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Abstract 
 

In both the professional rhetoric and academic literature mobile learning is frequently positioned to realize 
the aspirations of science educators who seek to implement an inquiry based model of learning within 
authentic and collaborative contexts, mimicking the processes and settings real science is perceived to 
occupy.  The reality maybe somewhat different, as this study demonstrates, with students often shackled 
by the physical boundaries of the classroom and limited degrees of choice granted to them as independent 
agents in the learning process. Rather than mediating access to external expertise and collaborative know-
how, data derived from a recent international online survey of STEM educators, suggests mobile 
technologies are only rarely used to support the sharing and exchange of data between students or to engage 
in ‘conversations’ and dialogue with outsiders in the way real scientists commonly behave.  This 
conundrum forms the basis of this paper which adopts scenario planning as a methodological approach and 
tool to help science educators reconceptualise their use of mobile technologies across various different 
futures.  These ‘futures’ are set out neither as predictions nor prognoses but rather as stimuli to encourage 
greater discussion and reflection around the use of mobile technologies in science education. In considering 
four alternative futures for science education the authors conclude that ‘seamless learning’, whereby 
students are empowered to use their mobile technologies to negotiate across boundaries (e.g. between 
school and out of school activities), may be the most significant factor in encouraging educators to rethink 
their existing pedagogical patterns, thereby realizing some of the aspirations which have yet to be achieved 
in inquiry-based science education .  
 
 
Keywords: scenario planning; mobile learning; science learning; collaborative learning; inquiry-based 
learning 
 
 

 

Introduction 
  
Mobile learning (m-learning) considers the process of learning mediated by handheld devices such as 

smart phones, tablet computers and game consoles (Schuler, Winters & West 2012). The ubiquity, flexibility and 
increasingly diverse capabilities of these technologies have created considerable interest amongst science 
educators (Aubusson, Griffin & Kearney 2012; Cheng & Tsai 2013; Foley & Reveles 2014; Johnson, Adams 
Becker, Estrada & Martín 2013; Marty et al. 2013; Song 2014) who have begun to investigate their application 
for learning ‘on the move’ (Sharples 2013) across a variety of formal and increasingly informal contexts, 
particularly supporting inquiry-based teaching approaches (Zhang et al. 2010). Claims of enhanced 
collaboration, social interactivity, in situ data collection and sharing, communication between peers, teachers 
and experts, and customisation of individual’s learning have been reported (Mifsud 2014). However, as new 
mobile technologies continue to proliferate and diversify in their potential pedagogical affordances, there has 
been a tendency for teachers to default to traditional teaching approaches in formal classroom or virtual settings, 
focusing on teacher-directed approaches and content delivery (Rushby 2012). The challenge is to explore more 
diverse pedagogical opportunities, and this paper addresses this challenge in two ways. 

Firstly, it draws upon a recent international study (Kearney, Burden & Rai 2015) investigating how 
educators are currently using distinctive pedagogical features of mobile learning, which include collaboration, 
personalisation and authenticity. These three constructs provide a renewed focus on important aspects of socio-
cultural theory for educators and researchers working in and examining mobile learning contexts (Kearney, 
Schuck, Burden & Aubusson 2012). The recent study developed and validated a survey instrument based on 
these three established constructs to interrogate current mobile learning practices amongst 195 teachers in school 
and university education. This paper focuses specifically on data from teachers of science, technology, 
engineering and mathematics (STEM) subjects (n=69) to report on self-perceptions of their own mobile learning 
practices in science education, including aspects of online collaborative networking and student agency. 

Secondly, using this data source the paper extrapolates to predict and analyse prospective scenarios in 
science education using future scenario thinking as a conceptual framework and methodology (Schuck & 
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Aubusson 2010; Snoek et al., 2003; Snoek 2013). Using the twin variables of collaborative networking and 
student agency which have been identified in both the m-learning literature (e.g. Traxler 2008) and our own 
empirical data, the paper will propose four possible futures for science education, based on the adoption and 
exploitation of the pedagogical affordances of mobile devices. Explicated through the use of rich vignettes, these 
scenarios inform a subsequent discussion foregrounding various futures for science education in traditional and 
emerging learning spaces, with a particular focus on these signature mobile pedagogies, to highlight 
opportunities for contextualised, participatory science inquiry-based learning. 

  
Background 

  
Theoretical framework 

  
Research studies have examined m-learning through various theoretical perspectives and frameworks such as 
activity based approaches, authentic learning, action learning and experiential learning (Sharples, Taylor & 
Vavoula 2007). More recently, Kearney et al. (2012) developed a pedagogical framework of mobile learning, 
which draws on socio-cultural understandings. This framework privileges three distinctive features of m-
learning: personalisation, authenticity and collaboration (see Figure 1). The rationale behind these scales is 
provided through the use of subsidiary themes under each of the central features, which pinpoints the critical 
features of m-learning from a pedagogical perspective. How learners ultimately experience these pedagogical 
characteristics is influenced by the ‘time-space’ configuration of the learning context (Ling & Donner 2009): the 
organisation of the temporal (scheduled/flexible; synchronous/asynchronous) and spatial (e.g. formal/informal, 
physical/virtual) aspects of the m-learning environment (Traxler 2009) as depicted in Figure 1. This 
configuration is often described in the literature through words such as ‘anywhere, anytime’, ‘on the move’ and 
‘multiple contexts’ (Mifsud 2014).  

  

 
Figure 1. Framework comprising three distinctive characteristics of mobile learning experiences, with 

sub-scales. From Kearney et al. (2012, p.8). 
  

Firstly, the personalisation feature has strong implications for ownership, agency and autonomous learning. It 
consists of the sub-themes of agency and customisation. High levels of personalisation would mean the learner 
is able to enjoy a high degree of agency in appropriately designed m-learning experiences (Pachler, Bachmair & 
Cook 2009) together with the ability to customise and tailor both tools and activities, leading to a strong sense 
of ownership. Secondly, the collaboration feature captures the oft reported conversational, connected aspects of 
mobile learning. It consists of conversation and data sharing sub-themes, as learners engage in negotiating 
meaning, forging networked connections and interactions with other people and the environment, sharing 
information and resources across time and space through rich collaborative tasks (Wang & Shen 2012). Finally, 
the authenticity feature highlights opportunities for contextualised, participatory, situated learning. Radinsky, 
Bouillion, Lento and Gomez (2001) espoused two models of authentic learning environments: a simulation model 
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and participation model. Tasks that fit a simulation model of authenticity use the learning space (e.g. classroom) 
as a ‘practice field’ (separate from the ‘real community’) but still providing contexts where learners can practise 
the kind of activities they might encounter outside of formal learning settings. Alternatively, under a 
participation model of authenticity, students participate in the actual work of a professional community, 
engaging directly in the target community itself. Hence, the sub-themes of contextualisation and situatedness 
bring to bear the significance of learners’ involvement in rich, contextualised tasks (e.g. realistic setting and use 
of tools), involving participation in real-life, in-situ practices.  

This framework has recently been used to inform research on m-learning in school education (Burden, 
Hopkins, Male, Martin & Trala 2012; Kearney, Burden & Rai 2015), teacher education (Kearney & Maher 2013), 
and other areas of higher education (Kinash, Brand & Mathew 2012). For example, Green, Hechter, Tysinger 
and Chassereau (2014) used the framework to inform the development of their own instrument—the ‘Mobile 
App Selection for Science’ (MASS) rubric—to aid teachers’ rigorous selection and evaluation of K-12 science 
applications (or ‘apps’). In this study, the two constructs of personalisation and collaboration are examined in 
light of an international survey of teachers, before extrapolating on these results to explore how handheld 
technologies might influence future science learning. 

  
Learning science ‘seamlessly’ across contexts 

  
Mobile learning in science education studies have typically focused on informal learning contexts (Aubusson, 
Griffin & Kearney 2012), promoting science ‘on the move’. The portable, flexible nature of mobile devices are 
well suited to these contexts and can facilitate location-based (or place-based) learning (Jones, Scanlon & Clough 
2013). However, given the ongoing physical realities of formal schooling and higher education, recent studies 
have focussed on the notion of using handheld devices to provide ‘seamless learning’ tasks (Rushby 2012; Toh, 
So, Seow, Chen & Looi 2013), supporting a continuity of learning across contexts and devices, and transitions 
between episodes of formal and informal learning. For example, connecting learning in/out of class, in/out of 
school, between curricular/co-curricular, social/personal or academic/ recreational boundaries between 
physical/virtual contexts and across times and locations (Wong & Looi 2011). In science education, ‘seamless’ 
learning might connect learning in classrooms and science museums; provide a bridge between lab-based inquiry 
to be continued in a more realistic setting; or connect an ‘in-situ’ learning episode (possibly personal and 
informal) to be used a as resource for formal learning at school. Mobile devices might mediate this ‘flow of 
learning’ between formal and informal contexts, for example, using microblogging, social networking platforms, 
specific science tools, simulations or games (Lai, Khaddage & Knezek 2013). 
 
Promoting inquiry across authentic contexts 
  
Digital technologies have typically been promoted in science for many purposes, from tools for instructional 
delivery to student research, communication and presentations. Recent studies have focused on digital learning 
environments that “emulate the activities of practising scientists” (DeGennaro 2012, p. 1319), where learners’ 
use of technology becomes an integral part of their task. For example, visualisations, animations, participatory 
simulations and multi-user virtual environments have been used to actively immerse students in realistic scientist 
roles. In response, m-learning studies in science education have advocated a more participatory authenticity 
(Radinsky et al. 2001), whereby tasks are embedded in real-life, connected, community-based science projects 
(e.g. Jones et al. 2013; Scanlon, Woods & Clow 2014). In the same way as real scientists are “connected to a 
broad community of other scientists who share information and co-construct knowledge and ideas” (DeGennaro 
2012, p.1321), such m-learning tasks allow students to participate in authentic ways in real-life, project-based 
pursuits. 
  The importance of student inquiry and student-driven questions has long been advocated in science 
education (Krajcik, Blumenfeld, Marx & Soloway 2000). Consequently, there has been a burgeoning interest in 
exploiting mobile devices to mediate inquiry-based learning, mirroring the types of investigative processes 
carried out by real scientists. These include support of question generation, planning and implementing 
investigations, data collection, observation, analysing and interpreting data, constructing evidence-based 
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explanations and arguments (Herodotou, Villasclaras-Fernández & Sharples 2014; Wilson, Goodman, Bradbury, 
& Gross 2013). Mobile devices are ideal tools for supporting the inquiry process, with their ability to support 
multimedia access and collection, communication, representation, information sharing, knowledge construction, 
connectivity, reference and analysis (Song 2014). However, they are not yet used to their full potential in science 
education for inquiry, particularly in support of measuring and investigating real-world phenomena (Herodotou 
et al. 2014). Also, many science students currently carry out inquiry tasks in relative isolation (individual or 
pairs, small groups) and in a minimal number of locations (classrooms, excursions etc.) Lui et al. (2014) argue a 
need for expanding these typical inquiry experiences, with less abstract, contrived forms of interactions, for 
example through digitally augmented physical spaces (mixed-reality environments). 
  For example, Herodotou et al. (2014) presented a toolkit (the sense-it app) to support measuring and 
investigating real-world phenomena. It combines and customises data from a full range of sensors into new or 
existing citizen science projects. Non professional members of the public can use these toolkits to collaborate 
with scientists, contributing to observation and measurement data in science projects such as species 
identification and air / water pollution monitoring. The app allows users to create their own personally relevant 
science investigations and offers instant feedback on how their own sensor recordings relate to other users’ data. 
  Jones et al. (2013) compared two case studies to explore the different ways mobile devices can support 
inquiry learning in semiformal and formal settings. One study explored the science learning by students aged 
14–15 years old using web-based software in a semiformal context. The other study looked at informal adult 
learners using their own devices to learn about landscape. Looking at these studies together allowed the 
researchers to focus on both the use of mobile devices in situ and how the devices supported choice and learner 
control. In the first case of semiformal learning, Jones et al. (2013) found that mobile devices with dedicated 
software supported the science students to choose and take personal responsibility for their inquiries without 
adult help. These inquiries were engaging and personally relevant. They also discussed their nQuire software 
tool and how it was used to support the inquiry process seamlessly across different contexts (an afterschool club 
and home). They found the tool used location-based awareness facilities to support the inquiry process, including 
information sharing and collaborative activities, communication between learners, other observers and experts. 
They illustrate ways of supporting personal inquiry learning with m-devices (location-based inquiries), accessing 
resources and information in situ. As nQuire is an open software resource, it is also developing a strong 
community of users. 
  Scanlon et al. (2014) presented a similar tool, the iSpot application, allowing users to participate in 
location-based activities akin to real scientific pursuits, in informal science settings. This UK initiative also uses 
an inquiry learning approach, and aims to create and inspire a new generation of nature lovers to explore, enjoy 
and protect their local environment. Members of the public can use this tool to work in combination with science 
researchers. For example, their (location-based) observations of animals and plants became “shared, social 
objects amongst associated groups, networks and collectives” (p.60). Indeed, selected observations are used in 
biodiversity monitoring and research, essentially enabling learners to actively contribute to knowledge building 
as a community activity. 
  Finally, Song (2014) made a one year case study in a primary school science inquiry context using 
BYOD devices. Students developed a positive attitude to science inquiry and demonstrated improved 
understandings of the topic (the anatomy of a fish). Song (2014) emphasised “affordance networks” (p.60) as a 
key aspect to making optimal use of m-devices for knowledge construction across constantly changing contexts 
such as digital and physical environments at home, school and other spaces. Another example of seamless 
learning in primary school science contexts was reported by Marty et al. (2013). Their project aimed to develop 
inquiry skills and digital literacies using an app called the ‘Habitat Tracker’. These m-learning experiences 
provided a link between formal and informal contexts, including the classroom and excursions to science 
museums and wildlife centres. 
  
Use of augmented reality and immersive simulations 
  
Augmented reality (AR) is an emerging technology that “utilizes mobile, context-aware devices (e.g., 
smartphones, tablets), which enable participants to interact with digital information embedded within the 
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physical environment” (Dunleavy & Dede 2014, p.735). Cheng and Tsai (2013) distinguish two types of AR: 
image-based and location-based. Through a scan of existing studies, they found image-based AR was beneficial 
to students’ spatial abilities, practical skills and conceptual understanding; while location-based AR was 
beneficial to scientific inquiry learning. Location-based AR is usually underpinned by a situated learning 
perspective, emphasising authentic contexts, inquiry with real-time data and other virtual information in a real 
context. Students may also communicate with avatars and peers to collaboratively hypothesise, reason, and solve 
problems. 
  AR-based tasks typically take the form of participative simulations, using fictional scenarios added to 
a local setting, allowing learners to connect science ideas to community-based experiences. For example, Wong 
and Looi (2011) report on games played in a physical environment but augmented by virtual artefacts (what they 
called ‘mixed reality learning’) Mobile devices with location-based sensors allowed users in the study to interact 
with explorations, experiments and challenges for inquiry and games-based learning. Another example is 
Kamarainen et al.’s (2013) pilot study for the EcoMobile (Ecosystems Mobile Outdoor Blended Immersive 
Learning Environment) project (http://ecomobile.gse.harvard.edu), exploring children’s use of a smartphone AR 
application (FreshAiR) for blended learning across virtual and natural (pond) ecosystems. Combining this 
application with environmental probeware allowed students to take samples of pond water, gain increased 
understanding of the ecosystem, and interact with each other in student-centred ways that resembled scientific 
practice. 
  Immersive and participative simulations have been used as platforms to engage learners in inquiry-
based approaches. Lui et al. (2014) described an immersive, cave-like rainforest simulation (called EvoRoom) 
and a mobile inquiry platform (called Zyeco) that enabled users to collect and share data. Students are co-located 
in an immersive and physical digital space, collecting observational data from both the classroom itself 
(Evoroom) and out-of-class settings (such as such as parks or museums), and exploring peers’ data using large 
visualisations displayed at front of room. This arrangement allows students to pose questions, collect observation 
data, review and share data, and use it to form evidence-based arguments. Foley and Reveles (2014) presented a 
‘connected classroom’ that used online resources to engage students in inquiry, creating authentic science 
learning experiences. They emphasised the connection between students’ handhelds and the Internet to “share 
information instantly and enable computer supported collaborative learning” (Foley & Reveles 2014, p.4). 
Students’ data from experiments and simulations was pooled across classes or schools, allowing them to compare 
and analyse across larger data sets and collaboratively identify trends as a community of science learners. 
Collaborative tools such as Google Moderator then allowed for further discussion and feedback on ideas and 
consensus building. 

Location awareness is an aspect of AR that Zimmerman and Land (2014) use to explore the principles 
of place-based education (PBE) for teaching science in an era of mobile devices. For a decade, PBE has provided 
a way of engaging out-of-school students with the issues, artefacts, cultural practices and natural histories of 
their local communities. To accommodate the location-awareness features of mobile devices in PBE, 
Zimmerman and Land developed empirically derived guidelines for research and design for outdoor informal 
mobile computing (p.82), emphasising participation in disciplinary conversations and practices within personally 
relevant places; amplification of observations, in liaison with experts, to understand the disciplinary-relevant 
aspects of a place. Students gain value from experts who can illustrate aspects of a place; and capturing, sharing 
and reflecting on knowledge artefacts found in local settings to explore new perspectives. 
  In summary, the contemporary m-learning literature in science education mainly comprises case studies 
of innovative mobile applications exploiting authentic, connected, participative inquiry-based approaches. 
Research has explored the possibilities for science learning across formal and informal contexts, making 
seamless links between virtual and physical environments, particularly using participatory simulations and 
augmented reality technologies. Informed by an established framework of mobile learning, and mindful of these 
current research directions, this paper predicts how mobile technologies might influence the future of science 
learning. 
 

Methodology 
 

http://ecomobile.gse.harvard.edu/
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Firstly, we describe the international survey used to interrogate STEM teachers’ exploitation of 
distinctive m-learning pedagogies, in particular examining aspects of agency and networked collaboration (from 
items relating to the personalisation and collaboration constructs in Fig 1). Secondly, we extrapolate from the 
data source to predict and analyse prospective scenarios in science education using future scenario thinking as a 
conceptual framework (Snoek 2013).  
 
Survey instrument 
 
 This study draws upon data collected in an international survey on m-learning identifying how educators 
use the distinctive mobile pedagogical features (Kearney, Burden and Rai 2015). One hundred and ninety-five 
educators from around the world completed the custom designed 30-item online survey instrument. The items 
were informed by our theoretical framework of mobile learning (Kearney et al 2012) focusing on the three themes 
of personalisation; collaboration and authenticity. Participants were asked to identify a specific learning task or 
activities in which they had recently used mobile technologies and the survey instrument provided opportunities 
for both closed and open-text responses. A reliability analysis of the entire questionnaire (n=195), and separately 
for each of the three constructs, was carried out using Cronbach’s alpha (Kearney et al. 2015). Internal consistency 
of the whole questionnaire (with all three scales combined) was excellent (α = 0.828). When considered 
separately, the internal consistency was in the acceptable range for each of the three constructs, as shown in Table 
1.  

 
Table 1: Internal consistency for each of the three constructs from the theoretical framework 
 

Construct #items Cronbach’s alpha (n=195) 

Collaboration 6 .715 

Personalisation 5 .711 

Authenticity 3 .775 
 
 
Although the entire data set in the previous study consisted of 195 participants, this study draws upon only those 
educators who identified themselves as working in STEM subjects (n=69,) since these discipline areas were 
considered to be most relevant for our future scenarios development. 
 
Participants and contexts 
  
The 69 teacher participants were mainly from Australasia (51%) and Europe (23%), where the researchers’ 
institutions were located. Twenty-two percent of these participants taught in primary/elementary school contexts, 
39% taught in secondary school contexts and 35% in tertiary education; while forty-five percent were Science 
educators, 30% were Maths educators and 25% were from Engineering / IT contexts. Participation in the survey 
was voluntary and there was a diverse range of experience levels identified in the participants’ background data. 
Sixty-four percent of the survey participants had been teaching for more than 10 years, while 17% had been 
teaching for less than 2 years. Similarly, 46% of participants perceived themselves as experienced users of mobile 
devices in their teaching—defined as more than 2 years’ experience—while 22% said this was their first attempt 
at implementing a mobile learning task.  

Participants chose a range of task contexts. Ninety percent of the STEM teachers described a formal task 
that was classroom-based. Only 7% of teachers reported on a task that was situated in an 'extra-mural' context 
(school playground, excursion site, museum, home) and no tasks were set in a totally informal location such as a 
cafe or public transport (3% reported a combination of locations). Most tasks involved use of an iPad (38%), 
laptop (26%) or mobile phone (12%), with 19% of tasks integrating a mixture of devices. Forty-eight percent of 
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tasks involved use of school-owned devices (33% restricted to on-campus use only) while only 23% of tasks 
involved student-owned, ‘bring-your-own’ devices (BYOD).  
 
Scenario planning  
 
Scenarios have been described as “presentations of multiple possible futures” (Snoek 2013, p. 311), which are 
widely used in businesses (e.g. Shell 2003) and the military (Cann 2010) but until recently, less common in 
education. This may be changing with some high profile scenario planning exercises commissioned by 
organisations like the OECD (2001) and teacher futures special editions in international education journals (e.g. 
Aubusson & Schuck 2013). This recent surge of interest amongst educators is not surprising given the complexity 
and unpredictability of the environments within which they operate, since scenario planning is seen as a more 
suitable alternative to traditional prediction methods, which depend on greater levels of stability and more 
predictable contexts (Snoek 2013). Indeed Snoek identifies this as one of two major problems associated with 
traditional approaches to planning and predicting the future, pointing out how this has a tendency to produce a 
single future prediction when in fact there are likely to be many. To compound this tendency, policy-makers and 
governments are also guilty of believing they can realise a single prediction of the future by mandating change 
ignoring the ‘fundamental unpredictability of the future and the possibility of different futures[that] need to be 
taken into account.” (Snoek 2013, p.308).  

Scenario planning is positioned as a viable alternative to the traditional ‘rational-central-rule’ approach 
(Gunsteren 1976) since it accepts the inherent unpredictability and complexity of modern society and seeks to 
identify multiple possible futures enabling greater scope for discussion and alternative perspectives. Put another 
way, traditional approaches are akin to ‘forecasting’ which leads to future predictions, compared to ‘foresighting’ 
which leads to alternative scenarios for the future (Codd et al. 2002). 

It is important to note however that the primary purpose of scenario planning is not to second guess or 
predict an absolutely accurate future. Indeed fidelity is not the primary concern of scenario thinking. Rather the 
purpose is to ferment discussion and reflection, encouraging perspectives and positions that might otherwise be 
overlooked or under represented. In this sense they have an important role to play both at policy and practitioner 
level since they engage more creative lateral thinking processes which can generate new ways of seeing that might 
not otherwise be imagined (Snoek 2005). 
 
What are scenarios and how are they produced? 
 
Scenarios are often described as narratives or stories about multiple futures which help their creators to consider 
and conceptualise alternatives along with the choices associated with them. Rather than rushing forwards into 
foreshortened perspectives, scenarios encourage a longer-term outlook (Schwartz 1997). The first stage in the 
production of scenarios involves the identification of key trends or ‘drivers’, which shape the development of 
society such as environmental change, social inequality, demographic shifts and technology itself, which is the 
focus of this study. Although these trends are recognised as important drivers of change it is only those defined 
as ‘unpredictable’ which are selected since these serve as vectors inviting debate, discussion, difference and 
ultimately polarities. Technology meets this criteria well as it generates considerable debate and difference at both 
the micro and macro level.  

 However this study is not primarily driven by an exploration of technology per se as we have pointed 
out in previous papers (Kearney, et al. 2012) but rather by a socio-cultural investigation of the signature 
pedagogical affordances associated with the use of mobile technologies and their particular relevance for science 
educators in the future. Therefore our first task was to re-examine our existing data set from our international 
survey to identify sub-drivers within the field of mobile learning which meet the criteria for scenarios. Table 2 
identifies the main themes which were investigated and validated through the online survey (Kearney et al. 2015). 
All of them are capable of generating dichotomous positions, as illustrated below, but some of are more 
unpredictable in the sense that the educational community is divided or unclear about how these themes might be 
applied in practice. 
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Table 2: Potential ‘drivers’ identified in a previous study of m-learning (Kearney et al. 2015) 
 

Constructs / Drivers Dichotomous positions 

Personalisation   

Agency/student 
autonomy 

External control (teacher directed) Internal control (negotiated by student) 

Customisation ‘One size fits all’ Tailored fit (‘customised to me’) 

Authenticity  

Contextualisation Contrived Realistic 

Situated Simulated Embedded in real practice 

Collaborative 
networking  

 

Conversational 
  

Solitary (disconnected) Rich (networked) 

Data sharing Content consumption (alone - no 
sharing) 

Content / context building (in 
communities) 

 
 
We therefore followed the recommendations in the literature on scenario planning to scrutinise the data set in 
order to identify those drivers considered to be amongst the most impactful and unpredictable (Van der Heijden 
2005). The sub-elements of ‘conversational’ and ‘data sharing’ were originally part of a broader category termed 
‘collaboration’ which described those pedagogical affordances which enable individuals to engage in greater 
levels of networked sharing, exchange and collaborative discussion mediated through the mobile technologies. 
This notion of networking is similar to what Park (2011) refers to as the ‘social nature of learning’ which measures 
the degrees to which learning is an entirely independent or entirely social enterprise. Although participants 
described tasks or activities which were ranked relatively high for face-to-face conversations and discussion they 
ranked online networking and data sharing as relatively low. We therefore identified this as one of the drivers to 
adopt in this exercise, since it offered considerable scope for alternative practices and thinking in science 
education around virtual and multiple conversations and collaborative data exchange. 

We selected student autonomy/agency as a second driver or variable, since this had also emerged as a 
significant finding from the previous study, where participants reported surprisingly low levels of student 
autonomy and choice (goals, content etc.) given the dominant discourse in the literature which portray digital 
technologies as vehicles for greater learner agency (Burden et al. 2012; Pachler et al. 2009). Since the purpose of 
the scenario planning methodology is to stimulate discussion and thinking about possible futures in science 
education, we identified these two drivers as ideal candidates and followed the recommendations of others who 
have adopted this approach (Schuck & Aubusson 2010) to generate a two-dimensional model with four separate 
quadrants (see Figure 2).  

For each of the four quadrants, we generate distinct narratives paying particular attention to ground them 
in the concrete data generated by participants in both the closed and open text responses collected in our study. 
The scenarios (see Findings section) are deliberately written in a compelling and persuasive fashion and all four 
are written with a positive perspective since scenario planning is designed to encourage consideration of 
alternatives that might not otherwise appeal. For purposes of transparency and trustworthiness a selection of these 
data are illustrated in Figure 2 and Tables 3 and 4. In this sense our methodology is firmly grounded in the existing 
data set we have collected and validated in previous studies, and we use it to extrapolate four equally valid 
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alternative futures, rather than a single future prediction. It is acknowledged that this methodology has its 
limitations and is not particularly valuable in explaining how to mobilise change towards any of these possible 
futures. However this is beyond the scope of the paper, although it is further examined in some of the more recent 
literature on boundary objects and activity theory (see Snoek 2013). 

We conclude this section by identifying the research questions which form the focus for the paper: 
1. What possible futures might present themselves to science educators interested in harnessing the 

potential of mobile technologies? 
2. What are the implications of these possible futures for science educators? 

 

Findings 
 
This section is divided into two parts. Firstly, we report on the quantitative data from the online survey relating 
to the two dimensions, agency and collaborative networking, upon which the scenarios have been constructed. 
Secondly, we present sample qualitative data from the survey, with a selection of learning tasks from the study to 
illustrate how STEM educators are currently using mobile technologies. To illustrate the utility of these two 
dimensions, these examples are then plotted against these two variables of networking and agency. On the basis 
of this empirical data we then present four scenarios in the form of persuasive narratives or stories.  
 
Quantitative data  
 
In selecting the two drivers of student agency and collaborative networking, as explained in the previous section, 
we returned to those questions in the survey which were most closely aligned with these two constructs. The 
following data is presented to represent the types of statistical responses made to these questions. Each question 
usually contained three response options that corresponded to ‘low’ or ‘none’, depending on the context of the 
item, ‘medium’ and ‘high’ ratings for a particular construct. Most items offered an ‘other’ option but these small 
portion of responses were not included in Tables 3 and 4. 

The flexible, autonomous learning affordances of m-learning environments were not evident in survey 
responses from STEM teachers, with only one-quarter of tasks giving full control to students for task pacing and 
only 17% of tasks allowing students full autonomy where and when the activity was implemented (see Table 3). 
Just over one-quarter of teachers perceived their task as lending absolutely no student control over aspects such 
as the learning context—where and when the activity occurs (35% of teachers), task pacing (26% of teachers), 
task content and learning goals (28% of teachers). 
 
Table 3: Results for sample items relating to student autonomy and agency (n=69) 
 

Sample Items L M H 

To what extent does the mobile learning task allow students to control the context 
(e.g. where and when the activity occurs)? 

35% 48% 17% 

Who determines the 'pacing' of the mobile learning task 26% 48% 25% 

To what extent does the mobile learning task allow students to control the content 
and learning goals of the activity? 

28% 59% 13% 

 
 
The STEM teachers in the survey did not design learning episodes which grant their students high, or even 
moderate levels of decision-making with regard to the context of their learning (e.g. where or when it occurs). 
These lack of opportunities for students to enjoy autonomous learning tasks is particularly surprising given the 
general commentary around enhanced agency in m-learning environments (see for example Burden et al., 2012). 
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Also, given the high level of formal tasks in the data set (90%), these results support the contention that many of 
the characteristics of m-learning are foreign to traditional classroom-based learning (Mifsud, 2014; Traxler, 2009).  

Most activities described by the STEM teachers were highly social and collaborative in nature, albeit 
within a traditional face-to-face context rather than a remote virtual one (see Table 4). The majority of m-learning 
tasks involved a high level of face-to-face conversation at the device, usually in the classroom. Most teachers 
prioritised students working in small groups around their device, with 70% ranking their task as ‘medium’ or 
‘high’ for face-to-face collaboration. Whole-class discussions were frequently mentioned, with teachers using the 
‘mirroring’ feature of the iPad, for example, to display students’ work on a large screen. However, levels of online 
conversation through the device (Crooks 1999) were generally ranked low (68%). In tasks that included online 
discussion, communications were mainly between class peers (38%) or between students and their teachers (20%). 
Only 4% of tasks involved ‘extra-mural’ communications with participants outside their immediate peer/teacher 
class network.  
 
Table 4: Results for sample items relating to collaborative networking (n=69) 
 

Sample Items L M H 

Does your task encourage student (peer) face-to-face (f2f) discussion AT the 
device?  

23% 58% 12% 

Does your task encourage online discussion THROUGH the device? e.g. email, 
SMS, Skype, Twitter or Facebook 'conversation'. 

68% 7% 20% 

To what extent are online interactions (discussions and/or data sharing) THROUGH 
the mobile device 'networked'? 

41% 22% 38% 

 
 
Indeed, there was a low rate of networked, synchronous interactions in the STEM tasks. Although student 
generation of digital content was a feature of teachers’ chosen tasks, there was a distinct lack of networked 
interactions. Only 38% of tasks involved a networked exchange of digital data and information, or networked 
interactions (e.g. via blogosphere, Twitter, multi-layer games etc.). Most online interactions were asynchronous 
(30%), compared to a much lower rate (17%) of ‘live’ synchronous communications.  

In conclusion, using the two drivers we have selected, the overall picture from STEM participants is one 
in which students are entrusted or granted relatively limited autonomy or choice when they use mobile 
technologies and are restricted to largely face-to-face interactions within their own classroom or with their 
teachers, almost exclusively on an asynchronous basis with limited opportunities to exploit any of the real time 
benefits afforded by mobile technologies for communication and networking. In light of our pedagogical model 
and informed by the survey data, we deemed these variables, agency and collaborative networking, as being most 
useful to form the two dimensions of our scenario forecast 
 
Scenario development: Plotting qualitative data against the twin variables 
 
To demonstrate the utility of the two chosen dimensions of agency and collaborative networking, sample 
qualitative data were analysed according to their match with the polarities of these two variables. The online 
survey did not mandate participants to provide an actual example of their m-learning task but 43 of the 69 STEM 
participants did so in the optional open-ended survey questions. Table 5 illustrates a selection of these tasks, 
providing a snapshot of qualitative data relating to the following questions: 

● What was the topic of your learning task/activity? 
● What were the objectives of the topic associated with the task you have described? 
● What did the students do during the task using mobile technologies? 
● What was your role as the teacher during the task? 
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Table 5: Sample m-learning tasks from study: Snapshot of responses to open-ended questions 
 

 Background Student / Teacher roles 

1 Objective: To apply knowledge on everyday items using 
mind maps.  
Video cameras were used to take notes of mind maps drawn 
on the whiteboard of content (about programming) from 
both the classroom and real-world contexts, then discussed 
amongst themselves on Edmodo. (Engineering/Technology) 

Students asked to use mind map and 
apply terms. Students and teachers 
walked around the school and applied 
these terms. Teacher as guide. 

2 Objective: To explain a concept in elementary science 
through video. Also, to learn skills such as storyboarding 
and animation. 
Elementary science education concepts. The students used 
mobile phones and digital cameras to take pictures to create 
Slowmation movies. (Science teacher education) 

Students used their phones and digital 
cameras to take pictures. Teacher helped 
with technical issues, and helped students 
to think about the science concepts they 
had chosen and how to represent them.  

3 Objective: To enhance engagement/ownership of the 
laboratory practical. Placing the practical in a larger 
scientific context. Network building.  
Students use mobile phones to live tweet findings of their 
laboratory practicals. (Secondary school science) 

Students took pictures, provided advice 
and responded to others’ examples. 
Teacher leads by example and 
occasionally moderates.  

4 Objective: To display appropriate stages of dissection 
Identification of various specified parts of the kidney / brain.  
Laboratory-based session dissecting kidneys / brains. 
Students used their phone cameras to record various stages 
in the dissection processes. Photos became an integral part of 
their notes and provided evidence of exploratory 
investigation of structures, as decided by the students. 
(Secondary school science) 

Students dissected kidneys and brains 
(from sheep) in groups. Teacher acted as 
demonstrator, supervisor, observer. 

5 Objective: To understand the causes and effects of global 
warming, and identify ways of controlling it. Global 
warming. (Secondary school science) 

Students watched and listened to lectures 
and photos via skype. Teacher introduced 
the lesson, setup laptop and internet 
connectivity and mediated skype call with 
expert. 

6  Objective: To plan and write a script; create a storyboard 
and edit and present the multimedia presentation.  
The life and habitat of an animal. Students used their device 
to make a movie to help explain their chosen animal. 
(Primary/elementary school science) 

Students created short videos, including 
sound. 
Teacher helped to facilitate use of device, 
allowing students to explore and learn as 
they created their short video clip.  



 
 
 

13 

7 Objective: To identify real-life acute, obtuse and right 
angles. The Year 4 Maths class was learning about angles. 
The students used their iPad devices to take photos of angles 
in the playground. 
(Primary/elementary school maths) 

Students included all the photos that they 
had taken in the playground to produce a 
collage. They used functions of the iPad 
to crop, colour, add text and amend 
layouts. Teacher assisted students in 
finding the angles in the playground and 
encouraged them to present their photos 
to the class. 

 
 
The seven examples from Table 5 (shown with small numbered boxes in Figure 2) were analysed by the two 
researchers using the two scales of agency and collaborative networking to rate these critical features of the m-
learning activities. They were then plotted according to their rankings along each axis, with lower ratings at the 
bottom of the vertical axis or left-hand side of horizontal axis, and higher ratings towards the top or right-hand 
side of each axis. When researchers’ ratings differed, differences were resolved through group consensus. From 
this analysis, each of the seven examples was plotted into one of the four quadrants (see Figure 2), labeled 
according to their agency and collaborative networking characteristics: Quadrant A: guided and scaffolded; 
quadrant B: simulatory and autonomous; quadrant C: connective and directed; quadrant D: participative. 

Most of the data captured in this exercise is contained and can be described by a relatively small footprint 
(illustrated with the dotted rectangle) in the lower two quadrants of the diagram. Despite two outliers (examples 
3 and 5), the other qualitative examples (2, 4, 6 and 7) were plotted within a consistent pattern, showing limited 
interactions beyond the physical boundaries of the classroom and essentially solitary in nature, with little 
opportunity for students to share data or engage in conversations.  

The four scenarios  
 
In this final section of the findings we describe the four narrative scenarios, as depicted in the quadrants of Figure 
2, which present alternative possible futures for mobile technology-enhanced science learning. Each scenario is 
rooted and grounded in the data we have described previously but these are not intended to be merely descriptions 
of the data. Rather they use the data as starting points to extrapolate possible futures. Each scenario has been 
developed in a way that is consistent and recognisable with the data set to ensure it is plausible yet sufficiently 
challenging to encourage new patterns of thinking. Following the methodology recommended by Snoek et al. 
(2005) each scenario is described in an extreme manner in order to differentiate them.  
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Figure 2: Qualitative data plotted against twin variables 

Scenario A: Guided and scaffolded science learning 
 
In this scenario, mobile technologies are used by science educators to underpin and reinforce traditional practices 
of science education (i.e. the status quo) where science is taught as a formal, curriculum-based subject and 
technology is employed to make teaching and learning more effective and efficient. The main emphasis lies with 
the transmission of accepted scientific principles and knowledge and this is undertaken most effectively through 
teacher-directed access to information sources such as Youtube video demonstrations, podcasts, e-textbooks and 
the use of ‘skill and drill’ apps such as science quiz apps. Mobile devices are used extensively in the classroom 
and laboratory to free students from traditional note-taking and drawing exercises and these are replaced by digital 
annotation tools, usually used individually or in pairs, such as stand-alone mind-maps, electronic worksheets and 
e-books. Teachers control the content, objective and pace of lessons, including tightly scaffolded, recipe-style 
science investigations. They administer live polls to students to test their immediate understanding of a concept 
(e.g. through an app like Socrative) and to gain feedback about what students know or need to know better. 
Teachers present and explain scientific ideas and principles using whole-class presentation apps such as ShowMe, 
Explain Everything and Nearpod which enables them to scaffold the content delivery, ensuring all of the class are 
working at the same pace. Students work mainly with the teacher and their classroom peers, only using the Internet 
to access information or to e-mail the teacher their work. Mobile technologies are seen as a highly effective and 
efficient way to better prepare students for high-stake testing. In class, students are encouraged to use their mobile 
device to capture and annotate notes made by the teacher on the interactive whiteboard or examples of experiments 
or demonstrations which cannot be undertaken by the students for reasons of efficiencies of time, or health and 
safety. In this way students can return to their personal store of notes for revision purposes after the lesson is 
complete.  
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Scenario B: Simulatory and autonomous science learning 
 
In this scenario, mobile technologies are appropriated by science educators to mediate autonomous but largely 
isolated learning by students whereby the device acts as an ‘intellectual partner’ and cognitive tool for the students 
(Jonassen et al. 1998). Students typically use mobile technologies to mediate relevant science processes and tasks, 
depicting a simulation model of authenticity (Radinsky et al. 2001), making use of class-based investigations and 
fieldwork as a ‘practice field’, albeit separate from the real science community. Use of the mobile device gives 
students the ability to control tools and manipulate a range of scientific variables and make predictions, thus 
encouraging them to think and behave like real scientists. Students are given varying degrees of freedom and 
choice to explore a scientific problem or issue, and the teacher adopts the role of facilitator or guide. Rather than 
scaffolding the learning of science to the entire class, the teacher allows students to use their mobile device to 
explore simulations and other resources (depending on the problem), such as animal dissection apps to 3D views 
of the periodic table. In this way, students work more at their own pace on a challenging, self-selected problem 
or issue. They use a wide range of apps and tools to observe phenomena and collect and analyse data in and 
outside of the classroom, for example, to measure sunlight, gauge sound levels, observe the night sky using 
location-based AR apps such as Skyview (http://tinyurl.com/lonln3j). Many experiments which cannot be 
undertaken physically are simulated using mobile apps such as Wind Tunnel Pro (http://tinyurl.com/p3ohqmh), 
to gain a more accurate understanding of how scientists think and behave. Students typically work in small groups 
to tackle a scientist based problem and are encouraged to use a range of generic media capture and editing tools 
such as the camera, the audio recorder and the video editing and animation apps to produce high quality 
representations of their current understandings. Assessment is based on these authentic demonstrations, rather 
than simple tests.  
 
Scenario C: Connective and directed science learning 
 
In this scenario teachers use mobile technologies to liberate students from the physical confines of the formal 
classroom, enabling them to work and interact with peers and experts beyond the classroom, using teacher 
controlled sites such as class blogs and wikis, discussion forums and microblogging services such as Todaysmeet, 
to ask questions, receive responses and exchange ideas. The teacher uses the technology as a starter to carefully 
scaffold and monitor realistic explorations, often based outside of the classroom. Students use their devices to 
collect data and to analyse it, often in situ and under the careful guidance of the teacher or an expert. Students 
behave like scientists to the extent that they are working collaboratively, undertaking problem solving activities 
and real-time data exercises, such as the use of Bluetooth enabled data collection tools to undertake a beach 
survey. Data and findings are shared with peers and teachers in externally controlled cloud-based documents. 
However, projects are carefully selected and externally designed to ensure students cover curriculum content. 
Although collected data may be shared beyond the class, it does not contribute to any wider science community 
projects. Most of the activities undertaken are likely to be highly scaffolded inquiry projects, or tightly controlled 
multi-player games or simulations, making greater use of the networking features of mobiles and the ability to tap 
into real time data.  
 
Scenario D: Participatory science learning 
 
In this scenario, mobile technologies are a dynamic and reciprocal conduit to live time data, expertise and a 
community of real scientists which enable students to think and behave as part of the real scientific community 
(e.g. as citizen scientists). This is not simulated and the students are seen as equal status and co-constructors with 
their teachers in the process of producing new scientific knowledge, akin to the notion of participative authenticity 
espoused by Radinsky et al. (2001) Science is unlikely to be taught as a separate subject in this scenario and 
indeed formal school curricula may not be recognisable. Students are immersed in real scientific areas of interest 
(e.g. a nature reserve) where they undertake an extended work experience using the technology to share, analyse 
and interpret their own and others’ data, maintain contacts with their peers and with experts in the real world, who 
validate and credential the learning. Students are asked to think and behave as scientists and their findings are 

http://tinyurl.com/lonln3j
http://tinyurl.com/p3ohqmh
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used and valued by the scientific community (e.g. in collecting real time data as citizen scientists). Students in 
this scenario use networking tools and social media apps like FaceBook, Instagram and Twitter to pose questions 
and share their predictions and interpretations with peers (in and beyond their own cohort) and with other scientific 
experts. Teachers may use data analytics to monitor students’ activities in these spaces and assess their progress 
and development in real-time. Connective, augmented reality apps, multi-player games and immersive learning 
tools enable students to understand complex ideas and concepts at their own pace and in many cases these act to 
mediate student’s learning, independently of the teacher. Examples include use of the previously discussed sense-
it app (Henerodotou 2014), nQuire app (Jones et al. 2013) and iSpot app (Scanlon et al. 2014).  

 

Discussion 
 
The previous section presented four radically different alternatives for the use of mobile technologies in science 
education and therefore addressed the first of our three research questions: What possible futures might present 
themselves to science educators interested in harnessing the potential of mobile technologies? In this final part of 
the paper we return to the second of our research questions: What are the implications of these possible futures 
for science educators? 

The low rates of networked data collected from STEM teachers in this study (n=69) follow the same 
pattern as the entire data set (n=195) (Kearney, Burden & Rai 2015) which run contrary to much of the m-learning 
literature around ‘real-time’ spontaneity and extensive connections (or ‘hyperconnectivity’) enabled by m-
learning environments (Norris & Soloway 2011; Parry 2011, Peluso 2012). Only two of the exemplars cited from 
the STEM data set appear to have been deliberately designed by teachers to engage students in science learning 
tasks that connected them more widely with peers or science experts, despite many of the obvious benefits 
associated with this approach in terms of inquiry-based science learning. In these cases, students exploited the 
affordances of their mobile devices to tweet live findings from their experimental work to other students and 
experts outside of the classroom and to receive the assistance of an external science expert via Skype (cases 3 and 
5). Many more networked and collaborative examples might have been expected in the survey, and with relatively 
simple adjustments to the learning design of their lessons teachers might have ‘brokered’ more opportunities for 
students to cross the boundary between their digital worlds and the (analogue) arena and physical realities of 
formal education (Royle & Hadfield 2012). This point also picks up on the ‘seamless’ learning theme covered in 
the literature which indicates how mobile technologies have the potential to assist teachers and students in crossing 
boundaries between various settings and contexts to extend and continue their science learning beyond the formal, 
physical classroom (Toh et al. 2013). For example by empowering the students to use an interactive app or social 
media tool, in example 5, students would enter the more collaborative quadrant D by posting real questions and 
problems for real scientists to respond to, rather than simply consuming their expertise in a passive manner. 
Indeed, many of the examples from the STEM data set had a similar potentiality to be shifted from the lower two 
quadrants to the upper two quadrants (ie. the boundaries are permeable), usually by considering opportunities to 
collaborate and network, and by thinking about learning tasks as multi-staged events to be completed in more than 
one place or time (for example, ‘seamlessly’ linking an in-situ field investigation with networked sharing of data 
and follow-up learning conversations). 

There was an identified trend of STEM teachers in the study designing relatively solitary m-learning 
science activities. This raises the question of how educators can better leverage ‘massive social networking’ 
(UNESCO, 2011), for example via social media, to allow learners to better connect with and participate in 
communities outside their immediate class context (Parry 2011). In this way, teachers can extend the inquiry 
model of science teaching, allowing students to more widely share predictions, data and findings, encourage 
collaborative analysis and interpretations, and promote more diverse feedback and exchange of ideas within a 
legitimate and diverse community of learners. Furthermore, the rich networking and strong digital footprints 
characteristic of quadrants C and D scenarios, brings to bear the possibility of using learning analytics to assess 
learners’ needs and development. For example, participation in iSpot activities (Scanlon et al. 2014) enabled the 
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use of learning analytics to gauge participants’ identification knowledge and proficiency using the iSpot app 
(p.69). 

The flexible, negotiated nature of learners’ use of time and space is a well documented feature of mobile 
learning environments (Traxler 2009), particularly in the malleable spatial-temporal contexts of less formal 
learning spaces. However, 90% of the m-learning tasks reported in the survey by STEM teachers were based in 
formal institutional contexts, making use of traditional, rigid configurations of time and place. We know that 
mobile technologies enable learning to occur in a multiplicity of more informal (physical and virtual) settings 
situated in the context about which the learning is occurring. For example, the opportunities for in-situ inquiry 
projects, in learner-generated contexts using real-time data and immediate feedback mechanisms, are well 
reported, with documented benefits for learning science (Zhang et al. 2010). We trust that whatever features of 
the four scenarios eventuate in the future, more teachers will exploit the affordances of mobile technologies to 
leverage more diverse, inquiry-based pedagogies in these less formal ‘test-beds’ for science learning.  

This study did not explore causal relationships between time/space configurations and the twin 
dimensions of agency and networking. Indeed, we propose that flexible time/space configurations could be 
applied to any of the four scenarios, particularly multi-staged tasks across a blend of contexts. For example, 
teachers following a flipped learning pedagogy (Herreid & Schiller 2013) might encourage students to view their 
instructional podcast (Quadrants A features) using a negotiated time/space configuration, ‘at their own time, pace 
and place’ before class. The rationale for this type of pre-class task is to reduce the need for instruction in 
subsequent classes, allowing for precious, formalised ‘class time’ to be used for more active, autonomous, inquiry-
based work (e.g. Quadrants B or D). In other words, a higher rating of agency and networking does not necessarily 
align with flexible, negotiated use of time and space, nor do low ratings of these dimensions correlate with more 
traditional formal arrangements. 

 

Conclusion 
 
We acknowledge that other emerging technologies may well have a profound influence on science learning in the 
future, for example, learning analytics, 3D printing, games-based learning and wearable technologies (Johnson et 
al. 2013). However, given the current interest and investment in mobile technologies, it is timely to explore the 
future of science learning in light of the distinctive features of mobile-intensive pedagogies. We know there is 
currently a tendency for teachers to design tasks that use mobile technologies to ‘fit’ into traditional notions of 
formal, scheduled, institution-based learning (Rushby 2012). In some ways, this default position has been 
influenced by the large majority of educational apps that are underpinned by an information transmission model 
of learning, or behaviourist, drill and practice approaches (Murray & Olcese 2011). Indeed, Mifsud (2014) and 
Traxler (2009) argue that many of the features of m-learning are in conflict with traditional classroom-based 
learning, making the effective use of m-learning a challenge for educators.  

In this study, we meet this challenge by rationalising and developing four future scenarios that help 
science educators forecast how they might choose to exploit two distinctive pedagogical aspects of m-learning: 
student agency and collaborative networking. Unlike some macro-level driving forces that cannot be easily 
influenced by teachers (e.g. national policy or global trends), each of these two micro-level variables falls within 
the locus of control of individual teachers. The scenarios reveal a range of pedagogical affordances for science 
education, highlighting connection between peers and the science community, participative authenticity and 
student autonomy. There is a need for educators to understand the nature of learning in mobile contexts, especially 
the use of “mobile technologies to provide a participatory structure and architecture to support communities of 
learners” (Lai et al. 2013, p.421). This paper advocates further studies into how informal science learning can 
complement formal science learning, the changing nature of teacher roles in these blended environments, and use 
of emerging mobile technologies to engender agency and networking of science learners. 



 
 
 

18 

 

References 
 
Aubusson, P., & Schuck, S. (2013). Teacher education futures: today’s trends, tomorrow’s expectations, 

Teacher Development, 17(3), 322-333, DOI: 10.1080/13664530.2013.813768 

Aubusson, P., Griffin, J., & Kearney, M. (2012). Learning beyond the classroom: Implications for school 
science. In Fraser, B., Tobin, K., & McRobbie, C. (Eds.), The second international handbook of science 
education (pp. 1123-1134). Springer Netherlands. 

Burden, K., Hopkins, P., Male, T., Martin, S., & Trala, C. (2012). iPad Scotland evaluation. Faculty of 
Education, The University of Hull, UK. Retrieved 10 February 2013 
from http://www2.hull.ac.uk/ifl/ipadresearchinschools.aspx 

Cann, A. (2010). Scenario Based Strategic Planning in the U.S. Army Corps of Engineers Civil Works 
Program, IWR White Paper, http://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/Scenario-
BasedStrategicPlanning.pdf 

Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: suggestions for 
future research. Journal of Science Education and Technology, 22(4), 449-462 

Codd, J. A., Brown, M., Clark, J., Mcpherson, H., O’Neill, J., O’Neill, H., Waitere-Ang, & Zepke, N. (2002). 
Review of Future-Focused Research on Teaching and Learning. Wellington: Ministry of Education New 
Zealand. 

Crooks, C. (1999). Computers in the community of classrooms. In K. Littleton, & P. Light (Eds.), Learning 
with computers. Analysing productive interaction (pp. 102-117). London: Routledge. 

DeGennaro, D. (2012). Evolving learning designs and emerging technologies. In Fraser, B., Tobin, K., & 
McRobbie, C. (Eds.), The second international handbook of science education (pp. 1319-1331). Springer 
Netherlands. 

Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. In J. M. Spector, M. D. Merrill, J. 
Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th 
ed.) (pp. 735–745). New York: Springer. 

Foley, B. J., & Reveles, J. M. (2014). Pedagogy for the connected science classroom: Computer supported 
collaborative science and the next generation science standards. Contemporary Issues in Technology and 
Teacher Education, 14(4). Retrieved from http://www.citejournal.org/vol14/iss4/science/article1.cfm 

Green, L., Hechter, R., Tysinger, P., & Chassereau, K. (2014). Mobile app selection for 5th through 12th grade 
science: The development of the MASS rubric. Computers and Education, 75, 65-71. 
doi:10.1016/j.compedu.2014.02.007 

Gunsteren, H. R. Van. (1976). The quest for control exemplar scenarios from science, engineering and maths. 
London, Wiley. 

Herodotou, C., Villasclaras-Fernández, E., & Sharples, M. (2014). The Design and Evaluation of a Sensor-
Based Mobile Application for Citizen Inquiry Science Investigations. In Open Learning and Teaching in 
Educational Communities (pp. 434-439). Springer International Publishing. 

Herreid, C. F., & Schiller, N. A. (2013). Case studies and the flipped classroom. Journal of College Science 
Teaching, 42(5), 62-66. 

Johnson, L., Adams Becker, S., Estrada, V., & Martín, S. (2013). Technology outlook for STEM+ education 
2013-2018: An NMC Horizon project sector analysis. Austin, Texas: The New Media Consortium. 

Jonassen, D.H., Carr, C., & Yueh, H.P. (1998). Computers as mindtools for engaging learners in critical 
thinking. TechTrends, 43(2), 24-32. 

http://www2.hull.ac.uk/ifl/ipadresearchinschools.aspx
http://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/Scenario-BasedStrategicPlanning.pdf
http://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/Scenario-BasedStrategicPlanning.pdf
http://www.citejournal.org/vol14/iss4/science/article1.cfm


 
 
 

19 

Jones, A. C., Scanlon, E., & Clough, G. (2013). Mobile learning: Two case studies of supporting inquiry 
learning in informal and semiformal settings. Computers & Education, 61, 21–32. 

Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). 
EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. 
Computers & Education, 68, 545–556. 

Kearney, M., Burden, K., & Rai, T. (2015). Investigating teachers' adoption of signature mobile pedagogies. 
Computers & Education, 80, 48-57. 

Kearney, M., & Maher, D. (2013). Mobile learning in maths teacher education: Driving pre-service teachers’ 
professional development. Australian Educational Computing, 27(3), 76-84. 

Kearney, M., Schuck, S., Burden, K., & Aubusson, P. (2012). Viewing mobile learning from a pedagogical 
perspective. Research in Learning Technology 20: 14406 - DOI: 10.3402/rlt.v20i0/14406 

Krajcik, J.S., Blumenfeld, P., Marx, R.W., & Soloway, E. (2000). Instructional, curricular, andtechnological 
supports for inquiry in science classrooms. In J. Minstrell & E.H.v. Zee (Eds.), Inquiring into inquiry 
learning and teaching in science (pp. 283–315). Washington, DC: American Association for the 
Advancement of Science. 

Lai, K. W., Khaddage, F., & Knezek, G. (2013). Blending student technology experiences in formal and 
informal learning. Journal of computer assisted learning, 29(5), 414-425. 

Ling, R., & Donner, J. (2009) Mobile communications. Polity, London. 
Lui, M., Kuhn, A., Acosta, A., Niño-Soto, M. I., Quintana, C., & Slotta, J. D. (2014, April). Using mobile tools 

in immersive environments to support science inquiry. In CHI'14 Extended Abstracts on Human Factors in 
Computing Systems (pp. 403-406). ACM. 

Marty, P. F., Alemanne, N. D., Mendenhall, A., Maurya, M., Southerland, S. A., Sampson, V., & Schellinger, J. 
(2013). Scientific inquiry, digital literacy, and mobile computing in informal learning environments. 
Learning, Media and Technology, 38(4), 407-428. 

Mifsud, L. (2014). Mobile learning and the socio-materiality of classroom practices. Learning, Media and 
Technology, 39(1), 142-149. 

Murray, O., & Olcese, N. (2011). Teaching and learning with iPads: Ready or not? TechTrends, 55(6), 42-48 
Norris, C. A., & Soloway, E. (2011). Learning and schooling in the age of mobilism. Educational Technology, 

51(6), 3-12.  
OECD. (2001). Schooling for Tomorrow, What schools for the future, Paris, OECD).  
Pachler, N., Bachmair, B., & Cook. J. (2009). Mobile learning: Structures, agency, practices. New York: 

Springer. 
Park, Y. (2011). A pedagogical framework for mobile learning: Categorizing educational applications of mobile 

technologies into four types. International Review of Research in Open and Distance Learning 12 (2), 78-
102. 

Parry, D. (2011). Mobile perspectives: On teaching mobile literacy. Educause Review, 46, 14--18.  
Peluso, D. (2012). The fast-paced iPad revolution: Can educators stay up to date and relevant about these 

ubiquitous devices? British Journal of Educational Technology, 43, E125–E127. doi: 10.1111/j.1467-
8535.2012.01310.x 

Radinsky, J., L. Bouillion, E. Lento, and L. Gomez. (2001). Mutual benefit partnership: A curricular design for 
authenticity. Journal of Curriculum Studies 33(4), 405–430. 

Royle, K., & Hadfield, M. (2012). From ‘posh pen & pad’ to participatory pedagogies: One story of a netbook 
implementation project with 108 pupils in two primary schools. International Journal of Mobile and 
Blended Learning, 4(1), 1-17, 

Rushby, N. (2012). Editorial: An agenda for mobile learning. British Journal of Educational Technology, 43(3), 
355-356. doi: 10.1111/j.1467-8535.2012.01313.x 



 
 
 

20 

Scanlon, E., Woods, W., & Clow, D. (2014). Informal Participation in Science in the UK: Identification, 
Location and Mobility with iSpot. Journal of Educational Technology & Society, 17(2). 

Schuck, S., & Aubusson, P. (2010). Educational Scenarios for Digital Futures. Learning, Media and Technology 
35, (3): 293–305. doi:10.1080/17439884.2010.509351. 

Schuler, C., Winters, N., & West, M. (2012). The future of mobile learning: Implications for policy makers and 
planners. Paris: UNESCO. 

Schwartz, P. (1997). The Art of the Long View, Chichester, Wiley. 
Sharples, M. (2013). Mobile learning: research, practice and challenges. Distance Education in China, 3(5), 5–

11. 
Sharples, M., Taylor, J., & Vavoula, G. (2007). A theory of learning for the mobile age. In R. Andrews & C. 

Haythornthwaite (Eds.), The SAGE handbook of e-learning research. (pp. 221–224). London: Sage. 
Shell (2003). Scenarios: An explorer’s guide. London, Shell. 
 
Snoek, M. (2005). Scenario writing in education. Teaching guidelines for an in-service course for teachers and 
teacher educators. Brussels/Amsterdam: Association for Teacher Education in Europe. 
Snoek, M. (2013). From splendid isolation to crossed boundaries? The futures of teacher education in the light 

of activity theory. Teacher Development, 17 (3), 307-321. DOI: 10.1080/13664530.2013.813758 
Snoek, M., Baldwin, G., Cautreels, P., Enemaerke, T., Halstead, V., Hilton, G., Klemp, T., et al. (2003). 

Scenarios for the Future of Teacher Education in Europe. European Journal of Teacher Education, 26(1), 
21-36 

Song, Y. (2014). “Bring Your Own Device (BYOD)” for seamless science inquiry in a primary school. 
Computers & Education, 74, 50-60. 

Toh, Y., So, H. J., Seow, P., Chen, W., & Looi, C. K. (2013). Seamless learning in the mobile age: a theoretical 
and methodological discussion on using cooperative inquiry to study digital kids on-the-move. Learning, 
Media and Technology, 38(3), 301-318. 

Traxler, J. (2009). Learning in a mobile age. International Journal of Mobile and Blended Learning, 1(1), 1–12. 
Traxler, J. (2008). Current state of mobile learning. In M. Ally (ed.), Mobile Learning Transforming the 

Delivery of Education and Training, Athabasca: University of Athabasca Press. 
UNESCO (2011). UNESCO mobile learning week report. Retrieved May 12, 2014 from 

http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/ED/ICT/pdf/UNESCO%20MLW%20report%20
final%2019jan.pdf  

Van Der Heijden, K. (2005). Scenarios: The Art of Strategic Conversation. London: Wiley. 
Wang, M., & Shen, R. (2012). Message design for mobile learning: Learning theories, human cognition and 

design principles. British Journal of Educational Technology, 43(4), 561-575. 
Wilson, R., Goodman, J., Bradbury, L., & Gross, L. (2013). Exploring the use of iPads to investigate forces and 

motion in an elementary science methods course. Contemporary Issues in Technology and Teacher 
Education, 13(2). Retrieved from http://www.citejournal.org/vol13/iss2/science/article1.cfm 

Wong, L. H., & Looi, C. K. (2011). What seams do we remove in mobile-assisted seamless learning? A critical 
review of the literature. Computers & Education, 57(4), 2364-2381. 

Zhang, B. H., Looi, C. K., Seow, P., Chia, G., Wong, L. H., Chen, W., So, H. J., Soloway, E., & Norris, C. 
(2010). Deconstructing and reconstructing: Transforming primary science learning via a mobilized 
curriculum. Computers & Education, 55(4), 1504-1523. http://dx.doi.org/10.1016/j.compedu.2010.06.016 

Zimmerman, H. T., & Land, S. M. (2014). Facilitating place-based learning in outdoor informal environments 
with mobile computers. TechTrends, 58(1), 77–83. 

http://www.citejournal.org/vol13/iss2/science/article1.cfm
http://dx.doi.org/10.1016/j.compedu.2010.06.016
http://dx.doi.org/10.1016/j.compedu.2010.06.016

	Abstract
	Findings
	The four scenarios
	Scenario A: Guided and scaffolded science learning
	Scenario B: Simulatory and autonomous science learning

	Discussion
	Conclusion
	References

