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Botnet detectors based on machine learning are potential targets for adversarial evasion attacks. Several
research works employ adversarial training with samples generated from generative adversarial nets
(GANs) to make the botnet detectors adept at recognising adversarial evasions. However, the synthetic
evasions may not follow the original semantics of the input samples. This paper proposes a novel
GAN model leveraged with deep reinforcement learning (DRL) to explore semantic aware samples
and simultaneously harden its detection. A DRL agent is used to attack the discriminator of the
GAN that acts as a botnet detector. The agent trains the discriminator on the crafted perturbations
during the GAN training, which helps the GAN generator converge earlier than the case without
DRL. We name this model RELEVAGAN, i.e. [‘‘relieve a GAN’’ or deep REinforcement Learning-based
Evasion Generative Adversarial Network] because, with the help of DRL, it minimises the GAN’s
job by letting its generator explore the evasion samples within the semantic limits. During the
GAN training, the attacks are conducted to adjust the discriminator weights for learning crafted
perturbations by the agent. RELEVAGAN does not require adversarial training for the ML classifiers
since it can act as an adversarial semantic-aware botnet detection model. The code will be available
at https://github.com/rhr407/RELEVAGAN.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Artificial Intelligence (AI) in cybersecurity has become the
ew normal. However, AI will take some time to win public
rust due to inherent biases and adversarial threats ranging from
nsiders to intrusion and malware [1,2]. AI-based models can
e biased toward the majority class of data on which they are
rained due to the imbalance in datasets. Anomaly samples in
ublicly available datasets are usually scarce compared to the
ormal data in low-data regimes like cybersecurity. Researchers
ave used data generation techniques like emulation, synthetic
versampling, and generative models to mitigate data biasing.
Similarly, adversarial learning has been a topic of pivotal in-

erest to research communities for the last decade. Many seminal
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works have been created to deal with adversarial attacks like
poisoning, evasion, and transferability [2–4]. Adversarial defence
strategies can be based on preprocessing, adversarial training, ar-
chitecture, detection, defensive testing, multiclassifiers, and game
theory [2].

Adversarial training seems to be a simplistic strategy to pro-
vide robustness against adversarial evasion attacks; however, it
has some cons. First, increasing the number of samples in the
auxiliary data may not have a linear relationship with detection
accuracy [4]. Second, the adversarial training cannot guarantee
a robust defence as it can be bypassed [5]. Although adopted as
an immediate remedy against some adversarial attacks, it cannot
be considered an ultimate cure for the grave problem in AI.
Third, it consumes additional time for retraining. Several GAN-
based research works preserve the functionality of the generated
samples by manipulating only non-functional features [6–8]. So,
GANs do not play a role in generating a complete feature vector
in those works. It is also quite challenging to generate categor-
ical features using a GAN without manual engineering except
using a sequence GAN [9]. Researchers have also used deep rein-
forcement learning (DRL) to generate the functionality preserving
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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adversarial evasion attacks [10–12]. The main goal of employing
DRL is to explore functionality preserving adversarial samples
since the DRL can guarantee semantic awareness in contrast to
GANs; however, these works consider the adversarial training to
make the detection models adept at evasion awareness.

RELEVAGAN is an effort toward a unifying model concept
hat would solve the problem of data imbalance, provide adver-
arial semantic awareness and save training time. RELEVAGAN
s equipped with an integrated DRL agent to achieve the said
oals. RELEVAGAN name was chosen for two reasons. First, it is
deep REinforcement Learning-based Evasion Generative Adver-
arial Network. Second, it relieves the employed GAN model to
ake its job easier by letting the generator of the GAN explore the
emantic aware samples, i.e., within certain boundary conditions.
e can call this RELiEVe A GAN as well. Either way, RELEVAGAN
roves to be an improved technique compared to the peer models
ike Auxiliary Classifier GAN (ACGAN) and Evasion Generative
dversarial Network (EVAGAN).
The DRL agent attacks the RELEVAGAN’s discriminator, which

cts as a botnet detector. The attack generation is based on ma-
ipulating the real attack samples to evade the botnet detector.
s the RELEVAGAN training proceeds, the agent learns to evade
he botnet detector. The discriminator is adversarially trained on
he evaded samples from the DRL attacker and synthetic samples
rom the generator in each training iteration. After a certain
umber of epochs, the discriminator becomes hardened against
he samples from the DRL agent and the generator. The detection
stimations for the benign, real, and generated samples and the
enerator training settle to the desired values in fewer training
terations than the EVAGAN model. The experimental analysis
hows the considerable performance of the RELEVAGAN model
gainst EVAGAN in terms of detection estimation and stability
f training for three different botnet datasets. We argue that the
earning of GAN follows semantic awareness because GAN is also
rained on the attacks generated by the DRL model. The following
re the main contributions of this paper:

(1) We propose a novel DRL-based GAN model to address the
problems of data imbalance, evasion awareness, and func-
tionality preservation in synthetic botnet traffic generation.

(2) We demonstrate by experiments that DRL plays a role in
GAN in early convergence of training for detecting syn-
thetic and real attacks.

(3) Because of the integrated self-learning DRL attacker, the
proposed model can be envisaged as sustainable against
evolving botnet.

(4) We determine that RELEVAGAN outperforms EVAGAN re-
garding early training convergence.

. Background

.1. Data imbalance

The inequitable distribution of botnet datasets makes their
L-based detection models less accurate. To address this is-
ue, data undersampling can be adopted. However, it can re-
ult in the loss of diversity and representation of normal traf-
ic [13]. Oversampling can also solve the data imbalance problem
o some extent; however, the use of nearest neighbours, and
inear interpolation, may not be suitable for the high-dimensional
nd complex probability distributions [14,15]. Researchers have
ested several oversampling techniques in [16] to rank the best
erforming being SMOTE_IPF, ProWSyn and polynom_fit_SMOTE.
owever, authors in [4] declared GANs outperforming those three
versamplers in most ML classifiers’ adversarial training. Hence,
e consider GANs as a suitable candidate for data oversampling
ompared to other synthetic data generation methods. Table 1

hows the main notations used in this text.
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Table 1
Main notations.

Notation Definition

G Generator
D Discriminator
z Normal distribution from noise space
z Noise samples
pdata Probability distribution of real samples
pz Probability distribution of noise samples
X Real data distribution
E Expected value
cm Minority class labels
cM Majority class labels
yxi Actual label of sample xi in dataset X

2.2. Generative adversarial nets

A GAN combines two neural networks with different struc-
tures: a generator and a discriminator. The generator (G) synthe-
sises samples, and the discriminator (D) evaluates those samples.
In a classical GAN, D: X → [0,1] acts as a classifier to give us an
estimate of probability (between 0 and 1) to mark whether the
input data is real or fake. The objective function of the combined
model is denoted by Eq. (1).

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz (z)[log(1 − D(G(z)))]
(1)

In Eq. (1), E denotes the expected value of the loss, and x
and z represent the real and noise data samples consecutively.
Similarly, pdata and pz are the real data and noise probability
distributions, respectively. The min–max game minimises the G’s
loss in generating data similar to the real data. Since G is not able
to control D’s loss on real data, it can maximise the loss of D
on generated data G(z). The objective function of G is denoted
by Eq. (2).

JG(G) = Ez∼pz (z)[log(D(G(z)))] (2)

One complete iteration of the GAN training takes noise as
input and the output of the D as the feedback to update the
weights of the G. This training process keeps iterating for a spe-
cific number, after which G and D do not learn further, resulting
in Nash equilibrium.

2.3. Evasion awareness

Adversarial training is widely adopted to proactively make the
ML classifiers aware of the evasion samples. However, extending
the capability of D of a GAN from discriminating between real and
fake samples to differentiating between normal and anomaly data
renders the adversarial training needless because D can act as an
evasion-aware classifier [17,18]. In [19], authors propose EVAGAN
that provides such type of D and compare its performance with
the D of ACGAN and other ML classifiers like xgboost (XGB),
naive bayes (NB), decision tree (DT), random forests (RF), k-
nearest neighbours (KNN) and logistic regression (LR). EVAGAN’s
D outperforms the ML classifiers in black box testing and gives
100% accuracy in normal and evasion sample estimation. How-
ever, EVAGAN, like other GAN models, is agnostic of semantics
and functionality preservation of malicious synthetic samples.
In this paper, we propose a novel type of GAN based on EVA-
GAN leveraged with DRL to address the problem of functionality
preservation.
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2.4. ACGAN

The proposed RELEVAGAN is based on EVAGAN, an improved
CGAN version. ACGAN’s D, along with differentiating between
eal or fake samples, also considers the class labels in the training
rocess [20]. That said, D of ACGAN works as a dual classifier for
ifferentiating between the real/fake data and different classes
f the input samples, whether coming from the real source or
he G. The objective function of ACGAN can be derived using
ikelihoods denoted by LS and LC for the correct source data and
eal class labels, respectively. D trains to maximise LC + LS and
learns to maximise LC − LS . Hence, the objective of D is to

mprove the two likelihoods, while the aim of G is to assist D
n improving the performance on class labels. G’s other target
s to suppress the log-likelihood of D on fake samples. The D
utputs probability distributions over sources and the class labels
P(S|X ), P(C |X )] = D(X ) where S denotes the sources (real/fake)
nd C represents the class labels. Eqs. (3) and (4) represent the Ls
nd Lc respectively.

S = E[logP(S = real|Xreal)] +

E[logP(S = fake|Xfake)]
(3)

C = E[logP(C = c|Xreal)] +

E[logP(C = c|Xfake)]
(4)

2.5. EVAGAN

EVAGAN is a specialised version of ACGAN with binary class
consideration for low data regimes. The G of ACGAN considers
generating multiple class samples Xfake = G(c, z) where c is
the class label. Hence the number of the samples can include
C = {c1, c2, c3, . . . , cn}, which may not be required in low data
regimes as we need to generate only the anomaly samples which
are low in number. The generator does not need to improve the
classification performance of D on normal/majority class samples.
This considerably reduces the training time of G as the diversity
of the input samples from a single class is less intricate. In this
way, we can improve the performance of the G and harden the
D simultaneously with fewer cm samples. EVAGAN also hardens
itself on the evasion samples generated by its G, which takes noise
z and the single class labels c = 1. The minority class labels are
embedded into the input layer of the G. Since the G only needs to
generate minority class samples, it should only consider the loss
of D on estimating the minority class and the sources. The goal
of G is to maximise the D’s loss on the fake source and assist in
reducing the D’s loss on minority class samples. Let yxi denotes
the actual label of sample xi in dataset X , P(S = fake|Xmfake )
represent the prediction of the probability distribution of samples
being fake and P(C = cm|Xmfake ) is the predicted output for
probability distribution from D for minority class labels cm, then
the loss function of G for N samples will be given by Eq. (5).

G_Loss = −
1
N

N∑
i=1

[yfakexi (log P(S = fake|Xmfake ))+

ycmxi (1 − log P(C = cm|Xmfake ))]

(5)

In Eq. (5), yfakexi and ycmxi represent the actual labels for fake
and minority classes, respectively. The primary goal of G is to
minimise the G_Loss, so it inclines toward reducing the correct es-
timation of D on fake samples by suppressing the term log P(S =

fake|Xmfake ). For the second objective, it will try to increase the
value of log P(C = c |X ) so that the second term in the
m mfake
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equation can also be suppressed in value. The loss function of D
is given by Eq. (6).

D_Loss = −
1
N

N∑
i=1

[ycMxi (log P(S = cM |XMreal ))+

yrealxi (log P(S = real|Xmreal ))+

(1 − yrealxi )(1 − log P(S = real|Xmreal ))+

y
cmreal
xi (log P(C = cm|Xmreal ))+

(1 − y
cmreal
xi )(1 − log P(C = cm|Xmreal ))]

(6)

In Eq. (6), the loss of D is calculated per the three different bi-
nary cross-entropy losses for majority class, sources, and minority
class estimations.

2.6. Semantics/functionality preservation

Semantics or functionality preservation means that the syn-
thetic samples can still execute the original malicious function
intended by the attacker. Various researchers have employed
GANs to synthesise the network traffic data to address the issue
of data imbalance and adversarial evasion attacks [4,21,22]. How-
ever, GANs are not good at generating categorical features [9].
Researchers have used one-hot representation [6], or IP2Vec tech-
niques [23,24] to transform IP addresses into integer values to
input to GANs for data generation. Since GANs follow the proba-
bility distribution of the input data so there is a high chance that
the synthetic samples may lie outside the semantic limits. The
perturbations could be easily perceived as anomalies by the ML
detectors. To preserve the functionality, the perturbation should
be small enough not to be perceived by the detectors as malicious
and distant enough to be considered normal samples. At the
same time, the malicious activity must not be compromised.
For this reason, several researchers have proposed functionality
preservation by modifying only the non-functionality preserving
features using GANs [6,8,9]. However, various research works
claim to preserve the malicious functionality of the generated
samples using DRL.

2.7. DRL-based evasion generation

A reinforcement learning model comprises an agent and an
environment that engage for a defined number of iterations/steps.
For a turn t the agent chooses an action at ϵ A using some policy
π (a|st ) and an observable state st . The environment returns a
reward rt ϵ R against an action and a new state st+1. The reward
t and observed state of the environment st+1 are fed back to the
gent for defining a new action based on policy π (a|st+1). The

agent tries to learn through the trade-off between exploration
and exploitation. The maximum reward collection is the main
goal for exploration, which can be possible if the agent employs
a certain policy to boost the expected value given by the Q-value
function in Eq. (7).

Vπ (st ) = Eat [Q
π (st , at )|st ] (7)

Here Q is given by Eq. (8).
π (st , at ) = Est+1:∞,at+1:∞ [Rt |st , at ] (8)

and R is denoted by Eq. (9)

Rt = Σi≥0γ
irt+i (9)

In Eq. (9), γ ∈ [0, 1] is a discounting factor for rewards from
future actions. For catering to the large intractable storage of
tabular representation of the Q-function, deep neural networks
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Fig. 1. Markov Decision Process for Botnet evasion generation using
Reinforcement Learning.

come to the rescue to act as an approximator in the deep Q-
Network (DQN) to represent the state–action value function [25].
In RELEVAGAN, we use double DQN as the core technique for
DRL-based attack generation.

Fig. 1 shows the Markov Decision Process (MDP) [26] where
n agent is interacting with a botnet detector environment by
roviding a new sample that can act as a potential evasion. The
-function and the policy help in taking a particular action. The
otnet sample is a manipulated feature vector defined within
ertain boundaries to ensure semantics preservation. The reward
s the classification output of the botnet detector. After trying the
otnet detector, the reward and the new state are fed back to the
gent.

.8. DRL-based functionality preservation

To preserve the functionality, researchers generate the mi-
ority class samples within semantic limits [10–12,27–29] by
ttacking the trained classifiers using a DRL agent. The evaded
amples were collected for adversarial training to make the model
dept at adversarial awareness. Similarly, in [27], authors used
RL to attack PDF (Portable Document Format) malware de-
ectors to generate evasive malware samples while preserving
he attacks’ functionality. The rationale for using the DRL is to
estrict it to explore the evasion attacks within a specific range.
his paper uses the DRL and the EVAGAN model to generate
he evasion attack samples using a DRL agent continuously. The
rocess becomes part of the EVAGAN training. The marriage of
AN and DRL culminates in RELEVAGAN, which uses the power
f EVAGAN as a robust evasion-aware detection model and DRL
s the semantics check on the samples generated by the G of

EVAGAN. The details of the model will be further discussed in
Section 3.

3. RELEVAGAN

In this section, we discuss the motivation behind the design
of RELEVAGAN, especially the structural explanation of its DRL
attacker. As illustrated by Fig. 2, the DRL attacker has been in-
troduced in RELEVAGAN. The rest of the architecture is similar
to EVAGAN. Using the DRL attacker helps improve the EVAGAN
performance, the details of which will be discussed in Section 3.

3.1. Motivation

GAN-based samples generation follows the probability distri-
bution of the input data samples as G trains itself based on the
297
Fig. 2. Comparison of RELEVAGAN model with ACGAN and EVAGAN.

feedback from D. G tries to explore the new sample spaces that
are unknown by D so that it can fool D; however, this process
can lead to the creation of samples that may not follow the
real malicious semantics. To address this issue, DRL samples can
help G learn the boundaries of the real samples. For this reason,
a DRL agent can be leveraged to explore samples in a defined
observation space. D can be trained on these generated samples,
giving the feedback to G in the GAN training. Eventually, G can
start learning from the updated feedback from D and generates
the samples within a defined range set by the DRL agent. This pro-
cess can help converge G training earlier while at the same time
achieving high accuracy in a lesser number of epochs. Although
semantic awareness comes with additional training costs for the
DRL part, motivated by this rationale, the RELEVAGAN is a step
toward a more intelligent functionality-preserving GAN design.

3.2. Architecture

Fig. 3 shows the architecture of RELEVAGAN. The structure
of RELEVAGAN has mainly two components. One is EVAGAN,
summarised in Section 2.5, and the other is a DRL-based model.
For more details on EVAGAN, readers are encouraged to refer to
the paper [19]. A typical DRL model consisting of an agent and
an environment has been coupled with EVAGAN architecture in
RELEVAGAN design. Like other DRL-based attackers for evasion
generation using a black box attack [10–12,27,28], our proposed
DRL agent attacks the D of EVAGAN, which acts as a black box
classifier. D’s output for minority class estimation is the agent’s
reward for adjusting its weights and generating a new action at+n
based on some policy π . The new action is fed to the environment
where the state generator creates a new state taking another seed
sample from the real data set. As the result of a single iteration,
the new state and the collected reward are fed back to the agent.
As a result of the positive reward, the evasion samples are fed
to the D of EVAGAN to train it adversarially. In this way, the D
becomes proactively aware of any possible future evasions and
ready to give better feedback to the G to train to confine its
boundaries for evasion generation. The process leads to the early
convergence of G training.

3.3. Environment

The environment in RELEVAGAN consists of mainly two parts:

3.3.1. State generator
The state generator is responsible for three different jobs:

• It takes a botnet seed sample as the current state St from the
real botnet dataset and transforms it into a feature vector
accepted by the D of EVAGAN based on some action index

n coming from the agent.
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Fig. 3. RELEVAGAN Architecture.
• It feeds back the new state St+n to the agent.
• If the sample is evaded by the D, the state generator is also

responsible for storing and/or feeding it to the D to train in
parallel with EVAGAN training adversarially.

3.3.2. Botnet detector
The target model is the D of EVAGAN. In Fig. 3, the EVAGAN

model has been illustrated in grey-coloured border lines, and
the difference has been highlighted in black lines for a bet-
ter understanding of where the RELEVAGAN is different from
EVAGAN.

3.4. Action space

The following feature set gives the action space through which
the agent chooses the most appropriate index n to gain the
maximum reward by evading the target botnet model. These
features have been chosen based on the work in paper [10] for
the three datasets used in this work. The details of the datasets
are mentioned in Section 4.

• FlowDuration
• FlowBytes/s
• FlowPackets/s
• FwdPackets/s
• BwdPackets/s
• TotalLengthofFwdPacket
• TotalLengthofBwdPacket
• BwdPackets/s
• SubflowFwdBytes
• FwdHeaderLength
• BwdHeaderLength
• Down/UpRatio
• AveragePacketSize

To keep the functionality reservation, we limit the change
in the feature value to ∆, which is the minimum value of the
particular feature within the data set as given by Eq. (10).

∆n = min X(m) (10)

∀m∈Fn

298
In Eq. (10), ∆Fn is the minimum value for all the rows m of a
particular feature F , and n is the action index coming from the
agent as a particular feature number from the action table.

3.5. Agent

The agent is a deep neural network with the size of the obser-
vation space as input and the number of actions as the output. The
observation space in RELEVAGAN is a complete botnet sample as
a feature vector. The agent is responsible for choosing an action
index n among the features in the action table as mentioned in
Section 3.4. Based on this index, a training step is executed, which
feeds back the reward and the new state to the agent.

3.6. Reward

The reward in a typical botnet evasion generation model using
a DRL black-box attack is the output of the botnet detector [10,
12], which can be a real number in the range of [0, 1]. In our
case, the expected value for the botnet sample is ‘0’; for a normal
traffic sample, the output should ideally be ‘1’. Hence for a botnet
sample to be considered a successful evasion by a DRL attacker,
we set the threshold for the reward to be greater than 0.5.
In other terms, if the sample generated by the DRL attacker is
evaded with more than 50% confidence, the reward will be ‘1’
and ‘0’ otherwise.

3.7. Training

RELEVAGAN training is similar to EVAGAN except for adding
a few extra steps for the DRL agent after every training batch.
In Algorithm 1, steps 3 and 4 discriminate the training between
EVAGAN and RELEVAGAN for a defined number of batches. The
sequence of the steps is crucial for understanding the rationale
behind RELEVAGAN. Note that we train G after the evasion train-
ing of D. Since D’s weights are adjusted as per the evasions
generated by the DRL attacker in Step 4, it will feed the G_Loss
back toG more cognitively as compared to the case of EVAGAN
training. The DRL attack is executed in every batch of training.



R.H. Randhawa, N. Aslam, M. Alauthman et al. Future Generation Computer Systems 150 (2024) 294–302

G
a
g
T
b
u

4

d
I
R
b
C
f
T
a
m

4

O
K
U
i
o
l
k
t
n
t
u
u

b
i
a
t
d
m

5

o
e
s
t
e
G
m
r
p
m
l
c

G

Algorithm 1: RELEVAGAN Training
for i= 1, 2, 3, ..., number of batches do

Step 1: Train D on real data
Step 2: Train D on generated data
Step 3: Execute DRL Afor generating evasion on batch
size

Step 4: Train D on A generated evasions
Step 5: Train G

Table 2
Distribution of normal and botnet samples in cybersecurity botnet datasets.
Dataset Normal Real_bots Total samples

ISCX-2014 246929 Virut: 1748 248677
CIC-IDS2017 70374 Ares: 1956 72330
CIC-IDS2018 390961 Ares/Zeus: 2560 393521

4. Implementation details

4.1. Experimental setup

The experiments for the RELEVAGAN were performed on a
PU workstation, AMD Ryzen threadripper 1950x, equipped with
16-core processor and an 8 GB memory GeForce GTC 1070 Ti
raphics card. The OS used was Ubuntu 20.04, running Keras,
ensorFlow, Sklearn and Numpy libraries within the Jupyter note-
ook. The source code of RELEVAGAN is also available on GitHub
nder MIT license.1

.2. Data preparation

For experimentation, we have used three different botnet
atasets, ISCX-2014, CIC-2017 and CIC-2018, from the Canadian
nstitute of Cybersecurity (CIC) for the quantitative analysis of
ELEVAGAN. The choice of the dataset is based on the work done
y authors in [4]. An open-source tool, CICFlowMeter-v4 from
IC, was used for feature extraction. The choice of feature set
or training and data preprocessing is the same as EVAGAN’s.
able 2 shows the distribution of benign and botnet samples in
ll three datasets. The details of a particular botnet selection are
entioned in EVAGAN paper [19].

.3. DRL attacker

For the implementation of the DRL attacker, we used the
penAI Gym and gym-malware tool kits [11,30]. Keras-rl and
eras-rl2 libraries were used for the selection of the DQN agent.
nlike a typical DRL algorithm, we execute a new training session
n every batch of the RELEVAGAN training where the weights
f the neural network are not reset to ensure that the agent is
earning in each batch iteration of RELEVAGAN. The reason for
eeping the weights is that we cannot estimate the number of
raining iterations that would e traverse the whole batch of bot-
et samples for generating manipulations. Hence, we reinitialise
he session after each batch keeping the agent’s neural network
nchanged. A single training session in each batch iteration lasts
ntil the following two cases appear:

• The evasion is successful.
• The number of tries saturates.

1 https://www.github.com/rhr407/RELEVAGAN
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Table 3
Hyperparameters of DRL Attacker.
Parameter Value

Agent Type DQN
Action Space 13
Policy BoltzmannQPolicy
Double DQN True
Target Model Update 1e−3
Number of turns 13
Number of rounds 256

Table 4
Hyperparameters of DRL Neural Network.
Parameter Value

Network Type FFNN
Number of Layers 4
Activations ReLU, linear
Neurons in the input layer size of observation space
Neurons in layer 1 64
Neurons in layer 2 128
Neurons in the output layer number of actions
Layer Regularisation BatchNorm

In either of the cases mentioned above, a new botnet seed sample
is selected until the total number of samples in a batch is tra-
versed. Each training step takes an action index that selects the
corresponding feature from the botnet seed sample for manipu-
lation. The modified sample is tried on the trained D using the
Keras model.predict function, which gives the estimation of the
otnet sample being from a minority class. This output estimation
s used to set the agent’s reward as mentioned in Section 3.6. As
result of each step, the reward and the new state (alternatively,
he manipulated botnet sample) are returned to the agent. The
etails of the hyperparameters of the DRL attacker part have been
entioned in Table 3 and Table 4, respectively.

. Results & discussion

The performance analysis of RELEVAGAN is identical to that
f EVAGAN for botnet datasets. The metrics used were gen-
rated samples validity (GEN_VALIDITY), fake/generated botnet
amples evasion (FAKE_BOT_EVA), real normal/majority class es-
imation (REAL_NORMAL_EST), and real botnet/minority class
vasion (REAL_BOT_EVA). Fig. 4 shows the results for the AC-
AN, EVAGAN, and RELEVAGAN estimations for comparison. The
athematical expressions for the evaluation metrics have been

epresented using Eqs. (11)–(14). These estimations were com-
uted using the Keras model.predict function. The details of these
etrics can be found in EVAGAN paper [19]. Fig. 5 illustrates the

osses of D for real and fake minority classes and majority/normal
lasses and of G for ACGAN, EVAGAN, and RELEVAGAN.

EN_VALIDITY =

∑
[Ĝ(z, cm)[0]]

N
(11)

FAKE_BOT_EVA =

∑
[Ĝ(z, cm)[1]]

N
(12)

REAL_NORMAL_EST =

∑
[X̂normaltest [2]]

N
(13)

REAL_BOT_EVA =

∑
[X̂botnettest [1]]

N
(14)

https://www.github.com/rhr407/RELEVAGAN
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Fig. 4. The estimations on test data and data generated by the relative GANs
generated data.

Fig. 5. The training losses for ACGAN, EVAGAN and RELEVAGAN.

.1. Detection performance

The discussion on the performance comparison of ACGAN with
VAGAN has been mentioned in the EVAGAN paper; however,
n Fig. 4, the estimations for ACGAN have also been included
or a clear comparison. The performance of ACGAN in discerning
he minority class deteriorates in low data regimes, especially in
ybersecurity datasets. On the other hand, D of EVAGAN discerns
he difference between the minority of majority classes. However,
egarding RELEVAGAN, the estimations tend toward the desired
alues quicker than EVAGAN after a few initial unstable values.
he RELEVAGAN was pre-trained for the values coming from the
eal and generated sources, especially from epochs 0–44. This is
he contribution of the DRL attacker part. The most interesting
ase occurs for the CIC-2017 dataset, which took only a few
300
epochs to train itself and prepare for the minority and majority
classes. This could be due to non-ambiguous discrimination seen
by RELEVAGAN between the malicious and normal class samples
in CIC-2017 that the other two datasets did not have. A further
investigation could be required; however, the role of DRL with
EVAGAN demonstrates the value addition, especially for the CIC-
2017 dataset. This pattern encourages us to further explore the
potential of RELEVAGAN on other datasets, which we leave to
future work.

We are using the EVAGAN as the base model, which does not
require adversarial training of dedicated ML classifiers because
the D of EVAGAN itself works as an adversarial aware botnet de-
tector. So RELEVAGAN also does not need the adversarial training;
however, the DRL attacker’s evasions must be fed to the D. This
tep imitates the back-propagation step in GAN training.
GEN_VALIDITY also illustrates the early convergence of G,

hich achieves the Nash equilibrium quickly in RELEVAGAN
hile the G of EVAGAN is still learning. Since our main objective

s to improve the detection performance of our model for botnets
n low data regimes, we do not need to let the G train for a larger
umber of epochs. For example, if we achieve 100% detection
erformance, as in the case of the CIC-2017 dataset, we can stop
he GAN training after a couple of steps.

.2. Stability

Fig. 5 demonstrates the D and G losses for ACGAN, EVAGAN
nd RELEVAGAN. It turns out that the losses tend to converge
or all the GANs. The values for RELEVAGAN tend to achieve the
owest point sooner than both EVAGAN and ACGAN. The values
or D_Loss_Fake for RELEVAGAN are higher than other GANs. This
an be because the D of RELEVAGAN is struggling to discriminate
etween the evasion generated by the DRL and the G. The evasion
amples coming from DRL are labelled as ‘REAL’, and when sim-
lar samples arrive from the G, the wrong estimation increases
he loss. However, the overall detection performance improves
ecause the G now tends to generate the samples within the
emantic constraints. There can be a possibility of mode collapse
ere; however, the detection performance is better than EVAGAN,
o we can disregard that factor.

.3. DRL attacker reward/evasions

Fig. 6 shows the number of evasions the DRL attacker gener-
ted or the reward collected during the exploration or training
hase of RELEVAGAN of the first ten epochs. No evasions hap-
en after epoch number eight. Note that the highest number
f evasions was in the CIC-2017 dataset, which gives the best
esults for estimations in Fig. 4. A similar pattern is seen in the
ases of ISCX-2014 and CIC-2018 datasets, but no evasions for
he CIC-2018 dataset were generated after epoch three. If we
orrelate the number of generated evasions by the DRL attacker
ith the performance of the D, it turns out that there is an inverse
elationship between the number of evasions and convergence of
he training of RELEVAGAN. Trying the model on other datasets
an give more insights into this relationship.

.4. Time complexity

Fig. 7 shows ACGAN, EVAGAN and RELEVAGAN training time
omplexity for the three datasets. RELEVAGAN training time for
50 epochs is always greater than that of EVAGAN because DRL
as its own cost. However, we get the benefit of early conver-
ence to achieve the maximum detection performance as man-
fested in Fig. 4 for the CIC-2017 dataset. Hence we achieve
he performance of 100% in the time way less than taken by
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Fig. 6. RELEVAGAN reward/evasions during DRL attack on EVAGAN discriminator
for the three datasets.

Fig. 7. Time complexity.

EVAGAN, but it turns out to depend on the dataset. As for the
case of the ISCX-2014 dataset, the time complexity is even more
than ACGAN’s training time. Hence, we also consider working
toward more datasets for greater insight into the time complexity
pattern. Two variables discriminate the CIC-2017 from ISCX-2014
and CIC-2018. One is the botnet type, and the other is the ratio
of the botnet samples to the normal traffic samples. It makes the
problem non-trivial to be considered as potential future research.

6. Comparison of RELEVAGAN with peer techniques

The RELEVAGAN model is an enhanced version of EVAGAN,
dedicated to low data regimes for learning adversarial evasion
examples generated during GAN training with the additional
support of DRL. So the most suitable existing model for the
comparison can be EVAGAN; however, this section mentions
peer techniques similar to RELEVAGAN that indirectly address
the adversarial evasion problem using DRL while preserving the
functionality of the attack operation. Authors in [11,27,28] have
provided a DRL-based model to attack a malware detector by
making changes based on a DRL agent output as a result of a
reward coming out of the classifier. A similar concept has been
applied while designing the DRL attacker in RELEVAGAN. A closer
work to RELEVAGAN is [12] that uses the botnet datasets to
generate evasion samples using DRL; however, RELEVAGAN is
different in a way that it automatically makes the target learn
the attack samples being generated from the DRL agent so the
adjacent EVAGAN model learns simultaneously during training.
This synergy makes the generator training faster. The work done

by [10] is also significantly relevant to RELEVAGAN; however,
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they are using adversarial training at the end of the attack gener-
ation while RELEVAGAN learns that attacks immediately after its
discovery which makes it a proactive approach as compared to
the peer work. A tabular comparison of the parent model of the
proposed RELEVAGAN with the state-of-the-art GANs has been
provided in the EVAGAN paper [19].

7. Conclusion

The semantic-aware adversarial botnet detector is essential
for countering modern evasion attacks. In this regard, the de-
tection models must proactively know the possible adversarial
perturbations. Researchers employ DRL to generate adversarial
evasion examples to preserve the original functionality of the
botnet/malware samples. The motivation is to generate sam-
ples that could be used later for adversarial training of the ML
classifiers. We propose RELEVAGAN, which proves to be an ad-
versarial semantic-aware evasion detection model that does not
need exclusive adversarial training. The discriminator of RELEVA-
GAN is based on EVAGAN, which did not consider the semantic
awareness introduced in RELEVAGAN. We have used the three
datasets used by the EVAGAN paper for better comparison and co-
herency. The results demonstrate the supremacy of RELEVAGAN
to EVAGAN in early convergence to the detection model training.
Although at the cost of more training time, the RELEVAGANmodel
converges at least 20 iterations before the EVAGAN does in all the
datasets. In CIC-2017, the convergence is acquired in a couple of
iterations. The training time is somehow greater than EVAGAN
for all the datasets; however, the cost is worth it as it provides
robustness against DRL-generated evasion attacks.

We highly recommend testing RELEVAGAN’s performance ag-
ainst other cybersecurity datasets for future research. Few-shot
learning could also be tried on the datasets used in this paper to
compare performance.
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