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Abstract
A mapping α : S → S is called a Cayley function if there exist an associative operation

µ : S × S → S and an element a ∈ S such that α(x) = µ(a, x) for every x ∈ S. The aim
of the paper is to give a characterization of Cayley functions in terms of their directed graphs.
This characterization is used to determine which elements of the centralizer of a permutation
on a finite set are Cayley functions. The paper ends with a number of problems.
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1 Introduction

Let S be a set equipped with a binary operation, say:

· 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 0
3 0 3 0 3

Both the rows and columns of this table can be viewed as full transformations on S. For example,
the row of 1 induces the map λ1 and the column of 2 induces the map ρ2 as follows:

ρ1 =

(
0 1 2 3
0 1 0 1

)
, λ2 =

(
0 1 2 3
0 0 2 0

)
.

Observe that λ1ρ2 = ρ2λ1. In fact, one may check that in the Cayley table above, every row
commutes with every column. Saying that the rows of (S, ·) commute with its columns is just
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another way of saying that (S, ·) is a semigroup (see [3]). This simple observation prompts an
approach to a study of semigroups. However, before outlining the approach, we introduce some
terminology and notation, and recall some facts.

Let S be a semigroup. For a fixed a ∈ S, the mapping λa : S → S [ρa : S → S] defined by
λa(x) = ax [ρa(x) = xa] is called a left [right] inner translation of S. If S is a finite group, then
λa is a regular permutation on S, that is, λa is a product of disjoint cycles of the same length. If
S is an infinite group, then λa is a formal product of disjoint cycles of the same (possibly infinite)
length (see [20, Definition 3.2] and [23, Definition 1.1]). The converse is also true, that is, if α is
a regular permutation on a set S, then there is a group with universe S such that α is a left inner
translation of the group S [27]. The same facts are true for right inner translations.

Let α be a transformation on a set S. Following [29], we say that α is a Cayley function on S
if there is a semigroup with universe S such that α is an inner translation of the semigroup S. Note
that α is a left inner translation of a semigroup (S, ·) if and only if α is a right inner translation of
the semigroup (S, ∗), where for all a, b ∈ S, a ∗ b = b · a.

We now describe an approach to a study of semigroups prompted by the observation that in
any semigroup, the mappings induced by the rows of the Cayley table (left inner translations)
commute with the mappings induced by the columns (right inner translations). Let S be any set.

1. Find the Cayley functions on S.
2. Given a Cayley function α on S, find all transformations on S that commute with α, that is,

describe the centralizer of α in the full transformation monoid T (S) on S.
3. Given a Cayley function α on S, find all Cayley functions on S that commute with α.
4. Find pairs {α, β} of Cayley functions on S such that α and β occur as left inner translations

of the same semigroup (S, ·).
5. Let GS be the simple graph whose vertices are the Cayley functions on S and the edges are

pairs {α, β} such that α and β occur as left inner translations of the same semigroup (S, ·).
We will call the graph GS the common semigroup graph of S.

Identify the maximal cliques of the common semigroup graph GS .
6. Let HS be the simple graph whose vertices are the Cayley functions on S and the edges are

pairs {α, β} such that:

• {α, β} is an edge in the common semigroup graph GS , and

• there exists a cliqueC of size |S| inGS such that α and β commute with every element
of C.

Identify the maximal cliques of the graph HS .

The solution of problem 1 tells us which mappings can appear as rows or columns in the
Cayley table of a semigroup. The solution of problem 2 gives us the candidates for the rows of the
Cayley table of a semigroup provided a given mapping appears as a column. Problems 3 and 4 are
steps toward solving problems 5 and 6.

Regarding problem 5, suppose that (S, ·) is a semigroup. The left inner translations λa of S,
where a ∈ S, form a clique in the common semigroup graphGS . Hence, the solution of problem 5
would give us the candidates (the vertices of a maximal clique of GS) from which the rows of the
Cayley table of a semigroup can be selected. The same analysis applies to columns.

Regarding problem 6, suppose that we have the Cayley table of a semigroup (S, ·). Then the
rows of the table form a clique, say C1, in the common semigroup graph GS , and the columns
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also form a clique, say C2, in GS . Moreover, |C1| = |C2| = |S| and each Cayley function in C1

commutes with each Cayley function in C2. Therefore, the rows [columns] of the Cayley table of
(S, ·) are contained in a maximal clique of the graph HS . Therefore, the solution of problem 6
would give us the candidates (the vertices of a pair of maximal cliques in HS) from which the
Cayley table of a semigroup can be constructed. In other words, it would provide us with a tool
to devise a method for building the Cayley tables of semigroups. In the process we might gain a
deeper understanding of transformations and the Cayley tables of semigroups.

The current status of the solutions of these problems is as follows. Algebraic descriptions of
transformations α that are Cayley functions (in terms of properties of powers of α) have been
provided in [8, 9, 11, 29]. The problem of describing the centralizer of a given transformation
took longer, but it has been fully solved; the final stage was [6], but this is just the last step in a
long process [1, 2, 4, 5, 13–22, 24–26] (not claiming exhaustiveness). Given that problems 1 and 2
have been solved, one might think that problem 3 follows straightforwardly. This is not the case,
though. One of the reasons is that while the description of the centralizers is geometric in nature,
the available descriptions of the Cayley functions are not, thus making it difficult to combine the
two results.

Hence, this paper has two goals. The first is to provide a geometric characterization of the
Cayley functions, which can be connected to the existing geometric descriptions of centralizers.
The second is to describe the Cayley functions that commute with a finite permutation. That is,
we solve problem 3 in a special case. In other words, we describe the candidates for the rows of
the Cayley table of a finite semigroup when one of its columns is a permutation.

Any α : S → S can be represented by a directed graph Dα with S as the set of vertices such
that x → y is an arc in Dα if and only if α(x) = y. A directed graph representing some trans-
formation on its set of vertices is called a functional digraph. We will characterize the functional
digraphs that represent Cayley functions. As a result, we will obtain a visual criterion for a trans-
formation α on a set S to be a Cayley function: look at the digraph of α and see if it has desired
properties.

To obtain a complete characterization of digraphs that represent Cayley functions, we first
need to describe functional digraphs. We provide such a description in Section 2 (Propositions 2.5
and 2.6). Transformations on a set S can be divided into two types: those that have the so called
stabilizer and those that do not. In Section 3, we characterize the functional digraphs that repre-
sent transformations with stabilizers (Theorem 3.10). In Section 4, we characterize the digraphs
that represent Cayley functions (Theorems 4.6 and 4.10). Finally, in Section 5, we apply our char-
acterization to centralizers of finite permutations (Theorem 5.6). We illustrate our results with
examples and figures. We conclude the paper with a list of open problems (Section 6).

For the remainder of the paper, we fix a non-empty set S and denote by T (S) the set of all
transformations on S (mappings α : S → S).

2 Functional Digraphs

A directed graph (or a digraph) is a pair D = (S, ρ) where S is a non-empty set of vertices (not
necessarily finite), which we denote by V (D), and ρ is a binary relation on S. Any pair (x, y) ∈ ρ
is called an arc of D, which we will write as x → y. A vertex x is called an initial vertex in D if
there is no y ∈ S such that y → x; it is called a terminal vertex in D if there is no y ∈ S such that
x→ y.

A digraph D is called a functional digraph if there is α ∈ T (S) such that for all x, y ∈ S,
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x → y is an arc in D if and only if α(x) = y. If such an α exists, then it is unique, and we
will write D = Dα and refer to D as the digraph that represents α. In this section, we describe
functional digraphs.

Let D be a digraph and let . . . , x−1, x0, x1, . . . be pairwise distinct vertices of D. Consider
the following sub-digraphs of D:

x0 → x1 → · · · → xk−1 → x0 (2.1)

x0 → x1 → · · · → xm (2.2)

x0 → x1 → x2 → · · · (2.3)

· · · → x2 → x1 → x0 (2.4)

· · · → x−1 → x0 → x1 → · · · (2.5)

We call (2.1)–(2.5), respectively: a cycle of length k (k ≥ 1), written (x0 x1 . . . xk−1); a chain
of length m, written [x0 x1 . . . xm] (m ≥ 0); a right ray, written [x0 x1 x2 . . .〉; a left ray, written
〈. . . x2 x1 x0]; and a double ray, written 〈. . . x−1 x0 x1 . . .〉.

Definition 2.1. LetDα be a functional digraph, where α ∈ T (S). A right ray [x0 x1 x2 . . .〉 inDα

is called a maximal right ray if x0 is an initial vertex of Dα.

Definition 2.2. Let Dα be a functional digraph, where α ∈ T (S).

• A left ray L = 〈. . . x2 x1 x0] in Dα is called an infinite branch of a cycle C [double ray W ]
in Dα if x0 lies on C [W ] and x1 does not lie on C [W ]. We will refer to any such L as an
infinite branch in Dα.

• A chain P = [x0 x1 . . . xm] of length m ≥ 1 in Dα is called a finite branch of a cycle C
[double ray W , maximal right ray R, infinite branch L] in Dα if x0 is an initial vertex of
Dα, xm lies on C [W , R, L] and xm−1 does not lie on C [W , R, L]. If xm lies on an
infinite branch L = 〈. . . y2 y1 y0], we also require that xm 6= y0. We will refer to any such
P as a finite branch in Dα.

By a branch in Dα we will mean a finite or infinite branch in Dα. Note that all branches of a
maximal right ray R or an infinite branch L are finite. In other words, we only consider infinite
branches of cycles and double rays.

Definition 2.3. Let α ∈ T (S), x ∈ S. The subgraph of Dα induced by the set

{y ∈ S : αk(y) = αm(x) for some integers k,m ≥ 0}

is called the component of Dα containing x. The components of Dα correspond to the connected
components of the underlying undirected graph of Dα.

Definition 2.4. Let {Di}i∈I be a collection of digraphs Di = (Si, ρi). By the join of the digraphs
Di, denoted

⊔
i∈I Di, we mean the digraph D = (S, ρ) such that S =

⋃
i∈I Si and ρ =

⋃
i∈I ρi.

(That is, x→ y is an arc in the join D if and only if x→ y is an arc in some Di.) If the index set
I is finite, say I = {1, 2, . . . ,m}, we will write D1 tD2 t · · · tDm for

⊔
i∈I Di.

The following two propositions, proved in [6, Propositions 2.10 and 2.13], describe the func-
tional digraphs. (The first characterization of functional digraphs is due to F. Harary [10, Theo-
rem 2].)
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Proposition 2.5. LetDα be a functional digraph. Then for every componentA ofDα, exactly one
of the following three conditions holds:

(a) A has a unique cycle but not a double ray or right ray;

(b) A has a double ray but not a cycle; or

(c) A has a maximal right ray but not a cycle or double ray.

Proposition 2.6. Let Dα be a functional digraph. Then for every component A of Dα:

(1) if A has a (unique) cycle C, then A is the join of C and its branches;

(2) if A has a double ray W , then A is the join of W and its branches;

(3) if A has a maximal right ray R but not a double ray, then A is the join of R and its (finite)
branches.

Suppose that a component A of Dα has a right ray R but not a double ray. It is the clear by
Proposition 2.6 that A is the join of its maximal right rays. We will say that such a component A
is of type rro (“right rays only”).

Figure 1 presents a component of a digraph that contains a cycle (necessarily unique). The
cycle has two infinite and three finite branches. The infinite branch on the right has one finite
branch. Figure 2 presents a component of a digraph that contains a double ray. The double ray in
the middle has one infinite and three finite branches. The infinite branch has one finite branch and
extends to the second double ray of the component. Figure 3 presents a component of a digraph
that contains a maximal right ray but not a double ray (type rro). The maximal right ray in the
middle has five (necessarily) finite branches.

•

•<

>

•∨ •∧•· · ·

• •

•

•

••

•
...

^^//

__>> ``

OO

•OO

•

??

Figure 1: A functional digraph component with a cycle.

3 Transformations with Stabilizers

In this section, we describe the functional digraphs representing transformations that have the so
called stabilizer.

Let α ∈ T (S). We denote by im(α) the image of α. For an integer n > 0, we denote by αn

the nth power of α, that is, the composition of α with itself n times. As usual, α0 denotes the
identity transformation idS on S.
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Figure 2: A functional digraph component with a double ray.

Definition 3.1. Let α ∈ T (S). The stable image of α, denote sim(α), is a subset of S defined by

sim(α) = {x ∈ S : x ∈ im(αn) for every n ≥ 0.}.

(See [12, p. 42], where sim(α) is called the stable range of α.)

Remark 3.2. If α ∈ T (S), then:

• sim(α) consists of the vertices of Dα that lie on cycles, double rays, or infinite branches;

• sim(α) = ∅ if and only if each component of Dα is of type rro.

Definition 3.3. Following [29], we define the stabilizer of α ∈ T (S) as the smallest integer s ≥ 0
such that im(αs) = im(αs+1). If such an s does not exist, we say that α has no stabilizer.

Remark 3.4. If α ∈ T (S), then:

• the stabilizer of α is the smallest integer s ≥ 0 such that αs(x) ∈ sim(α) for every x ∈ S;

• α has the stabilizer s = 0 if and only if im(α) = sim(α) = S, which happens if and only
if each component A of Dα is either the join of a cycle C and the infinite branches of C or
the join of a double ray W and the infinite branches of W ;

• if α has the stabilizer s, then sim(α) = im(αs).

The transformations represented by the digraphs in Figures 1 and 2 have stabilizers 2 and 4,
respectively. If α is the transformation represented by the digraph in Figure 3, then sim(α) = ∅
and the stabilizer of α does not exist.

Example 3.5. A transformation may have a non-empty stable image and no stabilizer. Let S =
{. . . , x−1, x0, x1, . . .} ∪ {y1, y2, . . .} ∪ {z1, z2, . . .}. Consider α ∈ T (S) represented by the
digraph in Figure 4. Then sim(α) = {. . . , x−1, x0, x1, . . .} ∪ {y1, y2, . . .} but α has no stabilizer
because of the increasing lengths of the finite branches of the double ray 〈. . . x−1 x0 x1 . . .〉.

For the rest of this section, our goal is to characterize the digraphs of transformations with
stabilizers.
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Figure 3: A functional digraph component of type rro.

Lemma 3.6. Let α ∈ T (S) such that α has the stabilizer s. Suppose [x0 x1 . . . xs] is a chain in
Dα such that xs does not lie on a cycle. Then α has a left ray 〈. . . y2 y1 xs].

Proof. We will construct a sequence y0, y1, y2, . . . of elements of S such that y0 = xs and for
every n ≥ 0,

(a) [yn . . . y0] is a chain in Dα, and

(b) yn ∈ sim(α).

Let y0 = xs. Then [y0] is a chain in Dα and y0 = xs = αs(x0) ∈ sim(α) (see Remark 3.4). Let
n ≥ 0 and suppose we have constructed vertices y0 = xs, y1, . . . , yn that satisfy (a) and (b). Since
sim(α) = im(αs) = im(αs+1), we have yn ∈ im(αs+1). Thus, there are z0, . . . , zs, zs+1 in S
such that

z0 → · · · → zs → zs+1 = yn.

Let yn+1 = zs. Then

yn+1 = zs → zs+1 = yn → yn−1 → · · · → y0.

Note that yn+1 /∈ {yn, . . . , y0} since otherwise xs = y0 would lie on a cycle. Thus [yn+1 yn . . . y0]
is a chain in Dα and yn+1 = zs = αs(z0) ∈ sim(α).

The sequence y0 = xs, y1, y2, . . . that satisfies (a) and (b) for every n ≥ 0 has been con-
structed. But then 〈. . . y2 y1 xs] is a left ray in Dα.

The following lemma states that the digraph of a transformations with stabilizer cannot have
a component of type rro (see the paragraph after Proposition 2.6 and Figure 3).

Lemma 3.7. Let α ∈ T (S) with stabilizer s. Then for every componentA ofDα,A has a (unique)
cycle or a double ray.
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Figure 4: The digraph of α from Example 3.5.

Proof. Suppose that a component A of Dα does not have a cycle. Select any x0 ∈ S. Since A has
no cycle, [x0 x1 x2 . . .〉, where x1 = α(x0), x2 = α(x1), . . ., is a right ray in A. By Lemma 3.6,
A has a left ray 〈. . . y2 y1 xs]. For every n ≥ 0, yn /∈ {xs+1, xs+2, . . .} since otherwise A would
have a cycle. Hence 〈. . . y2 y1 xs xs+1 xs+2 . . .〉 is a double ray in A.

The converse of Lemma 3.7 is not true, that is, not every α ∈ T (S) such that every component
of Dα has a cycle or a double ray has the stabilizer (see Example 3.5).

Definition 3.8. Let α ∈ T (S). A finite branch [x0 x1 . . . xm] in Dα is called a twig in Dα if
xm ∈ sim(α) (that is, xm lies on a cycle, double ray, or infinite branch) and xp /∈ sim(α) for
every p ∈ {0, . . . ,m− 1}.

Example 3.9. Not every finite branch is a twig. Let S = {. . . , x−1, x0, x1, . . .} ∪ {y1, y2, . . .} ∪
{z1, . . . , z5}, and consider α ∈ T (S) with the digraph in Figure 5. Then [z1 z2 y1 x0] is a branch
in Dα but not a twig, while [z1 z2 y1] and [z3 z4 z5 x2] are twigs.
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Figure 5: The digraph of α from Example 3.9.

Theorem 3.10. Let α ∈ T (S). Then α has the stabilizer if and only if:
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(1) every component of Dα has a unique cycle or a double ray, and

(2) there is an integer M ≥ 0 such that every twig in Dα has length ≤M .

Proof. Suppose α has the stabilizer, say s. Then (1) holds by Lemma 3.7. To prove (2), suppose
to the contrary that such an integer M does not exist. Then there is a twig in Dα of length greater
than s, say [x0 . . . xs . . . xm] with m > s. Since s is the stabilizer of α, we have xs = αs(x0) ∈
sim(α) (see Remark 3.4), which contradicts the definition of a twig. We have proved (2).

Conversely, suppose that α satisfies (1) and (2). Let s be the smallest value of M from
(2). We claim that im(αs) = im(αs+1). Let z ∈ im(αs). Suppose to the contrary that z /∈
sim(αs+1). Then, by (1), Proposition 2.6, and the fact that z ∈ im(αs), Dα has a finite branch
[x0 . . . xk . . . xk+s = z . . . xt], where k ≥ 0, t ≥ k + s, and xt lies on a cycle or double ray.
Consider the smallest p ∈ {0, . . . , t} such that xp ∈ sim(α) and note that p ≤ k + s. (Indeed,
if p > k + s, then [x0 . . . xk+s . . . xp] would be a twig of length p > s, which is impossible.)
But then z = xk+s = αk+s−p(xp) ∈ sim(α), which is a contradiction. Thus z ∈ sim(α), and so
z ∈ im(αs+1) by the definition of sim(α). We proved that im(αs) ⊆ im(αs+1). Since the reverse
inclusion is obvious, it follows that im(αs) = im(αs+1).

We claim that s is the stabilizer of α. The claim is clearly true if s = 0. Suppose s > 0.
Then Dα has a twig [x0 . . . xs]. Suppose to the contrary that there exists p, 0 ≤ p < s such that
im(αp) = im(αp+1). Then xp = αp(x0) ∈ im(αp). But im(αp) = im(αp+1) = im(αp+2) =
· · · , which implies that xp ∈ im(αn) for every n ≥ 0. Thus xp ∈ sim(α), which is a contradiction
since p < s and [x0 . . . xs] is a twig. The claim has been proved, which concludes the proof of
the theorem.

It follows from Theorem 3.10 and its proof that if α ∈ T (S) has the stabilizer s, then

s = the smallest M ≥ 0 such that every twig in Dα has length ≤M . (3.6)

4 Cayley Functions

Let S be a set. Recall that a transformation α ∈ T (S) is called a Cayley function if there is a binary
operation ∗ on S such that (S, ∗) is a semigroup and α is an inner translation of the semigroup S;
that is, there exists a ∈ S such that for every x ∈ S, α(x) = a ∗ x.

The purpose of this section is to characterize the digraphs of the Cayley functions. To do this,
we will use the algebraic description of the Cayley functions given in [29].

Definition 4.1. Suppose α ∈ T (S) has the stabilizer s. If s > 0, we define the subset Ωα of S by:

Ωα = {a ∈ S : αs(a) ∈ sim(α) but αs−1(a) /∈ sim(α)}.

If s = 0, we define Ωα to be S.

Remark 4.2. If α ∈ T (S) has the stabilizer s > 0, then Ωα consists of the initial vertices of the
twigs of length s in Dα.

For example, for α defined in Example 3.9, Ωα = {z3}. The following result is due to
Zupnik [29, Theorems 1–3].

Theorem 4.3. Let α ∈ T (S). Then α is a Cayley function if and only if exactly one of the following
conditions holds:
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(a) α has no stabilizer and there exists a ∈ S such that αn(a) /∈ im(αn+1) for every n ≥ 0;

(b) α has the stabilizer s such that α|im(αs) is one-to-one and there exists a ∈ Ωα such that
αm(a) = αn(a) implies αm = αn for all m,n ≥ 0; or

(c) α has the stabilizer s such that α|im(αs) is not one-to-one and there exists a ∈ Ωα such that:

(i) αm(a) = αn(a) implies m = n for all m,n ≥ 0; and

(ii) For every n ≥ s, there are pairwise distinct elements y1, y2, . . . of S such that α(y1) =
αn(a), yk = α(yk−1) for every k ≥ 2, and if n > 0 then y1 6= αn−1(a).

Conditions (a)–(c) of Theorem 4.3 correspond to Theorems 1–3 of [29], respectively. The
slight difference in phrasing is due to the fact that for transformations α with stabilizer s, Zupnik
uses the set

Bα = {b ∈ S : αn(b) ∈ im(αs) if and only if n ≥ s− 1}

(although he does not specify exactly what that means when s = 0), while we use the set Ωα

from Definition 4.1. The set Ωα is more natural for our purposes than Bα since if s > 0, then Ωα

consists of the initial vertices of the twigs in Dα of length s, whereas Bα = {α(a) : a ∈ Ωα};
that is, Bα consists of the vertices that come after the initial vertices of such twigs.

Lemma 4.4. Let α ∈ T (S). Then α|sim(α) is one-to-one if and only ifDα does not have an infinite
branch.

Proof. (⇒) We will prove the contrapositive. Suppose Dα has an infinite branch L. Then L is an
infinite branch of a cycle or double ray. Suppose L = 〈. . . y2 y1 xi] is an infinite branch of a cycle
C = (x0 . . . xk−1). Then y1, xi−1 ∈ sim(α) with y1 6= xi−1 (since y1 does not lie on C) and
α(y1) = α(xi−1) = xi, which implies that α|sim(α) is not one-to-one. An argument in the case
when L is an infinite branch of a double ray is similar.

(⇐) Suppose Dα does not have an infinite branch. Let x, y ∈ sim(α) be such that α(x) =
α(y). Then x and y are vertices of the same component of Dα, say A. By Proposition 2.5, A
has a unique cycle or a double ray (since a component of type rro has no vertices that belong to
sim(α)). Suppose A has a cycle C. Then, since x, y ∈ sim(α) and Dα does not have an infinite
branch, x and y must lie on C. Thus α(x) = α(y) since, clearly, α restricted to the vertices of C
is one-to-one. If A has a double ray, we prove that α(x) = α(y) in a similar way. Hence α|sim(α)

is one-to-one.

Lemma 4.5. Let α ∈ T (S) be a Cayley function. Then every component ofDα has a unique cycle
or a double ray if and only if α has the stabilizer.

Proof. Suppose every component of Dα has a unique cycle or a double ray. Suppose to the
contrary that α has no stabilizer. Then, by Theorem 4.3, there is a ∈ S such that αn(a) /∈
im(αn+1) for every n ≥ 0. Let A be the component of Dα containing a. Suppose A has a unique
cycle, say C. Then, by Proposition 2.6, A is the join of C and its branches. It follows that there is
an integer k ≥ 0 such that αk(a) lies on C. But then αk(a) ∈ im(αk+1), which is a contradiction.
If A has a double ray, we obtain a contradiction by a similar argument. Hence α has the stabilizer.

The converse follows from Theorem 3.10.

If α ∈ T (S), then the digraph Dα has exactly one of the following features:

• Dα has a component of type rro;
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• every component ofDα has a unique cycle or a double ray, andDα does not have an infinite
branch; or

• every component of Dα has a unique cycle or a double ray, and Dα has an infinite branch.

We will characterize the digraphs of Cayley functions considering each of the above three
cases.

Theorem 4.6. Let α ∈ T (S) be such that Dα has a component of type rro. Then α is a Cayley
function if and only if Dα has a component A of type rro such that:

(1) A is the join of a maximal right ray R = [x0 x1 x2 . . .〉 and its branches;

(2) for every i ≥ 1, if [y0 y1 . . . ym = xi] is a branch of R, then m ≤ i.

Proof. Suppose α is a Cayley function. Then α has no stabilizer by Lemma 4.5. Hence, by
Theorem 4.3, there is a ∈ S such that such that αn(a) /∈ im(αn+1) for every n ≥ 0. Let A be the
component of Dα containing a, and note that A is of type rro (see the proof of Lemma 4.5). Let
x0 = a and xi = α(xi−1) for every i ≥ 1. Then x0 is an initial vertex of Dα (since x0 = a /∈
im(α)) and x0, x1, x2, . . . are pairwise distinct (since A has no cycle). Thus R = [x0 x1 x2 . . .〉
is a maximal right ray in A. By Proposition 2.6, A is the join of R and its branches, that is,
(1) is satisfied. To prove (2), suppose to the contrary that for some i ≥ 1, there is a branch
[y0 y1 . . . ym = xi] of R with m > i. Then

αi(a) = αi(x0) = xi = ym = αm(y0) ∈ im(αm) ⊆ im(αi+1),

which is a contradiction. Hence (2) is satisfied.
Conversely, suppose that Dα has a component A of type rro such that (1) and (2) are satisfied.

Then α has no stabilizer by Theorem 3.10. Let a = x0. Suppose to the contrary that there is n ≥ 0
such that αn(a) ∈ im(αn+1). Then xn = αn(x0) = αn(a) = αn+1(y) for some y ∈ S. Clearly
y does not lie on R. Thus, by Proposition 2.6, there is a finite branch [y0 . . . yk = y . . . ym = xi]
of R with 0 ≤ k < m. By (2), we have m ≤ i. Since αn+1(y) = xn, we must have n ≥ i. Thus

αn−i(xi) = xn = αn+1(y) = αn+1(yk) = αn−m+k+1(αm−k(yk)) = αn−m+k+1(xi),

which implies n − i = n − m + k + 1. Thus k + 1 = m − i ≤ 0 (since m ≤ i), which is a
contradiction. We have proved that αn(a) /∈ im(αn+1) for every n ≥ 0. Hence α is a Cayley
function by Theorem 4.3.

Example 4.7. Consider components A1 and A2 in Figure 6. By Theorem 4.6, any transformation
α1 whose digraph has component A1 is a Cayley function, whereas any transformation α2 whose
only component of type rro is A2 is not a Cayley function. Also, any α that has the component
presented in Figure 3 is a Cayley function.

Definition 4.8. Let α ∈ T (S) and let N = {0, 1, 2, . . .}. We define supb(α), supt(α) ∈ N∪{∞}
by

supb(α) = sup{m : m = 0 or m is the length of a finite branch in Dα},
supt(α) = sup{m : m = 0 or m is the length of a twig in Dα}.
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Figure 6: A Cayley function (left) and not a Cayley function (right) (see Theorem 4.6).

Lemma 4.9. Let α ∈ T (S) be such that every component of Dα has a unique cycle or a double
ray, and Dα does not have an infinite branch. Then supb(α) = supt(α).

Proof. Since every twig is a finite branch (see Definition 3.8), supt(α) ≤ supb(α) in any Dα.
To prove supb(α) ≤ supt(α), it suffices to show that if Dα has a finite branch of length m, then
Dα has a twig of length k ≥ m. Let P = [y0 . . . ym] be a finite branch of length m, and let
A be the component of Dα containing P . If A has a unique cycle, then every finite branch in
A is a twig (since Dα has no infinite branches and a component with a cycle does not have a
double or right ray), so a desired twig of length at least m is P itself. Suppose A has a double
ray, say W . Then sim(α) ∩ A = V (W ) since Dα has no infinite branches. Thus, if ym lies
on W , then again P itself is a desired twig. Suppose ym does not lie on W (which is possible
since ym may lie on a maximal right ray). Then, by Proposition 2.6, there is a finite branch
P1 = [y0 . . . ym . . . yk] such that k > m and yk lies on W . Thus P1 is a twig of length bigger
than m. Hence supb(α) ≤ supt(α).

Lemma 4.9 is not true if Dα has an infinite branch. Let

S = {. . . x−1 x0, x1, . . .} ∪ {y1, y2, . . .} ∪ {z1, z2, . . .},

and consider α ∈ T (S) with digraph in Figure 7. Note that sim(α) = {. . . , x−1, x0, x1, . . .} ∪
{y1, y2, . . .}. We have supb(α) =∞ since for every n ≥ 1, [zn yn . . . y1 x0] is a finite branch (of
the double ray 〈. . . x−1 x0 x1 . . .〉), but supt(α) = 1 since the only twigs inDα are [z1 y1], [z2 y2],
[z3 y3], . . . .

Theorem 4.10. Let α ∈ T (S) be such that every component ofDα has a unique cycle or a double
ray, and Dα does not have an infinite branch. Then α is a Cayley function if and only if the
following conditions are satisfied:

(1) s = supb(α) is finite;

(2) if s > 0 and Dα has a double ray, then some double ray in Dα has a branch of length s;

(3) if Dα does not have a double ray, then there are integers 1 ≤ k1 < k2 < . . . < kp, p ≥ 1,
such that:
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Figure 7: A transformation α with supt(α) < supb(α).

(a) {k1, . . . , kp} is the set of the lengths of the cycles in Dα;

(b) ki divides kp for every i ∈ {1, . . . , p}; and

(c) if s > 0, then some cycle of Dα of length kp has a branch of length s.

Proof. Suppose α is a Cayley function. By Lemma 4.5, α has the stabilizer, say s1. By (3.6),
s1 = supt(α), and so s1 = supb(α) = s by Lemma 4.9. Thus (1) holds since the stabilizer of
any transformation is finite by definition. By Lemma 4.4, α|sim(α) is one-to-one, and so α|im(αs)

is one-to-one since sim(α) = im(αs) (see Remark 3.4).
Suppose that s > 0 and that Dα has a double ray, say W = 〈. . . x−1 x0 x1 . . .〉. By Theo-

rem 4.3, there is a ∈ Ωα such that for all m,n ≥ 0, if αm(a) = αn(a) then αm = αn. Then a the
initial point of some twig P in Dα of length s (see Remark 4.2). Suppose to the contrary that no
double ray in Dα has a branch of length s. Then P must be a branch of some cycle (y0 . . . yk−1),
k ≥ 1. Thus αs(a) = αs+k(a), and so αs = αs+k. But then xs = αs(x0) = αs+k(x0) = xs+k,
which is a contradiction, as W is a double ray. Hence some double ray of Dα must have a chain
of length s, which proves (2).

Suppose Dα does not have a double ray. Then each component of Dα has a unique cycle.
Let a ∈ Ωα be as in the proof of (2) (but here we do not assume that s > 0). Then there is
a cycle C = (y0 . . . yk−1) in Dα such that, for some j, either a = yj (if s = 0) or C has a
branch [a . . . yj ] of length s (if s > 0). In either case, αs(a) = αs+k(a), and so αs = αs+k. Let
(x0 . . . xt−1) be any cycle in Dα, and let i ∈ {0, . . . , t− 1} be such that αs(xi) = x0. Then

xk = αk(x0) = αk(αs(xi)) = αs+k(xi) = αs(xi) = x0.

It follows that k ≡ 0(mod t), that is, t divides k. We have proved that the set of the lengths of the
cycles in Dα is bounded above by k, and so it is finite, say {k1, k2, . . . , kp} with 1 ≤ k1 < k2 <
. . . < kp = k. We have also proved that each t = ki divides k = kp and that C has a branch of
length s (if s > 0). Thus (3) holds.

Conversely, suppose that (1)–(3) are satisfied. Then, by (1), (3.6), and Lemma 4.9, s =
supb(α) is the stabilizer of α. As in the proof of the first part, α|im(αs) is one-to-one.

Suppose Dα has a double ray, say W . Then, by (2), there is a ∈ Ωα such that αs(a) lies on
W . Then, for all m,n ≥ 0, if αm(a) = αn(a) then m = n, and so αn = αm.
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Suppose Dα does not have a double ray. Then, by (3), there is a ∈ Ωα such that αs(a) lies on
a cycle C of length kp. Suppose αm(a) = αn(a), where m,n ≥ 0. We may assume that m ≥ n.
Then m ≡ n(mod kp), that is, m = n+ qkp for some q ≥ 0. If n < s (which is possible only if
s > 0), then αm(a) = αn(a) implies m = n, so αm = αm. Suppose n ≥ s, and let x ∈ S. Since
s is the stabilizer of α and n ≥ s, αn(x) lies on some cycle of Dα. Let C1 = (x0 . . . xki) be the
cycle such that αn(x) = xj for some j. By (3), kp = rki for some r ≥ 1. Thus

αm(x) = αn+qkp(x) = αn+qrki(x) = αqrki(αn(x)) = αqrki(xj) = xj = αn(x),

which implies αm = αn since x was an arbitrary element of S. Hence α is a Cayley function by
Theorem 4.3.

Example 4.11. Consider transformations α and β whose digraphs are presented in Figure 8 and
Figure 9, respectively. Then α is a Cayley function, while β is not a Cayley function (since s = 3
and (2) of Theorem 4.10 is not satisfied). If we remove the component with the double ray from
Figure 8, the resulting transformation will not be a Cayley function since (3) of Theorem 4.10 will
not be satisfied. If we remove the component with the double ray from Figure 9, the resulting
transformation will be a Cayley function.
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Figure 8: A Cayley function described by Theorem 4.10.

It is of interest to apply Theorem 4.10 to permutations. Let Sym(S) be the set of permutations
on S, that is, bijections from S to S. Let α ∈ Sym(S). Then α is an inner translation of a group
with universe S if and only if Dα is either a join of disjoint double rays or a join of cycles of the
same length [27, Theorem 2]. The following is an immediate corollary of Theorem 4.10.

Corollary 4.12. Let α ∈ Sym(S). Then α is a Cayley function if and only if exactly one of the
following conditions holds:

(a) Dα has a double ray; or

(b) Dα is a join of cycles, and there are integers 1 ≤ k1 < k2 < . . . < kp, p ≥ 1, such that

(i) {k1, . . . , kp} is the set of the lengths of the cycles in Dα;

(ii) ki divides kp for every i ∈ {1, . . . , p}.
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Figure 9: Not a Cayley function (see Theorem 4.10).

Example 4.13. Let S = {1, 2, . . . , 11}. Consider

α = (1 2 3 4 5 6)(7 8 9)(10 11) and β = (1 2 3 4)(5 6 7 8)(9 10 11)

in T (S). Then α is a Cayley function, while β is not a Cayley function.

The last case to consider is when Dα has no component of type rro but it does have an infinite
branch.

Theorem 4.14. Let α ∈ T (S) be such that every component of Dα has a unique cycle or a
double ray, and Dα has an infinite branch. Then α is a Cayley function if and only if the following
conditions are satisfied:

(1) s = supt(α) is finite;

(2) Dα has a double ray W = 〈. . . x−1 x0 x1 . . .〉 such that for some xi:

(a) if s > 0 then W has a finite branch at xi of length s; and

(b) W has an infinite branch at each xj with j > i.

Proof. Suppose α is a Cayley function. By Lemma 4.5, α has the stabilizer, say s1. By (3.6),
s1 = supt(α) = s, and so (1) holds since the stabilizer of any transformation is finite by definition.
By Lemma 4.4, α|sim(α) is not one-to-one, and so α|im(αs) is not one-to-one since since sim(α) =
im(αs). Thus, there exists a ∈ Ωα such that (i) and (ii) of Theorem 4.3 hold. Let A be the
component ofDα containing a. Suppose to the contrary thatA has a cycle, sayC = (x0 . . . xk−1).
Then, by Proposition 2.6, αp(a) = xj for some j and p ≥ 0, and so αk+p(a) = αk(αp(a)) =
αk(xj) = xj = αp(a). Thus k + p = p by (i) of Theorem 4.3, which is a contradiction.

Hence A has a double ray, and so sim(α) ∩ V (A) consists of the vertices x of A such that
x lies on some double ray in A. Thus, since αs(a) ∈ sim(α), there is a double ray W =
〈. . . x−1 x0 x1 . . .〉 inA such that αs(a) = xi for some i. If s > 0, then [aα(a)α2(a) . . . αs(a) =
xi] is a finite branch ofW of length s (by the definition of Ωα). Let j > i and note that xj = αn(a)
for n = s+ j− i. By (ii) of Theorem 4.3, there is a left ray L = 〈. . . y2 y1 αn(a) = xj ] in A such
that y1 6= αn−1(a) = xj−1. Hence y1 does not lie on W , and so L is an infinite branch of W at
xj . We have proved (2).
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Conversely, suppose (1) and (2) are satisfied. Then, by (1) and (3.6), s = supt(α) is the
stabilizer of α. By Lemma 4.4, α|im(αs) is not one-to-one. Let W = 〈. . . x−1 x0 x1 . . .〉 be a
double ray from (2). If s > 0, then W has a finite branch [y0 . . . ys = xi]. Set a = y0 if
s > 0, and a = xi if s = 0. In either case, a ∈ Ωα. For all m,n ≥ 0, if αm(a) = αn(a)
then m = n since a is in a component of Dα that does not have a cycle. Let n ≥ s. We
want to prove that there are pairwise distinct elements y1, y2, . . . of S such that α(y1) = αn(a),
yk = α(yk−1) for every k ≥ 2, and if n > 0 then y1 6= αn−1(a). If n = s, then we can take
y1 = xi−1, y2 = xi−2, . . . . Suppose n > s. Then αn(a) = xj for j = i+ n− s > i. By (2b), W
has an infinite branch 〈. . . z2 z1 xj ], and we can take y1 = z1, y2 = z2, . . . . Hence α is a Cayley
function by Theorem 4.3.

For example, the transformation with digraph in Figure 10 is a Cayley function (with s = 4).
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Figure 10: A Cayley function described by Theorem 4.14.

Let α ∈ T (S) be such that every component of Dα has a unique cycle or a double ray. By
Theorems 4.10 and 4.14, if α is a Cayley function, then either every component of Dα has at most
one double ray or some component of Dα has infinitely many double rays. So, transformations
with digraphs in Figures 2, 4, 5, and 7 are not Cayley functions.

5 The Solution of Problem 3 for Finite Permutations

Let S be a non-empty set. For a transformation α ∈ T (S), the centralizer C(α) of α in T (S)
is defined by C(α) = {β ∈ T (S) : αβ = βα}. Elements of C(α), for an arbitrary α ∈ T (S),
were characterized in [6]. In this section, we initiate the study of the following problem: given
α ∈ T (S), which transformations β ∈ C(α) are Cayley functions? We show how our description
of Cayley functions can be used to solve this problem in the special case when S is finite and α is
a permutation. As will be clear by the end of this section, problem 3 is very difficult, even with
graph descriptions of the centralizers and Cayley functions.

For the remainder of this section, S will denote a finite non-empty set. The following theorem
is [6, Corollary 6.4]. We agree that if (y0 . . . ym−1) is a cycle and i is an integer, then yi means yr
where r ≡ i (mod m) and 0 ≤ r < m.
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Theorem 5.1. Let α ∈ Sym(S) and β ∈ T (S). Then β ∈ C(α) if and only if for every cycle
σ = (x0 . . . xk−1) in α, there exists a cycle θ = (y0 . . . ym−1) in α such that m divides k and β
wraps σ around θ at some yt, that is, β(xi) = yt+i for every i ∈ {0, 1, . . . , k − 1}.

Let α ∈ Sym(S) and let Cα be the set of cycles in α (including the 1-cycles). For β ∈ C(α),
we define a transformation ψβ on Cα by

ψβ(σ) = the unique θ ∈ Cα such that β wraps σ around θ.

Note that ψβ is well defined by Theorem 5.1, that is, ψβ ∈ T (Cα), and that the vertices of the
digraph Dψβ are the cycles in α.

The following lemma, which we will use implicitly in the subsequent arguments, follows
immediately from the definition of ψβ and Theorem 5.1.

Lemma 5.2. Let α ∈ Sym(S) and β ∈ C(α). Suppose that A is a component of Dψβ with cycle
(σ0 σ1 . . . σk−1), and that Z is the set of all elements x ∈ S such that x is in some σ ∈ A. Then:

(1) the cycles σ0, σ1, . . . , σk−1 have the same length;

(2) for every x ∈ Z, β(x) ∈ Z, that is, β|Z ∈ T (Z);

(3) if σ, θ ∈ A with ψβ(σ) = θ, then for every x in σ, β(x) is in θ;

(4) if x ∈ Z is not in any σi, then x does not lie on any cycle of Dβ|Z .

Lemma 5.3. Let α ∈ Sym(S) and β ∈ C(α). Suppose that A is a component of Dψβ with
cycle (σ0 σ1 . . . σk−1), each σi having length p. Let Z be as in Lemma 5.2 and let σ0 =
(x0 x1 . . . xp−1). Then:

(1) βk(x0) = xl for some l ∈ {0, 1, . . . , p− 1};

(2) every cycle in Dβ|Z has length kp
gcd(p,l) .

Proof. Since (σ0 σ1 . . . σk−1) is a cycle in Dψβ , ψkβ(σ0) = σ0. Hence βk(x0) is in σ0, and so
βk(x0) = xl for some l. This proves (1).

To prove (2), recall that β|Z ∈ T (Z) by Lemma 5.2. Let t be the smallest positive integer
such that βt(x0) = x0. Then ψtβ(σ0) = σ0, and hence t = ku for some integer u. As α and β
commute, we have

x0 = βt(x0) = βku(x0) = βk(u−1)(xl) = βk(u−1)(αl(x0)) = αlβk(u−1)(x0) = · · · = αlu(x0).

The smallest positive integer u for which αlu(x0) = x0 is p
gcd(p,l) . Hence Dβ|Z contains a cycle

of length t = ku = kp
gcd(p,l) .

We will show that every cycle in Dβ|Z has length kp
gcd(p,l) . Let x ∈ Z. If x is not a vertex of

any σi, then x is not a vertex of any cycle of Dβ|Z by Lemma 5.2.
Suppose that x is a vertex of σ0, say x = xi. Since βk ∈ C(α) and βk(x0) = xl, we have

βk(xi) = xi+l by Theorem 5.1. We can renumber the vertices of σ0 in such a way that xi becomes
x0. Then, by the foregoing argument, we obtain a cycle (x . . .) in Dβ|Z of length kp

gcd(p,l) .
Suppose that x is a vertex of σm with m 6= 0. Renumber the vertices of σ0, σ1, . . . , σk−1 in

such a way that for each i, σi = (xi0 . . .), x = xm0 , and βi(x00) = xi0. We have already shown that
βk(x00) = x0l . Thus, since βm ∈ C(α),

βk(xm0 ) = βk(βm(x00)) = βm(βk(x00)) = βm(x0l ) = xml .
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Hence, by the foregoing argument, we obtain a cycle (x . . .) in Dβ|Z of length kp
gcd(p,l) . Since we

have considered all possible cycles in Dβ|Z , (2) follows.

Remark 5.4. Let Z and σ0, σ1, . . . , σk−1 be as in Lemma 5.3, and let x ∈ Z. By the proof of
Lemma 5.3, we have:

(1) if x is not in any σi, then x does not lie on any cycle of Dβ|Z ;

(2) if x is in some σi, thenDβ|Z has a cycle (x . . .) of length kp
gcd(p,l) , where l ∈ {0, 1, . . . , p−1}

is such that βk(x) = αl(x).

Lemma 5.5. Let α ∈ Sym(S) and β ∈ C(α). Suppose that A is a component of Dψβ with cycle
(σ0 σ1 . . . σk−1). Let Z be as in Lemma 5.2. Assume that the maximum length of a branch in A
is s (with s = 0 if A has no branches). Then:

(1) if s = 0, then Dβ|Z has no branches;

(2) if s > 0, then every branch in Dβ|Z has length at most s, and there exists a branch in Dβ|Z
of length s.

Proof. If A has no branches, then every element of Z lies on some cycle in Dβ|Z by Remark 5.4.
This shows the first assertion.

To prove (2), suppose that s > 0 and let [θ0 θ1 . . . θm = σi] be a branch in A, so m ≤ s. Let x
be in θj , where j ∈ {0, 1 . . . ,m− 1}. Since m ≤ s, we have ψsβ(θj) = σi+s−m+j , and so βs(x)
is in σi+s−m+j . Thus, by Remark 5.4, βs(x) lies on a cycle in Dβ|Z . Hence every branch in Dβ|Z
has length at most s.

Now let [θ0 θ1 . . . θs = σi] be a branch of A whose length realizes the maximum value s. Let
x be in θ0. Then βs(x) is in σi (since ψβ(θ0) = σi) and for every u ∈ {0, 1, . . . , s− 1}, βu(x) is
in θu (since ψβ(θ0) = θu), and so βu(x) does not like on any cycle of Dβ|Z by Remark 5.4. Thus
[xβ(x)β2(x) . . . βs(x)] is a branch in Dβ|Z of length s.

With Theorem 4.10 and the lemmas of this section, we obtain the following characterization.

Theorem 5.6. Let α, β ∈ T (S), where S is finite, α is a permutation, and β ∈ C(α). Suppose
that {A1, A2, . . . , At} is the set of components of Dψβ and s = supb(ψβ). Let M be the set of
numbers of the form kipi

gcd(pi,li)
, 1 ≤ i ≤ t, where ki is the length of the cycle Ci in Ai, pi is the

length of each cycle of α that occurs in Ci, and li is the unique number in {0, 1, . . . , pi − 1} such
that βki(x) = αli(x), where x is any element of any cycle of α that occurs in Ci. Then β is a
Cayley function if and only if the following conditions are satisfied:

(1) the largest element m of M is a multiple of every element of M ;

(2) if s > 0, then some componentAr ofDψβ such that krpr
gcd(pr,lr)

= m has a branch of length s.

Proof. Suppose that β is a Cayley function. By Lemma 5.3, M is the set of the lengths of cycles
in Dβ . Thus (1) follows from Theorem 4.10. Suppose that s > 0. By Lemma 5.5, s = supb(β),
and so, by Theorem 4.10 and the foregoing observation about M , some cycle C of Dβ of length
m has a branch of length s. By Lemma 5.3 and its proof, there exists a component Ar of Dψβ

such that m = krpr
gcd(pr,lr)

and all vertices of C are contained in Z, where Z is as in Lemma 5.2
(with A = Ar). Finally, by Lemma 5.5, Ar has a branch of length s.
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Conversely, suppose that conditions (1) and (2) are satisfied. We have already observed that
s = supb(β) and that M is the set of the lengths of cycles in Dβ . Thus, 3(a) and 3(b) of The-
orem 4.10 hold by (1). By Lemmas 5.3 and 5.5, Dβ has a cycle of length m with a branch of
length s. Hence 3(c) of Theorem 4.10 holds, and so β is a Cayley function.

Theorem 5.6 enables us to decide if a given β ∈ C(α) is a Cayley function by analyzing the
components of the digraph of ψβ and the corresponding numbers from the set M .

Example 5.7. Let S = {x0, x1, x2, x3, y0, y1, z0, z1, w0, w1}. Consider

α = (x0 x1 x2 x3)(y0 y1)(z0 z1)(w0w1) ∈ Sym(S).

Let θ = (x0 x1 x2 x3), σ1 = (y0 y1), σ2 = (z0 z1), and σ3 = (w0w1).
Let β ∈ C(α) such that Dψβ is given in Figure 11, β(x0) = y0, β(y0) = y0, β(z0) = w1, and

β(w0) = z0. (Note that the remaining values of β are determined uniquely by Theorem 5.1.) The
components of Dψβ and the corresponding numbers from M are:

• A1 = {θ, σ1} with k1p1
gcd(p1,l1)

= 1·2
gcd(2,0) = 1,

• A2 = {σ2, σ3} with k2p2
gcd(p2,l2)

= 2·2
gcd(2,1) = 4.

Thus M = {1, 4} with m = 4, and so (1) of Theorem 5.6 holds. However, we have s = 1 and
A2, which is the only component with the corresponding number equal to m = 4, does not have a
branch of length s. Hence (2) of Theorem 5.6 does not hold, and so β is not a Cayley function.

•σ1

•θ

OO
∧ •σ3

∧∨

•
σ2

Figure 11: Digraph Dψβ from Example 5.7.

Now consider γ ∈ C(α) such that Dψγ is given in Figure 12, γ(x0) = x2, γ(y0) = z0,
γ(z0) = w1, and γ(w0) = z0. The components of Dψγ and the corresponding numbers from M
are:

• A1 = {θ} with k1p1
gcd(p1,l1)

= 1·4
gcd(4,2) = 2,

• A2 = {σ1, σ2, σ3} with k2p2
gcd(p2,l2)

= 2·2
gcd(2,1) = 4.

Thus M = {2, 4} with m = 4, and so (1) of Theorem 5.6 holds. Further, we have s = 1 and A2,
whose corresponding number is m = 4, has a branch of length s. Hence (2) of Theorem 5.6 also
holds, and so γ is a Cayley function.

19



•
σ3

•σ2
∧

∧

∨

•
σ1

•

∧

θ

Figure 12: Digraph Dψγ from Example 5.7.

6 Problems

In this paper, we have solved a special case of problem 3 of the approach outlined on page 2. The
solution for the case of finite permutations opens some natural questions.

Problem 6.1. Let σ be a permutation on a finite set S. Describe the Cayley idempotents that
commute with σ. Describe the Cayley permutations δ of S such that σδ and δσ are Cayley per-
mutations.

Moving from permutations to idempotents, the following problem is also natural.

Problem 6.2. Find the Cayley functions on a finite set that commute with a given Cayley idem-
potent.

The main open question regarding the content of this paper is problem 3 in its full generality.

Problem 6.3. Describe the Cayley functions on a set S that commute with a given Cayley function
on S.

Problem 4 of the approach does not need the solution of problem 3, and hence can be imme-
diately attempted. Recall that the size of the image of a transformation on S is called its rank.

Problem 6.4. Characterize the pairs {α, β} of Cayley functions on S such that α and β occur as
left inner translations of the same semigroup (possibly with some constrains added, such as pairs
of permutations, idempotents, or maps of a given rank).

The ultimate goal is to carry out all steps of the approach outlined on page 2.

Problem 6.5. Carry out the steps 3–6 of the approach on page 2 for some special types of maps
(permutations, idempotents, maps of a fixed maximum rank) on a finite set.

Problem 6.6. Carry out the steps 3–6 of the approach for all Cayley functions on an arbitrary set.

Other problems about Cayley functions present themselves.

Problem 6.7. Characterize the ordered pairs (α, β) of Cayley functions on S such that in the same
semigroup (S, ·), α = λa and β = ρa for some a ∈ S.

Problem 6.8. Given a Cayley function α on S, find all Cayley functions β on S such that αβ and
βα are Cayley functions.
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If α and β occur as left inner translations of the same semigroup, then the semigroup generated
by α and β consists of Cayley functions. The converse is not necessarily true.

Problem 6.9. Find the pairs of Cayley functions [permutations, idempotents, functions of a given
rank] that generate a semigroup of Cayley functions.

Let S be a semigroup. A left translation of S is a transformation λ on S such that λ(xy) =
(λ(x))y for all x, y ∈ S; similarly, a right translation of S is is a transformation ρ on S such
that ρ(xy) = x(ρ(y)) for all x, y ∈ S. A left translation λ and a right translation ρ of S form
a linked pair (λ, ρ) if x(λ(y)) = (ρ(x))y for all x, y ∈ S. For every a ∈ S, the pair of inner
translations (λa, ρa) is a linked pair. (See [7, page 10].) The following problem is a generalization
of Problem 6.7.

Problem 6.10. Characterize the pairs (α, β) of transformations on a set S such (α, β) is a linked
pair for some semigroup with universe S.

We can also replace inner translations of a semigroup with endomorphisms of a semigroup or
some other algebraic structure.

Problem 6.11. Describe the transformations α on a set S such that α is an endomorphism of some
semigroup [group, inverse semigroup, completely regular semigroup, band, partially ordered set,
etc.] with universe S.

Some research along these lines has already been done [28].
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