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Abstract—Our paper aims to build a classification model to
discern the typical NEAT (Non-Exercise Activity Thermogenesis)
activities done in a home setting. The concept of NEAT is broadly
defined as the energy spent in everything which is not sleeping,
eating, or a traditional form of physical exercise. We focus on
the following NEAT and non-NEAT activities in this paper -
cooking, sweeping, mopping, walking, climbing up, climbing
down, and non-NEAT activities (e.g., watching television and
working on a desk). This aim is to build a classification model
which can work with data sampled at a low frequency of 1Hz.
However, building such a classifier is non-trivial because the
NEAT activities are not easily separable in low-frequency data.
The state-of-the-art in the area of human activity recognition
either uses multiple physical devices (e.g., accelerometers on
arms, waist, and feet) for data collection or use data that is
sampled at high frequency (20Hz or above). In contrast, our
model performs NEAT activity recognition using data sampled
at 1Hz and from a single smartwatch worn on the dominant
hand. Thus, making it more energy-efficient and easily usable
for widespread use. We evaluate our proposed model using
actual data collected on a smartwatch, and we compare it with
alternative models. Our results indicate that the proposed model
is able to achieve much higher accuracy than the alternative
approaches.

Index Terms—Activity Recognition, Smart Watch sensors,
Low frequency

I. INTRODUCTION

The central goal of this paper is to develop a classifier
that can discern the typical activities done in a home setting
using the data coming from the accelerometer and gyroscope
sensors ( [1]) embedded in a smartwatch. More precisely, the
classifier should be able to distinguish among the following
seven activities: (a) cooking, (b) sweeping, (c) mopping,
(d) walking, (e) climbing up, (f) climbing down, and (g)
non-NEAT activities. The non-NEAT activity encompasses
activities that involve little to no physical movement, e.g.,
watching television, working on a desk/computer, and remain-
ing stationary. Our aim is to develop a classifier which is
robust enough to work with data collected from a smartwatch
at a low sampling frequency such as 1Hz. This granularity is
much less than the 20Hz (or more), which is typically used
in several current state-of-the-art activity recognition models.

Building such an activity classifier is of value in a health
monitoring mobile application that can record the time spent
in non-exercise activity thermogenesis (NEAT) [2]. NEAT

(a) Sweeping (b) Mopping

Fig. 1: A Few NEAT activities, image courtesy Google
(NDTV.com and Amazon.in).

is broadly defined as the energy consumed in everything
which is not sleeping, eating, and traditional physical exercise.
In other words, NEAT focuses on activities that are not
considered as “exercise” in a conventional sense. Examples
of the NEAT activities include daily house activities such
as cooking, cleaning (mopping and sweeping in Figure 1
), walking around the house, etc. Getting insights into the
total daily time spent in NEAT activities can help a user
plan and execute a healthy lifestyle in the long run [3],
[4]. NEAT activities have also shown benefit in management
(and also prevention to some extent) of obesity, diabetes,
cardiovascular disease and mental health problems [3]–[6].
Such an application could also be of great use during a
pandemic where several people are constrained to home
environments due to lock downs. In such situations, doing
home chores (e.g., cooking and cleaning) may perhaps be the
only form of exercise that many people may get in a day.
Thus, an application which can keep track of NEAT activities
(via home chores) could be of value in keeping track of total
time spent in doing physical activities in a home setting.

We believe that an ideal solution for NEAT activity recogni-
tion should have the following two features. Firstly, it should
use a single and readily available hardware (e.g., smartphone
or smartwatch). Secondly, it should be energy efficient as
NEAT activities are likely to spread across the entire day.
It would be reasonable to assume that any user would like to
record their data without charging the device multiple times



for the whole day to get meaningful results.
In this work, we develop a smartwatch-based solution for

NEAT activity recognition. Regarding energy efficiency, one
can achieve energy efficiency by reducing the sampling rate
of the sensors as sampling rate and battery consumption are
known to be directly proportional to each other [7]. Table I
details the battery consumption for different sampling rates.

Frequency Battery

10 Hz 93%
5 Hz 86%
1 Hz 78%

TABLE I: Total Battery consumed in 5 hours

Frequency 1Hz 5Hz 10Hz

KNN 74 85 89
Multi-layer Perceptron 71 82 89

SVM 78 87 92
Logistic 61 71 81

Random Forest 47 53 61
Naive Bayes 60 67 73

XGBoost 81 89 94
Our Model 87 94 96

TABLE II: Accuracy of different classifiers on 1Hz, 5Hz, and
10Hz sampled data (2 sec windows 50% overlap.)

While low sampling frequency ensures good battery life, it
is essential to note that activities focused in this paper cannot
be easily discerned in low-frequency data. Table II illustrates
the total accuracy (for our activities of interest) obtained by
different classification techniques on data sampled at 10Hz,
5Hz, and 1Hz. As the table shows, the performance of the
classifiers drops down significantly as the sampling frequency
is reduced to 1Hz.
Our Contributions:

1) This paper proposes a novel classifier which can ac-
curately identify the following seven different types of
activities done in a typical home setting: (a) cooking,
(b) sweeping, (c) mopping, (d) walking, (e) climbing-
up, (g) climbing-down, (h) non-NEAT. Such a classifier
can help in developing a solution for recording NEAT
activities done by a person in a day.

2) The classifier proposed in this paper splits the seven-
class classification problem into a series of two-class
classification problems, which are organized in a hier-
archy. At the higher levels of this hierarchical model, we
classify the data into meta-level categories (e.g., win-
dows having “no-leg motion” vs. “leg-motion,” etc.).
Following this (at lower levels), we classify the data
into one of the previously mentioned seven activities.
The proposed model works with the data coming from
the accelerometer and gyroscope sensors available in a
typical smartwatch.

3) Our proposed classifier can work with data sampled at
low frequency (1Hz). Thus, it is energy efficient.

4) We evaluated (trained and tested) our proposed classifier
experimentally on real data collected by four volunteers.
We also compared our approach with the alternatives to
establish the superiority of the proposed approach.

Scope of the paper: In this paper, the “non-NEAT” mo-
tion class encompasses the following activities: (a) watching
television, (b) working on desk/computer, and (c) remaining
stationary. In the future, we would expand the “non-NEAT”
motion class to include other activities such as driving a car,
etc.

II. BASICS CONCEPTS AND PROBLEM DEFINITION

A. Basic concepts in motion classes

1) Cooking: This motion class takes place in the kitchen.
To collect the data, there were dedicated start and
stop buttons in the user’s smartwatch. The user presses
the start button on entering the kitchen and, the stop
button on exit. All the sub-activities of typical cooking
activities such as “making an Indian flatbread” (which
include actions such as smoothing and flattening of
dough, toasting it on a pan), “making curry” (which
include actions such as peeling, chopping, washing, and
stirring the vegetables), etc., are included in this class.

2) Sweeping: This motion class takes place in the en-
tire house. In this activity, the user sweeps the floor
using a broomstick (figure 1a). Moreover, the person
performing the activity may also walk and move objects
intermittently.

3) Wet Mopping: In this motion class, the person mops
the floor using the wet-mopping stick (figure 1b). This
motion class also includes the sub-activity of wringing
the mop after it is dipped into the cleaning solution.

4) Walking: This motion class largely happens when the
user is walking around in home (but not sweeping or
mopping).

5) Climb up/Down: This class includes the activity of
climbing up or down the stairs. Note that volunteers
were also allowed to hold the side railing while per-
forming this activity.

6) non-NEAT: This class majorly includes activities,
which involve few or no physical movements. During
this activity, volunteers were allowed to work on a
computer, watch television, or largely remain stationary.

In all the above-mentioned classes, the volunteers were
wearing the smartwatch in their dominant hand, i.e., usually
the right hand.

B. Problem Definition

Input: Our raw data consists of a set of time series (T )
of smartwatch sensor data (accelerometer and gyroscope
sensors). For any time point p in a time series ti ∈ T , we have
sensor values for the accelerometer and gyroscope sensors
in the smartwatch. Each time series ti ∈ T corresponds
to one of the following seven motion classes: (a) Cooking,
(b) Sweeping, (c) Moping, (d) Walking, (e) Climbing up, (f)
Climbing Down and (g) non-NEAT.



The input set of time series T is processed into a set
of overlapping windows W . Each window wi ∈ W is β
in length. Two temporally adjacent windows overlap by an
amount θ. We vary both β and θ in our experiments. Each
wi ∈ W is assigned a unique class label corresponding to one
of the seven previously mentioned activities and is represented
using a set of features.
Objective: To learn a classification model (using W as
training data) which can recognise the previously mentioned
seven activity classes.

III. SUMMARY OF RELATED WORK

Research literature most relevant to our problem consists
of the work done in the areas of human activity recognition
and transportation detection. We shall now briefly summarize
the current research literature and discuss their relevance.

The field of human activity recognition has been studied
for more than a decade, and researchers have approached it
from multiple directions (e.g., [8]–[22]. Overall, these works
developed classification models which can discern a wide
variety of activities. Examples include both simple activities
(e.g., walking, sitting standing, etc.) and complex activities
(e.g., car driving, vacuum cleaning, intravenous injection,
etc.). Work done in this area can be broadly classified into
the following two categories: (a) sensor data was collected
from multiple devices (including customized hardware) [8]–
[10], [12], [14], [15], [21], [23], [24] and (b) sensor data was
collected from a single device (e.g., smartphone, smartwatch,
etc.) and [16], [18]–[20], [25].

Solutions developed in the first category use data from
multiple physical sensors (e.g., [12], [14], [15], [23], [24],
[26]) in their classification model. For instance, [14] proposed
a model that required data from three different accelerometers
(one on the right wrist, one in the breast pocket, and one
on the back hip) to perform activity recognition in a hospital
setting. Similarly, the approach proposed in [26] requires data
from five accelerometers (located on the various positions on
the body) and a heart monitor to predict human activities
such as rowing, cycling, walking, etc. [12] using data from
five accelerometers (placed on both legs, arms, and hip) to
recognize body postures (sitting, standing, etc), movement
(walking, running, etc), hand gestures (chop, throw, punch,
etc) and hand postures (holding phone or raising a hand).
[15] developed a classification model to discern eighteen
home activities using data from multiple sensors located on
the wrist, chest, and ankle. While these approaches show
impressive results, they are not relevant in our problem setting
as any solution which uses multiple devices to perform NEAT
activity recognition would not be easily adopted by the con-
sumers. In other words, it is imperative to limit to at most one
easily accessible device (e.g., commonly available smartphone
or smartwatch) for the data collection and prediction.

Solutions developed in the second category (i.e., solutions
which use a single device) can be further divided into the
following two sub-categories: (i) data is collected at high
frequency (e.g., 10Hz or above) [16], [18]–[20] and; (ii) data

is collected at low frequency [25]. Solutions which are based
on high-frequency data are not suitable for NEAT activity
recognition. This is because such solutions would also con-
sume the battery faster. High-frequency data collection and
battery consumption are known [7] to be directly proportional
to each other. An ideal solution for NEAT activity recognition
should be energy efficient as NEAT activities are likely to
spread throughout the day, and the consumer would like to
collect data for an entire day (at a time) to get meaningful
insights into his/her NEAT activities.

[25] works with a very low frequency of 1hz. The device
used is a belt-worn smartphone to identify activities. The ac-
tivities distinguished here are sitting, standing, lying, walking,
posture change, and gentle motion. While our work shares
some everyday activities (e.g., walking) with this work, we
focus on several non-trivial activities (e.g., cooking, mopping,
and sweeping), which are essential for a solution for NEAT
activity monitoring.

Work was done in the area of transportation mode detection
(e.g., [27]–[34]) focused on developing classification models
for identifying different kinds of transportation modes. Works
have focused on several common transportation modes such
as walking, running, car, bus, metro rail, trams, etc. It is
important to note that NEAT activity recognition is funda-
mentally different from transportation mode detection since it
involves more nuanced activities, such as cooking, sweeping,
and mopping.

IV. PROPOSED APPROACH

A. Preprocessing and Features

The raw sensor values are in the form of time series data T ,
which are divided into a set of overlapping windows (W) for
the purpose of training. Two temporally adjacent windows wi

and wi+1 in W can have a degree of overlap defined by the
parameter θ. We set the value of θ to be 0 and 0.5. When θ =
0, there is no overlap. When θ = 0.5, there is 50% overlap
among the consecutive windows. This overlapping of 50%
essentially creates another data point between two otherwise
non-overlapping (but temporally adjacent) windows. This, in
turn, helps in learning a more robust model by reducing the
effect of outlier data. In fact, our experiments also show that
all models obtain higher accuracy in the case of overlapping
windows (details in Section V). Each window is of length ω.
We considered ω to be 2, 4, and 6 seconds.

Accelerometer Individual Axis Features: Accelerometer
in a device sensor gives us the rate of change of velocity
of that device. Accelerometer gives the output in all three
dimensions, i.e., x-axis, y-axis, and z-axis. Therefore, for a
specific window wi ∈ W , there will be three time series of
acceleration values consisting of ax, ay , and az . We apply
five statistics features on each three time series in a window
– (1) mode, (2) max, (3) median, (4) lower quartile, and
(5) standard deviation. Hence, we have 15 combinations
possible, i.e., each axis (3) paired with each of the statistical
features (5). Please note that we have considered the raw



Fig. 2: Proposed hierarchical model for distinguishing the NEAT and Non-Neat activities.

sensors values, and no filter was applied before sending it
for calculating the statistical features.

Accelerometer Magnitude Features: This feature is found
using the formula amag =

√
a2x + a2y + a2z . So given the

individual axis of the accelerometer, we can find out its
magnitude for a given time instant. For this feature as well,
we find out the same five statistical features (mode, max,
median, lower quartile, and standard deviation) for each
window wi ∈ W . There is no filter used before finding the
magnitude here as well.

Gyroscope Individual Axis Features: Gyroscope sensor
gives the angular motion speed of the device worn or carried
by a person. Just like an accelerometer, a gyroscope also
gives a three-dimensional output for the x-axis, y-axis, and
z-axis. We denote the resulting time series as gx, gy , and gz .
Along with accelerometer values, the orientation of the device
given by the gyroscope sensor is also useful in detecting
the user’s motion. We find the previously mentioned five
statistical features for each of the axes given in a time series
window having a total of 15 statistical features.

Gyroscope Magnitude Features: Just like accelerome-
ter magnitude, we also find out the overall magnitude of
the gyroscope sensor along the individual axis as gmag =√
g2x + g2y + g2z . After computing the magnitude, we prepro-

cess it by finding out the five statistical features (mode, max,
median, lower quartile, and standard deviation) for each gmag

over the window length. Henceforth, we get five features from
this category as well.

B. Proposed Model
We demonstrate our proposed hierarchical learning model

for distinguishing the seven NEAT activities, viz., Cooking,
Sweeping, Mopping, Walking, Climbing up, Climbing down,
and non-NEAT in Figure 2.

As shown in Figure 2, our proposed hierarchical model
is a combination of various binary classifiers (A, B, C, D,
E, and F), i.e., at each level, we are doing the classification
only between two classes. The two classes were formed so
that the most alike ones are clubbed together; they were
separated from the rest of the same ones. We first check if
the action involves a change in the location, i.e., leg motion.
If it does not, then we separate it at the root node itself.
That is why our topmost level classifier “A” is distinguishing
“Cooking” and “non-NEAT” from the rest of the classes. We
merge the Cooking and non-NEAT class into one class and
the rest into another. On the second level on the left-hand side,
we separated the non-leg motion data and made a classifier
“B”, which distinguishes further into non-NEAT and Cooking.
We know that there is a hand movement in cooking with
minimal leg motion, unlike non-NEAT with minimal or no
hand movement involved. Hence, those are distinguishable
among themselves.

In the second level on the right-hand side (Classifier “C”),
we separate the hand swing motion from the non-swing
motion. If there is a detection of swing motion, we move
further to the left subtree and categorize it into Sweeping +
Mopping. If there is a detection of non-swing hand motion,
we move further to the right subtree and categorize it into
the climb up + down + walk. Later, Classifier “D” classifies
the data into sweeping and mopping. In the last level, we
have distinguished climb up from Climb down + walk using
classifier “E” because of similarity in hand motion between
climb down and walk class. Later, classifier “F” classifies into
climb down and walk.

Implementation of the Learning Model: We have seven
different class labels – 1 being the cooking class, 2 being
the sweeping class, 3 being the mopping class, 4 being
the walking class, 5 and 6 are climb up and climb down
respectively, and 7 is the non-NEAT class. We take the



training data, perform the masking, and send it through all
the available classifiers. The classifier, which gives the best
accuracy among all, is chosen as the final classifier for that
level. At the root level, we first mask our training data into
“17” vs “23456”. The data labels of “17” correctly classified
are directly given to the classifier “B” for further classification
between 1 and 7. Once the “23456” data is passed through the
top-level Classifier “A” and correctly classified, it is masked
again into “23” vs. “456”. Here, the wrongly classified ones
are thrown away. The data labels of “23” correctly classified
are directly given to a classifier “D” for further classification
between 2 and 3. Once the “456” data is passed through the
second level classifier “C” and correctly classified, it is again
masked into “5” vs “46”, and the wrongly classified ones are
thrown away. At the last levels, “4” and “6” are given to a
classifier “F” for further classification. The best models with
the best accuracy on training data are stored for the testing
phase at each level.

After the data points reach a leaf node, they are no longer
trained further. In the test phase, the data points in the form
of windows are passed through each level classifier, and the
final labels are matched with the actual labels. Hereafter,
the confusion matrix is formed. Note that we discard those
window points that do not pass through the correct labels
during the training phase. For example, in the training phase,
if the data points belonging to Cooking or non-NEAT are clas-
sified as “Leg motion”, then those data points are discarded
before making a new masked training data of “Swing motion”
vs. “Non-Swing motion.” We did this for all the lower-level
classification since it ensures the quality of the final model
without running into an overfitting problem. Moreover, those
discarded data points were anyway not crucial in the training
phase.

We used the following classical Learning algorithms at each
level - (1) K-Nearest Neighbour with k=5), (2) Multi-Layer
Perceptron (3-hidden layers), (3) Support Vector Machine
(with RBF Kernel), (4) Random Forest, and (5) XGB. XGB
has the maximum accuracy.

V. EXPERIMENTAL ANALYSIS

Dataset Used: We have collected the data from a real-time
home environment. We collected all of our data using a Fossil
sports smartwatch, running an Android OS and powered by
‘Wear OS by Google’, where all four volunteers used to wear
a watch on their dominant hand (mostly right hand). The
smartwatch application contained a list of activities and a
designated start and stop button at the top. Before starting
any activity, the volunteer noted down the ground truth labels
by clicking on the designated button created in the smartwatch
application for that activity. So the volunteers were asked
to press the activity button (cooking, sweeping, mopping,
walking, climbing up, climbing down, and non-NEAT) before
pressing the start button. The stop button was pressed once the
activity was meant to be stopped. During the data collection,
the volunteer was asked to keep the mobile phone with him in

his/her pocket or hand since, after every few minutes, we were
transferring the data from the smartwatch to a smartphone
using Bluetooth. The data transfer limit and timing from the
smartwatch to the smartphone can be configured and is purely
at our discretion. As stated previously, we were not using the
“GPS” information or any kind of “tag” information from the
watch or phone. We collected around four to five hours of
data, but due to the problem of imbalanced activity classes,
we could consider only three and half hours of data. This
imbalance was natural since the time spent for a person to
climb up and down was much lesser than the time spent in
the kitchen (cooking) or doing any other household activity
like sweeping or mopping or even for instance sitting idle
/ watching TV / working on a laptop. Henceforth, we took
equal instances from each class so that the problem of miss-
classification due to dominant class does not occur.

TABLE III: Total Training Data

Window Length 1Hz (50% overlap) 1Hz (0% overlap)

2 seconds 11335 5670
4 seconds 5670 2835
6 seconds 3780 1890

Table III shows the number of instances belonging to
each window length and overlapping percentage parameter.
These numbers decrease as we increase the window length.
This is because we are expanding the time frame for which
we want to find out the input statistical features and their
corresponding output labels. We did not want to go further
with the window length since it does not show significant
improvement. Moreover, in the near future, if we deploy this
model to a server, it will delay the output of class labeling.

Candidate Algorithms: We have compared our Hierarchical
Model with the Flat Model. When we say Flat model, we
refer to the in-built classifiers, which are readily available in
common machine learning libraries (e.g., sklearn in Python).
The flat models attempt to learn a single decision boundary
amongst all our classes of interest. For the flat models, we
chose the following classifiers - a) KNN (K-nearest neighbor
with k=5) b) MLP (multi-layer perceptron with 3 hidden
layers having 13 neurons each) c) SVM (support vector
machine with kernel=‘rbf’) d) Logistic Regression e) Random
Forest f) Gaussian Naive Bayes g) XGB (Extreme Gradient
Boosting).

In the case of our hierarchical model, we tried different
classifiers for each binary classifier mentioned in the tree
(Figure 2) and chose the classifier which gives the best
accuracy. In our implementation, we made this decision on the
basis of the training accuracy as the test data is considered to
be “hidden” by definition. In our experiments, we found out
that in most of the cases, XGB was chosen at each level. We
use python language for the implementation of our models.

Training and Evaluation Metrics: We have used window
lengths of 2sec, 4sec, and 6sec in our experiments. The
window overlap parameter θ was varied across 0.5 and 0 (i.e.,



(a) All features were used. θ =
0.50,frequency = 1Hz

(b) All features were used. θ =
0.50,frequency = 5Hz

(c) All features were used. θ = 0,
frequency = 1Hz.

(d) All features were used. θ = 0,
frequency = 5Hz

Fig. 3: Effect of window length on overall accuracy when all features are used.

(a) Only Accelerometer were used.
θ = 0.5, frequency = 1Hz

(b) Only Accelerometer were used.
θ = 0.5, frequency = 5Hz

(c) Only Gyroscope were used. θ =
0.5, frequency = 1Hz

(d) Only Gyroscope were used. θ =
0.5, frequency = 5Hz

Fig. 4: Effect of window length on overall accuracy when only accelerometer or only gyroscope features are used.

(a) θ = 0.50, frequency = 1Hz, window = 2seconds

(b) θ = 0.50, frequency = 1Hz, window = 4seconds

Fig. 5: F1-scores of Our Hierarchical Model and Flat Classifier XGBoost (XGB) for θ = 0.50 and frequency = 1 Hz.

no overlap amongst temporally consecutive windows). For a
given set of windows W with its corresponding θ values,
we divide it into a train and a test data set in the ratio of
4 : 1, i.e., 80% of the data is allocated for training, and the
rest 20% is allocated for testing. To get reliable results, we
divided our given dataset into training and test portions 10
times (randomly). Following this, we trained (and tested the
learned model) on each of the previously mentioned 10 splits.
Finally, we report the average of F-scores and Accuracies
obtained across those 10 test datasets.

Consequences of varying window length on the final
accuracy: Figure 3 and Figure 4 illustrate the results of

this experiment. The test accuracy of our model is shown
in the form of bar graphs along with the rest of the flat
models. In this experiment, we tried window lengths of
2sec, 4sec, and 6secs. Overlap parameter θ was taken as
0 and 0.50. Figure 3 shows the results corresponding to
the case where all features were used in training. Whereas,
Figure 4 displays the results corresponding to cases where
only accelerometer used (Figure 4a and Figure 4b), or only
gyroscope was used (Figure 4c and Figure 4d). It is important
to note that, the performance of all the models decreased when
only gyroscope features were used. Overall, we observed that
our proposed model outperformed the alternative approaches
consistently. Moreover, our experimental results also indicate



(a) θ = 0, frequency = 1Hz, window = 2seconds

(b) θ = 0, frequency = 1Hz, window = 4seconds

Fig. 6: F1-scores of Our Hierarchical Model and Flat Classifier XGBoost (XGB) for θ = 0 and frequency = 1Hz.

(a) θ = 0.50, frequency = 5Hz, window = 2seconds

(b) θ = 0.50, frequency = 5Hz, window = 4seconds

Fig. 7: F1-scores of Our Hierarchical Model and Flat Classifier XGBoost (XGB) for θ = 0.50 and frequency = 5Hz.

that all models perform better when windows overlap (i.e.,
θ = 0.50). A similar increase in performance with an increase
in overlap has also been reported in other works [35]. This
is possibly due to the fact that in the case of overlapping
windows, the effect of outliers is reduced as “good data” sort
of “spawns” more “good data” (inadvertently) through the
process of overlapping the windows.

F1-scores of individual classes: The illustration of f1-scores
for each of the classes can be seen in Figure 5, Figure 6 and
Figure 7. The left side represents our model, and the right
side represents the flat model. We have shown only XGBoost
(XGB) since it was best among all flat models. We have
demonstrated f1-scores for three different types of feature
sets. In the first set, we have used all statistical features (i.e.,
accelerometer x, y, z-axis, the magnitude of accelerometer,
gyroscope x, y, z-axis, and the magnitude of a gyroscope).

In the second set, we have used only accelerometer features
(i.e., individual axis and its magnitude), and in the third
set, we have considered only gyroscope features (same as
an accelerometer). Our experiments indicate the following:
(a) Our proposed hierarchical model outperforms XGBoost
(and other flat models) for all the parameter values of θ,
window lengths, and data sampling frequency explored in the
experiments. (b) Best accuracy (and F1 scores) is obtained
when we use both accelerometer and gyroscope features
together. (c) As expected, both our model and XGBoost
perform better when high-frequency data (5Hz) is used. (d)
Both models perform better with θ = 0.50 and window length
4secs.



VI. CONCLUSION

Distinguishing the typical home activities in a home envi-
ronment from smartwatch sensor data (low-frequency sam-
pling data) is not a trivial problem. Presently, the work
closely related to our application deals with high frequency or
multiple sensors. Moreover, they do not include basic home
activities like sweeping, mopping, or cooking on smartwatch.
In contrast, our proposed model can distinguish these seven
activities from each other using data sampled at low frequency
(1Hz). Our experiments show that the proposed approach
gives better overall accuracy compared to all flat models.
Our work demonstrates the potential of a wrist smartwatch
for identifying the typical NEAT activities done in a home
setting. In the future, we would like to work on converting
the time spent in NEAT activities into calories burnt.
Acknowledgement: Authors would like to thank IIT Ropar
and OPERA grant from BITS Pilani Goa for their support in
this work.
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