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1 Introduction

The operator approach to string theory dates back to the early studies of dual models [1–

6]. The central idea is to encode N -point interactions in terms of the vertex ⟨ΣN,g| which

maps N physical states |φ⟩ into a complex function which is then identified as the scattering

amplitude for those states;

⟨V1(z1) . . . VN (zN )⟩ = ⟨ΣN,g : (z1, . . . , zN )| |φ1⟩ . . . |φN ⟩,

where Vi are vertex operators corresponding to the states |φi⟩. Given the conventional

relationship between states and vertex operators, one may take this expression to define

⟨ΣN,g : (z1, . . . , zN )|. The vertex ⟨ΣN,g : (z1, . . . , zN )| may also be computed in terms of

a path integral over a Riemann surface Σ of genus g with N punctures at the locations
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(z1, . . . , zN ). The external states |φi⟩ are then inserted at the locations of the punctures. In

what follows, the locations of the punctures zi will be suppressed in the notation and ⟨ΣN |

used to denote the vertex. Only the tree level contributions are considered in this paper

and so g = 0 will be assumed throughout. The operator approach played an important role

in the discovery that dual models describe the scattering of strings and, after the Polyakov

path integral became the staple approach to computing scattering amplitudes, the operator

formalism found new life in the search for a second quantised formulation of string theory

that ultimately resulted in string field theory.

As a concrete example, consider the scattering of N tachyon states |k⟩ = eik·x|0⟩.

Using the standard oscillator expansion for the embedding fields

∂Xµ(z) =
∑

n

αµ
n z

−n−1,

and associating to each puncture at the point zi (i = 1, 2, . . . , N) a Fock space Hi with a

set of oscillators {(α(i)
n )µ}, the vertex can be shown to take the form

⟨ΣN | ∼ ⟨p1| . . . ⟨pN | exp

⎛

⎝
N∑

i,j=1

∑

m,n≥0

Nmn(zi, zj)α
(i)
m · α(j)

n

⎞

⎠ , (1.1)

whereNmn are functions of the insertion points zi. The only component inNmn of relevance

for the N tachyon scattering is1 N00(zi, zj) ∼ ln |zi−zj | and so using the fact that α(i)
0 |kj⟩ =

δijkj |kj⟩, it is straightforward to show that

⟨V1 . . . VN ⟩ = ⟨ΣN ||k1⟩ . . . |kN ⟩ ∼
∏

i<j

|zi − zj |
ki·kj ,

as found from the Xµ(z) contribution to the, more conventional, path integral computation

of the amplitude. There are many details that have been skipped over, some of which shall

be discussed later on, many more of which are contained in the references.

The operator formalism provides an important alternative perspective on conventional

bosonic and supersymmetric string theories. Here, an operator formulation for ambitwistor

string theory, a close relative of the type II superstring, is presented. In [7] a string theory

describing the embedding of a worldsheet into ambitwistor space was introduced2 and it

is thought that, at genus zero, this string theory describes classical type II supergravity in

complexified spacetime C10. The key evidence for this conjecture is that ambitwistor string

theory reproduces the Cachazo, He and Yuan (CHY) [9–12] formulation of tree level scat-

tering amplitudes of type II supergravity. A more direct connection with the supergravity

equations of motion has been found by considering the vanishing of the BRST anomaly [13].

The status of higher genus amplitudes is still under investigation [14–17] and provides part

of the motivation for reconsidering this theory in an operator formalism. There are now a

number of proposed ambitwistor string theories [18–20], reflecting the myriad application

of the scattering equations (1.5) central to the CHY formalism [9]. Only the original Type

1Assuming i ̸= j. The i = j term contribution cancels out in the final answer.
2See also [8] for a pure spinor perspective.

– 2 –



J
H
E
P
0
6
(
2
0
1
6
)
0
8
4

II ten-dimensional theory will be considered here; however, the formulation discussed here

can be generalised straightforwardly to the other, more exotic, cases.

Though the study of ambitwistor string theories is an important pursuit in its own

right, the primary motivation for this paper is to begin to put in place the tools that will

allow the ambitwistor string theory be be studied as a toy model for conventional string

theory. This paper presents the first step in a re-evalution of a number of approaches

to studying background independence in string theory that, though initially promising,

have proven to be fiendishly difficult due to our as yet poor understanding of conventional

string theory in more general curved backgrounds. Future work will consider the study of

background independence and the symmetries of supergravity from the perspective of the

ambitwistor worldsheet theory. It is hoped that this study will shed some light on these

and other issues in conventional superstring theory.

A secondary motivation is to highlight the differences between conventional string

theory and the ambitwistor string. Though similar in many ways, there are stark differences

between the theories that become particularly apparent in the operator formulation.

The outline of this paper is as follows: in the remainder of this section the original

ambitwistor string theory of [7] and the operator formalism for conventional bosonic string

theory are reviewed. In section two an operator formalism for the bosonic matter sector

of the ambitwistor string is presented. It is in the bosonic sector that the ambitwistor and

conventional superstring theories differ most and this distinction is particularly stark in the

operator formalism. To describe scattering amplitudes for conventional Einstein gravity it

is necessary to include fermions; this is the subject of section three. Section four rounds

off the paper with a discussion of future work, the route to a string field theory description

of supergravity, and possible applications to the study of loop amplitudes and background

independence.

1.1 Ambitwistor string theory

In this section salient features of the ambitwistor string construction of [7] are reviewed.

The starting point is the chiral embedding of a genus zero Riemann surface Σ into the cotan-

gent bundle of complexified, ten-dimensional, flat spacetime with coordinates (Xµ, Pµ).

After gauge fixing the worldsheet metric,3 the action of the theory is

S[X,P ] =
1

2π

∫

Σ
Pµ∂̄X

µ +
1

2
ηµνΨ

µ
r ∂̄Ψ

ν
r +

e

2
P 2 − χrPµΨ

µ
r + b∂̄c,

where the repeated index r = 1, 2 is summed over and c and b are a standard ghost

system resulting from the gauge-fixing of the metric. All fields are chiral. It is assumed

from the outset that the theory is in the critical dimension and is conformal4 and the

worldsheet metric may be replaced with holomorphic and anti-holomorphic components of

the complex structure. Following the constructions [21, 22], only the component of the

complex structure that governs the deformation of ∂̄ is considered. This component J

3One might take the worldsheet gravity to be of the ‘half-twisted’ kind suggested in [21] and discussed

further in [22].
4The vanishing of the central charge as discussed in [7].
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enters into the above action as ∂̄ = ∂z̄ + J∂z. Varying the action with respect to J and

then gauge-fixing J to vanish gives the holomorphic stress tensor T (z) = Pµ∂Xµ + . . .,

where the ellipsis denote ghost and fermion contributions. The stress tensor is expected to

play an important role in the construction of an ambitwistor string field theory which will

be briefly discussed in section 4.

An additional symmetry, generated by δXµ = αPµ and δe = ∂̄α (all other fields being

invariant), reduces the target space to the quotient PA which is identified with the space

of null geodesics, or ambitwistor space [23–26]. Crucially, this symmetry ensures that the

physical spectrum includes only massless states, in contrast to the conventional string with

its infinite tower of massive modes. As described in [14], the gauge fixing of this residual

symmetry is fixed by introducing the gauge fixing fermion

F (e) = e−
N−3∑

I=1

sIµI , (1.2)

where N is the number of punctures, each located at zi, on the genus zero worldsheet Σ

and µI is a basis for H0,1(Σ, TΣ(−z1− . . .− zN )). Introducing ghosts fields in the standard

way gives rise to a standard ghost system with fields b̃ and c̃ of conformal weight +2 and

−1 respectively and an insertion of

N−3∏

I=1

δ̄

(∫

Σ
µI P

2

) ∫

Σ
b̃ µI ,

into the path integral [14]. The second integral term is the counterpart of the standard b

ghost insertion in conventional string theory and absorbs N − 3 c̃ ghost insertions on the

vertex operators. The first term plays a role that has no direct counterpart in conventional

string theory. The expression for an N -point amplitude is then

M(1, . . . , N) =

∫

Γ⊂M0,N

〈
N−3∏

I=1

δ̄

(∫

Σ
µI P

2

) ∫

Σ
b̃ µI

∫

Σ
b µI

N∏

i=1

cc̃ Vi(zi)

〉
,

where the vertex operators in the NS sector are given by

V (z) = eik·X(z)
∏

r=1,2

(ϵµrPµ + kµΨ
µ
r ϵrνΨ

ν
r ) ,

and Γ is a N − 3 dimensional cycle in the 2N − 6 dimensional moduli space M0,N of the

N -punctured sphere. As argued in [14], the N − 3 c̃ ghost terms combine with the N − 3

integrations over the location of the punctures, the only moduli on an N -punctured sphere,

to give the integrated vertex operators
∫

Σ
δ̄(kµPµ)V (z).

The amplitude then becomes

M(1, . . . , N) =

〈
3∏

i=1

cc̃Vi(zi)
N∏

i=4

∫

Σ
d2zi δ̄(ki · P )Vi(zi)

〉
.
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Evaluating the remaining ghost contributions gives two copies of the volume element5

dVijk, given in (2.14). Performing the, thus far suppressed, fermionic integrals gives the

NS sector scattering amplitudes [9–12]

M(1, . . . , N) = δD
(∑

ki
)∫

Γ⊂M0,N

1

Vol SL(2;C)
Pf′(M1)Pf

′(M2)
′∏

i

δ̄ (ki · P (zi)) , (1.3)

where P (zi) is given, after integrating out the X non-zero modes, by

Pµ(z) =
N∑

j=1

kjµ
z − zj

. (1.4)

The delta functions δ̄ (ki · P (zi)) impose the scattering equations

∑

j ̸=i

ki · kj
zi − zj

= 0, (1.5)

which originally appeared in [27, 28]. The objects Pf′Mr, r = 1, 2, encode the polarisation

data and their relationship to the Pfaffian of the matrix Mr and the definition of Mr are

given in [7].

1.2 The operator formalism

In this section certain aspects of the operator formalism as applied to the conventional

bosonic string are reviewed. In following sections similar constructions shall be given for

the ambitwistor string reviewed above. The central tenet of the operator formalism is to

recast the scattering amplitude, written in terms of a path integral with vertex operator

insertions V (zi) at punctures zi, as an inner product of N external states |Φ⟩ and the

principle object; the vertex ⟨ΣN |, so that

⟨V1(z1) . . . VN (zN )⟩ = ⟨ΣN ||Φ1⟩ ⊗ . . .⊗ |ΦN ⟩.

The state |Φi⟩ is related to the vertex operator Vi(zi) by

|Φi⟩ = lim
ti→0

: Vi(ti)|0⟩,

where ti is a local coordinate system chosen around each puncture such that the location

of the i’th puncture is ti = 0. The oscillator description of the vertex operator takes the

standard form when written in these ti coordinates. Note that the information on the

location of the puncture is carried by the vertex operator in the path integral whereas it

is contained in the vertex ⟨ΣN | in the operator formalism. Formally the vertex ⟨ΣN | is a

map V : ⊗N
i=1Hi → C from an N -fold product of Fock spaces, one based at each puncture.

There are many ways of deriving the the vertex6 ⟨ΣN |; the one followed here admits a

5The c ghosts give a holomorphic contribution to Vol SL(2;C). The anti-holomorphic contribution comes

from the c̄ ghosts of the half-twisted worldsheet gravity which is included implicitly.
6An incomplete sample is [29–33, 36]. The relationships between some of these approaches are explored

in [34, 35, 37].
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relatively simple generalisation to higher genus Riemann surfaces and so is of particular

interest [37–40]. The general idea is to find conserved charges Qn, where n ≥ 0, which

preserve the vertex

⟨ΣN :X|Qn = 0.

The notation ⟨ΣN :X| is intended to stress the fact that the vertex is for the contribution

given by the scalar field X(z) and not the full theory. Knowing the form of the Qn then

specifies the vertex up to an overall constant. The specification of Qn is perhaps best seen

from the path integral description for the associated transition amplitude, viewed as a CFT

defined on a Riemann surface with N discs D removed. For a Riemann surface with a single

disc removed, the path integral over this surface is a wave functional Ψ[Xcl] = ⟨Σ1|X⟩

Ψ[Xcl] =

∫

X|∂Σ

DX e−S[X],

where Xcl = X|∂Σ is the classical state of the string on the boundary of the removed disc.

Taking the double of the surface7 and denoting the point on which the disc is centred as

p, then a conserved charge may be written in terms of the current Jn = fn∂X + f̄n∂̄X

where fn is holomorphic on Σ\D and has a pole of degree n at p. We shall focus on

the fn contribution. The effect of the transformation induced by Qn is the symmetry

Ψ[Xcl] → Ψ[Xcl + fn] = Ψ[Xcl], where the function fn is given by

fn(t) = t−n +
∑

m≥0

Nnm tm.

The coefficients Nnm may be calculated straightforwardly8 and t is a local coordinate that

vanishes at p. The key point is that fn has a pole of order n at the puncture t(p) = 0 and

is holomorphic outside a disc surrounding p.

For a Riemann surface with several discs removed, it is useful to generalise the function

fn and introduce multiple local coordinates ti, each of which vanishes at the centre of a

particular disc (taken to be the location of the i’th puncture). In the standard operator

approach the ti are then related to a coordinate z on the complex plane by a conformal

map z = hi(ti). The location of the i’th puncture is then given by zi = hi(0). Again, the

key point is that the harmonic function f i
n only has a pole (of order n) at ti and is regular

at other points. Introducing the inverse map ζi(z) = ti, fn may be written as

f i
n(z) = δijζ−n

j +
∑

j

∞∑

m=1

Nnm(zi, zj) ζ
m−1
j . (1.6)

The functions Nnm(zi, zj) may be calculated straightforwardly and are given in the ap-

pendix. It is useful to think of9 Ψ[{X(i)
cl }] as the inner product of the N boundary states

|X(i)
cl ⟩ and the vertex ⟨ΣN :X| and to then recast the invariance of Ψ[{X(i)

cl }] in terms of

7The double of a Riemann surface is in this case the Riemann surface with the disc filled in.
8A summary of such calculations is given in the appendix.
9The Riemann surface is now thought of as having N punctures with a classical state X

(i)
cl on the

boundary of the disc surrounding the i’th puncture.
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a set of operator equations which ⟨ΣN :X| must satisfy. Around each puncture, the fields

have a standard oscillator expansion in the t coordinate

∂Xµ =
∑

n

αµ
n t

−n−1, (1.7)

and it is useful to introduce a Fock space of oscillators α(i)
n around the i’th puncture so that

X =
∑

iX
(i) where10 X(i)(z) = X(i)(hi(ti))+. . . = p(i) ln(z−zi)+. . .. Substituting in (1.6)

and (1.7), the charges Qn =
∮
dz∂X fn may be written as α(i)

−n +
∑

j Nnm(zi, zj)α
(j)
m . The

requirement that the vertex ⟨ΣN :X| is invariant under the transformation generated by

Qn requires that

⟨ΣN :X|Qn = ⟨ΣN :X|

⎛

⎝α(i)
−n +

∑

m,j

Nnm(zi, zj)α
(j)
m

⎞

⎠ = 0. (1.8)

It is useful to make the replacement

α(i)
−n →

∂

∂yin
, α(i)

n → nyin, n ≥ 0,

which reproduces the commutator [α(i)
m ,α(j)

n ] = nδijδm+n,0. Care must be taken when

dealing with the zero modes [29, 31], but one can eventually show that the vertex that

satisfies (1.8) is

⟨ΣN :X| = C

∫ ∏

i

dDpi δ
(∑

pi
)

⟨p1| . . . ⟨pN | exp

(
1

2

N∑

i,j

∞∑

m,n=0

Nnm(zi, zj)α
(i)
m · α(j)

m

)
,

(1.9)

where C is a constant that will be neglected from now on.

To complete the description of the bosonic string, ghost contributions must be included.

Similar arguments to those above may be used to determine the contribution of the ghosts

to the vertex to give ⟨ΣN :X, b, c| which, since the contributions of all fields in the theory

are now included, may be unambiguously written as ⟨ΣN |. The vertex is given by

⟨ΣN | =

∫ N∏

i=1

dpi δD
(∑

pi
)

⟨p1, 3, 3̄| . . . ⟨pN , 3, 3̄|
+1∏

r=−1

Zr

+1∏

s=−1

Z̄s (1.10)

× exp

⎛

⎜⎝
1

2

N∑

i,j=1

∞∑

n,m=0

Knm(zi, zj)α
(i)
n · α(j)

m +
N∑

i,j=1

∞∑

n=2
m=−1

Knm(zi, zj) c
(i)
n b(j)m + . . .

⎞

⎟⎠ ,

where the coefficients N ij
nm and Kij

nm are functions of the zi and are given in appendix

A. The + . . . in (1.10) denotes corresponding anti-holomorphic contributions. The states

10There are some subtleties in some of the terms included in the + . . .. A discussion of this and related

issues may be found in [29].
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⟨3| = ⟨0| c−1c0c1 are normalised such that ⟨3| 0⟩ = 1 and similarly for ⟨3̄| = ⟨0| c̄−1c̄0c̄1.

The expression for the vertex includes

Zr =
n∑

i=1

∞∑

m=−1

Mrm(zi) b
i
m. (1.11)

where theMrm(zi) are functions of the insertion points and are given explicitly in appendix

A. The Zr are related to the SL(2;C) invariance of the theory. In order to compute

scattering amplitudes we must introduce on shell states |φ⟩, defined by the insertion of the

corresponding vertex operator Vφ(t) at the origin of a local coordinate system

|φ⟩ = lim
t→0

: cc̄Vφ(t)|0⟩.

Of particular interest here are the massless states given by

|ϵ, k⟩ = lim
t→0

: c(t)c̄(t)ϵµν∂X
µ(t)∂̄Xν(t)eik·X(t)|0⟩ = c1c̄1ϵµνα

µ
−1ᾱ

ν
−1e

ik·x|0⟩.

To calculate scattering amplitudes the moduli - the locations of N − 3 punctures - must be

integrated over, giving

⟨VN | =

∫

M0,N

d2N−6
m ⟨ΣN |

N−3∏

I=1

bI b̄I ,

where

bI =

∫

Σ
d2z µI b(z), (1.12)

where µI is a basis of beltrami differentials.11 The expression for the amplitudes becomes

M(1, . . . , N) = gN−2
∫

M0,N

d2N−6
m ⟨ΣN |

N−3∏

I=1

bI b̄I |φ1⟩ . . . |φN ⟩,

with ⟨ΣN | given by (1.10). Though especially useful for higher genus, the conserved charge

approach outlined above is not the only way to find the vertex and it will be useful to

employ other techniques in the case of the ambitwistor string at tree level.

2 An operator formalism for ambitwistor string theory

The aim of this section is to construct a vertex ⟨ΣN | that reproduces the bosonic part of

the ambitwistor N -point scattering amplitude [7]

⟨ΣN ||Φ1⟩ ⊗ . . .⊗ |ΦN ⟩ =

〈
3∏

i=1

cic̃iVi

N∏

j=4

∫

Σ
δ̄(kj · P (zj))Vj

〉
.

11In terms of a local coordinate system ti near the i’th puncture b(z) may be written as

b(z) = (h′
i(ti))

−2
∑

n

bint
−n−2
i .

– 8 –
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It will be simplest to decompose ⟨ΣN | into a product of matter and ghost sectors

⟨ΣN | = ⟨ΣN :X,P |⊗ ⟨ΣN :b, c|⊗ ⟨ΣN :b̃, c̃|

and to treat each individually. The starting point is the consideration of the matter con-

tribution ⟨ΣN :X,P |.

2.1 The matter sector

As a preliminary study, consider the gauge-fixed action S[X,P ], with N vertex operator

insertions of the form V (z) = exp(ik ·X(z)). The presence of these vertex operators12 may

be incorporated, in the standard way, by writing the amplitude as the partition function

of the modified action

ŜJ [X,P ] =

∫

Σ
P · ∂̄X +

∫

Σ
J(z) ·X(z), (2.1)

where the sources are

J(z) = i
N∑

i=1

kiδ
2(z − zi).

The amplitude is then simply

MJ(1, 2, . . . , N) =

∫
DXDP e−ŜJ [X,P ].

Decomposing Xµ into a zero mode part xµ and a non-zero mode X̆µ, the partition function

MJ(1, 2, . . . , N) may be written as

MJ(1, 2, . . . , N) = δD
(∑

ki
)
M̆J(1, 2, . . . , N),

where the momentum-conserving delta function comes from the xµ integral as usual and

the modified partition function M̆J(1, 2, . . . , N) depends only on X̆ and has no dependence

on the x zero modes. The X̆ integral simply enforces the condition that P (z) takes the

classical value Pcl(z) given by (1.4) and so, up to an overall normalisation,

MJ(1, 2, . . . , N) = δD
(∑

ki
)∫

DP δ[P (z)− Pcl(z)]

Using the fact that ⟨p|k⟩ = δD(p−k), the conservation of momentum may be incorporated

into the vertex straightforwardly and one might be tempted to propose

⟨ΣN :X,P | =

∫
DP

∫ ∏

i

dDpi δ
(∑

pi
)
⟨p1| . . . ⟨pN | δ[P (z)− Pcl(z)]. (2.2)

This will clearly give the correct relation ⟨ΣN : X,P ||k1⟩ . . . |kN ⟩ = MJ for the states

|ki⟩ which only depend on the zero mode momenta. For other states, which depend on

12Note that the Ambitwistor string does not have tachyons in its physical spectrum; however, by first

considering these simplest of vertex operators, the application of the formalism to physical states will be

more easily understood.
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non-zero momentum modes, the situation is more complicated. The imposition of the

condition P (z) = Pcl(z) by integrating over a delta-function in (2.2) is not particularly

natural from the operator perspective, particularly if one is to ultimately consider the

momenta as operators. If the states of interest were simply tachyon-like |k⟩, the above

expression might suffice for most purposes; however, the on-shell massless states which are

of the form PµPν |k⟩ directly involve the momenta and so more work is needed to bring (2.2)

to a more suitable form.

2.1.1 The vertex for general sources

In this section the vertex for general states will be constructed and, as a limit of the general

case, the truncated vertex for the scattering of massless states on-shell will be derived. The

term truncated vertex will be used to refer to a vertex for which all operators that play no

non-trivial role are omitted.13

Following [29], where similar arguments were put forward in the context of the con-

ventional bosonic string, the vertex may be determined from the action evaluated on the

classical fields. The operators X̂ and P̂ are split into creation (X̂−, P̂−) and annihilation

(X̂+, P̂+) operators

X̂ = X̂+ + X̂−, P̂ = P̂+ + P̂−,

where X̂+|0⟩ = 0 and ⟨0|X̂− = 0. Coherent states |X+, P+⟩ and ⟨X−, P−| are eigenstates

of the annihilation and creation operators respectively.

The basic idea is to write the vertex as an operator acting on the vacuum

⟨ΣN | = ⟨0| . . . ⟨0| M̂(X̂i, P̂i).

Note that all X̂− and P̂− dependence in the operator M̂ annihilates on the vacuum, leaving

only X̂+ and P̂+ dependence. Taking the inner product of the vertex with N coherent

states gives the function

⟨0| . . . ⟨0| M̂(X̂i, P̂i) |X
+
1 , P+

1 ⟩ . . . |X+
N , P+

N ⟩ = ⟨0| . . . ⟨0| M(Xi, Pi) |X
+
1 , P+

1 ⟩ . . . |X+
N , P+

N ⟩

= M(X+
i , P+

i ),

since the |X+, P+⟩ are eigenstates of the X̂+ and P̂+ operators and ⟨0|X+, P+⟩ = 1. The

key point is that M(X+
i , P+

i ) has the same functional form as the operator M̂(X̂+
i , P̂+

i )

in the vertex with the eigenvalues (X+, P+) taking the place of the operators (X̂+, P̂+).

If the function M can be found, then the vertex ⟨ΣN | = ⟨0|M̂ immediately follows by

replacing (X+
i , P+

i ) with (X̂+
i , P̂+

i ).

The function M(X+
i , P+

i ) is just the amplitude for the scattering of N coherent states,

it may equally well be calculated using the path integral approach

M(1, 2, . . . , N) =

∫
DXDP e−S[X,P ]

N∏

i=1

Vi,

13An operator will be taken to play only a trivial role if it is annihilated by the external states. For the

conventional string any given mode αµ
−n (for n ≥ 0) will appear in some external state. For the ambitwistor

string only the massless modes correspond to physical states and so only a finite subset of the oscillator

modes {αµ
−1,α

µ
0} can appear in the external states.
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where the vertex operators encode the coherent states. What are the vertex operators?

The answer is a straightforward generalisation of the simple tachyon-like scattering problem

above (2.1). There, the vertex operators were incorporated by including a source term J ·X

where, in that case J(z) =
∑

i kiδ
2(z − zi). The form of the current could have been read

off directly from the right hand side of the X(z) equations of motion ∂̄Pcl = J , and the

source term in the action may be expressed as X · ∂̄Pcl, where Pcl is interpreted as the

classical field configuration at the puncture. The path integral above is then given by

MJ,K(1, 2, . . . , N) =

∫
DXDP e−ŜJ,K [X,P ],

where the generating function MJ,K has sources Jµ and Kµ, sources which are related to

the classical field configurations of the coherent states14 The gauge-fixed action, with these

sources included, is given by the extended action

ŜJ,K [X,P ] =

∫

Σ
P · ∂̄X −K · P + J ·X, (2.3)

where the equations of motion satisfied by the classical fields are ∂̄Pcl = J and ∂̄Xcl = K,

and so we may replace J and K by ∂̄Pcl and ∂̄Xcl respectively in (2.3). Separating out the

zero modes x and then integrating out the non-zero modes X̆ in the generating functional

gives

MJ,K(1, 2, . . . , N) ∼ δD
(∮

∂Σ
dzPcl

)∫
DP δ[P (z)− Pcl(z)] e

−
∫
Σ d2zK(z)·P (z), (2.4)

where the fact that ∂̄Pcl = J has been used. Using the delta functional to do the P integral

and replacing the source K with ∂̄Xcl gives

MJ,K(1, 2, . . . , N) ∼ δD
(∮

∂Σ
dzPcl

)
eS[Xcl,Pcl] (2.5)

where

S[Xcl, Pcl] =

∫

Σ
Pcl · ∂̄Xcl,

The x zero modes give rise to a delta function which, as will be discussed below, enforces

overall momentum conservation.

Introducing local coordinates ti around each puncture as described in the introduction,

the classical fields may be written as mode expansions in these local coordinates15

P (i)
cl (z) = (h′i(ti))

−1
∑

n

α(i)
n t−n−1 + . . . , X(i)

cl (z) =
∑

n

α̃(i)
n t−n + . . . (2.6)

14The notation has been adapted to include reference to these sources.
15It is important not to confuse the α and α̃ appearing here with the operators in the bosonic sector of

conventional string theory. In particular, there is no analogue of the anti-holomorphic sector here. Subtleties

relating to the + . . . terms are discussed in [29].
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The support of the delta-function may then be written as

∑

j

∮

zj

dzPcl(z) =
∑

i,j

∑

n

α(i)
n

∮

zj

dz (h′i(ti))
−1 t−n−1

this in only non-trivial of i = j and, recalling that dz = h′i(ti) dti, the contour integral

may be simply done to yield
∮

∂Σ
dzPcl(z) =

N∑

i=1

ki

where the operator α(i)
0 has been identified with the zero mode ki. The delta function

therefore gives rise to the expected conservation of momentum. After some manipulation,

it may be shown that

S[Xcl, Pcl] =
∑

i,j

∮

zi

dz

∮

zj

dwPcl(z)S(z, w)Xcl(w),

where S(z, w) is the Green’s function for ∂̄ and Xcl and Pcl have the oscillator expan-

sions (2.6). Putting this all together one finds that the amplitude for the scattering of N

coherent states is

MJ,K(1, 2, . . . , N) = δD
(∑

ki
)
exp

⎛

⎝
∑

i,j

∮

zi

dz

∮

zj

dwPcl(z)S(z, w)Xcl(w)

⎞

⎠ .

The vertex is given by replacing the oscillator modes (αµ, α̃µ) with conjugate operators

and treating the momentum conserving delta-function as in the previous section gives the

following expression for the vertex

⟨ΣN :X,P | = C

∫ ∏

i

dDpi δ
(∑

pi
)

⟨p1| . . . ⟨pN | exp

(
N∑

i,j

∞∑

m,n=0

Snm(zi, zj) α̃
(i)
m · α(j)

n

)
,

(2.7)

where Pcl and Xcl have oscillator modes αn and α̃n respectively (recall that, in this gauge

X and P are independent). C is a constant that will be neglected from now on. The X

and P fields are conjugate and so the oscillators satisfy the commutation relations

[α̃(i)µ
m ,α(j)

nν ] = δijδ
µ
ν δm+n,0.

Defining a map hi from local coordinates ti to the coordinate z, where zi = hi(0) as

described above, the vertex function Smn(zi, zj) in (2.7) is given by

Smn(zi, zj) =

∮
dti
2πi

∮
dtj
2πi

h′j(tj) t
−m
i t−n−1

j

1

hi(ti)− hj(tj)
.

Notice that S0n(zi, zj) = 0 for all n ≥ 0 and also that Smn(zi, zj) ̸= Snm(zi, zj).
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2.1.2 On-shell scattering vertex

It is useful to see how the above construction imposes the delta function condition P (z) =

Pcl(z) on the momenta in the path integral construction in (2.2). The situation simplifies

greatly if the sources are restricted to on shell asymptotic states of the form |k, ε⟩ =

εµνα
µ
−1α

ν
−1e

ik·x|0⟩. Setting Jµ(z) = i
∑

i kµiδ
2(z− zi) and localising the momentum source

to the punctures by writing Kµ(z) =
∑

i ζ
µ
i δ

2(z− zi), for some set of dummy variables ζµi ,

the expression for the vertex (2.4) becomes

δD
(∑

i

ki
)∫

DP δ[P (z)− Pcl(z)] e
−

∑
i ζi·P (zi)

The dummy ζi variables allows for differentiation with respect to ζi to bring down powers

of P (zi) as necessary and subsequently set ζi to zero.16 Such terms illustrate how the K

sources play a role in the scattering of massless states. Returning to the example with

states |k⟩, we set K = 0. The classical states are then given by the equations of motion

∂̄Xµ
cl(z) = 0, ∂̄Pcl µ(z) =

N∑

i=1

kiµδ
2(z − zi).

There are no globally defined holomorphic vector fields on the worldsheet and so

Pcl(z) =
N∑

i=1

ki

z − zi
. (2.8)

Integrating out the zero mode xµ gives the required momentum-conserving delta function.

After setting the ζi to zero, the Xµ equation of motion is ∂̄Xµ = 0. Liouville’s theorem tells

us that Xµ is a constant as it is holomorphic everywhere on the compact Riemann surface

CP1 and soXµ
cl(z) = xµ. SinceXµ

cl = xµ, then S[Xcl, Pcl] = 0 and therefore there is no other

content to the vertex ⟨ΣN :X,P | other than that from the zero modes which give the momen-

tum conservation, the constraint requiring that P (z) takes the classical value (2.8), and the

second term in (2.11), which is related to SL(2;C) invariance of the vacuum. A reasonable

first step towards understanding the matter contribution to the vertex was the proposal

∫
DP

∫ ∏

i

dDpi δ
(∑

pi
)
⟨p1|⊗ . . .⊗ ⟨pN | δ[P (zi)− Pcl(zi)].

As discussed above, an operator description of this delta functional that forces the momenta

to take the classical value (2.8) would be desirable. Let us consider how this is achieved by

16This just incorporates the standard path integral technique of writing the vertex operators in the

exponential form

V (z) = ϵµνPµ(z)Pν(z)e
ik·X(z) =

[

ϵµν
∂2

∂ζµ∂ζν
exp (ik ·X(z) + ζ · P (z))

]

ζ=0

.
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the vertex (2.7). A straightforward application of the Baker-Campbell-Hausdorf formula17

yields

⟨pi| exp
(
Pcl(zi) · α̃

(i)
1

)
εµνα

(i)µ
−1 α

(i)ν
−1 |ki⟩ = εµνP

µ
cl(zi)P

ν
cl(zi) δ

D(pi − ki).

Pcl takes the value (2.8). The matter contribution to the vertex is then

⟨ΣN :X,P | =

∫ ∏

i

dDpi δ
(∑

pi
)
⟨p1|⊗ . . .⊗ ⟨pN | exp

⎛

⎝
∑

i ̸=j

S(zi, zj)α
(j)
0 · α̃(i)

1

⎞

⎠ , (2.9)

where the Green’s function of ∂̄ is written as S(zi, zj) = (zi − zj)−1 so that (2.8) becomes

Pcl(zi) =
∑

j ̸=i kiS(zi, zj). The massless external states at the punctures are

|ki, εi⟩ = εµνα−1µα−1νe
ik·x|0⟩,

and one can show that the matter contribution to the vertex (2.9) satisfies

⟨ΣN :X,P ||k1, ε1⟩ . . . |kN , εN ⟩ = δ
(∑

ki
) N∏

i=1

ε(i)µνP
µ
cl(zi)P

ν
cl(zi),

which is the result sought. This truncated description of the vertex can be seen to arise

from (2.7) in the special case where the states are of the form

|Φ⟩ = εµνα−nµα−nν |k⟩

where n > 0. It is not too hard to show that, for such states the only non-vanishing

contributions come from terms involving

Sn0(zi, zj) =
h′j(0)

(n− 1)!

[
∂n−1

∂tn−1
i

1

hi(ti)− zj

]

ti=0

,

for n > 0. When considering the scattering of such states, the vertex (2.7) may be written

in a truncated form

⟨ΣN :X,P ||Φ1⟩ . . . |ΦN ⟩=

∫ ∏

i

dDpi δ
(∑

pi
)
⟨p1| . . . ⟨pN | exp

⎛

⎝
∑

i ̸=j

Sn0(zi, zj)α
(j)
0 · α̃(i)

n

⎞

⎠

×εµν(1) α
(1)
−nµ α

(1)
−nν |k1⟩ . . . ε

µν
(N) α

(N)
−nµ α

(N)
−nν |kN ⟩, (2.10)

for fixed n, where all superfluous operators, i.e. those which annihilate on the physical

states, are neglected. The only such state with the required conformal weight (recall X(z)

is of weight zero) is where n = 1. Setting n = 1 in (2.10) and using the fact that S10(zi, zj) =

17In the adjoint form

eXY =

(

Y + [X,Y ] +
1
2
[X, [X,Y ]] + . . .

)

eX .

The higher terms denoted by the ellipsis do not contribute to the calculation. Indeed, only the [X, [X,Y ]]

term plays a role.
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(zi − zj)−1, the vertex (2.7) reduces to the truncated vertex (2.9) found above. The appli-

cation of the analysis in appendix A to the ambitwistor string also supports this result.

In summary, the (X,P ) contribution to the vertex is given by (2.7). Upon restriction

to physical external states one may use the truncated vertex (2.9) without loss of generality.

Momentum conservation, the result of integrating out theX zero modes in the path integral

approach, appears naturally and the requirement that P (zi) takes the value Pcl(zi) is

ensured by the action of operators in the exponent in ⟨ΣN | on the physical states. This

completes the discussion of matter sector of the bosonic theory. The ghost sectors are

treated in the following section. As a final comment, note that the gauge (1.2) has been

used throughout. It would be interesting to study the formalism in other gauges.

2.2 The ghost sectors

The conventional (b, c) ghost system will be considered first. The (b̃, c̃) system may be

understood in a very similar way. Including the b, c ghosts in the vertex modifies (2.5) to

MJ,K(1, 2, . . . , N) ∼

∫
dDx e−S[Xcl,Pcl]+S0 ,

where

S[Xcl, Pcl, bcl, ccl] = −

∫

Σ
Pcl · ∂̄Xcl + bcl∂̄ccl, S0 = −

∫

Σ
x · ∂̄Pcl + ∂̄bcl(c−1z

2 + c0z + c1),

(2.11)

and S0 now contains zero modes for Xµ(z) and c(z). Integrating out the xµ zero mode gives

the expected momentum conservation as seen above. The c zero modes give contributions

related to projective invariance and shall be discussed below. The operator contribution

here is identical to that of the holomorphic sector of the conventional string. The ghost

fields b(i) and c(i) have standard expansions when expressed in the local ti coordinates;

however, their expansion is more complicated when expressed in the coordinate z (see [29]

for further details)

b(i)(z) = (h′i(z))
−2
∑

n

b(i)n h−1
i (z)−n−2 + . . . , c(i)(z) = h′i(z)

∑

n

c(i)n h−1
i (z)−n+1,

and similarly for the (b̃, c̃) ghosts. In order to compute the operator contribution to the

amplitude it is useful to consider the Greens function ⟨c(z)b(w)⟩ = (z − w)−1, where the

normalisation ⟨c−1c0c1⟩ = 1 has been adopted for each set of ghosts. As in the conventional

string theory, it is useful to introduce the following notation for the ghost vacuum, ⟨3| =

⟨0|c1c0c−1. The contribution to the vertex from the (b, c) system is then

⟨ΣN :b, c| = ⟨3|1 ⊗ . . .⊗ ⟨3|N exp

(
∑

i,j

∑

n≥2
m≥−1

Knm(zi, zj) c
(i)
n b(j)m

)
+1∏

n=−1

Zn

N−3∏

I=1

bI , (2.12)

where Knm(zi, zj) is given in appendix A. The Zn are the same as given in (1.11) and come

from the zero mode contributions (2.11) discussed in the previous section. The required

N − 3 b ghost insertions have also been included with the bI given by (1.12). Integration
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over the moduli corresponding to the location of N −3 puncture then removes the c ghosts

from N − 3 of the external states.

The story for the (b̃, c̃) system is similar since they have the same conformal weights.

The crucial difference is the gauge-fixing of the e field leads to and extra P 2 term that

must be taken into account as described in [14]. The (b̃, c̃) contribution to the vertex is

⟨ΣN :b̃, c̃| = ⟨3̃|1 ⊗ . . .⊗ ⟨3̃|N exp

(
∑

i,j

∑

n≥2
m≥−1

Knm(zi, zj) c̃
(i)
n b̃(j)m

)
+1∏

n=−1

Z̃n

N−3∏

i=1

b̃i δ̄(Pi),

(2.13)

where Z̃n is given by (1.11), except with the b ghost replaced by a b̃ ghost. In order to

streamline the expressions the notation

Pi :=

∫

Σ
µiP

2,

has been introduced. A judicious choice of basis µi [14] yields Pi = Reszi(P
2) which gives

the required δ̄(ki · P (zi)) factor.

2.3 Computing the amplitude

It will be useful to denote the product of (2.9), (2.12) and (2.13) by18

⟨VN | = ⟨ΣN |
N−3∏

I=1

bI b̃I δ̄(PI),

where

⟨ΣN | =

∫ N∏

i=1

dpi δ
(∑

pi
)

⟨p, 3, 3̃|1 ⊗ . . .⊗ ⟨p, 3, 3̃|N exp(S)
+1∏

n=−1

Zn

+1∏

m=−1

Z̃m.

The exponent S is a sum of the oscillator exponent terms as given in (2.9), (2.12) and (2.13)

S =
∑

i,j

S(zi, zj)α
(j)
0 · α̃(i)

1 +
∑

i,j

∑

n≥2
m≥−1

(
Knm(zi, zj) c

(i)
n b(j)m +Knm(zi, zj) c̃

(i)
n b̃(j)m

)
.

where, without loss of generality, the truncated vertex for the matter sector has been used.

In terms of this vertex, the amplitude is given by

M(1, . . . , N) = gN−2
∫

Γ⊂M0,N

⟨ΣN |
N−3∏

I=1

bi b̃i δ̄ (Pi) |ϵ1, k1⟩ . . . |ϵN , kN ⟩,

where the integral over the moduli space includes the (holomorphic) coordinates of N − 3

punctures and where the physical vertex states are

|ϵ, k⟩ = c1c̃1 ϵµνα
µ
−1α

ν
−1 e

ik·x|0⟩.

18Note the PI factors have been pulled out of ⟨ΣN :̃b, c̃| for later convenience.
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In this expression g is the coupling. The b and b̃ insertions remove the c and c̃ insertions on

N −3 vertex operators and the P 2 insertion in PI enforces the δ̄(k ·P ) at N −3 punctures,

giving

M(1, . . . , N) = gN−2
∫

Γ⊂M0,N

⟨ΣN |
3∏

i=1

c(i)1 c̃(i)1 ϵµiνi
i α(i)

−1µi
α(i)
−1νi

×
N∏

i=4

δ̄ (k · P ) ϵµiνi
i α(i)

−1µi
α(i)
−1νi

|k1⟩ . . . |kN ⟩.

In the previous sections it was shown that the α(i)
−1 factors in the external states are con-

verted into Pcl(zi) factors by ⟨ΣN |. Momentum conservation is ensured by the contraction

of the |ki⟩ with ⟨ΣN |. The only outstanding features of the bosonic theory to account for

come from the ghost terms. The
∏+1

r=−1Zr combine with the
∏3

i=1 c
i
1c̃

i
1 terms, coming

from three of the physical states, to give a contribution proportional to the inverse volume

element of the holomorphic part of the conformal Killing group; SL(2;C), in line with what

is found for the conventional string theory.19 A similar calculation for the b̃ ghosts in Z̃n

and the c̃ ghosts appearing in the physical states results in an additional inverse volume

factor. The net result is the bosonic scattering amplitude [7]

M(1, . . . , N) = δD
(∑

ki
)∫

Γ⊂M0,N

1

dV123

N∏

i=1

ϵµνi PµPν

′∏

i

δ̄ (ki · P (zi)) ,

where

dVijk =
dzi dzj dzk

(zi − zj)(zj − zk)(zk − zi)
, (2.14)

and
′∏

i

δ̄(ki · P (zi)) =
1

dV123

N∏

i=4

δ̄(ki · P (zi)), (2.15)

is known to be permutation invariant [12]. Due to the action of the operators in the vertex,

the momenta P (zi) above are all of the form (2.8). As discussed in [7], in order to construct

amplitudes which includes Einstein gravity as a sub-sector requires the supersymmetric

extension of the above bosonic construction. This is the subject of the next section.

3 Incorporating fermions

The bosonic sector of the ambitwistor theory is somewhat simpler than the corresponding

bosonic sector of the conventional string theory. In many ways the fermionic sector plays

19

+1
∏

r=−1

∑

m≥1

N
∑

i=1

Mrm(zi)b
i
m c11c

2
1c

3
1|0⟩1 . . . |0⟩N =

∑

i<j<k

(zi−zj)(zj−zk)(zk−zi)
bi−1b

j
−1b

k
−1

h′
i(0)h

′
j(0)h

′
k(0)

c11c
2
1c

3
1|0⟩1 . . . |0⟩N

=
(z1 − z2)(z2 − z3)(z3 − z1)

h′
1(0)h

′
2(0)h

′
3(0)

|0⟩1 . . . |0⟩N ∝
1

dVol(SL(2;C))
.

The last term is the inverse volume element of SL(2;C). Note that we have neglected the h′
i(0) terms as

such factors are guaranteed to cancel out in the final, conformally invariant, result.

– 17 –



J
H
E
P
0
6
(
2
0
1
6
)
0
8
4

a far more significant role in ambitwistor calculations. In this section it will be shown that

the Neveu-Schwarz fermion contribution to the vertex operator is ⟨ΣN :Ψ1| ⊗ ⟨ΣN :Ψ2|,

where each ⟨ΣN :Ψ| factor is given by

⟨ΣN :Ψr| = ⟨0|1 . . . ⟨0|N exp

⎛

⎝
∑

i,j

∑

m,n≥1/2

Smn(zi, zj)ψ
(i)r
n · ψ(j)r

m

⎞

⎠ . (3.1)

This will be justified explicitly below. Since the fermionic components of the string and

ambitwistor string worldsheet theories are comparable, one does not expect the fermion

component of the vertex to differ in generalities. The main difference is that in the Type II

ambitwistor string there are two copies of chiral fermions Ψr. In what follows only one copy

will be explicitly considered and the r = 1, 2 index will be suppressed. It will be understood

that two copies of the sector are needed for any explicit calculation. Only the Neveu-

Schwarz sector is considered here. It is straightforward to adapt existing constructions for

the conventional superstring [43, 44] to describe the Ramond sectors.

In the introduction the conserved charge approach of constructing the vertex was

oultined. This approach is ideal for generalising to higher genus Riemann surfaces; how-

ever, a more direct approach may be employed for the genus zero case. For the free field

constructions considered here, it is relatively straightforward to directly construct a vertex

that will reproduce the correct scattering amplitudes by considering the two-point functions

of the fields.

Following [41–43], local holomorphic coordinates ti are introduced in a small disc

around the i’th puncture. As usual, the puncture is taken to be at the origin of this

coordinate system. In addition, there is the coordinate z on the complex plane, related

to the ti coordinates by the conformal transformation20 z = hi(ti). The i’th puncture is

then located at the point zi = hi(0). Again, the idea is to map each of the individual

local descriptions around the punctures to a common complex plane, where calculations

are performed. The vertex function then takes the form

Smn(zi, zj) =

∮

ti=0
dti

∮

tj=0
dtj t

−m− 1
2

i t
−n− 1

2
j

√
h′ih

′
j

1

hi(ti)− hj(tj)
. (3.2)

A more detailed discussion of the derivation of such vertex functions may be found in the ap-

pendices. The vertex functions given in the previous section may be found in a similar way.

3.1 Contribution to scattering amplitudes

It will be shown in this section that this fermion vertex reproduces the correct Pfaffian

factor in the Neveu-Schwarz scattering amplitude. The starting point is the fermionic part

of the vertex operator

V (z) ∼ ϵµΨ
µkνΨ

ν eik·X(z).

20For the three-point amplitude it is useful to use the SL(2;C) invariance to fix the three points at the

canonical values (0, 1,∞).
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The state given by inserting the operator at the origin is |k, ϵ⟩ = limz→0 : V (z)|0⟩ so that

the states of interest contain terms of the form

|k, ϵ⟩ = ϵµψ
µ
− 1

2

kνψ
ν
− 1

2
|0⟩,

where the expansion in terms of the oscillators ψµ
n is given with respect to a local coor-

dinate system adapted to the puncture, and all dependence on other fields is temporarily

supressed. The contribution from a single chiral fermion to the scattering amplitude of N

such states |ki, ϵi⟩ is then

MΨ(1, 2, . . . , N) = ⟨ΣN :Ψ||k1, ϵ1⟩ . . . |kN , ϵN ⟩

=⟨01| . . . ⟨0N | exp

⎛

⎜⎝
∑

i,j

∑

m,n≥ 1
2

Smn(zi, zj)ψ
(i)
m · ψ(j)

n

⎞

⎟⎠
N∏

r=1

(
ϵr · ψ

(r)

− 1
2

kr · ψ
(r)

− 1
2

)
|01⟩ . . . |0N ⟩.

For m,n ̸= 1
2 the ψ(r)

n oscillators anti-commute past the ψ(r)

− 1
2

states and annihilate on the

vacuua |0⟩, leaving

MΨ(1, 2, . . . , N)=⟨01| . . . ⟨0n| exp

⎛

⎝
∑

i,j

Sij
1
2

1
2

ψi
1
2
· ψj

1
2

⎞

⎠
n∏

r=1

(
ϵr · ψ

(r)

− 1
2

kr · ψ
(r)

− 1
2

)
| 01⟩ . . . | 0n⟩ .

It is not hard to show that S 1
2

1
2
(zr, zs) =

√
h′r(0)h

′
s(0) [hr(0)− hs(0)]

−1. The factor of
√
h′r(0)h

′
s(0) will cancel out in the final expression since the full amplitude is conformally

invariant and so we shall not bother to keep track of such factors from now on. Only the

m = n = 1/2 terms contribute so, in order to remove unnecessary clutter, it is helpful

to denote S 1
2

1
2
(zi, zj) and ψ(i)

1
2

by S(zi, zj) and ψi respectively henceforth. Recalling that

hi(0) = zi, the location of the i’th puncture, gives S(zi, zj) = (zi − zj)−1. In order to

evaluate the above operator expression it is useful to set

ψ(i)
−mµ → ηµν

∂

∂ψ(i)
mν

, m ≥
1

2
.

The anti-commutation relations {ψ(i)
mµ,ψ

(j)
nν } = δijηµνδm+n,0 are then satisfied automati-

cally. The role of the vacua is then played by setting ψm equal to zero once all derivatives

have been evaluated. The contribution to the amplitude is then equivalent to

MΨ(1, . . . , N) =

⎡

⎣
N∏

i=1

ϵiµk
i
ν

∂2

∂ψi
µ∂ψ

i
ν

exp

⎛

⎝
∑

i,j

S(zi, zj)ψ
i · ψj

⎞

⎠

⎤

⎦

ψ=0

.

Defining ψµ := ϵµξ + kµξ̃ for some grassmann variables ξ and ξ̃ the differential operator

may be written as

ϵµkν
∂2

∂ψµ∂ψν
=

∂2

∂ξ∂ξ̃
,
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and the expression becomes

MΨ(1, . . . , N) =

⎡

⎣
N∏

i=1

∂2

∂ξi∂ξ̃i
exp

⎛

⎝
∑

i,j

(
ξi, ξ̃i

)
M ′

(
ξj
ξ̃j

)⎞

⎠

⎤

⎦

ξ=0

,

where the 2N × 2N matrix M is given by

M ′ =

(
A C ′

−C ′T B

)
,

where,

A =
ϵi · ϵj
zi − zj

, C ′ =
ϵi · kj
zi − zj

, B =
ki · kj
zi − zj

,

for i ̸= j and Aii = Bii = C ′
ii = 0. This expression is identical to one obtained directly

from the path integral (see appendix B) and so MΨ(1, . . . , N) ∝ Pf(M ′). Thus the NS

fermion contribution to the (truncated) vertex is

⟨ΣN :Ψ| = ⟨0|1 . . . ⟨0|N exp

(
∑

i ̸=j

ψi · ψj

zi − zj

)
.

For completeness recall from [7] that the inclusion of the ϵ ·P terms in the integrated vertex

operators means that there is a non-zero contribution to the diagonal of the C ′ sub-matrix

and we should replace C ′ with a matrix C, where the off-diagonal components are equal to

those of C ′ but has non-vanishing diagonal components Cii =
∑

i ̸=j
ϵi·kj
zi−zj

. The inclusion of

superconformal ghosts refines the above argument and the contribution to the vertex is in

fact ⟨0|1 ⊗ ⟨0|2 ⊗ ⟨ΣN−2 :Ψ|, rather than ⟨ΣN :Ψ|. The vertex with one chiral fermion has

been described explicitly. A second copy is required in the Type II ambitwistor string.

3.2 Superconformal ghosts

This section shall be brief since the role of the superconformal ghosts in the ambitwisor

string is very similar to that in conventional string theory, the operator formalism for which

has been studied at length (see, for example, [44]). Following standard procedures outlined

in [45] for the conventional superstring and in [14] for the ambitwistor string two vertex

operators, for different pictures, are introduced. The fixed vertex operators take the form21

cc̃ δ(γ1)δ(γ2) U where

U = ϵ1 ·Ψ1 ϵ2 ·Ψ2 e
ik·X ,

and the integrated vertex operators are cc̃ V where

V = eik·X
2∏

r=1

(ϵr · P + k ·Ψr ϵr ·Ψr).

21These vertex operators look very similar to their counterparts in conventional superstring theory but

it is important to stress that the origin of the ghosts is quite different. There are two copies of the γ

ghost coming from the fact that the ambitwistor string, unlike the Type II superstring, has two left-moving

supersymmetries in contrast to the single chiral and anti-chiral supersymmetries of the closed superstring.

By contrast, the c̃ ghost has no analogue in the conventional string.

– 20 –



J
H
E
P
0
6
(
2
0
1
6
)
0
8
4

The corresponding states are given by |χi⟩ = limti→0 : U(ti)|0⟩ and |Φi⟩ = limti→0 :

V (ti)|0⟩. The vertex contribution of the superghosts takes the standard form as that

of the holomorphic sector of the closed superstring in the operator formalism, details of

which may be found for example in [43, 44]. The superghost contribution takes the form

⟨Vβ,γ | = ⟨V1|⊗ ⟨V2| where

⟨ΣN :βr, γr| = ⟨gh| exp

⎛

⎝
∑

i,j

∑

m,n

Bnm(zi, zj) γ
r(i)
n βr(j)m

⎞

⎠ ,

where ⟨gh| is an N -fold product of ghost vacua of appropriate picture number. The key

point is that, in order for the amplitude to give a non-zero result, we require the insertion of

picture-changing operators whose net effect is to convert two of the cc̃V external states into

cc̃ δ(γ1)δ(γ2) U states. This has two effects [7]; the first is that the two sets of δ(γ1)δ(γ2)

factors give rise to a factor of G′ := (zi−zj)−1
√

dzi dzj where zi and zj are the locations of

the two U states, the second is that only the N−2, V states contribute to the matrixM dis-

cussed in the previous section. Thus the Pfaffian of interest is Pfaff(M ij
ij ), which is the Pfaf-

fian of M with i’th and j’th rows and columns omitted. Further details may be found in [7].

Incorporating the net effects of ghosts and superghosts, the amplitude may be written as

M(1, . . . , N) =

∫

Γ⊂M0,N

⟨WN ||χ1⟩ ⊗ |χ2⟩ ⊗ |Φ3⟩ ⊗ . . .⊗ |ΦN ⟩,

where the (truncated) vertex is given by

⟨WN | =

∫ N∏

i=1

d10pi δ
(∑

pi
)
G′ ⟨p1| . . . ⟨pN |

∏

i

δ̄′(ki · Pcl(zi))

× exp

(
N∑

i ̸=j=3

ψi · ψj

zi − zj
+
∑

i ̸=j

α(j)
0 · α̃(i)

1

zi − zj

)
, (3.3)

where G′ is defined above and δ̄′(k · P ) is given by (2.15). The physical states are

|χ⟩ =
∏

r=1,2

ϵr · ψr|k⟩, |Φ⟩ =
∏

r=1,2

(ϵr · α−1 + ϵr · ψr k · ψr)|k⟩,

where |k⟩ = eik·x|0⟩. It is straightforward to show that the above vertex leads to the

amplitude (1.3). For more general computations, the description of the vertex with the

full compliment of oscillators made explicit; (2.7) and (3.1), should be used in place of the

truncated expressions in the above vertex.

4 Discussion

The operator formalism for conventional bosonic string theory has been reviewed from a

number of complimentary perspectives and adapted to describe and operator formalism

for the ambitwistor string. This is only the beginning of the story; there are a number of

directions for future work.
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4.1 Loops

The construction outlined in the Introduction can be generalised to higher genus Riemann

surfaces22 [38, 39, 44]. The derivation of the vertex in the higher loop case takes a similar

form in that we search for a single-valued function fn that is holomorphic on Σ\{p} and has

a pole of order n at the point p; however, the Weierstrass gap theorem requires that n > g

where g is the genus of Σ. A way out is to construct a multi-valued function23 with pole

of order n ≤ g which is then made single-valued by the addition of an anti-holomorphic

piece. For a scalar field, the function fn takes the form

fn =

∫ z (
ηn(z)−An(ImΩ)−1(ω − ω̄)

)
,

where Ω is the period matrix associated to Σ, ω is an abelian differential with expansion

ω(z) =
∞∑

n=1

Anz
n−1 dz,

and

ηn(z) =
1

(n− 1)!

∂

∂z

[
∂n−1

∂yn−1
lnE(z, y)

]

y=0

,

where E(z, y) is the Prime form [46]. Generalising toN punctures, the functionsNnm(zi, zj)

may then be written in terms of these objects evaluated at the punctures. As noted above,

this approach requires the introduction of anti-holomorphic data, which seems at odds

with the general philosophy of ambitwistor string theory; however, the simplicity seen in the

bosonic matter sector at tree level extends to higher genus and progress can be made in the

one-loop case [60]. Much of the existing approach to string theory in the operator formalism

is expected to also work for the ambitwistor string; in particular, one may adapt the argu-

ments of [38, 39, 44] to describe the ghost and fermionic sectors of the ambitwistor string.

4.2 String field theory

A triangulation of the moduli space of Riemann surfaces can be used deconstruct the moduli

space into basic components which may form the geometric building blocks (Feynman rules)

of the interactions of a string field theory. The basic components are cylinders and the

restricted N -hedra described in [49, 53] and references therein. A crucial role is played by

what are often referred to as the ‘missing regions’ DN . These are regions of the moduli

space of the N -punctured sphere M0,N which are not produced by gluing together M < N

point vertices and so have to be added in by hand as higher point fundamental interactions.

The requirement of adding in a new interaction term at each N to give a complete single

cover the moduli space famously requires that the string field action is non-polynomial [48].

The action may be writen schematically as [48, 53]

S =
1

2
Φc−0 QΦ+

∞∑

N=3

gN−2

N !
ΦN ,

22There is also an interesting connection with integrable systems [58, 59].
23The multi-valued function is simply a generalisation of (A.4) where ln(zi − zj) is replaced by the

two-point function ln(E(zi, zj)) on the genus g surface, where E(zi, zj) is the Prime form.
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where Q is the BRST operator, contains fundamental vertices ΦN of arbitrarily high order.

The vertices are naturally described in the operator formalism by contracting a vertex with

string states |Φ⟩

ΦN = ⟨VN ||Φ1⟩ . . . |ΦN ⟩.

The vertex here is (again schematically) related to (1.9), the vertex ⟨ΣN | considered in the

Introduction, by

⟨VN | ∼

∫

DN

⟨ΣN |
∏

I

bI .

Once the operator Q and a triangulation of moduli space are known, the vertex provides

the crucial ingredient in the construction of the string field theory. As discussed in [7],

the physical interpretation of the bosonic sector of the ambitwistor string is unclear. In

particular, the scattering amplitudes do not describe conventional Einstein gravity and it is

uncertain what value should be placed on the construction of a bosonic ambitwistor string

field theory; however, some progress has been made recently in understanding superstring

field theory [54] and such methods may be adapted to the ambitwsitor theory. A partic-

ularly intriguing possibility is that the string field theory in general curved backgrounds

may be tractable. We shall report on these and related issues elsewhere [60].

4.3 Background independence

One of the great challenges facing string theory is how to translate the successes of the

perturbative framework into a single coherent and background independent picture of the

spacetime of string theory. Indeed, it was one of the great hopes of string field theory that a

second quantised construction might provide such a framework. Using the operator formal-

ism, some progress has been made in understanding the space of conformal field theories

relevant to string backgrounds by constructing connections on such spaces [61, 62] and in

demonstrating that the formal structure of bosonic string field theory is invariant under in-

finitesimal changes of background [55, 56]; however, with the advent of M-Theory it became

clear that non-perturbative effects play a central role in the full quantum description.

There is considerable evidence that type II ambitwistor string theory correctly de-

scribes perturbative type II (complexified) supergravity. There is hope that, given we

already have a background independent description of classical supergravity, a study of

how tree level ambitwistor string field theory gives rise to classical Einstein supergravity

may shed light on the problem of background independence in conventional string theory.

A full understanding of string theory requires consideration of quantum effects and it is

unlikely that any analysis of the kind proposed here will lead to a description of M-Theory;

however, we may learn much from a diffeomorphism-invariant description of the classical

theory. In many ways, this may be likened to the study of super Yang-Mills with sixteen

supercharges in five dimensions; we suspect that the quantum description of this theory is

given by a novel superconformal theory in six dimensions [63, 64] but there is still a sensible

classical description of the five-dimensional theory. A gauge-invariant description of, even

classical, Yang-Mills has value in determining the geometric structure of the theory. These

ideas shall be explored further elsewhere.
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A Vertex functions

A.1 Conformal maps and vertex functions

A standard mode expansion of a primary field of dimension d is

φ(t) =
∑

n

φn t
−n−d

Under a conformal transformation t → z = h(t), the primary field transforms as

φ(t) → h[φ(t)] = (h′(t))d φ(h(t)). (A.1)

where h′ is the derivative of h with respect to t. Writing this new description of the field

in terms of the ‘old’ coordinates t, the mode expansion may be written as

h[φ(t)] =
∑

n

h[φn] t
−n−d. (A.2)

where the mode coefficients may be found in the standard way

h[φn] =

∮

t=0

dt

2πi
tn+d−1 h[φ(t)]

which may be written in terms of the transformed field φ(z) = φ(h(t)) using (A.2) as

h[φn] =

∮

t=0

dt

2πi
tn+d−1 (h′(t))d φ(h(t)) (A.3)

For example, the dimension one field ∂Xµ(z) gives

h[αµ
−n] =

∮

t=0

dt

2πi
tn+d−1 h′(t) ∂Xµ(h(t)).

It is a straightforward application of the commutation relations to show that, for m,n > 0,

Nmn(zi, zj) =
1

2n
⟨0| exp

⎛

⎝
∑

k,l

∑

p,q>0

Npq(zi, zj)α
(k)
p · α(l)

q

⎞

⎠ α(i)
−m · α(j)

−n|0⟩

Since only the contributions where p and q equal −m or −n and only the i’th and the j’th

Fock spaces play a role, the above expression may be written compactly as ⟨V2||Φi⟩|Φj⟩

and is determined by the two-point function ⟨∂X(i)(z)∂X(j)(w) as described in [41]. If we

take ⟨∂X(z)∂X(w) = −ηµν(z − w)−2 then we find, for m,n > 0,

⟨hi[α
µ(i)
−n ]hj [α

ν(j)
−m ]⟩ =

1

n

∮

0

dti
2πi

t−n h′i(ti)

∮

0

dtj
2πi

t−m h′j(tj)
−ηµν

(hi(ti)− hj(tj))
2 .

Vertex functions for other contractions may be found in a similar way. Using the ghost

contraction ⟨b(z)c(w)⟩ = (z − w)−1 and (A.3) it is not hard to show that

Knm(zi, zj) = −

∮
dti
2πi

∮
dtj
2πi

t−n+1
i t−m−2

j

(
h′i(ti)

)2 (
h′j(tj)

)−1 1

hi(ti)− hj(tj)
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and the contribution from the c zero modes is found straightforwardly from

∫

Σ
d2z∂̄bcl(c−1z

2 + c0z + c1) =
N∑

i=1

∮

zi

b(i)cl (c−1z
2 + c0z + c1)

Using the standard expansion b(i)(z) = (h′i(ti))
−2∑

n b
(i)
n t−n−2

i and changing the integral

to local ti coordinates gives

∫

Σ
d2z ∂̄bcl(c−1z

2 + c0z + c1) =
∑

i

∑

n

Mnm(zi)b
(i)
m Cn

where n = −1, 0,+1, C = (c−1, c0, c1) and

Mnm(zi) =

∮

ti=0

dti
2πi

t−m−2
i (h′i(t))

−1(hi(t))
n+1

Similarly, for the fermions ψµ for which ⟨ψµ(z)ψν(w)⟩ = (z − w)−1 and (A.3) we have

Snm(zi, zj) = −

∮
dti
2πi

∮
dtj
2πi

t
−n+ 1

2
i t

−m− 1
2

j

√
h′i(ti)h

′
j(tj)

1

hi(ti)− hj(tj)

A.2 Vertex functions from the classical action

We summarise here the calculation of the vertex functions from the perspective of the

classical action, as described in [29]. Introducing the source

Jµ(z) =
N∑

i=1

k(i)µ δ2(z − zi)

the N -tachyon scattering may be computed from the extended action

S =

∫

Σ
d2z∂X · ∂̄X + J ·X

where the classical solution satisfies ∂∂̄Xµ
cl = Jµ. By using the standard trick of introducing

the Green’s function G(z, w) and integrating by parts to give the expression for the classical

action

Scl =

∫

Σ×Σ
d2z d2wG(z, w) J(z) · J(w)

We may then replace Jµ with ∂∂̄Xµ
cl to give an expression for the amplitude in terms of

the Greens function and the classical solutions. Note that this procedure does not rely on

the form of Jµ and so generalises beyond the simple case of Tachyon scattering. We take

the Greens function to split into holomorphic and anti-holomorphic parts and concentrate

on the former. Integrating by parts we find

Scl =
∑

i,j

∮

zi

dz

∮

wj

dw ln(z − w) ∂zXcl(z) · ∂wXcl(w)
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where the discs around the locations of the punctures have been excised and the contour

integrals are about the boundaries of these discs. Introducing the local coordinates about

each puncture z = hi(ti) and w = hj(tj) and using (A.1) and (A.2) we write

∂X(z) = (h′(t))−1
∑

n

h[αn] t
−n−1

which then gives24

Scl =
∑

i,j

∑

m,n

∮

0
dti

∮

0
dtj t

−n−1
i t−m−1

j ln(hi(ti)− hj(tj))α
(i)
n · α(j)

m

The vertex function is then read off as

Nmn(zi, zj) =

∮

0
dti

∮

0
dtj t

−n−1
i t−m−1

j ln(hi(ti)− hj(tj)) (A.4)

It is not hard then to show that the vertex functions (often called Neumann functions in

the older literature) for the X sector of the bosonic string are (see for example [41])

N00(zi, zj) =

{
ln |h′i(0)|, i = j

ln |zi − zj)|, i ̸= j.

N0m(zi, zj) =
1

m

∮
dt

2πi
t−mh′i(0)

1

hi(ti)− zj

Nnm(zi, zj) =
1

mn

∮
dti
2πi

∮
dtj
2πi

t−n
i t−m

j

(
h′i(ti)

)2 (
h′j(tj)

)−1 1

(hi(ti)− hj(tj))
2

where m,n > 0. The first follows directly from (A.4). The second and third follow

from (A.4) by noting that the contour integral around the integrand with order n+1 pole

can be written as the integral around the derivative of the integrand (with order n pole).

The i = j case requires a more careful treatment of the Greens function than has been

presented here.

B Fermion path integral

In this appendix we show how the fermion path integral gives rise to the required Pffafian.

The fermion contribution to the vertex operator

V (z) ∼ ϵµΨ
µkνΨ

ν eik·X(z)

We can write the fermionic part of the vertex operator in exponential form by suing the

standard trick if introducing dummy grassmann variables ξ and ξ̃ as

V (z) ∼

[
∂2

∂ξ∂ξ̃
exp

(
ξϵ ·Ψ+ ξ̃k ·Ψ+ ik ·X

)]

ξ=ξ̃=0

.

24Were we have written h[αn] as simply αn.

– 26 –



J
H
E
P
0
6
(
2
0
1
6
)
0
8
4

Neglecting the eik·X factor, the fermion contribution to the amplitude may be written as

[
n∏

i=1

∂2

∂ξi∂ξ̃i

∫
DΨ exp

(
−
1

2

∫

Σ
Ψ∂̄Ψ

) n∏

i=1

exp
(
ξiϵ ·Ψ+ ξ̃ik ·Ψ

)]

ξi=ξ̃i=0

Defining the current

Jµ(z) =
n∑

i=1

(
ξiϵiµ + ξ̃ikiµ

)
δ2(z − zi)

the path integral expression may be written as

∫
DΨ exp

(
−
1

2

∫

Σ
Ψ∂̄Ψ−

∫

Σ
J ·Ψ

)
=

=

∫
Dη exp

(
−
1

2

∫

Σ
d2zη∂̄η +

1

2

∫

Σ×Σ
d2z d2wJµ(z)S(z, w)J

µ(w)

)

where we have defined

ηµ(z) = Ψµ(z) +

∫

Σ
d2wS(z, w)Jµ(w)

where S(z, w) is the Green’s function for ∂̄. Having shifted the integration from DΨ to

Dη and now performing the Gaussian integral gives a simple (det ∂̄)5 factor which we shall

ignore for now on. The remaining expression for the path integrals, upon substitution for

Jµ gives

⎡

⎣
n∏

i=1

∂2

∂ξi∂ξ̃i
exp

⎛

⎝1

2

n∑

i,j=1

(
ξϵµ + ξ̃kµ

)
S(zi, zj)

(
ξϵµ + ξ̃kµ

)
⎞

⎠

⎤

⎦

ξ=ξ̃=0

which may be written as

⎡

⎣
n∏

i=1

∂2

∂ξi∂ξ̃i
exp

⎛

⎝1

2

n∑

i,j=1

Ξt
IMIJΞJ

⎞

⎠

⎤

⎦

ξ=ξ̃=0

where At denotes the transpose of the matrix A. The 2n-dimensional Grassmann basis is

given by Ξt
I = (ξi, ξ̃i) and the 2n× 2n matrix MIJ is given by

MIJ =

( ϵi·ϵj
zi−zj

ϵi·kj
zi−zj

ki·ϵj
zi−zj

ki·kj
zi−zj

)

where we have specified the Greens function appropriate to the genus zero worldsheet;

S(z, w) = (z − w)−1. We write the exponent as a two-form ω = 1
2MIJΞI ∧ ΞJ , where

I = 1, 2, . . . , 2n. Expanding out the exponent gives

[
n∏

i=1

∂2

∂ξi∂ξ̃i
eω
]

ξ=ξ̃=0

=

[
n∏

i=1

∂2

∂ξi∂ξ̃i

n∑

k=1

ωk

k!

]

ξ=ξ̃=0
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The derivatives select out the top form, to give

[
n∏

i=1

∂2

∂ξi∂ξ̃i
eω
]

ξ=ξ̃=0

=
1

n!
ωn

= Pf(ω)Ξ1 ∧ Ξ2 ∧ . . . ∧ Ξ2n (B.1)

where we have used a standard definition of the Pfaffian in the last line. Thus we see that
[

n∏

i=1

∂2

∂ξi∂ξ̃i

∫
DΨ exp

(
−
1

2

∫

Σ
Ψ∂̄Ψ

) n∏

i=1

exp
(
ξϵ ·Ψ+ ξ̃k ·Ψ

)]

ξ=ξ̃=0

∝ Pf(MIJ)

where MIJ is given above.
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