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Integrated design of fault-tolerant control for
nonlinear systems based on fault estimation and T-S

fuzzy modelling
Jianglin Lan and Ron J. Patton,Life Fellow, IEEE

Abstract—This paper proposes an integrated design of fault-
tolerant control (FTC) for nonlinear systems using Takagi-Sugeno
(T-S) fuzzy models in the presence of modelling uncertainty
along with actuator/sensor faults and external disturbance. An
augmented state unknown input observer is proposed to es-
timate the faults and system states simultaneously, and using
the estimates an FTC controller is developed to ensure robust
stability of the closed-loop system. The main challenge arises
from the bi-directional robustness interactions since the fault
estimation (FE) and FTC functions have an uncertain effect
on each other. The proposed strategy uses a single-step linear
matrix inequality formulation to integrate together the designs
of FE and FTC functions to satisfy the required robustness.
The integrated strategy is demonstrated to be effective through
a tutorial example of an inverted pendulum system (based on
robust T-S fuzzy designs).

Index Terms—Integrated fault-tolerant control, augmented
state unknown input observer, nonlinear systems, T-S fuzzy
systems,H∞ optimization

I. I NTRODUCTION

During two decades there has been a growing interest in
robust fault-tolerant control (FTC) system designs which are
capable of tolerating faults whilst accounting for effect of
modelling uncertainties [1], [2]. Recent attention has turned to
methods of handling nonlinearity in FTC considering specific
system structure [3], [4]. The nonlinear nature of dynamic sys-
tems means that methods such as Takagi-Sugeno (T-S) fuzzy
[5] inference reasoning can be combined with the appropriate
FTC theory as an extension to the linear robustness strategies.
Using this approach a continuous nonlinear system can be
modelled as a multiple-model representation corresponding
to a number of regions of state space behaviour. Each of
the multiple T-S models is represented by an IF-THEN rule
corresponding to a linear system. Based on this the existing
robust FTC theory can be applied to each of the local linear
models, so that the T-S system can then have both local and
global robust FTC properties (including good fault-tolerance,
etc.) [3], [4], [6]–[9].

Existing FTC approaches based on T-S approaches may
be eitherpassive or active. The passive approach treats the
faults as system uncertainties using optimization methods (as
an extension of robust control), but theactive methods actively
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estimate fault magnitudes and use the estimates to compensate
the fault effects with closed-loop control systems. Although
passive FTC might achieve acceptable control performance
[3], [4], [10], [11], it cannot obtain local fault magnitude
information and this approach is not suitable for on-line system
repair in the presence of faults.

The traditionalactive FTC approach makes use of fault
detection and isolation (FDI) that generates information about
the occurrence and severity of the fault which could be used
to facilitate a closed-loop system reconfiguration based on
various forms of redundancy. In addition to obtaining fault
information one important goal is to achieve suitable fault
tolerance and acceptable control performance and approaches
based on FDI have been proposed to achieve this [7], [9].
However, these approaches are complex in design and im-
plementation requiring fault residual design in some optimal
sense including robust design of detection thresholds. This
strategy also requires the development and design of a suitable
system reconfiguration mechanism and this is a subject of
considerable complexity involving requirements for discrete-
event, adaptive and time-delay system concepts. The resulting
detection and reconfigurable delays and uncertainty impose
additional complexities leading to potential lack of reliability
in the overall FTC system design.

The alternativeactive FTC approach seeks to overcome
several of these difficulties by using fault estimation (FE) as an
alternative to FDI (see Fig. 1). This active approach comprises
an FE observer and an FTC control modules without the
need for active reconfiguration. The FE module is expected to
generate all the required fault information (magnitude, location
and time occurrence) using a robust observer-based approach.
The robust fault estimates are used in the control system
to directly compensate the fault effects subject to acceptable
control performance and robustness.

Several FE strategies based on T-S fuzzy systems have
been proposed, e.g. using: adaptive observers (AO) [12]–[16],
augmented state observers (ASO) [17], unknown input ob-
servers (UIO) [6], and sliding mode augmented state observers
(SMASO) [8], [18]. These approaches are based on robustness
concepts and are thus good candidates to include in active FE
based FTC system analysis and design.

The direct use of the observer-based FE brings significant
convenience and application potential to the subject of active
FTC system design. Beyond just T-S based FE estimation
several FTC studies combine these methods within observer-
based T-S fuzzy FTC schemes are proposed. A UIO based FE
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Fig. 1. Framework of FE based FTC systems

and FTC design is proposed in [6] for systems with actuator
faults. AO based reconfigurable FTC designs are developed in
[13] which also include model reference tracking control. An
AO based dynamic output feedback FTC design, focusing on
actuator faults and external disturbance is presented in [12].
[8] and [18] deal with the FE/FTC for stochastic systems with
actuator/sensor faults and disturbance within the framework
of SMASO. [17] proposes an ASO FE/FTC design for time-
delay systems in the presence of actuator faults and external
disturbance. [14] proposes an ASO fault tolerant tracking
control problem application to an offshore wind turbine system
with sensor faults and external disturbance. [15] developsan
AO based FTC strategy for systems with actuator fault using
a delta operator approach. Finally, [16] proposes an AO based
FTC scheme for descriptor systems subject to actuator faults
and disturbance.

However, few studies take into account the system mod-
elling uncertainty, and the FE and FTC modules are designed
separately. Actually, the uncertainty quite often exists in
practical applications and might degrade the control system
performance if not taken into accounta priori in the design
procedure. It has become apparent that the observer based
FE and FTC modules must be designed together to achieve
optimal control system performance and robustness [1], [19]–
[21]. However, no systematic strategies were proposed in these
studies. Moreover, due to the presence of uncertainty and
disturbance, there are bi-directional robustness interactions
between FE and FTC controller modules as defined by [22].
This bi-directional robustness coupling implies immediately
that the generally known Separation Principle cannot apply.
In this respect, the separated FE/FTC design results in a
suboptimal solution of the overall FTC system design causing
degraded overall system performance.

The above studies motivate the proposal in this paper to inte-
grate the observer based FE and FTC designs for application
to a class of nonlinear systems subjected to actuator/sensor
faults. The modelling strategy considers external disturbance
and uncertainty by using the T-S fuzzy approach. Compared
with the literature, contributes of this paper are:
• An augmented state unknown input observer (ASUIO) is

proposed. Although there are many FE observers as listed
above, the proposed AO estimates the faults with finite error.
The UIO is designed subject to a well-known rank condition
concerned with the number of measurements and the number

of disturbances. The ASO and the SMASO both requirea
priori knowledge of the fault bounds. In this study, an ASUIO
is proposed to estimate the T-S fuzzy system states and faults
using a continuous linear observer with no requirements for
fault bounds or rank conditions. The fault is assumed to be
in polynomial form with boundedv-th (highest) derivatives
corresponding to known positive constantsv. This approach
is non-conservative in the robustness sense and it can estimate
time-varying or even unbounded faults [23].
• A systematic strategy for integrated FE/FTC design is

developed. The integrated observer and state estimate con-
troller designs (based on T-S fuzzy systems) aim to obtain
the observer and controller gains simultaneously. This is the
widely known strategy for robust state estimate control using
H∞ optimization which is typically achieved using a single-
step linear matrix inequality (LMI) formulation [24]. However,
this optimization approach does not take into account the
system modelling uncertainty [24] and furthermore, FTC is
out of the scope of this study considered.

In this work the bi-directional concept described by [22]
is extended here to take into account properly the robustness
interactions between the FE and FTC modules for nonlinear
systems using T-S fuzzy modelling approach. An FTC strategy
is proposed for the nonlinear systems considered in the pres-
ence of model uncertainty, faults, and external disturbance.
The ASUUIO based FE and FTC designs are re-formulated
into an integrated design problem solved using a single-step
LMI procedure.

The paper is organized as follows. Section II formulates the
problem. Sections III - V present the designs of the ASUIO
based FE and FTC controller. A tutorial example of a nonlinear
inverted pendulum and cart system is provided in Section VI.
This is followed by the Conclusion in Section VII.

In the paper the symbol† represents the Moore-Penrose
pseudo inverse,He(W ) = W + W⊤, and ⋆ represents the
symmetric part of a matrix.

II. PROBLEM FORMULATION

Consider a class of nonlinear systems described by

ẋ = fx(x, u, fa, d)

y = fy(x, fs) (1)

wherex ∈ Rn, u ∈ Rm, and y ∈ Rp stand for the state,
control input, and output, respectively.fa ∈ Rq andfs ∈ Rq1

denote the actuator and sensor faults, respectively.d ∈ Rl

denotes the external disturbance. It is assumed that the non-
linear functionsfx(·) andfy(·) are continuous and bounded in
some sectorx ∈ [a, b] with some constantsa andb. It should
be noted that without loss of generality the system properties
studied in this paper, including controllability, observability,
and stability, are all local properties.

Considering modelling uncertainty, the system (1) can be
modelled by the following T-S fuzzy system using sector
nonlinearity [5]

ẋ =

h
∑

i=1

ρi(θ(t)) [(Ai +∆Ai)x+Biu+ Fifa +Did]

y = Cx + Fsfs (2)
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whereAi ∈ Rn×n, Bi ∈ Rn×m, Fi ∈ Rn×q, Di ∈ Rn×l,
Ci ∈ Rp×n, and Fs ∈ Rp×q1 are known constant matri-
ces. ∆Ai ∈ Rn×n are perturbed matrices with structures
∆Ai = M0iF0iN0i, whereF0i are known Lebesgue mea-
surable matrices satisfyingF⊤

0i (t)F0i(t) ≤ µiI for some
known scalarsµi and matricesM0i and N0i of appropriate
dimensions.h is the number of sub-models, andρi(θ(t)) are
the membership functions depending on the premise variable
vector θ(t) = [θ1, . . . , θs], where s is the number of the
premise variables. The premise variables are some measurable
variables of the system states.

Define ηij (i = 1, . . . , h and j = 1, . . . , s) as the fuzzy
sets characterized by the membership functions. Further define
ηij(θj) as the grades of the membership ofθj in the fuzzy sets
ηij . Then the membership functions can be defined by

ρi(θ) =
σi(θ)

∑h
i=1 σi(θ)

, σi(θ) =

s
∏

j=1

ηij(θj)

which satisfies0 ≤ ρi(θ) ≤ 1 and
∑h

i=1 ρi(θ) = 1.

Throughout this study, the following assumptions are made.

Assumption 2.1: All the sub-models of (2) are observable
and controllable in the fuzzy sets which they are defined, i.e.,
the pairs(Ai, C) are observable and the pairs(Ai, Bi) are
controllable. Moreover, the fuzzy system (2) is observableand
controllable in the sectorx ∈ [a, b].

Assumption 2.2: The actuator faultfa is in the range
space of the control input, i.e.,rank(Bi, Fi) = rank(Bi),
i = 1, 2, . . . , h.

Assumption 2.3: The k-th derivative offa and thek1-th
derivative offs are bounded for some given scalarsk andk1.

Remark 2.1: Assumption 2.1 implies that thei-th (i =
1, 2, . . . , h) sub-models are locally observable/controllable,
and the whole fuzzy system (2) is globally observable and
controllable within the entire sectorx ∈ [a, b]. The local ob-
servability/controllability together with Assumption 2.2 allow
the existence of observers/controllers for each of the fuzzy
models to achieve FE/FTC functions. The global observabil-
ity/controllability guarantee the existence of an observer and
a controller to achieve FE/FTC performance for the whole
fuzzy system. In this paper, the observer and controller forthe
whole fuzzy system are fuzzy observer/controller, obtained by
combining the observers/controllers of each sub-models with
membership functions.

The local observability and controllability can be verified
using the following criteria: thei-th sub-model of (2) is
(a) observable ifrank[C;CAi;CA2

i ; . . . ;CAn−1
i ] = n, and

(b) controllable if rank[Bi, AiBi, A
2
iBi, . . . , A

n−1
i Bi] = n.

Sufficient criteria of robust observability and controllability
for fuzzy systems are given in [25] and [26]. This paper
considers only the observability and controllability of each
triple (Ai, Bi, C) of the fuzzy system (2), which are special
cases of [25], [26]. Therefore, the sufficient criteria in [25],
[26] can be directly modified to verify the global observability
and controllability of the fuzzy system (2).

III. A UGMENTED STATE UNKNOWN INPUT OBSERVER

BASED FE

Defineωs = f
(s)
a andυt = f

(t)
s wheres = 0, 1, . . . , k − 1

and t = 0, 1, . . . , k1 − 1, then the system (2) is augmented
into

˙̄x =

h
∑

i=1

ρi(Āix̄+ B̄iu+∆Āix̄+ D̄id̄)

y = C̄x̄ (3)

where

x̄ =





x
ω
υ



, ω =









ω0

ω1

:
ωk−1









, υ =









υ0
υ1
:

υk1−1









d̄ =





d
ωk−1

υk1−1



 , Āi =













Ai Fi 0 0 0
0 0 I(k−1)q 0 0
0 0 0 0 0
0 0 0 0 I(k1−1)q1

0 0 0 0 0













∆Āi =















∆Ai 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

: :
. . . : :

0 0 · · · 0 0















, B̄i =

[

Bi

0(kq+k1q1)×m

]

D̄i =













Di 0 0
0 0(k−1)q×q 0
0 Iq 0
0 0 0(k1−1)q1×q1

0 0 Iq1













C̄ =
[

C 0p×kq Fs 0p×(k1−1)q1

]

.
Remark 3.1: Since the pairs(Ai, C) are observable for all

i = 1, . . . , h, it follows that

rank

[

sIn −Ai

C

]

= n, ∀s ∈ C

which leads to

rank

[

sIn+kq+k1q1 − Āi

C̄

]

= rank

















sIn −Ai [−Fi 0] 0
0 Js(Iq) 0
0 [0 sIq] 0
0 0 Js(Iq1 )
0 0 [0 sIq1 ]
C 0 [Fs 0]

















= n+ kq + k1q1

with Js(Iκ) =













sIκ −Iκ

sIκ
. . .
. . . −Iκ

sIκ













.

Thus, all the sub-models of the augmented system (3) are
observable so that the overall augmented system is observable.
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The new statēx is estimated by an ASUIO in the form of

ż =

h
∑

i=1

ρi(Miz +Giu+ Liy)

x̂ = z +Hy (4)

where z, x̂ ∈ Rn+kq+k1q1 are the observer state and the
estimate ofx̄, respectively. The design matricesMi, Gi, Li,
andH are of compatible dimensions.

Define the estimation error ase = x̄− x̂, then

ė =
h
∑

i=1

ρi
[

(ΞĀi − L1iC̄)e+Θ1z +Θ2u+Θ3y

+Ξ∆Āix̄+ ΞD̄id̄
]

(5)

whereΞ = In+kq+k1q1 −HC̄, Li = L1i + L2i, Θ1 = ΞĀi −
L1iC̄−Mi, Θ2 = ΞB̄i−Gi andΘ3 = (ΞĀi−L1iC̄)H−L2i.

Lemma 3.1: Without uncertainty and disturbance, the error
dynamics (5) are asymptotically stable if it holds that for all
i = 1, . . . , h,

Mi are Hurwitz (6)

ΞĀi − L1iC̄ −Mi = 0 (7)

ΞB̄i −Gi = 0 (8)

(ΞĀi − L1iC̄)H − L2i = 0. (9)

Proof: Consider that no uncertainty and disturbance are
acting on the system and the conditions (6) - (9) hold, the
error dynamics (5) then become

ė =

h
∑

i=1

ρiMie

which are stable andlim
t→∞

e(t) = 0 for all i = 1, . . . , h.

Upon the satisfaction of conditions (7) - (9) and considering
the uncertainty and disturbance, (5) can be rearranged as

ė =

h
∑

i=1

ρi
[

(ΞĀi − L1iC̄)e+ Ξ∆Āix̄+ ΞD̄id̄
]

. (10)

Remark 3.2: It should be noted thatGi = ΞBi, and the
remaining matricesL2i andMi can be derived immediately
from (7) - (9) once the matricesL1i andH are designed to
ensure the robust stability of (10) in the sequel. Thus, the
design of the observer (4) is reduced to a comparatively simple
design ofL1i and H , which facilitates the FE/FTC design
procedure.

IV. FTC CONTROLLER

Design an FTC controller for the system (2) as

u =

h
∑

i=1

ρiKix̂ (11)

whereKi =
[

Kxi Kfi 0m×((k−1)q+k1q1)

]

with Kxi ∈ Rm×n

andKfi ∈ Rm×q the state-feedback control gains and actuator
fault compensation gains, respectively. According to Assump-
tion 2.2,Kfi are chosen asKfi = −B†

iFi.

Substituting (11) into (2) gives the closed-loop system

ẋ =

h
∑

i=1

h
∑

j=1

ρiρj [(Ai +BiKxj)x + Eije

+∆Aix+Did] (12)

whereEij = [−BiKxj Fi 0].

V. FE AND FTC SYNTHESIS

A. Separated Designs of FE/FTC

As summarized in the Introduction, the state-of-art of the
way to synthesize the FE and FTC modules is the separated
design approach, by designing first the FE observer and then
the FTC controller. This separated FE/FTC design idea is
achieved based on the satisfaction of the Separation Principle
and it neglects the bi-directional robustness interactions be-
tween the observer and the controller which results from the
disturbance and uncertainty. In this respect, the error dynamics
are rearranged into

ė =

h
∑

i=1

ρi
[

(ΞĀi − L1iC̄)e+ ΞD̄id̄
]

ze = Ce1e (13)

whereze ∈ Rz1 is the measured output andCe1 is a constant
matrix of appropriate dimension. Suppose that the observer
has already been made stable, i.e.,e = 0, then the feedback
control system becomes

ẋ =

h
∑

i=1

h
∑

j=1

ρiρj [(Ai +BiKxj)x+∆Aix+Did]

yc = y − Fsf̂s

zx = Cx1
x (14)

whereyc is the compensated system output,f̂s is the sensor
fault estimate,zx ∈ Rz2 is the measured output, and the
constant matrixCx1

is of appropriate dimension.
Theorems 5.1 and 5.2 are sufficient pre-requisites to the de-

termination of the observer and controller gains, respectively.
Theorem 5.1: Given a positive scalarγ1, the error dynamics

(13) are stable withH∞ performance‖Gzed̄‖ < γ1, if there
exists a symmetric positive definite matrixY1, and matrices
W1, W2i, such that for alli = 1, 2, . . . , h,





Ψ1 Y1D̄i −W1C̄D̄i C⊤
e1

⋆ −γ2
1I 0

⋆ ⋆ −I



 < 0

whereΨ1 = He(Y1Āi−W1C̄Āi−W2iC̄). Then the gains are
given byH = Y −1

1 W1 andL1i = Y −1
1 W2i.

Proof: The proof of Theorem 5.1 directly follows from
the Bounded Real Lemma [27] withW1 = Y1H andW2i =
Y1L1i, i = 1, 2, . . . , h.

Theorem 5.2: Given positive scalarsγ2 andǫ0i, the control
system (14) is stable withH∞ performance‖Gzxd‖ < γ2, if
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there exists a symmetric positive definite matrixX1 and ma-
tricesW3j , j = 1, 2, · · · , h, such that for alli, j = 1, 2, . . . , h,












Ψ2 Di X1C
⊤
x1

M0i X1N
⊤
0i

⋆ −γ2
2I 0 0 0

⋆ ⋆ −I 0 0
⋆ ⋆ ⋆ −ǫ0iI 0
⋆ ⋆ ⋆ ⋆ −(ǫ0iµi)

−1I













< 0 (15)

whereΨ2 = He(AiX1 +BiW3j). Then the control gains are
given byKxj = W3jX

−1
1 .

Proof: Denote χ0i = x⊤∆A⊤
i X0x + x⊤X0∆Aix, it

follows that for some positive scalarsǫ0i,

χ0i = −
[√

ǫ0i
−1

M⊤
0iX0x−√

ǫ0iF0iN0ix
]⊤

×
[√

ǫ0i
−1

M⊤
0iX0x−√

ǫ0iF0iN0ix
]

+ǫ−1
0i x

⊤X0M0iM
⊤
0iX0x+ ǫ0ix

⊤N⊤
0iF

⊤
0iF0iN0ix

≤ ǫ−1
0i x

⊤X0M0iM
⊤
0iX0x+ ǫ0iµix

⊤N⊤
0iN0ix.

Consider a Lyapunov functionVx0 = x⊤X0x, then

V̇x0 =

h
∑

i=1

h
∑

j=1

ρiρj
[

x⊤He(X0(Ai +BiKxj))x + χ0i

+He(x⊤X0Did)
]

≤
h
∑

i=1

h
∑

j=1

ρiρj
{

x⊤ [He(X0(Ai +BiKxj))

+ǫ−1
0i X0M0iM

⊤
0iX0 + ǫ0iµiN

⊤
0iN0i

]

x

+He(x⊤X0Did)
}

.

By the Bounded Real Lemma [27], the system (14) is stable
with H∞ performance‖Gzxd‖ < γ2, if it holds that





Θ X0Di C⊤
x1

⋆ −γ2
2I 0

⋆ ⋆ −I



 < 0 (16)

where Θ = He [X0(Ai +BiKxj)] + ǫ−1
0i X0M0iM

⊤
0iX0 +

ǫ0iµiN
⊤
0iN0i.

Note that the inequality (16) is nonlinear. DefineX1 =
X−1

0 . Multiplying both sides of (16) bydiag(X1, I, I) and its
transpose and using the Schur complement, then (16) becomes












Ψ2 Di X1C
⊤
x1

M0i X1N
⊤
0i

⋆ −γ2
2I 0 0 0

⋆ ⋆ −I 0 0
⋆ ⋆ ⋆ −ǫ0iI 0
⋆ ⋆ ⋆ ⋆ −(ǫ0iµi)

−1I













< 0 (17)

whereΨ2 = He(AiX1 + BiKxjX1). Further defineW3j =
KxjX1, then (17) directly leads to (15).

Recalling here the error dynamics (10) and the closed-loop
system (12)

ė =
h
∑

i=1

ρi[(ΞĀi − L1iC̄)e+ Ξ∆Āix̄+ ΞD̄id̄]

ẋ =

h
∑

i=1

h
∑

j=1

ρiρj [(Ai +BiKxj)x+ Eije

+∆Aix+Did] . (18)

DefineH = [H1;H2;H3;H4;H5], it follows that

Ξ∆Āix̄ =













(In −H1C)∆Aix
−H2C∆Aix
−H3C∆Aix
−H4C∆Aix
−H5C∆Aix













ΞD̄id̄ =













(In −H1C)Did
−H2CDid

−H3CDid+ ωk−1

−H4CDid
−H5CDid+ vk1−1













. (19)

From (18) and (19) we can see that: (i) The state esti-
mation and FE are affected by the disturbanced and the
uncertainty∆Aix, whilst the FE is also affected by the fault
modelling errors, i.e.,ωk−1 and vk1−1; (ii) The feedback
control system is affected by the uncertainty, disturbance,
and estimation errors. This important phenomenon of bi-
directional robustness interactions between the FE and FTC
modules has been defined in [22] as a robustness issue for
uncertain linear systems. This paper extends the notion of
this robustness interaction into the framework of a T-S fuzzy
system representation of a nonlinear system.

Usually when controllers and state observers are designed
for nonlinear systems it is assumed that in a state space region
close to the system operation a locally linear dynamical system
can be used for design. Hence, for such systems it is well
known that the Separation Principle cannot apply in general. In
this work we consider the application of a T-S fuzzy approach
to a nonlinear system problem and hence a form of specially
integrated design must be used to achieve the robustness
in the estimator and controller designs. From the statement
above for the FE and FTC problems bi-directional robustness
interactions exist between the FE and FTC controller modules
and hence a true integration of these module designs must be
achieved to obtain satisfactory robust FTC performance.

So, although the separated design method in Section V-A
can avoid the design complexity resulting from the coupling
between the observer and controller, it only permits a subopti-
mal solution of the overall FTC system design to be achieved,
leading to degraded FE/FTC performance. To overcome this,
Section V-B describes an integrated FE/FTC design strategy
(see Fig. 2) for the system (2) by taking into account the bi-
directional interaction.

B. Integrated Design of FE/FTC

Combining (10) and (12) gives the following composite
closed-loop system including fault estimation with fault com-
pensation control, based on the T-S formulation given in (2),

ẋ =

h
∑

i=1

h
∑

j=1

ρiρj [(Ai + BiKxj)x+ Eije+∆Aix+ D̂id̄]

ė =
h
∑

i=1

ρi
[

(ΞĀi − L1iC̄)e+ Ξ∆Āix̄+ ΞD̄id̄
]

yc = y − Fsf̂s

zr = Cxx+ Cee (20)
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Fig. 2. Frameworks of the separated and integrated FE/FTC design systems

whereyc is the compensated system output,f̂s is the sensor
fault estimate,zr ∈ Rr is the measured output, and the matri-
cesCx andCe are of appropriate dimensions.̂Di = [Di 0].

Note that the integrated FE/FTC design for the T-S fuzzy
system (2) is now reformulated into an observer-based robust
control problem of the composite closed-loop system (20),
which will be solved in the sequel usingH∞ optimization
with a single-step LMI formulation.

The strategy for solving the integrated FE/FTC robust
design is in general a bilinear matrix inequality (BMI) problem
as outlined in Lemma 5.1 below. However, Lemma 5.1 leads
to a statement that Lemma 5.2 will transform the integrated
design into a single-step LMI problem, which facilitates the
solution strategy. Lemma 5.1 is inspired by [28] as follows.

Lemma 5.1: Given positive scalarsγ, ǫ1i, and ǫ2i, the
closed-loop system (20) is stable withH∞ performance
‖Gzrd̄‖ < γ, if there exist two symmetric positive definite
matricesX andY , and matricesKxi, L1i, Xii, Xij = Xji,
i 6= j, i, j = 1, 2, . . . , h, such that

[

He(XΛii) XEii

⋆ He(Y Γii)

]

< Xii (21)
[

He(XΛij) X(Eij + Eji)
⋆ He(Y Γij)

]

< Xij +X⊤
ij (22)











X11 · · · X1h Π1

:
. . . : :

X⊤
1h · · · Xhh Πh

Π⊤
1 · · · Π⊤

h −I











< 0 (23)

whereΛii = Ai+BiKxi, Eii = [−BiKxi Fi 0], Γii = ΞĀi−
L1iC̄, Λij = Ai+Aj+BiKxj+BjKxi, Γij = 2(ΞĀi−L1iC̄),
Eij = [−BiKxj Fi 0], Eji = [−BjKxi Fj 0], Πi =
diag(Π1i,Π2i), Π1i = [λ1iXM0i λ2iN

⊤
0i 0 λ4iXD̂i C⊤

x ],

Π2i = [0 0 λ3iY ΞM̄0i λ4iY ΞD̄i C⊤
e ], λ1i =

√

ǫ−1
2i ,

λ2i =
√
µǫ, λ3i =

√

ǫ−1
1i , andλ4i = γ−1.

Proof: Consider a Lyapunov functionVe = e⊤Y e. Define
M̄0i = [M⊤

0i 0]⊤ andχ1i = x̄⊤∆Ā⊤
i Ξ

⊤Y e + e⊤Y Ξ∆Āix̄,

then for some positive scalarsǫ1i,

χ1i = −
[√

ǫ1i
−1

M̄⊤
0iΞ

⊤Y e−√
ǫ1iF0iN0ix

]⊤

×
[√

ǫ1i
−1

M̄⊤
0iΞ

⊤Y e−√
ǫ1iF0iN0ix

]

+ǫ−1
1i e

⊤Y ΞM̄0iM̄
⊤
0iΞ

⊤Y e+ ǫ1ix
⊤N⊤

0iF
⊤
0iF0iN0ix

≤ ǫ−1
1i e

⊤Y ΞM̄0iM̄
⊤
0iΞ

⊤Y e+ ǫ1iµix
⊤N⊤

0iN0ix.

Thus the time derivative ofVe is

V̇e =

h
∑

i=1

ρi
[

e⊤He(Y (ΞĀi − L1iC̄))e+He(e⊤Y ΞD̄id̄)

+χ1i]

≤
h
∑

i=1

ρi
{

e⊤[He(Y (ΞĀi − L1iC̄))

+ǫ−1
1i Y ΞM̄0iM̄

⊤
0iΞ

⊤Y ]e+He(e⊤Y ΞD̄id̄)

+ǫ1iµix
⊤N⊤

0iN0ix
}

. (24)

Consider a Lyapunov functionVx = x⊤Xx for the control
system. Defineχ2i = x⊤∆A⊤

i Xx + x⊤X∆Aix, it follows
that for some positive scalarsǫ2i,

χ2i = −
[√

ǫ2i
−1

M⊤
0iXx−√

ǫ2iF0iN0ix
]⊤

×
[√

ǫ2i
−1

M⊤
0iXx−√

ǫ2iF0iN0ix
]

+ǫ−1
2i x

⊤XM0iM
⊤
0iXx+ ǫ2ix

⊤N⊤
0iF

⊤
0iF0iN0ix

≤ ǫ−1
2i x

⊤XM0iM
⊤
0iXx+ ǫ2iµix

⊤N⊤
0iN0ix.

Similarly, the time derivative ofVx is

V̇x =

h
∑

i=1

h
∑

j=1

ρiρj

[

x⊤He(X(Ai +BiKxj))x

+He(x⊤XF̄ije) + χ2i +He(x⊤XD̂id̄)
]

≤
h
∑

i=1

h
∑

j=1

ρiρj

{

x⊤[He(X(Ai +BiKxj))

+ǫ−1
2i XM0iM

⊤
0iX + ǫ2iµiN

⊤
0iN0i]x

+He(x⊤XEije) + He(x⊤XD̂id̄)
}

. (25)
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Defineξ = [x⊤ e⊤]⊤ andV = Ve + Vx. By (24) and (25),

V̇ =

h
∑

i=1

h
∑

j=1

ρiρjξ
⊤

[

J1ij XEij

⋆ J2ii

]

ξ

−
h
∑

i=1

h
∑

j=1

ρiρj
1

γ2
ξ⊤PD̃iD̃

⊤
i Pξ

+

h
∑

i=1

ρi(d̄
⊤D̃⊤

i Pξ + ξ⊤PD̃id̄)− z⊤r zr (26)

whereD̃i = [D̂i D̄i], P = diag(X,Y ), µǫ = (ǫ1i + ǫ2i)µi,
J1ij = He [X(Ai +BiKxj)]+ǫ−1

2i XM0iM
⊤
0iX+µǫN

⊤
0iN0i+

1
γ2XD̂iD̂

⊤
i X + C⊤

x Cx, andJ2ij = He
[

Y (ΞĀi − L1iC̄)
]

+
1
γ2Y ΞD̄iD̄

⊤
i Ξ

⊤Y + ǫ−1
1i Y ΞM̄0iM̄

⊤
0iΞ

⊤Y + C⊤
e Ce.

TheH∞ performance‖Gzrd̄‖ < γ is represented by

J =

∫ ∞

0

(z⊤r zr − γ2d̄⊤d̄)dt < 0. (27)

Under zero initial conditions,

J =

∫ ∞

0

(z⊤r zr − γ2d̄⊤d̄+ V̇ )dt−
∫ ∞

0

V̇ dt

≤
∫ ∞

0

(z⊤r zr − γ2d̄⊤d̄+ V̇ )dt.

Subsequently, a sufficient condition for (27) is

J1 = z⊤r zr − γ2d̄⊤d̄+ V̇ < 0.

Define ξ̄ = [ξ⊤ d̄⊤]⊤ and use (26), then equivalently

J1 =
h
∑

i=1

h
∑

j=1

ρiρj ξ̄
⊤

[

J1ij XEij

⋆ J2ii

]

ξ̄

−
(

γd̄− 1

γ

h
∑

i=1

ρiD̃
⊤
i P ξ̄

)⊤

×
(

γd̄− 1

γ

h
∑

i=1

ρiD̃
⊤
i P ξ̄

)

=
h
∑

i=1

h
∑

j=1

ρiρj ξ̄
⊤

[

J1ij XEij

⋆ J2ii

]

ξ̄

< 0. (28)

By applying the Schur complement to (28), we have

h
∑

i=1

h
∑

j=1

ρiρj
(

Φij +ΠiΠ
⊤
i

)

< 0 (29)

whereΠi = diag(Π1i,Π2i),

Φij =

[

He [X(Ai + BiKxj)] XEij

⋆ He
[

Y (ΞĀi − L1iC̄)
]

]

,

with Π1i = [λ1iXM0i λ2iN
⊤
0i 0 λ4iXD̂i C⊤

x ] and Π2i =
[0 0 λ3iY ΞM̄0i λ4iY ΞD̄i C

⊤
e ].

Actually, if (21) - (22) hold, then it follows from (29) that

h
∑

i=1

h
∑

j=1

ρiρj
(

Xij +ΠiΠ
⊤
i

)

< 0,

which can be ensured by (23).

It should be noted that (21) - (22) are nonlinear inequalities
which cannot be solved by LMI tools directly. To tackle this
problem, Lemma 5.1 is further converted into the following
equivalent Lemma 5.2 with LMI constraints.

Lemma 5.2: There exist two symmetric positive definite
matricesX andY , and matricesKxi, L1i, Xii, Xij = Xji,
i 6= j, i, j = 1, 2, . . . , h, such that (21) - (23) hold if and
only if there exist two symmetric positive definite matricesX̄
andY , and matricesKxi, L1i, Pij , andQij with Pii andQii

symmetric,i < j, i, j = 1, 2, . . . , h, such that

He(ΛiiX̄) < Pii,

He(Y Γii) < Qii,

He(ΛijX̄) < Pij + P⊤
ij ,

He(Y Γij) < Qij +Q⊤
ij , i < j,











P11 · · · P1h Π̂11

:
. . . : :

P⊤
1h · · · Phh Π̂1h,

Π̂⊤
11 · · · Π̂⊤

1h −I











< 0,







Q11 · · · Q1h

:
. . . :

Q⊤
1h · · · Qhh






< 0

whereΠ̂1i = [λ1iM0i λ2iX̄N⊤
0i 0 λ4iDi X̄C⊤

x ].
Proof: The proof of Lemma 5.2 is achieved with minor

modification according to the proof of Lemma 2 in [24], and
thus is omitted here.

Now Theorem 5.3 based on Lemma 5.2 is given to solve
the integrated design problem for the composite closed-loop
system (20).

Theorem 5.3: Given positive scalarsγ, ǫ1i, and ǫ2i, the
system (20) is stable with theH∞ performance‖Gzrd̄‖ < γ,
if there exist two symmetric positive definite matricesX̄ and
Y , and matricesK̂i, Ĥ, L̂i, Pij , andQij with Pii andQii

symmetric,i < j, i, j = 1, 2, . . . , h, such that

He(AiX̄ +BiK̂i) < Pii,

He((Y − ĤC̄)Āi − L̂iC̄) < Qii,

He(AiX̄ +AjX̄ +BiK̂j +BjK̂i) < Pij + P⊤
ij ,

He(2((Y − ĤC̄)Āi − L̂iC̄)) < Qij +Q⊤
ij ,











P11 · · · P1h Π̂11

:
. . . : :

P⊤
1h · · · Phh Π̂1h,

Π̂⊤
11 · · · Π̂⊤

1h −I











< 0,







Q11 · · · Q1h

:
. . . :

Q⊤
1h · · · Qhh






< 0

where Π̂1i = [λ1iM0i λ2iX̄N⊤
0i 0 λ4iDi X̄C⊤

x ]. Then the
gains are given by:Kxi = K̂iX̄

−1, H = Y −1Ĥ , andL1i =
Y −1L̂i, i = 1, 2, . . . , h.

Proof: DenoteK̂i = KxiX̄, Ĥ = Y H , and L̂i = Y L1i,
i = 1, 2, . . . , h, then the proof of Theorem 5.3 follows directly
from Lemma 5.2.
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C. Computational Complexity Analysis

The design parameters of the observer (4) and the controller
(11) are obtained mainly by solving the LMIs in Theorem
5.3 using the Matlab LMI toolbox [29]. For the LMIs in
Theorem 5.3, defineR0 and S0 as the total row size and
the total number of scalar variables, respectively. According
to [29], the computational complexity (or number of flops)
N(ε) needed to get anε-accurate solution of the LMIs in
Theorem 5.3 isN(ε) = R0S

3
0 log(V/ε), whereV is a data-

dependent scaling factor. For the proposed integrated FE/FTC
approach,R0 = (h2 + 3h + 1)n + (h2 + 3h)(kq + k1q1)/2
and S0 = hnm + p(n + kq + k1q1) + (h2 + h + 2)[n(n +
1) + (n + kq + k1q1)(n + kq + k1q1 + 1)]/4. Similarly,
it can be calculated for the separated FE/FTC approach
R0 = h [4n+ (k + 2)q + (k1 + 2)q + 2l+ z1 + p] andS0 =
hnm + (1 + h)p(n + kq + k1q1) + [n(n + 1) + (n + kq +
k1q1)(n+ kq + k1q1 + 1)]/2.

Compared with the separated approach, the proposed in-
tegrated approach has higher computational complexity. The
computational complexity of the integrated design mainly
depends on (i) the system and fault dimensions, (ii) the sub-
model numbers of the fuzzy system and (iii) the fault orders.
Among the above three factors, (ii) and (iii) can be tuned.
Although increasing (ii) and (iii) can provide more accurate
approximation of the nonlinear system and fault modelling,it
leads to higher computational complexity. Therefore, a trade-
off needs to be made for choosing the numbers of fuzzy rules
and fault modelling orders.

Furthermore, since the combined observer and controller
structures of the integrated and separately designed FTC
systems are the same, it also follows that their online com-
putational loads are identical. As the design parameters ofthe
observer/controller are obtained from the LMIs off-line the
resulting on-line computational burden is expected to be low.

Remark 5.1: Two more groups of scalarsǫ1i and ǫ2i,
i = 1, 2, . . . , h, need to be chosen to solve Theorem 5.3,
due to the consideration of the presence of the uncertainty.
Note that although [24] and [28] in their T-S fuzzy system
control problems use observer-based state feedback, they do
not consider the presence of faults. In the light of this the
current work faces a bigger challenge since both the robust
fault estimation and fault tolerant compensation are included.
However, by taking into accounta priori the presence of
uncertainty and disturbance and the subsequent bi-directional
robustness interactions between the FE observer and the FTC
control system, the proposed integrated approach is applicable
to systems with faults, uncertainty, and external disturbance.

Remark 5.2: As reviewed in the Introduction, there is no
such a systematic integrated FE/FTC design strategy for T-S
fuzzy systems. The existing works mostly follow the separated
FE/FTC design idea, although using different FE observers
and control designs. Thus, without loss of generality, a brief
presentation of the separated design idea and its conservative-
ness are provided in Section V-A for the proposed ASUIO and
FTC controller. This motivates the research on the integrated
FE/FTC design in this paper. Comparisons of the performance
of these two design methods are provided in the simulation

results shown in Section VI, which then help to illustrate the
importance and advantages of the integrated design idea.

VI. SIMULATION EXAMPLE

In this section the effectiveness of the proposed integrated
approach is demonstrated by applying it to the stabilization
for an inverted pendulum on a cart. The pendulum used has a
nonlinear model [30]

ẋ1 = x2

ẋ2 =
g sin(x1)− amlx2

2 sin(2x1)/2− a cos(x1)u

4l/3− aml cos2(x1)

y = [x1 x2]
⊤

wherex1 andx2 represent the angle of the pendulum from the
vertical and the angular velocity, respectively.g is the gravity
constant,m is the pendulum mass,M is the cart mass,2l is
the pendulum length,u is the force applied to the cart, and
a = 1/(m+M). The model parameters used in this study are
m = 2.0 kg, M = 8.0 kg, and2l = 1.0 m.

The balancing problem for the pendulum with actuator
faults and disturbance is studied in [12] using separately
designed adaptive observer and dynamic output feedback
controller. The pendulum system is nonlinear but two pointsin
(x1, x2) are considered to derive the two-rule T-S fuzzy pendu-
lum model. Moreover, the pendulum system model is assumed
to have uncertainty, disturbance, and actuator/sensor faults.
According to [30], the following two-rule pendulum system
model is valid in the controllable regionx1 ∈ (−90, 90) deg,

ẋ =

2
∑

i=1

ρi(x1) [(Ai +∆Ai)x +Bi(u + fa) +Did]

y = Cx+ Fsfs (30)

whereρ1(x1) = 1− 2
π |x1|, ρ2(x1) =

2
π |x1|,

A1 =

[

0 1
g

4l/3−aml 0

]

, B1 =

[

0
− a

4l/3−aml

]

, C = I2,

A2 =

[

0 1
2g

π(4l/3−amlβ2) 0

]

, B2 =

[

0

− aβ
4l/3−amlβ2

]

,

D1 = D2 =

[

0
0.01

]

, Fs =

[

0.1
0.3

]

, andβ = cos(88◦).

The uncertainties are∆A1 = ∆A2 =

[

0 σ1

σ2 0

]

where

σ1 = 0.1 cos(t) andσ2 = 0.1 sin(t). The disturbance isd =
0.01 sin(10t) and the faults are

fa =







1, 0 ≤ t ≤ 5
sin(t), 5 < t ≤ 20
1, t > 20

, fs =







0.1, 0 ≤ t ≤ 14
0.2, 14 < t ≤ 23
0.1, t > 23

.

The two sub-models of fuzzy system (30) are verified
to be locally observable and controllable, whilst the whole
fuzzy system is also verified to be globally observable and
controllable using the methods proposed in [25] and [26].

The integrated FE/FTC design for the pendulum system is
solved with parameters:k = 3, k1 = 2, Cx = I2, Ce = I7,
αs = 0.1, βs = 0.1, µ = 1, ǫ1 = 100, ǫ2 = 15, andγ = 1.
For comparison, the separated FE/FTC design is also simulated
with the same system parameters andγ1 = 0.86 andγ2 = 0.5.

The H∞ attenuation levels together with computational
complexity (see Section V-C) of the integrated and separated
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designs are listed in Table I. Compared with the separated
FE/FTC approach, the proposed integrated approach loses a
certain degree of FTC robustness resulting from the sharingof
the common Lyapunov matrices in the observer and controller
designs. The proposed integrate design also has higher on-line
design computational complexity. However, it is shown in the
table that for these two approaches the solutions for the gains
are not time consuming (performed on a PC computer with a
3.10GHz 4 cores Intel i5-2400 CPU).

TABLE I
H∞ ATTENUATION LEVEL AND CONSUMING TIME

Integrated design Separated design
Observer Controller

γmin 0.10 0.77 0.01
R0, S0 47, 142 34, 70 22, 7

CPU time (s) 0.156 0.0468 0.0312

Solving Theorem 5.3 with the chosen parameters gives
the following observer and controller gains of the integrated
approach

Kx1
= [1062 309.2] , Kx2

= [2379.1 672.7] ,

M1 =





















−0.4482 −14.1330 −0.0878 0 0
14.3939 −0.7661 −1.0144 0 0
7.2944 69.8885 −64.1764 1 0
2.8023 27.7887 −25.4464 0 1
0.5608 6.2677 −5.6391 0 0
−0.8619 1.3328 1.9833 0 0
−2.0198 1.9634 0.9344 0 0

−0.1698 −1.5424
−0.4324 −0.5709
−125.1272 −2.8279
−49.7641 −1.0664
−11.1597 −0.1835
−1.2495 3.1209
−2.0623 1.5702





















,

M2 =





















−0.9877 −9.5573 −0.0019 0 0
9.5774 −1.5836 −0.0221 0 0
2.9603 −1.6618 −1.4005 1 0
1.0841 −0.5824 −0.5553 0 1
0.1947 −0.0669 −0.1231 0 0
−1.5368 1.9598 0.0433 0 0
−1.6108 1.8959 0.0204 0 0

1.3561 −1.5424
1.2341 −0.5709
4.4030 −2.8279
1.5952 −1.0664
0.2092 −0.1835
−5.8085 3.1209
−4.2464 1.5702





















,

L1 =





















−107 16
−81 98

−15150 5936
−6029 2361
−1340 525
588 −182
307 −87





















, G1 =





















−0.0878
−1.0144
−64.1764
−25.4464
−5.6391
1.9833
0.9344





















,

L2 =





















−99.1268 3.7239
111.3488 −0.9468
601.9768 −229.2507
216.8746 −83.4618
44.6287 −16.3783
93.7791 9.0680
83.5292 3.6323





















, G2 =





















−0.0019
−0.0221
−1.4005
−0.5553
−0.1231
0.0433
0.0204





















,

H =





















15.8632 −0.1463
7.7810 −0.6906
349.1615 −106.9607
137.8961 −42.4106
30.0311 −9.3986
−31.1252 3.3054
−20.3739 1.5573





















.

A. Comparison of Linear FTC and T-S Fuzzy Integrated FTC

This section demonstrates the superiority of the proposed
T-S fuzzy integrated FTC design to the linear FTC design
(with the pendulum model linearized around the stable point,
i.e., ρ2(x1) = 0). The ranges of the balancing initial angle
considered for each of the methods are examined here with
z(0) = [0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1] and x2(0) = 0, along
with different initial angles.
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Fig. 3. Angle response using linear and T-S fuzzy integratedFTC

TABLE II
MAXIMUM INITIAL ANGLE |x1(0)| OF THE PENDULUM

Cases T-S fuzzy design linear design
Actuator fault case 45 deg 19.5 deg
Sensor fault case 44.1 deg 18.8 deg

Actuator/sensor faults case 44.1 deg 18.8 deg

In the presence of both actuator and sensor faults, simulation
results in Fig. 3 indicate that the proposed T-S fuzzy integrated
FTC can balance the pendulum for initial angles|x1(0)| ≤
44.1 deg (x2(0) = 0). In contrast, the linear control fails to
balance the pendulum for initial angles|x1(0)| >= 18.8 deg.
Similar simulations are performed for the cases when the
pendulum has either an actuator fault or a sensor fault. The
maximum initial angles of the pendulum for all the three cases
are summarized in Table II, from which it is concluded that
the proposed T-S fuzzy integrated FTC design balances the
pendulum for much larger initial angles than the linear FTC.
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B. Comparison of Integrated and Separated FE/FTC Designs

In order to demonstrate well the effectiveness of the pro-
posed integrated FE/FTC design and its superior FE/FTC
performance compared with the separated design, two sets of
simulations are carried out for the pendulum with different
initial angles and different uncertainties, respectively.

1) Performance with Different Initial Angles: Simulations
are performed with uncertaintiesσ1 = 0.1 cos(t) and σ2 =
0.1 sin(t) in three cases:Case 1: The pendulum has only
actuator fault;Case 2: The pendulum has only sensor fault;
Case 3: The pendulum has both actuator and sensor faults.
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From Figs. 4 - 10, it is observed that in the whole range of
the balancing initial angles listed in Table II, the proposed in-
tegrated FE/FTC design achieves better FE/FTC performance
than the separated design in all the three cases simulated.
Except forCase 2 when the pendulum has only actuator fault,
the separated design cannot balance the pendulum.

2) Performance with Different Uncertainties: To test the
robustness of the proposed integrated FE/FTC design, com-
parative simulations of the integrated design and sep-
arated design are performed initial conditionsz(0) =
[0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1] andx2(0) = 0 and with differ-
ent uncertainties. The initial angle is set asx1(0) = 15 deg.
Simulations are performed for the following three cases:Case
1: The pendulum has one actuator fault (with no sensor faults);
Case 2: The pendulum has only a single sensor fault (with no
actuator faults);Case 3: The pendulum has one actuator fault
and one sensor fault.
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In the presence of different uncertainties, it is observed from
Figs. 11 - 17 that the proposed integrated design performs well
with better FE/FTC robustness to the uncertainties than the
separated design for all the three fault cases considered.

Summarizing the results, in the presence of uncertainty,
disturbance and faults, the proposed integrated design achieves
better FE/FTC performance with higher robustness to the
uncertainty than the separated design. Moreover, the separated
design is unable to balance the pendulum when sensor faults
exist.
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Fig. 17. Angle response with different uncertainties:Case 3

VII. C ONCLUSION

Although the idea of integration of control and fault diagno-
sis was suggested three decades ago by [19], no existing works
have attempted the true integrated design of FTC systems
(rather than just control/diagnosis) with FDI/FE for nonlinear
system. In this paper, a new integrated FE/FTC design strategy
is proposed for nonlinear systems subject to actuator and
sensor faults along with uncertainty and disturbance usingT-S
fuzzy modelling.

An ASUIO is proposed to estimate the system states and
faults simultaneously, and then the estimates obtained areused
to construct a reconfigurable fuzzy FTC controller. Compared
to the FDI based FTC system design which requires an optimal
residual threshold setting and a robust stable reconfigurable
mechanism, the direct use of the observer-based FE within
the FTC system design framework is proposed to enable
the integrated design to be an observer-based robust control
problem with a single-step LMI formulation. The simulation
example corresponds to a physical system illustrating the
effectiveness of the proposed integrated FTC design and
its practical potential. By considering in advance the bi-
directional robustness interactions between the FE and FTC,
the proposed integrated design can achieve better overall FTC
system performance than the separated design.

It should be noted that the robustness interaction leads
to increased design complexity, which makes the integrated
FE/FTC design necessarily a challenging problem (BMI prob-
lem). Thus, a simpler way to solve the BMI problem or a
strategy to reduce the design complexity, e.g., by decoupling
the FE observer from the FTC controller can help to achieve
the integrated FTC system design. In addition, pole placement
can be combined together withH∞ optimization to ensure
acceptable time response of the overall system.
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