e saddle-4e 

cone-5b saddle-5b 

cone-5a saddle-5a 



than the cone conformers in the solvent, with similar results in the 

gas phase (Table 3). On the other hand, in calix[3]benzofuran 5a and 

its derivative 5b (without tert-butyl groups), the saddle conformers 

are energetically less stable than the cone conformers by 4 and 10 kJ 

mol-1 in the gas phase, and by 5 and 7 kJ mol-1 in solvent (Table 3), 

respectively. Similarly, saddle-4c, 4d, 4e are energetically more 

stable by 12, 20 and 48 kJ mol-1 than cone-4c, 4d, 4e in the gas 

phase, respectively (Table 3).  

 Table 2. Geometry optimization energies using B3LYP/6-31G(d) 

(∆E = Echlorofom–Egas-phase)

The results presented in Table S2 and Table S3 show that among 

the calix[3]benzofurans, 4b is the energetically most-favored (in 

both the solvent and gas-phase) and the order is as follows: 4b > 4e 

> 4d > 4c > 4a > 5b > 5a in both the solvent and gas phase. 

     So by introducing the different groups at the furan moieties, the 

derivatives become energetically more favored over the 

corresponding calix[3]benzofuran according to the increasing size of 

groups (i.e. COMe > CH2OH > CHO) except for 4b. In the case of 

4b, there may be two factors influencing the stability: bromine is 

electronegative in nature and it has greater electron-density due to 

multiple lone-pairs of electrons. 

Table 3. Geometry optimization energies using B3LYP/6-31G(d) 

(∆E= ESaddle–ECone) 

Conclusions 

We have described a simple and effective method for the synthesis 

of flexible calix[3]benzofurans by introducing furan moieties 

through intramolecular cyclization of [3.3.3]MCP-trione. To explore 

the rates of conformational interconversion of the described 

calix[3]benzofurans, a series of electrophilic substitution reactions 

such as bromination, formylation and acylation reactions of 

calix[3]benzofurans were studied. The presence of bromine or an 

alcohol group (-CH2OH) at the furan ring led to the adoption of the 

fixed cone conformation, whereas the presence of the larger -COMe 

forced the adoption of both the cone and saddle conformations in 

solution and very slow interconvertion on the 1H NMR timescale at 

room temperature. However, the formyl derivative exhibits rapid 

conformational transformation as for the calix[3]benzofurans. 

Conformational flexibility of calix[3]benzofuran derivatives was 

observed by controlling the steric crowding and electron 

withdrawing ability of the groups. The DFT computational 

optimized B3LYP/6-31G(d) molecular energies of all synthesized 

tri-tert-butylcalix[3]benzofurans were determined, and revealed that 

the saddle conformers were energetically favoured over the 

corresponding cone conformers; in the calix[3]benzofurans without 

tert-butyl groups, the cone conformers were the more stable. Further 

mechanistic details of calix[3]benzofuran derivatives are being 

explored (by introducing different groups and resolution of their 

isomers), and will be reported in due course. 
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Experimental 

General 

All melting points (Yanagimoto MP-S1) are uncorrected. Proton nuclear 

magnetic resonance (1H NMR) spectra and 13C NMR spectra were recorded 

on Nippon Denshi JEOL FT-300 NMR and Varian-400MR-vnmrs400 

spectrometers. Chemical shifts are reported as δ values (ppm) relative to 

internal Me4Si. Mass spectra were obtained on a Nippon Denshi JMS–01SA–

2 mass spectrometer at ionization energy of 70 eV; m/z values reported 

include the parent ion peak. Infrared (IR) spectra were obtained on a Nippon 

Denshi JIR-AQ2OM spectrophotometer as KBr disks. Elemental analyses 

were performed by Yanaco MT-5. G.L.C. analyses were performed by 

Shimadzu gas chromatograph, GC-14A; Silicone OV–1, 2 m; programmed 

temperature rise, 12 °C min-1; carrier gas nitrogen, 25 mL min-1. Silica gel 

columns were prepared by use of Merk silica gel 60 (63–200 µm) 

Materials 

The preparation of 2,6-bis(bromomethyl)-4-tert-butylanisole 1a and 2,6-

bis(bromomethyl)anisole 1b  were previously described.21 6,15,24-Tri-tert-

butyl-9,18,27-trimethoxy[3.3.3]MCP-2,11,20-trione 2a was prepared 

according to reported methods.19c 

Direct cyclization of dibromide 1 with TosMIC 

To a suspension of NaH (2.1 g, 51 mmol) in DMF (150 mL) a solution of 1a 

(6.0 g, 17.1 mmol) and TosMIC (3.3 g, 22.0 mmol) in DMF (35.0 mL) was 

added dropwise over a period of 6 h. After the reaction mixture was stirred 

for an additional 5 h at room temperature, it was quenched with ice-water 

(300 mL). The reaction mixture was extracted with CH2Cl2 (100 mL × 3), 

washed with water (100 mL), dried over Na2SO4, and concentrated in vacuo 

to 15 mL. Concentrated HCl (15 mL) was added to the solution and stirring 

was continued for 15 min. The organic layer was again extracted with CH2Cl2 

(100 mL × 3), washed with water (100 mL × 2), dried over Na2SO4, and 

concentrated and condensed under reduced pressure. The residue was 

chromatographed on silica gel using CHCl3 as eluents to give crude 2a as a 

pale yellow solid. Recrystallization from hexane afforded 6,15,24-tri-tert-

butyl-9,18,27-trimethoxy[3.3.3]MCP-2,11,20-trione 2a (912 mg, 28 %) as 

pale yellow prisms. M.p. 227–228 °C (lit.20c 217–218 °C). IR: νmax (KBr)/cm-

1: 1720 (C=O). 1H NMR (400 MHz, CDCl3): δ
  = 1.19 (27H, s, tBu × 3), 3.33 

Compound 

cone
 

saddle
 

∆E kJ mol-1 ∆E kJ mol-1

4a -17 -17 

5a -18 -17 

4b -13 -15 

4c -23 -28 

4d -35 -31 

4e -26 -28 

5b -25 -28 

Compound 

Gas-phase Chloroform

∆E kJ mol-1 ∆E kJ mol-1

4a -4 -4 

5a 4 5 

4b -34 -35 

4c -12 -18 

4d -20 -16 

4e -48 -50 

5b 10 7 
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(9H, s, OMe), 3.61 (12H, s, CH2) and 6.92 (6H, s, Ar–H) ppm. 13C NMR 

(100 MHz, CDCl3): δ = 31.41, 34.19, 44.10, 60.20, 126.87, 127.01, 146.51, 

154.55 and 206.96 ppm. FABMS: m/z: 654.82 [M+]. C42H54O6 (654.90): 

calcd C 77.03, H 8.31; found: C 76.97, H 8.19. 

Compound 2b was similarly prepared.  

9,18,27-Trimethoxy[3.3.3]MCP-2,11,20-trione 2b: Recrystallization 

from hexane afforded 9,18,27-trimethoxy[3.3.3]MCP-2,11,20-trione 2b 

(640 mg, 22 %) as pale yellow prisms. M.p. 203–204 °C. IR: νmax 

(KBr)/cm-1: 1716 (C=O). 1H NMR (400 MHz, CDCl3): δ = 3.28 (9H, s, 

OMe), 3.63 (12H, s, CH2), 6.94 (3H, t, J =7.6, Ar–H) and 7.04 (6H, d, J 

=7.6, Ar–H) ppm. 13C NMR (100 MHz, CDCl3): δ = 43.29, 60.22, 124.04, 

128.12, 130.17, 156.97 and 205.78 ppm. FABMS: m/z: 486.23 [M+], 

487.23 [M++1], C30H30O6 (486.20): calcd C 74.06, H 6.21; found: C 73.83, 

H 6.21. 

Demethylation of 2a with TMSI  

To a solution of 2a (200 mg, 0.3 mmol) in CH3CN (10.0 mL), NaI (900 mg, 

6.0 mmol) was added. After adding trimethyl silyl chloride (0.8 mL, 6.0 

mmol), the mixture was stirred at 80–85 °C for 48 h. The reaction mixture 

was quenched in 20 mL ice water and 10% aqueous sodium thiosulphate 

solution (40 mL) was added and stirring continued for 1h at room 

temperature. Then the mixture was stirred with 10 % HCl (20 mL) for 1h and 

extracted with CH2Cl2 (40 mL × 3). The combined mixture was washed by 10 

% NaHCO3 (20 mL) and water (20 mL × 2) and dried over Na2SO4, and then 

concentrated under reduced pressure. The residue was chromatographed on 

silica gel using hexane:CHCl3 (5:1) as eluents to give crude 4a as a colourless 

solid. Recrystallisation from hexane afforded 6,14,22-tri-tert-

butylcalix[3]benzofuran 4a (138 mg, 82 %) as colourless prisms. M.p. 190–

191 °C. IR: υmax (KBr)/cm–1): 2960, 2862, 1586, 1480, 1302, 1198, 867. 1H 

NMR (400 MHz, CDCl3): δ
 = 1.32 (27H, s, tBu × 3), 4.09 (6H, brs, CH2), 

6.43 (3H, s, Ar–H), 7.13 (3H, s, Ar–H) and 7.31 (3H, s, Ar–H) ppm. 13C 

NMR (100 MHz, CDCl3): δ = 30.79, 31.89, 34.59, 102.62, 115.31, 121.43, 

129.05, 145.72 and 157.74 ppm. FABMS: m/z: 558.35 [M+]. C39H42O3 
(558.31): calcd C 83.83, H 7.58; found: C 83.53, H 7.58. 

Compound 5a was similarly prepared.  

Calix[3]benzofuran 5a: Recrystallisation from hexane afforded 

calix[3]benzofuran 5a (92 mg, 79 %). M.p. 180–181 °C. IR: υmax (KBr)/cm–

1): 2962, 1429, 1194 and 810. 1H NMR (400 MHz, CDCl3): δ
 = 4.15 (6H, s, 

CH2), 6.48 (3H, s, Ar–H), 7.08 (3H, t, J = 6.8, Ar–H) and 7.32 (6H, d, J=6.4, 

Ar–H) ppm. 13C NMR (100 MHz, CDCl3): δ = 30.35, 110.02, 119.20, 123.59, 

129.38, 144.19 and 152.75 ppm. HRMS: m/z: 390.1253 [M+]. C27H18O3 
(390.1256): calcd C 83.06, H 4.65; found: C 82.78, H 4.72. 

Bromination of 6,14,22-tri-tert-butylcalix[3]benzofuran 4a  

To a solution of 4a (100 mg, 0.18 mmol) in CH2Cl2 (7.0 mL), BTMABr3 (278 

mg, 0.71 mmol) was added and the mixture was stirred for 24 h at room 

temperature. Then the mixture was extracted with CH2Cl2 (50 mL × 3) and 

the combined mixture was washed by water (20 mL × 2) and dried over 

Na2SO4, and then concentrated under reduced pressure. The residue was 

chromatographed on silica gel using CH2Cl2 as eluents to give crude 4b as a 

yellow powder. Recrystallisation from methanol afforded 4,12,20-tribromo-

6,14,22-tri-tert-butylcalix[3]benzofuran 4b (75 mg, 52 %) as yellow prisms. 

M.p. 190–191 °C. IR: υmax (KBr)/cm–1): 2962, 2851, 1522, 1478, 1361, 1196, 

867. 1H NMR (400 MHz, CDCl3): δ
  = 1.34 (27H, s, tBu × 3), 4.22 (3H, brs, 

CH2), 4.58 (3H, brs, CH2), 7.21 (3H, s, Ar–H) and 7.47 (3H, s, Ar–H) ppm. 
13C NMR (100 MHz, CDCl3): δ = 28.52, 31.70, 34.69, 114.12, 119.46, 

124.27, 128.04, 146.76 and 152.68 ppm. FABMS: m/z: 793.90 [M+]. 

C39H39Br3O3 (792.04): calcd C 58.89, H 4.94; found: C 58.64, H 4.81. 

Formylation of 6,14,22-tri-tert-butylcalix[3]benzofuran 4a 

To a solution of 4a (100 mg, 0.18 mmol) and Cl2CHOCH3 (0.96 mL, 1.08 

mmol) in CH2Cl2 (2 mL) was added a solution of TiCl4 (0.12 mL, 1.08 

mmol) in CH2Cl2 (2 mL) at 0 °C. After stirring the reaction mixture at room  

temperature for 2 h, it was poured into ice water (20 mL) and then the 

mixture was extracted with CH2Cl2 (50 mL × 3) and the combined mixture 

was washed by water (20 × 2  mL) and dried over Na2SO4, and then 

concentrated under reduced pressure. The residue was chromatographed on 

silica gel (Wako C-300, 500 g) using CH2Cl2 as eluents to give crude 4c as a 

yellow powder. Recrystallisation from methanol afforded 6,14,22-tri-tert-

butyl-4,12,20-triformylcalix[3]- benzofuran 4c (57 mg, 49 %) as a yellow 

powder. M.p. 260–261 °C. IR: υmax (KBr)/cm–1): 2962, 1678 (C=O), 1434.  
1H NMR (400 MHz, CDCl3): δ

 = 1.35 (27H, s, tBu × 3), 4.59 (6H, brs, CH2), 

7.48 (3H, s, Ar–H), 8.02 (3H, s, Ar–H) and 10.41 (3H, brs, CHO) ppm. 13C 

NMR (100 MHz, CDCl3): δ = 29.33, 31.77, 34.95, 117.37, 124.20, 153.20, 

157.06, 159.94, 166.36 and 196.67 ppm. HRMS: m/z: 642.2994 [M+]. 

C42H42O6 (642.2981): calcd C 78.48, H 6.59; found: C 78.45, H 6.81. 

Preparation of 6,14,22-tri-tert-butyl-4,12,20-trihydroxymethylcalix[3]- 

benzofuran 4d   

To a solution of 4c (50 mg, 0.08 mmol) in a mixture of CH2Cl2 (2.0 mL), 

EtOH (2mL), NaBH4 (27 mg, 0.7 mmol) was added and the system was 

reflux for 24 h. Then the mixture was extracted with CH2Cl2 (50 mL ×3) and 

the combined mixture was washed by water (20 mL × 2) and dried over 

Na2SO4, and then concentrated under reduced pressure. The residue was 

chromatographed on silica gel (Wako C-300, 500 g) using CH2Cl2 as eluents 

to give crude 4d. Recrystallisation from hexane afforded 6,14,22-tri-tert-

butyl-4,12,20-trihydroxymethylcalix[3]benzofuran 4d (28 mg, 55 %) as a 

yellow powder. M.p. > 280 °C. IR: νmax (KBr)/cm-1: 3420, 2956, 2871, 1480, 

1363, 1001. 1H NMR (400 MHz, CDCl3): δ = 0.89 (3H, brs, CH2OH), 1.33 

(27H, s, tBu), 4.22 (3H, brs, CH2), 4.66 (3H, brs, CH2), 4.86 (6H, s, CH2OH), 

7.26 (3H, s, Ar–H) and 7.39 (3H, s, Ar–H) ppm. 13C NMR (100 MHz, 

CDCl3): δ = 28.71, 31.85, 34.75, 55.38, 114.20, 121.92, 128.46, 146.59, 

150.30 and 155.25 ppm. HRMS: m/z: 648.3472. C42H48O6 (648.3451): calcd 

C 77.75 H 7.46; found: 77.52 H 7.28. 

Preparation of 4,12,20-triacetyl-6,14,22-tri-tert-butylcalix[3]-benzofuran 

4e 

To a solution of 4a (100 mg, 0.18 mmol) and AcCl (0.08 mL, 1.08 mmol) in 

CH2Cl2 (2 mL) was added a solution of TiCl4 (0.12 mL, 1.08 mmol) in 

CH2Cl2 (1 mL) at 0 °C and stirring was continued for 1 h. Then the mixture 

was stirred at room temperature for 3 h and poured into ice water. Then the 

mixture was extracted with CH2Cl2 (50 mL × 3) and the combined mixture 

was washed by water (20 mL × 2) and dried over Na2SO4, concentrated under 

reduced pressure. The residue was chromatographed on silica gel (Wako C-

300, 500 g) using CH2Cl2 as eluents to give crude 4e as a yellow powder. 

Recrystallisation from hexane afforded 4,12,20-triacetyl-6,14,22-tri-tert-

butylcalix[3]benzofuran 4e (59 mg, 48 %) as a yellow powder. M.p 164–165 

°C. IR: νmax (KBr)/cm-1: 2960, 2870, 1674, 1464, 1381, 1186. 1H NMR (400 

MHz, CDCl3): δ = cone–1.38 (27H, s, tBu × 3), 2.63 (9H, s, -COCH3), 4.62 

(3H, d, J = 13.2 Hz, CH2), 4.93 (3H, d, J = 14.4 Hz, CH2), 7.80 (3H, s, Ar–H), 

7.88 (3H, s, Ar–H), saddle–1.36 (27H, s, tBu × 3), 2.63 (9H, s, -COCH3), 

4.55 (6H, s, CH2), 7.38 (3H, s, Ar–H) and 7.54 (3H, s, Ar–H) ppm. 13C NMR 

(100 MHz, CDCl3): δ = 29.32, 31.32, 31.83, 34.88, 116.49, 117.34, 119.04, 

123.96, 125.70, 147.46, 163.25 and 194.24 ppm. HRMS: m/z: 684.3453 [M+]. 

C45H48O6 (684.3451): calcd C 78.92 H 7.06; found: C 78.83, H 7.28. 

Preparation of 4,12,20-triacetylcalix[3]benzofuran 5b 

To a solution of 5a (70 mg, 0.18 mmol) and CH3COCl (0.076 mL, 1.08 

mmol) in CH2Cl2 (2 mL) was added a solution of TiCl4 (0.12 mL, 1.08 

mmol) in CH2Cl2 (2 mL) at 0 °C. After stirring the reaction mixture at room  



temperature for 2 h, it was poured into ice water (20 mL) and then the 

mixture was extracted with CH2Cl2 (50 mL × 3) and the combined mixture 

was washed by water (20 mL × 2) and dried over Na2SO4, and then 

concentrated under reduced pressure. The residue was chromatographed on 

silica gel (Wako C-300, 500 g) using CH2Cl2 as eluents to give crude 5b as a 

yellow powder. Recrystallisation from MeOH/CHCl3 afforded 4,12,20-

triacetylcalix[3]benzofuran 5b (38 mg, 41 %) as a yellow powder. M.p. 242–

243 °C. IR: νmax (KBr)/cm-1:  1675 (C=O), 1556, 1151. 1H NMR (400 MHz, 

CDCl3): δ = cone–2.64 (9H, s, -COCH3), 4.68 (3H, d, J = 13.6 Hz, CH2), 4.99 

(3H, d, J = 13.2 Hz, CH2), 7.61 (3H, d, J = 8.8 Hz, Ar–H), 7.80 (6H, dd, J = 

7.2 Hz, Ar–H), saddle–2.64 (9H, s, -COCH3), 4.58 ( 6H, s, CH2) and 7.34 

(9H, dd, J = 8.0 Hz, Ar–H) ppm. 13C NMR (100 MHz, CDCl3): δ = 31.07, 

35.85, 117.45, 124.65, 134.77, 150.48, 159.97, 166.52 and 192.36 ppm. 

FABMS: m/z: 516.23 [M+]. C33H24O6 (516.16): calcd C 76.73, H 4.68; found: 

C 77.01, H 4.91. 
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Figure S1. 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 2a.
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Figure S2: 13C-NMR spectrum (100 MHz, 298 K, *CDCl3) of the compound 2a.
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Figure S3: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 2b. 
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Figure S4: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 2b. 
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Figure S5: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4a.
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Figure S6: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 4a.
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Figure S7: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 5a.
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Figure S8: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 5a.
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Figure S9: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4b.
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Figure S10: 13C-NMR spectrum (100 MHz, 298 K, *CDCl3) of the compound 4b.
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   Figure S11: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4c.  
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Figure S12: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 4c. 

Page 21 of 51RSC Advances



S9 

0.01.02.03.04.05.06.08.0 7.0

Figure S13: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4d.
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Figure S14: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) for the compound 4d.

Page 22 of 51



S10 
 

0.01.02.03.04.05.06.07.08.0
 

Figure S15: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4e.  
 

050100150200  
Figure S16: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) for the compound 4e. 
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Figure S17: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 5b. 
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Figure S18: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 5b.
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Figure S19: FT-IR spectrum of the compound 2a.

Figure S20: FT-IR spectrum of the compound 2b. 
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Figure S21: FT-IR spectrum of the compound 4a. 

Figure S22: FT-IR spectrum of the compound 5a. 
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Figure S23: FT-IR spectrum of the compound 4b. 
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Figure S24: FT-IR spectrum of the compound 4c. 
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Figure S25: FT-IR spectrum of the compound 4d. 
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Figure S26: FT-IR spectrum of the compound 4e. 
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Figure S27: FT-IR spectrum of the compound 5b. 

Figure S28: Mass-spectrum of the compound 2b.
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Figure S29: Mass-spectrum of the compound 4a.

Figure S30: High resolution Mass-spectrum of the compound 5a.
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Figure S31: Mass-spectrum of the compound 4b. 

Figure S32: High resolution Mass-spectrum of the compound 4c.

Page 31 of 51



S19 

Figure S33: High resolution Mass-spectrum of the compound 4d.

Figure S34: High resolution Mass-spectrum of the compound 4e.
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Figure S35: Mass-spectrum of the compound 5b. 

Figure S36: HRMS result of the compound 5a.
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Figure S37: HRMS result of the compound 4c. 

Figure S38: HRMS result of the compound 4d. 
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Figure S39: HRMS result of the compound 4e.

X-ray crystallography 

Table S1: Summary of crystal data for 4a and 4b

Table S1 Summary of crystal data for 4a and 4b.a,b 

Parameter 4a 4b 
Empirical formula C39 H42 O3 C39 H39 Br3O3, CHCl3, ca 

6(CH4O) 
Formula weight [g mol-1] 558.76 1107.05 

Crystal system trigonal trigonal 
Space group R-3 R-3 

A  [Å] 19.3942(14) 15.4391(12) 
B  [Å] 19.3942(14) 15.4391(12) 
C  [Å] 16.5448(6) 31.782 (4) 
α  [°] 90.0000 90.0000 
β  [°] 90.0000 90.0000 
γ  [°] 120.0000 120.0000 

Volume [Å3] 5389.4(6) 6560.8(13) 
Z 6 6 

Density, calcd [g m-3] 1.033 1.681 
Temperature [K] 123 140 

Unique reflns 2193 1888 
Obsd reflns 1984 1293 
Parameters 127 182 

Rint 0.0399 0.076
R[I>2σ(I)]a 0.0647 0.072 

wR[I>2σ(I)]b 0.1455 0.138 
GOF on F2 1.154 1.119

a Conventional R on Fhkl: Σ||Fo| – |Fc||/σ|Fo|. b Weighted R on |Fhkl|2: Σ[w(Fo
2 – Fc

2)2]/Σ[w(Fo
2)2]1/2
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Crystal structure analysis of the tris-benzofuran calixarene, compound 4a:1–4

Crystal data: C39H42O3. M = 558.76. Trigonal, space group R-3 (no. 148; hexagonal axes), a = b = 
19.3942(14), c = 16.5448(6) Å, α = β = 90, γ = 120 °, V = 5389.4(6) Å3. Z = 6, Dc = 1.033 g cm-3, F(000) 
= 3408, T = 123(1) K, µ(Cu-Kα) = 4.96 cm-1, λ(Mo-Kα) = 1.5418 Å. 
            A colorless prism crystal of C39H42O3 having approximate dimensions of 0.350 x 0.250 x 0.200 
mm was mounted on a glass fiber. All intensity measurements were made on a Rigaku R-AXIS RAPID 
diffractometer using graphite monochromated Cu-Kα radiation. The data were collected at a temperature 
of -150 + 1°C to a maximum 2θ value of 136.4°. Of the 20857 reflections collected, 2193 were unique 
(Rint = 0.0399) and 1984 were ‘observed’; equivalent reflections were merged. The linear absorption 
coefficient, µ, for Cu-Kα radiation is 4.956 cm-1. An empirical absorption correction was applied which 
resulted in transmission factors ranging from 0.641 to 0.906. The data were corrected for Lorentz and 
polarization effects. The structure was solved by direct methods1 and expanded using Fourier techniques. 
The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding 
model. The final cycle of full-matrix least-squares refinement on F2 was based on all 2193 reflections and 
127 variable parameters and converged with R1 = 0.071 and wR2 = 0.146; for the observed data, R1 = 
0.065. The goodness of fit was 1.15. The maximum and minimum peaks on the final difference Fourier 
map corresponded to 0.36 and -0.33 eÅ-3, respectively. 
            Neutral atom scattering factors were taken from International Tables for Crystallography (IT), 
Vol. C, Table 6.1.1.4.2 All calculations were performed using the CrystalStructure3 crystallographic 
software package except for refinement, which was performed using SHELXL2013.4 
 Crystal structure analysis of a tris-benzofuran calixarene/CHCl3/methanol complex, compound 
4b:5–8

Crystal data:  C39H39Br3O3, CHCl3, ca 6(CH4O).  M = 1107.1.  Trigonal, space group R-3 (no. 148; 
hexagonal axes), a = b = 15.4391(12), c = 31.782(4) Å, α = β = 90, γ = 120 °, V = 6560.8(13) Å3. Z = 6, 
Dc = 1.681 g cm-3, F(000) = 3408, T = 140(1) K, µ(Mo-Kα) = 30.1 cm-1, λ(Mo-Kα) = 0.71073 Å.  
Crystals are colorless, cubic blocks.  One, ca 0.43 x 0.37 x 0.25 mm, was mounted in oil on a glass fiber 
and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-3 CCD diffractometer equipped 
with Mo-Kα radiation and graphite monochromator.  Intensity data were measured by thin-slice ω- and 
φ-scans. Total no. of reflections recorded, to θmax = 22.5°, was 13024 of which 1888 were unique (Rint = 
0.076); 1293 were 'observed' with I > 2σI.  
Data were processed using the CrysAlis-CCD and -RED (1) programs. The structure was determined by 
the direct methods routines in the SHELXS program (2A) and refined by full-matrix least-squares 
methods, on F2's, in SHELXL (2B).  The analysis shows the calixarene molecule lying around a 
threefold symmetry axis with, on one side, a CHCl3 solvent molecule (also on the symmetry axis) and, on 
the other side, a complex ring structure, presumably of a disordered array of methanol molecules; in this 
region, 50 atoms have been refined as isotropic carbon atoms, mostly with site occupancies of 0.5, about a 
point of -3 symmetry. In the calixarene and chloroform molecules, the non-hydrogen atoms were refined 
with anisotropic thermal parameters; hydrogen atoms were included in idealized positions and their Uiso 
values were set to ride on the Ueq values of the parent carbon atoms.  At the conclusion of the 
refinement, wR2 = 0.149 and R1 = 0.114 (2B) for all 1888 reflections weighted w = [σ2(Fo

2) + (0.0368P)2 
+ 104.34P]-1 with P = (Fo

2 + 2Fc
2)/3; for the 'observed' data only, R1 = 0.072. 

In the final difference map, the highest peak (ca 0.37 eÅ-3) was close to Br(13). 
Scattering factors for neutral atoms were taken from reference.7  Computer programs used in this 
analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 755 PC at the 
University of East Anglia.  
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General description for the DFT computational study:9,10       

 Density functional theory (DFT) computational studies were carried out to determine the 
geometry-optimized energies of compounds 4a-e and 5a-b. The starting structures were generated with 
the initial geometries based upon the X-ray structures of 4a and 4b and from the presumed structures of 
4c–4d (derived from cone-4a and cone-4b) and 5a–b using SpartanPro'10 with the MMFF94 method.9 
The individual geometry-optimized structures of these molecules were first conducted in the gas phase 
and then in solvent (chloroform) with the B3LYP/6-31G(d) basis set using Gaussian-09.10 The results are 
summarized in Tables S2 and S3 for both cone and saddle conformations for compounds 4a–e, 5a–b 

(Figures S36 to S42). The results presented in Table S2 show that 4a–e, 5a–b were energetically 
more-favoured in solvent CHCl3 than in the gas phase. The results presented in Table S3 of the 
synthesized calix[3]benzofurans and their derivatives, 4a–e, suggest that the saddle conformers are more 
stable than the cone isomers. The results presented in Tables S2 & S3 show that among the 
calix[3]benzofurans, 4b is the energetically most-favoured (in both the solvent and gas-phase) and the 
order is as follows: 4b>4e>4d>4c >4a>5b >5a in both the solvent and gas phase. So by introducing the 
different groups at the furan moieties, the derivatives become energetically more favored over the 
corresponding calix[3]benzofuran according to the increasing size of groups (i.e. COMe > CH2OH > 
CHO) except for 4b. In the case of 4b, there may be two factors influencing the stability: bromine is 
electronegative in nature and has greater electron-density due to multiple lone-pairs of electrons.  
The DFT optimized B3LYP/6-31G(d) energies of these two conformers imply that the saddle conformers 
of 4a and 4b, which are -4 and -35 kJmol-1, are therefore more stable than the cone conformers in the 
solvent, similar to what was computed in gas phase (Table S2). On the other hand, for the tert-butyl group 
analogues, calix[3]benzofuran 5a and its derivative 5b, the saddle conformers are energetically less stable 
than the cone conformers by 4 and 10 kJmol-1 in the gas phase, and by 5 and 7 kJmol-1 in solvent (Table 
S3), respectively. Similarly, saddle-4c, 4d, 4e are energetically more stable by -12, -20 and -48 kJmol-1 
than cone-4c, 4d, 4e in the gas phase, respectively (Table S3). 

Table S2.Geometry optimization energies using B3LYP/6-31G(d)(∆E=Echlorofom-Egas-phase). 

Compound 

Cone Saddle 

Gas phase Chloroform ∆E 

kJ mol-1

Gas phase Chloroform ∆E 

kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 

4a -4560873 -4560891 -17 -4560878 -4560895 -17 

5a -3322273 -3322291 -18 -3322269 -3322286 -17 

4b -24812139 -24812152 -13 -24812173 -24812188 -15 

4c -5453483 -5453506 -23 -5453495 -5453524 -28 

4d -5462889 -5462924 -35 -5462910 -5462940 -31 

4e -5763178 -5763204 -26 -5763226 -5763254 -28 

5b -4524625 -4524650 -25 -4524615 -4524643 -28 
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Table S3.Geometry optimization energies using B3LYP/6-31G(d)(∆E=ESaddle-ECone). 

 Compound 

Gas-phase Chloroform 

Cone Saddle ∆E 

kJ mol-1

Cone Saddle ∆E 

kJ mol-1kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 

4a -4560873 -4560878 -4 -4560891 -4560895 -4 

5a -3322273 -3322269 4 -3322291 -3322286 5 

4b -24812139 -24812173 -34 -24812152 -24812188 -35 

4c -5453483 -5453495 -12 -5453506 -5453524 -18 

4d -5462889 -5462910 -20 -5462924 -5462940 -16 

4e -5763178 -5763226 -48 -5763204 -5763254 -50 

5b -4524625 -4524615 10 -4524650 -4524643 7 
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Figure S40. Geometry-optimized (in CHCl3) structures of: Top Left: 4a cone (Ellipsoid); Top Right: 4a
saddle (Ellipsoid). Bottom Left: 4a cone (ball-and-stick) and Bottom Right: 4a saddle (ball-and-stick). 
Colour code: carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.  
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Figure S41. Geometry-optimized (in CHCl3) structures of: Top Left: 5a cone (Ellipsoid); Top Right: 5a
saddle (Ellipsoid). Bottom Left: 5a cone (ball-and-stick) and Bottom Right: 5a cone (ball-and-stick). 
Colour code: carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.  
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Figure S42. Geometry-optimized (in CHCl3) structures of: Top Left: 4b cone (Ellipsoid); Top Right: 4b 
saddle (Ellipsoid). Bottom Left: 4b cone (ball-and-stick); and Bottom Right: 4b saddle (ball-and-stick). 
Colour code: bromide = orange, carbon = dark grey and oxygen atom = red. All hydrogens are omitted for 
clarity.  
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Figure S43. Geometry-optimized (in CHCl3) structures of: Top Left: 4c cone (Ellipsoid); Top Right: 4c
saddle (Ellipsoid). Bottom Left:4ccone (ball-and-stick); and Bottom Right: 4c saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except aldehyde 
hydrogen (light green) are omitted for clarity. 
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Figure S44. Geometry-optimized (in CHCl3) structures of: Top Left: 4d cone (Ellipsoid); Top Right: 4d
saddle (Ellipsoid). Bottom Left:4d cone (ball-and-stick); and Bottom Right: 5c saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except hydroxyl 
hydrogen (light green) are omitted for clarity. 
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Figure S45. Geometry-optimized (in CHCl3) structures of: Top Left: 4e cone (Ellipsoid); Top Right: 4e
saddle (Ellipsoid). Bottom Left: 4e cone (ball-and-stick); and Bottom Right: 4e saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except carbonyl 
hydrogen (light green) are omitted for clarity.  
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Figure S46. Geometry-optimized (in CHCl3) structures of: Top Left: 5bcone (Ellipsoid); Top Right: 5b
saddle (Ellipsoid). Bottom Left: 5b cone (ball-and-stick); and Bottom Right: 5b saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except aldehyde 
hydrogen (light green) are omitted for clarity.  
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