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The cross coupling of boronic acids and related derivatives with sp
2
 electrophiles (the Suzuki-

Miyaura reaction) is one of the most powerful C–C bond formation reactions in synthesis, with 

applications that span pharmaceuticals, agrochemicals, and high tech materials. Despite the 

breadth of its utility, the scope of this Nobel prize-winning reaction is rather limited when 

applied to aliphatic boronic esters. Primary organoboron reagents work well, but apart from a 

few specific and isolated examples, secondary and tertiary boronic esters do not. Through a 

non-transition-metal-mediated, alternative strategy we have discovered that enantioenriched, 

secondary and tertiary boronic esters can be coupled to electron rich aromatics with essentially 

complete enantiospecificity. As the enantioenriched boronic esters are easily accessible, this 

reaction should find considerable application, particularly in the pharmaceutical industry 

where there is growing awareness of the importance of, and greater clinical success in creating 

biomolecules with 3-D architectures.  

The Suzuki-Miyaura cross-coupling reaction is one of the most widely used reactions in synthesis.
1,2

  

Indeed, it is the most widely used reaction in the preparation of drug candidates and is also commonly 

used in the synthesis of agrochemicals and conducting materials. The impact of this single reaction 

across many areas of society has been immense. However, whilst extraordinarily useful for sp
2
-sp

2
 

coupling, this reaction actually shows rather limited scope particularly in relation to the nature of the 

aliphatic boron reagents that can be employed. Primary organoboron reagents work well, but apart 

from a few specific and isolated examples, (chiral) secondary
3-11

 and tertiary boronic esters do not, 

limiting the application of this reaction to flat molecules.
12

 This is because of unwanted side reactions 

which begin to compete with the much slower transmetallation and reductive elimination steps 

associated with the more hindered organometallic intermediates.
13,14

 Such inherent problems have 

demanded alternative strategies,
15

 the most successful being Fu’s Ni-catalyzed enantioselective cross 



2 
 

couplings of either chiral (racemic) alkyl halides with achiral organometallic reagents
16-18

 or achiral 

alkyl halides with chiral (racemic) organometallic reagents,
19

 the stereospecific cross-coupling of 

chiral secondary organostannanes.
20-22

 and the stereospecific cross-coupling of chiral secondary 

benzylethers.
23,24 

Our alternative strategy has centred on utilizing the readily accessible, stereo-defined, secondary 

boronic esters. We reasoned that addition of an electron rich aryl lithium reagent (e.g. 2-lithiofuran) to 

the boronic ester would give an intermediate boronate complex I which, upon reaction with a suitable 

electrophile, would generate cation II (Figure 1a, Path A). The cation was expected to trigger a 1,2-

migration, and, following elimination, would give the aryl-coupled product stereospecifically. Whilst 

related reactions of electron rich aromatics with achiral boranes had been reported over 40 years ago 

(e.g. Figure 1b),
25-34

 this chemistry did not develop further. Presumably, the combined difficulties 

associated with handling air sensitive boranes, creating stereodefined boranes and in particular, issues 

of which group would migrate in non-symmetrical boranes, thwarted its development. The 

intermediate boronate complex I could also react with electrophiles at the sp
3
 carbon

35-38
 (Path B) and 

so conditions/reagents would need to be carefully tuned in order to promote the desired reaction (Path 

A). In this paper we describe our success in promoting this pathway and thus achieving a practical, 

stereospecific coupling of secondary and tertiary boronic esters with electron rich aromatics. 

 

Figure 1. Proposed method for stereospecific coupling of boronic esters with an illustration of  

previous literature and key results. a, Proposed pathway for the stereospecific, transition-metal-free 

coupling of chiral secondary boronic esters with 2-lithiofuran. b, Previous coupling with symmetrical 
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boranes.
25,27,29

 This reaction is believed to follow the mechanism shown in Figure 1a.  c, Optimised 

conditions discovered for stereospecific coupling. Abbreviations: pin= pinacolato; E= electrophile; 

Cy= cylcohexyl; NCS= N-chlorosuccinamide. 

Results and Discussion 

We began our studies with the addition of 2-lithiofuran to boronic ester (R)-1a, (prepared by our 

lithiation-borylation methodology)
39

 and explored a range of electrophiles (see SI). Of the 

electrophiles tested, NBS was found to be optimum, reacting rapidly at low temperature, and 

furnishing the product with complete stereospecificity (100% es) (Figure 1c). 

A range of enantioenriched secondary
39

 and tertiary boronic esters
40-42

 were then prepared by 

lithiation-borylation methodology or by hydroboration (Figure 2, see SI for details) and subsequently 

tested under these optimized reaction conditions (Table 1).   
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Figure 2. Range of secondary and tertiary boronic esters tested in this study. Whilst most were 

prepared by lithiation-borylation reactions of carbamates as described in the scheme, some were 

prepared by hydroboration (1f, 1g, 1i, 1j) and some by deprotonation and borylation (1h). 

Abbreviations: er = enantiomeric ratio; Boc = tert-butoxycarbonyl; TBS = tert-butyl dimethylsilyl. 

In general, secondary dialkyl and secondary benzylic substituted boronic esters 1a,c-e reacted well 

giving the products 2a,c–e with complete enantiospecificity (Table 1). This initial screening showed 

that the process tolerated increased steric hindrance on the boronic ester (1c) and was compatible with 

ester functionalities (1d). The utility of this chemistry was further evaluated in the stereospecific 

arylation of terpene-based secondary boronic esters 1f and 1g [derived from (+)-carene and (+)-pinene 

respectively]. In both cases the desired products 2f and 2g were obtained in high yields and complete 

diastereospecificity. (R)-2-Borylpyrrolidine
43

 1h was also effectively coupled with 2-lithiofuran in 

good yield and complete enantiospecificity, extending the range of functional groups compatible with 

the new protocol (2h).  Direct hydroboration of -cholesterol
44

 (see SI) gave cyclic boronic ester 1i 

that underwent the desired arylation process without the need for protection of the hydroxyl group 

(2i).  

The carene coupling reaction (Table 1, 2f) has been carried out on gram scale and with all steps 

conducted at 0 °C, in similarly high yield and complete diastereospecificity. The larger scale, higher 

temperature, and transition-metal-free conditions demonstrate the potential of the methodology to 

industrial application.  

We were keen to determine whether our method could be extended to the much more challenging 

coupling of enantioenriched tertiary boronic esters to make quaternary stereogenic centres; a process 

that is highly desirable but not achievable by current methods. We therefore tested enantioenriched, 

benzylic
40,41

 and non-benzylic
42

 tertiary boronic esters 1k–n in our process (Table 2) and found that 

the desired products 2k–n were obtained in good yields and complete stereospecificity, demonstrating 

the power of the new methodology. As these boronic esters were readily prepared in essentially 
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enantiopure form, the furyl-coupled products were also obtained in similarly enantiopure form as 

well.  

Table 1. Scope of the secondary and tertiary boronic esters tested in the coupling reaction with furan.  

 

The scope of the aromatic component was also investigated with secondary and tertiary boronic esters 

(Table 2). In addition to the 2-substituted furan, the 3-substituted furan 3d worked just as well. The 

reaction was also extended to other electron rich heteroaromatics. Thiophene, benzofuran and N-

methyl indole all led to the coupled products 4a, 5d and 6a in high yield and complete 

enantiospecificity, although in the case of N-Me indole, NIS was found to be superior to NBS as the 

latter reagent caused bromination of the indole ring.  

We also found that the coupling could be applied to a broad range of electron rich benzene 

derivatives, although further modification of the reaction conditions was required. Under standard 

conditions (in THF), the coupling between the highly electron rich aromatic 3,5-

dimethoxyphenyllithium and the secondary boronic ester 1a resulted in an 87:13 mixture of the 

arylated product 7a and bromide 12 (resulting from SE2inv reaction) (Figure 3-I). However, in MeOH 

the arylated product 7a was formed exclusively. 3-Dimethylaminophenyllithium behaved similarly, 
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although as with other highly electron rich aromatics, NIS was found to be superior to NBS. The 

dimethylamino group is an especially useful handle as it can be readily replaced by H
45

 or used in 

subsequent Ni-catalyzed cross-coupling.
46

 The use of MeOH in place of THF proved even more 

critical in the case of the weakly electron rich aromatics including 3-methoxyphenyllithium, 1-

naphthyllithium and 3,5-dimethylphenyllithium, where we observed a complete switch from C(sp3)-

bromination to the desired arylation (Figure 3). In all cases coupled products were obtained in high 

yield and complete enantiospecificity (Table 2, 7a–10a, 11b). The two representative enantioenriched, 

benzylic and non-benzylic tertiary boronic esters 1k and 1l were also tested with several 

representative aryl lithiums that span a range of aromatics: 3,5-dimethoxyphenyllithium, 3,5-

dimethylphenyllithium and 1-lithionapthalene. Under optimised conditions, the tertiary boronic esters 

coupled in good-high yield and complete enantiospecificity in all cases (Table 2, 7k, 7l, 11k, 10k).  
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Table 2. Stereospecific coupling of electron rich aromatics with secondary and tertiary boronic esters. 

#
 NIS was used instead of NBS; * the solvent was switched to MeOH before NBS addition;

 +
 NBS 

was added in MeOH. 
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3
 carbon centre occurred.
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 In the case of the least 

electron rich aromatic, 3-methylphenyllithium, a 28:72 mixture of products comprising of the desired 

coupled product and 2-bromo-4-phenylbutane 12 were obtained showing the lower limit of the 

aromatic group that can be employed.  This aspect is discussed in the mechanism.  

The development of methodology that enables the chemical modification of complex natural products 

is extremely challenging but can be highly rewarding as it can lead to molecules with improved 

N

Ph

S

6a
86%

er 98:2
100% es

4a
92%

er 98:2
100% es

3d
85%

er 96:4
100% es

O

Ph
O

Ph

CO2t-Bu

OMeMeO

Ph

Ph

Ar–H

lithiation (see SI)

then                     , –78 °C

NBS

–78 °C

5d
66%

er 96:4
100% es

7a*
83%

er 98:2
100% es

8a
65%

er 98:2
100% es

Ph

10a*
89%

er 98:2
100% es

11b*
83%

er 96:4
100% es

N

7i+

R = H
91%

8j
R = TBS

68%

6j
R = TBS

75%

OMeMeO NMe2

Ph

9a*
72%

er 98:2
100% es

RO

Ar
H

H

H H

H

Ph

7l*
63%

er >99:1
100% es

Ph

11k*
66%

er 98:2
100% es

Ph

7k+

78%
er 99:1

100% es

R1 R2

(pin)B R3
R1 R2

(pin)B R3

Ar

R1 R2

Ar R3

Ph

OMe

MeO

OMe

MeO

MeO

Me2N

t-BuO2C

10k*
75%

er 99:1
100% es

Ph

#

#

# #

MeO



8 
 

properties.
47

 By introduction of boron to a natural product through the routine procedure of 

hydroboration and the methodology described herein, it is now possible to introduce a library of 

aromatic substituents at an olefinic site in a regio- and stereocontrolled manner, as illustrated with 

steroid 1j. Thus, coupling of 1j, with indole and several benzene derivatives gave cholesterol 

analogues 6j, 7i and 8j with full control of regio- and stereochemistry.  

Discussion 

Our proposed mechanism of these reactions is presented in Figure 1 and 3. The addition of an aryl 

lithium to a chiral boronic ester generates a boronate complex. We have previously shown that these 

complexes are good nucleophiles, reacting with a range of electrophiles with inversion (SE2inv, e.g. 

Figure 3, Path B).
38,48

 In order to promote nucleophilic reaction of the boronate complex at the 

aromatic ring rather than the sp
3
 centre (as required for an arylation process) we reasoned that more 

electron rich aromatics were required and initially selected furan. These boronate complexes reacted 

with NBS at the aromatic ring and, following 1,2 migration and elimination, gave the furyl-coupled 

product stereospecifically as illustrated in Figure 1. 

In the case of differently substituted benzene derivatives, donor groups in the meta position relative to 

the boronate complex lead to bromination at the para position, which triggers the 1,2-migration and 

subsequent elimination (Fig 3-I). The boronate moiety is also a strong donating group
49

 and evidently, 

the directing effects of both the boronate and the donor groups must reinforce each other in order to 

favour Path A over the competing Path B. When the donor substituent is in either the ortho or para 

position, Path A is retarded since now the two donor substituents do not reinforce each other, and Path 

B is enhanced leading to reaction via Path B (Figure 3-II). 
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Figure 3. Possible reaction pathways for reactions of aryl-boronate complexes with electrophiles, 

illustrated with [Br
+
]. This highlights the major difference in reaction pathway according to the 

substitution of the aromatic ring: meta donor groups favour pathway A (I), whereas para donor groups 

favour pathway B (II). A further solvent effect was found in the cases of the meta donor groups in 

that pathway A was favoured in polar protic media (MeOH). *Ratio determined by GC-MS 

spectrometry and 
1
H NMR spectroscopy analysis of the crude reaction mixture. 
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(99:1) (Figure 3).  

R

B(pin)R

Br

A

B

B(pin)

MeO

A

B

MeO Br

Br

R

Br

B(pin)

R

Br

I)

II)

[Br+]

[Br+]

[Br+]

[Br+]

B(pin)

B(pin)

1,2-Shift elimination

Ph

A: SEAr

fast

A: SEAr

slow

B: SE2inv

fast

B: SE2inv

slow

Ph

R1

R1 R1

R1

Ph
Ph

Ph

Ph

Ph

Ph

R1

MeO

MeO

MeO

MeO

Me

Me

Me

Me

H

H

R1

MeO

MeO

H

H

Me

Me

H

H

H

H

A : B1

87 : 13

99 : 1

1 : 99

99 : 1

1 : 99

99 : 1

1 : 99

28 : 72

1 : 99

1 : 99

1Solvent1

THF

MeOH

THF

MeOH

THF

MeOH

THF

MeOH

THF

MeOH

12

12

*

Nu–



10 
 

In conclusion, we have discovered a general method for coupling electron rich aromatic and 

heteroaromatic compounds with enantioenriched secondary and tertiary boronic esters for the first 

time. The reaction involves initial formation of a boronate complex followed by activation of the 

electron rich aromatic moiety by an electrophile (NBS), which triggers a stereospecific 1,2-migration 

and subsequent elimination/rearomatisation. The methodology, which uses simple, readily available 

reagents, no transition metals and user-friendly conditions, shows broad scope in both the boronic 

ester and the electron rich aromatic, and shows complete stereospecificity. Application to a number of 

more complex and functionalised boronic esters also highlights the broad utility of the new 

methodology. 

Methods 

Stereospecific synthesis of 2a was performed as follows: A solution of furan (1.2 eq.) in THF (0.3M) 

was cooled to –78 °C and treated with n-BuLi (1.2 eq., 1.6 M in hexanes). The cooling bath was 

removed and the mixture was stirred at room temperature for 1 h. The mixture was cooled to –78 °C 

and 1a (1 eq.) was added dropwise as a solution in THF (0.5M). The mixture was stirred at – 78 °C 

for 1 h at which point 
11

B NMR spectroscopy showed complete formation of the ‘ate’ complex [
11

B 

NMR (96 MHz, THF) δB ~ 8 ppm]. A solution of NBS (1.2 eq.) in THF (0.3M) was added dropwise. 

After 5 min at –78 °C, Na2S2O3 (aq. sat.) was added and the reaction mixture was allowed to warm to 

room temperature. The reaction mixture was diluted with Et2O and water. The layers were separated 

and the aqueous layer was extracted with Et2O. The combined organic layers were dried (MgSO4), 

filtered and concentrated under vacuum. The crude material was adsorbed on silica and purified by 

flash column chromatography on silica gel eluting with n-hexane. For complete experimental details 

and characterisation of compounds, see Supplementary Information. 
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followed by activation of the electron rich aromatic moiety by an electrophile, which triggers a 

stereospecific 1,2-migration and subsequent elimination/rearomatization.  


