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Abstract

Transposable elements (TEs) are a major source of genome variation across the branches of
life. Although TEs may play an adaptive role in their host’s genome, they are more often
deleterious, and purifying selection is an important factor controlling their genomic loads. In
contrast, life history, mating system, GC content, and RNAi pathways, have been suggested to
account for the disparity of TE loads in different species. Previous studies of fungal, plant, and
animal genomes have reported conflicting results regarding the direction in which these
genomic features drive TE evolution. Many of these studies have had limited power, however,
because they studied taxonomically narrow systems, comparing only a limited number of
phylogenetically independent contrasts, and did not address long-term effects on TE evolution.
Here we test the long-term determinants of TE evolution by comparing 42 nematode genomes
spanning over 500 million years of diversification. This analysis includes numerous transitions
between life history states, and RNAIi pathways, and evaluates if these forces are sufficiently
persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we
demonstrate statistical power to detect selection, we find no evidence that variation in these
factors influence genomic TE loads across extended periods of time. In contrast, the effects of

genetic drift appear to persist and control TE variation among species. We suggest that
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variation in the tested factors are largely inconsequential to the large differences in TE content
observed between genomes, and only by these large-scale comparisons can we distinguish

long-term and persistent effects from transient or random changes.

Keywords: Nematoda, transposable elements evolution, RNA interference, mating system,

parasitism

Introduction

Transposable elements (TEs) are mobile genetic entities found in the genomes of organisms
across diverse branches of life, and which are a major source of genetic variation (Kidwell &
Lisch 1997; Bennett et al. 2004; Charlesworth et al. 1994). TEs comprise approximately two
thirds of the human genome (de Koning et al. 2011), and in other plants and animals may
account for up to 85% of all DNA (Schnable et al. 2009; Marracci et al. 1996). In stark contrast,
other eukaryotic genomes contain only 1-3% TE-derived sequence within their typically much
smaller genomes (Ibarra-Laclette et al. 2013; Burke et al. 2015). The mechanisms that create
this variability are not fully understood.

TE insertions are a significant source of deleterious mutation causing gene disruption
(Kidwell & Lisch 1997; Biémont et al. 1997), double-strand breaks (Gasior et al. 2006; Hedges &
Deininger 2007), ectopic recombination (Charlesworth et al. 1997), gene expression change
(Lerman et al. 2003), and other types of mutagenesis (Kidwell & Lisch 2001). In humans,
deleterious TE activity contributes to approximately 0.3% of genetic disease (Cordaux & Batzer
2009; Callinan & Batzer 2006). Some TE insertions, however, have only weak deleterious
effects, increasing their likelihood of survival and expansion (Kim et al. 1998; Zou et al. 1996;
Leem et al. 2008; Gao et al. 2008; Pritham 2009; Hellen & Brookfield 2013). Given sufficient

time, a small proportion of these may be co-opted for protein-coding or regulatory functions by
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the host genome, and thus become very important components of organismal evolution
(Lerman et al. 2003; Kojima & Jurka 2011; Keren et al. 2010). Despite being a key player in
organismal evolution, the evolutionary forces determining the TE composition in genomes are
far from clear. We have selected the phylum Nematoda, for its phylogenetic diversity of
available genomes, as a system in which to investigate TE variation in a
phylogenetically-controlled design. While other studies have examined the correspondence
between life history or other traits with TE evolution (Hess et al. 2014; Cutter et al. 2008; Fierst
et al. 2015; Campos et al. 2012, 2014), these often muster relatively few phylogenetically
independent contrasts, and a relatively recent evolutionary time scale. Examining evolutionary
events across the entire phylum Nematoda gives a broad perspective where the balance of
evolutionary forces will have had time to work.

Substantial efforts to characterise the forces and processes shaping genome evolution have
given rise to explanations for the divergence in TE loads among species, including the effects of
mating system and recombination, life history, genome GC content, and transposition
suppression systems such as RNAI. These factors influence TEs both directly, by affecting their
possibility for spread or removal, and indirectly, by modifying the effective population size and
probability of fixation (eg. Charlesworth & Charlesworth 1983). The effects of mating system and
recombination have been much discussed, with conflicting predictions for either an increase
(Wright & Schoen 2000; Montgomery et al. 1987) or decrease (Bestor 1999; Wright & Finnegan
2001; Nordborg 2000; Boutin et al. 2012; Arunkumar et al. 2015) in TE loads in selfing species.
Duret, et al. (2000) found that non-recombining genomic regions are less TE rich than
recombining regions in Caenorhabditis elegans, when considering DNA TEs. Also in
Caenorhabditis, Cutter, et al. (2008) predicted lower TE loads in selfing compared to

outcrossing species. In contrast, TE spread was positively associated with recombination in
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Drosophila (Campos et al. 2012, 2014), although this was not recovered in a subsequent study
(Bast et al. 2015). A mating system effect on genome size (and thus likely TE load), was
reported in plants (Govindaraju & Cullis 1991; Albach & Greilhuber 2004; Wright et al. 2008),
but subsequent studies accounting for phylogenetic associations in the data did not recover
these effects (Whitney et al. 2010; Agren et al. 2015; Fierst et al. 2015). Analysis of the
evolution of TE loads in the Nematoda, where several independent shifts in mating system
have occurred (Figure 1), may aid in better understanding the evolutionary forces and genomic
processes operating.

Adoption of a parasitic lifestyle can reduce the effective population size, and thus the
effectiveness of recombination and natural selection. Parasites may be subdivided into
infrapopulations within hosts, and this population subdivision reduces the effective population
size compared to free-living species (Criscione & Blouin 2005). Increased TE counts were found
in ectoparasitic Amanita fungi compared to free living Amanita species (Hess et al. 2014), where
the authors suggested the effective population size effects of parasitism as a cause for the
difference. As Nematoda contain several independent transitions to parasitism, this hypothesis
can also be further tested (Figure 1).

Genome nucleotide bias (GC content) has been shown to influence a wide variety of cellular
processes, and especially the rates and patterns of molecular evolution. These effects include
tRNA abundance and codon usage (Knight et al. 2001; Ikemura 1981, 1985; Muto & Osawa
1987), mutational patterns (Lobry 1996; Sueoka 1999), gene expression (Gouy & Gautier 1982;
Holm 1986; Sharp et al. 1986; Sharp & Devine 1989; Stenico et al. 1994; Andersson & Kurland
1990), protein and RNA structure and composition (Zama 1989; Gambari et al. 1989; D’Onofrio
et al. 1991; Huynen et al. 1992; Zama 1996; Collins & Jukes 1993; Gupta et al. 2000), and

translational efficiency (Berg & Kurland 1997). The tight integration of TEs with cellular
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processes will mean that they will also be affected by differential nucleotide biases, as has been
examined by Hellen and Brookfield (Hellen & Brookfield 2013), who demonstrated the
accumulation and persistence of human Alu elements was favoured in GC-rich regions. Again,
diversity in GC content across nematode genomes offers power to detect the effects of GC on
TE load evolution.

The host genome is engaged in defending itself against TE insertions, with RNA
interference (RNAI) pathways a key cellular processes silencing TEs in eukaryotes (Tabara et
al. 1999; Aravin et al. 2001; Sijen & Plasterk 2003; Chung et al. 2008; Czech et al. 2008;
Ghildiyal et al. 2008; Slotkin et al. 2009; Kawamura et al. 2008). RNAi pathways variation is thus
suggested to be key to TE evolution (Obbard et al. 2009; Rebollo et al. 2012; Matzke et al.
2000; Bossdorf et al. 2008; Richards 2008). In nematodes a variety of mechanisms of TE
silencing have been characterised at the molecular level (Aravin et al. 2007; Das et al. 2008;
Bagijn et al. 2012; Sarkies et al. 2015), with different pathways operating in different clades (Fig
1). This variation permits examination of the role of alternate TE silencing pathways in
explaining genome-wide TE loads.

The importance of non-deterministic processes in shaping TE evolution has been long
recognized by population geneticists (Le Rouzic et al. 2007; Charlesworth & Charlesworth 1983;
Whitney et al. 2010; Lynch & Conery 2003) with the efficiency of selection and TE silencing
likely to be greatly influenced by the effective population size. If differences in TEs between
lineages are not determined by processes such as mating system or life history then a null
model of genome evolution, one which is shaped by non-deterministic processes such as
mutation and drift (Lynch 2007). Here we conduct correlation and ANOVA tests of deterministic
forces previously proposed to affect TE evolution, with phylogenetically independent contrasts

of TE counts in species from across the phylogenetic diversity of Nematoda (Blaxter et al. 1998)
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as the dependant variable. We find no evidence for a deterministic effect of life history, GC
content or RNAI pathway variation on TE load variation. Furthermore, our data strongly suggest

that stochastic changes are the major genome-wide determinant of TE diversity.
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Fig 1. TE loads in Nematoda by class.

SSU-rRNA phylogenetic tree of Nematoda with TE load information by class. The columns represent (left to right)
DNA, LTR, LINE and SINE element loads (numerical values are given in S2 Table), the phylogenetic clade sensu
(Blaxter et al. 1998), presence or absence of RNAIi pathway proteins (RRF1, RRF3 and PIWI), parasitism (animal
parasite, plant parasite, or free living), and mating system (parthenogenic, gonochoristic, hermaphroditic or
apomictic). Black scales at the bottom of each bar-chart represent 2500 TEs. Sources for life history information are

in S1 Table.

Results

TE loads in Nematoda

To test the effect of mating system, parasitic lifestyle, GC content, RNAi and transposition
mechanism on TE evolution, TEs were identified and classified in 43 genome assemblies
representing the five major nematode lineages and the tardigrade Hypsibius dujardini (Figure 1,
S1 Table, S1 Methods, sections 1 to 7). Three quantifiers of TE loads, namely TE counts,
coverage of the genome assembly by TEs, and the proportion of genome assembly covered by
TEs, were strongly correlated with one another (0.72 <r < 0.9, p-value < 0.005). None of these
measures correlated with genome assembly quality (represented by N50 values), although the
TE counts and the total length of TEs did correlate with assembly length, asserting that TE
prediction is robust to assembly quality differences (S1 Methods, section 12, S1 Figure). The
correlation with assembly length was lost for almost all TE superfamilies under consideration of
the phylogenetic relationships among the nematode species (S1 Methods, section 13, S1
Results, section 4). Since the different measures of TE content were shown to be strong proxies
of one another, we focused our analyses on TE counts. We expect TE counts to represent TE

related evolutionary rates (i.e. rate of change in TE content) more linearly than their assembly
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coverage or its proportion of the genome assembly, because of the differences in sequence
length among TEs from different TE groups.

High TE loads have a patchy distribution among species in Nematoda, with hotspots
observed in the Dorylaimia (Clade | of Blaxter et al. (1998)) and Enoplia (Clade II), in Rhabditina
(Clade V), and in the Tylenchomorpha genera Meloidogyne and Globodera (part of Clade 1V)
(Figure 1). DNA elements were usually the most abundant, followed by LTR elements, while
LINE and SINE elements were quite scarce (Figure 1). When classes were broken down into
families (Figure 2, S2 Table, S2 Figure), a large proportion of the variation among species, for
‘cut and paste’ DNA elements, was contributed by variation in loads of TcMar element families,
which are scarce in Dorylaimida (Clade |) and abundant in Rhabditina (Clade V). hAT families
followed a similar pattern, but with less extreme differences among species. Onchocerca
volvulus (Spirurina; Clade Ill) had high loads of Helitron elements (6372 copies), and hardly any
other TEs, a very different pattern from its relatives in Clade Ill. Among LTR superfamilies,
Gypsy elements predominated, with Copia and Pao elements also prevalent, though a large
proportion of the elements were unclassified. The predominant LINE elements were Penelope
and RTE. SINE elements, although more abundant in a few Rhabditina (Clade V) species than
in others, were generally scarce (< 500 in most species, S2 Table). The composition of the

consensus TE library is described in S1 Results.
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Fig 2. TE loads in Nematoda by superfamily.

SSU-rRNA phylogenetic tree of Nematoda with TE loads information by superfamily. The columns represent (left to
right) the presence or absence of RRF1, RRF3 and PIWI RNAi pathway proteins, parasitism (A-animal parasite,
P-plant parasite, or F-free living), and mating system (P-parthenogen, G-gonochoric, H-hermaphroditic or

A-apomictic), the phylogenetic clade sensu (Blaxter et al. 1998) and the proportions of DNA, LTR, LINE and SINE
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Phylogenetic signal in TE load

According to our null hypothesis, TE loads evolve neutrally and change (in rates and patterns) is
expected to be congruent with the topology and branch lengths of the species tree. This can be

assessed via phylogenetic transformations of observed TE loads (Pagel 1994). To account for
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phylogenetic uncertainty while computing such transformations, we generated a Bayesian
posterior distribution of SSU-rRNA phylogenetic species trees. Tree transformation values of the
TE counts were computed with each of the trees in the posterior distribution, and for each of the
TE classes (DNA, LTR, LINE and SINE; Figure 3A). Transformation value distributions were
also computed for each superfamily (S3 Figure), within each class of TEs, and the median
value of each superfamily was recorded across the superfamilies in a given class (Figure 3B).
We did not include SINE element superfamily medians, since SINE elements were too sparse to
compute a meaningful distribution (Figure 3B).

The A transformation (Pagel 1994) provides an estimate of the degree to which traits are
predicted by the phylogenetic relationships, with A = 1 indicating a strong fit. At the class level,
DNA, LTR and LINE element load variations are strongly correlated with the species
phylogenetic relationships (A > 0.5; Figure 3A). For many superfamilies the median A was
greater than 0.5, indicating that high fit to the phylogeny is a general characteristic of TEs, and
not only a feature of a few large superfamilies (Figure 3B). For SINE elements, in part due to
their low abundance and phylogenetic uncertainty, this correlation was not recovered. The
strong fit with the phylogenetic tree demonstrates that intraspecific variation in TE loads is not an
important source of noise in our results. A second phylogenetic transformation «, provides an
estimate of the correspondence between the branch lengths and the rate of change of a trait
(Pagel 1994). k > 1 indicates a higher rate of change in longer branches, k = 1 indicates that the
rate of change of the trait conforms with the general evolutionary rate, and « < 1 indicates that
the trait is more conserved than expected from neutrality. The k value distribution for nematode
DNA TE loads showed that DNA TE evolution depends less on the organismal evolutionary rate
than other TE classes, at the class level (k < 1; Figure 3A). The pattern persisted for most

superfamilies when considering k median values at the DNA element superfamily level (Figure
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3B). Lastly, the 6 transformation estimates the tree depth at which non-neutral evolutionary
events occurred, where 6 < 1 suggests ancient events and 6 > 1 indicates that the trait
diversified recently. For DNA elements, 6 was greater than 1, indicating that recent events
explain their current TE load patterns, while for LTR elements, & was less than 1, suggesting
that ancient events explain their load patterns. 6 was not determined for LINE and SINE
elements due to phylogenetic uncertainty. Only for LTR elements did these patterns persist
when the median & values of individual superfamilies were considered (Figure 3B), where all of

the LTR superfamilies underwent important early events (median 6 < 0.3).

The effect of life cycle, RNAi pathway, and genome GC content variation on
TE evolution

Primary literature was surveyed in order to determine the mating system of each species and to
identify parasites of plants and animals (S1 Table). Key proteins involved in RNA silencing of
transposons (RRF1, RRF3 and PIWI) were identified in the genome assembly data using
reference sequences (from (Sarkies et al. 2015), S1 Results, section 2, S1 Methods, section 8),
and genome assembly N50, span and GC content were calculated (S1 Methods, section 1). The
reproductive mode, parasitic status and RNAi pathway for each nematode species is
summarized in Figure 1 and S1 Table. The presence and absence of RNAIi pathway proteins for
the most part conformed with the predictions made by Sarkies et al. (Sarkies et al. 2015), with a
few exceptions. Syphacia muris, (Oxyuridomorpha, Spirurina in Clade lll), lacks the expected
RdRP RRF3 protein that is found in other Spirurina species. Since the genome assembly has
high N50 values (60,730 bp), and much supporting transcriptome data (S1 Methods, section
8.9), it is highly likely that this species lacks RRF3 (or possess a very divergent RRF3

orthologue). The Heterorhabditis bacteriophora (Rhabditomorpha; Clade V) genome lacked an
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RRF3 locus although RRF3 is expected in Rhabditomorpha species (Sarkies et al. 2015).
Given the relatively high quality of the H. bacteriophora genome assembly (N50 of 33,765 bp),
RRF3 is again likely absent (or very divergent) in this species. No RRF3 were found in any of
the 9 Tylenchomorpha species (Clade V), regardless of their N50 values (3,348 bp to- 121,687

bp), in keeping with expectations (Sarkies et al. 2015).

For each TE class and superfamily, we tested the effect of mating system, parasitic lifestyle,

and variation of RNAi pathways on TE loads at terminal nodes using an ANOVA of
phylogenetically independent contrasts (S1 Results, section 5). No significant effect was
detected following Holm—Bonferroni correction (Holm 1979). In the absence of any p-value
correction for multiple tests, the loads of only two superfamilies were significantly affected by
mating system variation, but this is an expected rate of type | error, or an extreme minority of
cases if these are true positives..(Holm 1979) We also explored the correlation between
genome assembly GC contents and TE loads (S1 Methods section 10.25, S1 Results, section
3) and found no significant results following a Holm—Bonferroni correction (Holm 1979). Prior to
this correction, a weak correlation was found in only two superfamilies. On the whole, neither
the ANOVA tests or the correlation tests revealed an effect of either of the tested factors. Itis
unlikely that our results are biased by our taxonomic sampling, as such bias would usually

cause false positive results, and such do not occur.
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Fig 3. Phylogenetic transformations of TE loads.

The 6, k, and A transformations of TE loads, representing the fit between the TE loads and the tree’s topology (A),
branch-lengths (k) and root-tip distance (8). (A) The distribution of transformation values across the posterior
distribution of most likely phylogenetic trees for each element class (DNA, LTR, LINE and SINE). (B) The distribution
of median transformation values of each superfamily of elements within each of the classes. Only superfamilies where
the distance between the first and third quartiles was smaller than 0.2 for A and smaller than 0.5 for k and & are
included (i.e., superfamilies with an unresolved transformation value are excluded). SINE elements are not shown
because the distributions cover the whole range of values. Per-superfamily distribution of the A, k and &
transformations across the posterior distribution of trees is shown in S3 Figure.

Changes of TE loads at ancestral nodes

To understand long term processes in TE evolution, we reconstructed the TE loads for each
element superfamily at each node in the Nematoda phylogeny, and derived the median change
in TE loads at each node compared to its ancestor (Figure 4). For all the four TE classes (DNA,
LTR, LINE, and SINE) the evolutionary process was characterized by a trend towards
contraction of TE loads, with only very few events of stable expansions, except for shallow

nodes where the nature of change was less predictable. Contraction in deep nodes appeared to
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have been more constant for LTR elements than other classes (Figure 4B), in agreement with

the & value in this class (Figure 3), and LTR elements were also the most dynamic in shallow

nodes, with shallow expansion hotspots within Onchocercidae (Clade Ill), Strongylida and

Caenorhabditis (Clade V), and Strongyloides, Globodera and Meloidogyne (CladelV). Other

classes (Figure 4A, C and D), also showed recent expansions, but only in a subset of these

taxa.

0.17

— A DNA

ir
LH

4

B LTR

|

e C LINE

|
s

¥
- N ;
B

_—
u O

0.17

pote

—Hypsibius dujardini

Enoplus brevis
T -#Romanomermis culicivorax
"U—Tr.chinella spiralis
rTrichuris muris

D SINE

—Trichuris trichiura
— JAcanmnchenonema viteae
‘sLitomoscides sigmodontis
Loa loa
nchocerca volvulus
o ¥rDirofilaria immitis
|| §Wuchereria bancrofti
| ®Brugia malayi
[*Ascaris suum
—Syphacia muris
-ePristionchus pacificus
r—0Oscheius tipulae
T rHeterorhabditis bacteriophora
| #¥—Dictyocaulus viviparus
—& *®Haemonchus contortus
‘ rCaenorhabditis angaria
L___| 1Caenorhabditis sp. 5
u_acaanumabdi::s japonica
Jj-Caenorhabdms elegans
Caenorhabditis sp. 11
" aenorhabditis brenneri
gcasnu rhabditis briggsae
)caenorhabditis remanei
Panagrellus redivivus

—

I.I qParastrongyloides trichosuri
i i ratti
& °£ Strongyloides venezuelensis|
#Strongyloides papillosus

| —Howardula aoronymphium
|Fp;awlenchus coffeae
L Radopholus similis
i |_8Globodera paliida
la #Globodera rostochiensis
| pMeloidogyne chitwoodi
= rMeloidogyne hapla

WMeloidogyne incognita

ﬁM eloidogyne floridensis

4

0.17

Median TE count: @ Increased/ ® Unchanged/ ¢ Reduced.

At least 50%

Fig 4 Median TE load change at ancestral and terminal nodes

The median load change of DNA (A), LTR (B), LINE (C), and SINE (D) superfamilies. Ancestral states were
reconstructed for each superfamily. Then, the proportion of change, compared to the ancestral node, was computed
for each superfamily, at each node. The median change proportions are presented for each class. Green nodes
represent an increase compared to the most recent ancestor, with larger nodes representing a greater increase. Black
nodes represent a decrease compared to the most recent ancestor, with smaller nodes representing a greater
decrease. Where no bullet is visible, there has been a large decrease in TE counts. Long branches (0.06 or longer)
along which at least 50% change in TE loads has occurred are green, gray or black to indicate an increase, stability or
decrease of TE median loads along the branch. Since increase is not inferred, green branches do not ultimately

occur.
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Detection of adaptive processes and convergent evolution

To identify adaptive processes in the evolution of TEs, we tested the fit of the TE loads with the
Ornstein Uhlenbeck (OU) model, using BayesTraits 2 (Pagel 1997). Since a strong phylogenetic
background provides power to detect selection as a consistent deviation from it, and given the
high A values characterising TE evolution in Nematoda, we predicted high power to detect q, the

selection strength parameter in the OU process, as illustrated in Figure 5A. This figure
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demonstrates that given the Nematoda phylogenetic tree and the phylogenetic pattern of the TE
loads, low a values can be detected. Assuming no stochastic interference, a values significantly
greater than 1 were detected in fourteen, seven, three, and one superfamilies from the classes
of DNA, LINE, LTR and SINE elements respectively (S4 Figure, S1 Methods, section 10.18).
These families were analysed for convergent evolution, fitting the most likely extended model,
also allowing shifts in the selective optimum (8) as well as stochastic change (o). Since
transposition can increase the TE loads even when it is not adaptive, a and 6 may also
represent neutral or slightly deleterious transposition events rather than positive selection,
although the balance between a and ¢? can help to distinguish between stochastic and
deterministic trajectories, regardless of the true nature of a. Convergent evolution (i.e.,
polyphyletic lineages possessing the same selective optimum 6) was detected for all these
elements. However, shifts in 6 were only identified in terminal or otherwise shallow nodes, with
the exception of a 6 increase for two LTR element superfamilies at the base of the Rhabditina
(Clade V), and never coincided with shifts in mating system, parasitism, or RNAIi pathways (S5
Figure). Moreover, the ¢? (drift) values were overwhelmingly higher than a (selection) for most
of the superfamilies, as the example shown in Figure 5B, illustrating the stochasticity of the
evolutionary trajectories of TE loads. Therefore, this analysis reveals stochastic evolutionary

trajectories with no deterministic effect of the tested factors.
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Fig 5. OU-model fitting to detect selection.

Power to detect the selection strength parameter alpha (A), under a gamma transformation value of 0.5 (black), 0.8
(red) and 1 (blue), and simulations of the evolutionary trajectory of the DNA/TcMar-Tc2 TE superfamily loads (B)
under the OU model fitted to this superfamily (o?= 1*10°, a=4*10° for 10° generations and 50 replications).

Discussion

The common ancestor of Nematoda dates back to the Cambrian radiation (Vanfleteren et al.
1994), 550 million years ago, and thus the genome sequences of nematodes that have become
available in the last decade provide a unique opportunity for comparative genomics analyses of
the long term forces shaping evolution. This contrasts with most previous studies which were
only able to analyse recent periods (e.g., Duret et al. 2000; Cutter et al. 2008; Fierst et al. 2015;
Campos et al. 2012, 2014; Hess et al. 2014; Albach & Greilhuber 2004; Wright et al. 2001;
Agren et al. 2015, 2014; but see Whitney et al. 2010). We present analyses of the long term
evolution of TEs, exploring the roles and importances of multiple deterministic forces in a

phylogenetic design. Our results establish that diversification in TE loads is recent and
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independent of GC content, life history, and RNAI, and is best understood as a stochastic
process. We also find a consistent reduction in TE loads at ancestral nodes across the
Nematoda tree, most notably at the base of clade IlI+IV+V. It would thus seem that the
consequence of genetic drift and purifying selection, known to shape TE loads at the population
level (Hua-Van et al. 2011; Lynch & Conery 2003), endure to shape TE load variation in the
phylum level, with little effect of other potentially deterministic forces. A caveat is that the
constant reduction in TE loads in ancestral nodes may reflect the long term reduction in genome

size as a whole, rather than a specific reduction in TE load.

Long term GC content variation does not determine TE loads

Genome GC content can change gradually along the phylogenetic tree. We therefore used an
analytical procedure that accounts for the ancestral character states of both TE load and total
GC content traits and tested for correlation between the two through the evolutionary history of
nematodes. In humans, purifying selection against TE loss in gene rich regions of the genome is
the main driver of variability in Alu element loads between GC-rich and -poor genomic regions
(Brookfield 2001; Hellen & Brookfield 2013). However, although local GC content variation in the
genome may explain the distribution of TEs inside that genome, the total GC content of the
genome does not predict TE load differences between species as we did not find substantial
correlation between the TE loads and the total GC content of the nematode genome
assemblies. While the local GC content may indeed influence the number of insertions fixed in a

given locus, it is not a limiting factor on TE loads in the genome as a whole.
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Recent variation in RNAi pathways and life history is not a predictor of TE
evolution

TE load variation is independent of recent shifts in the species’ life history or RNAi pathways
involved in TE silencing. Less than one percent of the ANOVA tests examining the effect of
RNAI, parasitism, and mating system on TE loads suggested significant associations between
traits and TE loads, and did not exceed an acceptable type | error rate. Since we cannot
determine historic character states for RNAIi pathways and life history, it is impossible to rule out
completely that they would explain TE loads, but this limitation is shared by studies that do
suggest a significant effect of these factors. In addition, the OU models fitted to the data were
stochastic, and not directional. Even though a selection component is directly assumed in this
model, and therefore always found, it was never strong enough to counteract stochasticity in our
simulations. Deterministic models of TE load evolution thus have little or no support, and
instead, the variation of TE loads among the extant species is consistent with a stochastic
model. Exclusion of this wide range of direct possible deterministic explanations for TE load
variation means that complex interactions among such forces must be postulated to retain
strong effect for these proposed mechanisms. This is not to say that such deterministic effects
are absent, only that they are short lived due to the genetic drift that often counteracts them.
That we find genetic drift to be a dominant evolutionary force for TEs is not unexpected as, drift
has been suggested to play a key role in the evolution of multicellular organisms due to their

long-term and ancient reduction in effective population size (Lynch & Conery 2003).

TE load contraction has prevailed in TE evolution

Ancestral state reconstructions reveals a consistent contraction in TE loads through time on our

tree. Furthermore, long branches in the phylogeny, including terminal ones, often coincide with
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reduction of at least 50% in TE loads (Figure 4) and almost never with an increase. We thus
suggest that a component of long term purifying selection, acting at the population level
(Hua-Van et al. 2011), in addition to the more recent effect of drift discussed above, should be
included in a realistic model at this scale. In such a model purifying selection prevails in the long
run, over genetic drift that might increase or preserve TE loads temporarily. If this is true, the
co-occurrence of increased purifying selection of LTR elements with their increased expansions
in terminal nodes, suggests that, on average, LTR element loads have a tendency to increase
faster than other elements and are therefore more deleterious and exposed to stronger purifying
selection, in accordance with previous predictions (Brookfield 1995; Kidwell & Lisch 2001).

An increased strength of purifying selection that might be experienced by LTR elements
could result from either their possible indiscriminate targeting of genic regions (Pritham 2009;
Finnegan 1992) or from their suggested role in induction of increased ectopic recombination
(Montgomery et al. 1987). It may be that LTR elements have not been able to evolve to
efficiently target non-genic regions of the genome (McDonald et al. 1997; Zuker et al. 1984).
One signature of increased ectopic recombination as a driver of purifying selection on LTR TEs
would be an inverse correlation between the median sequence length of TE families and their
loads in a given species (Petrov et al. 2003), but we did not detect such inverse correlation (S1
Methods, section 11). Still, additional sampling is required to pin down the cause of TE

contraction in ancestral node.

Conclusions

A wide body of literature has sought biological explanations for the observed patterns of
variation of TE loads in eukaryotic genomes, invoking explanatory variables such purifying
selection, mating system, parasitic lifestyle, genome-wide GC content and RNAi pathways for

silencing TEs. Our analysis of the evolution of TEs on a long time scale — across the entire
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phylum Nematoda — shows high statistical power to detect directional selection, yet reveals that
these variables do not, in fact, explain TE load variation among species, with the possible
exception of purifying selection, given time. Instead, variation in TE loads is largely stochastic,
explained by genetic drift, with little or no consistent effect of life history or genomic explanatory
variables. We acknowledge that other characteristics, such as horizontal gene transfer, or
recurrent activation and deactivation of TEs might also be stochastic. However, the strong
congruence of the TE counts with the phylogenetic tree suggest that the variability in TE loads
within species is smaller than between species, and thus the observed counts are close to
fixation by drift. We also emphasize here that our results do not reject the importance of these
or other factors, for an individual or a population, over relatively short time scales. Our inference
is that in the long run they will not determine the evolutionary trajectories of TE loads, due to
strong stochastic effects, and ultimately purifying selection. We also stress that although genetic
drift and selection are processes that occur in populations, their signature can additionally be
observed in speciation and over phylogenetic scales. We suggest that only studies that examine
TE load across a large number of life history transitions and over large timescales will be able to
provide power to reliably distinguish between stochastic and deterministic forces, and quantify

the balance of evolutionary processes shaping this major component of eukaryotic genomes.

Methods

Genome assemblies

Genome assemblies of species from phylum Nematoda, representing the five major clades
(Blaxter et al. 1998) were obtained from different sources (S3 Table). The assemblies included
four species from Dorylaimida (Clade 1), one from Enoplia (Clade II), nine from Spirurina (Clade

1), fifteen from Tylenchina (Clade IV) and thirteen from Rhabditina (Clade V). For Dorylaimia
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and Enoplida (Clades | and IlI) we analysed all the available genome assemblies. The genome
of the tardigrade Hypsibius dujardini was used as outgroup. To compare the completeness of
the genome assembilies, the N50 metric (S1 Methods, section 1) was calculated for each (S3

Table). The GC content of each genome assembly was calculated (S1 Methods, section 1).

TE identification

We conducted TE searches in the genome assemblies rather than in sequence read data,
which are not publicly available for many of the target species. To mitigate the biases
associated with this approach, we have also utilized complementary methods of TE searches.
One of the approaches was homology based searches using reference DNA sequences of
elements in a de-novo constructed library, representing a wide taxonomic range within phylum
Nematoda. RepeatModeler 1.0.4 (Smit & Hubley 2010b) was used to identify repeat sequences
in each genome assembly using RECON (Bao & Eddy 2002), RepeatScout (Price et al. 2005)
and TRF (Benson 1999). RepeatModeler uses RepeatMasker (Smit & Hubley 2010a) to classify
the consensus sequences of the recovered repetitive sequence clusters. The identification
stage employed RMBIlast (Camacho et al. 2009) and the Eukaryota TE library from Repbase
Update (Jurka et al. 2005). The consensus sequences from all the species were pooled, and the
uclust algorithm in USEARCH (Edgar 2010) was used to make a nonredundant library, picking
one representative sequence for each 80% identical cluster. Additional classification of the
consensus sequences was performed with the online version of Censor (Jurka et al. 1996).
Classifications supported by matches with a score value larger than 300 and 80% identity were
retained. The script used to construct this library is in S1 Methods, sections 2-3.

RepeatMasker (Smit & Hubley 2010a) was used to search for repeat sequences in the
Nematoda genome assemblies and that of H. dujardini, using this de-novo Nematoda library (S1

Methods, section 4). To eliminate redundancies in RepeatMasker output, we used One Code to
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Find Them All (Bailly-Bechet et al. 2014), which assembled overlapping matches with similar
classifications, and retained only the highest scoring match of any remaining group of
overlapping matches (S1 Methods, section 5). Alternative approaches to identify TEs were also
employed. TransposonPSI B (http://transposonpsi.sourceforge.net/), which searches for protein
sequence matches in a protein database thus allowing acurate identification of shorter
fragments, and LTRharvest (Ellinghaus et al. 2008), which identifies secondary structures (S1
Methods, section 6), were used to screen the target genomes. . For TransposonPSI searches,
only chains with a combined score larger than 80 were retained, while we retained only matches
that were at least 2000 bp long and 80% similar to the query from LTRharvest searches. Where
matches from the three approaches overlapped, we retained only the longest match (S1

Methods, section 7).

Characterization of RNAi pathways

Three key proteins, distinguishing the three RNAIi pathways discussed in Sarkies et al. (2015),
were searched for in the genome assemblies (S1 Methods, section 8.1), using the program
Exonerate (Slater & Birney 2005). Sequences from the supplementary files Data S1 and S2
from Sarkies et al. (2015) were used as queries to identify homologues of PIWI, an Argonaute
(AGO) subtype, and RNA-dependent RNA polymerase (RdRP ; specifically subtypes RRF1 and
RRF3) respectively. Only matches at least 100 amino acids (aa) long and at least 60% similar to
the query were retained. In addition, only the best scoring out of several overlapping matches
was used (S1 Methods, section 8.2). The matches and the queries were used to build two
phylogenetic trees, one of PIWI (and other AGO) sequences and the other of RARP sequences,
to verify the identity of the matches (S1 Methods, section 8.3). Each of the datasets was aligned
using the L-ins-i algorithm in MAFFT 7 (Katoh & Standley 2013), and cleared of positions with a

missing data proportion of over 0.3 using trimAl 1 (Capella-Gutiérrez et al. 2009). In the
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resulting alignment, only sequences longer than 60 aa were retained. Maximum Likelihood (ML)
trees were reconstructed using RAxML 8 (Stamatakis 2014) with sh-like branch supports.
Species that occurred at least once in any of the three clades (PIWI in the first tree and RRF1
and RRF3 in the second), were scored as possessing that gene (Figure 1). Where a species did
not have a representative sequence in one of the clades, a directed search for the specific
protein was conducted in the sequences that did not pass the filter (i.e., the best match had
lower score and length than the set cutoff). The identity of sequences retrieved in this way was
examined in a second pass of phylogenetic reconstruction. This step did not yield additional
phylogenetically validated matches and confirmed the validity of the cutoff set in the filtering

step.

Phylogenetic reconstruction of the Nematoda using small subunit

ribosomal RNA (SSU-rRNA) sequences

To control for phylogenetic relationships within the TE counts dataset we inferred a species
phylogenetic tree using the SSU-rRNA gene. This locus is considered to be reliable for the
reconstruction of the phylogeny of Nematoda, and produces trees that tend to agree with
previous analyses (Meldal et al. 2007; Holterman et al. 2006; Blaxter et al. 1998; van Megen et
al. 2009). First, we identified SSU-rRNA genes with BLAST+ 2.2.28 (Camacho et al. 2009), in
each of the genome assemblies, where for each species the query was an SSU-rRNA
sequence of the same or closely related species, taken from the Silva 122 database (Quast et
al. 2013). Matches shorter than 1,400 bp were not selected and the query sequence was
retained instead, providing it was identical to the match. Species for which the SSU-rRNA
sequence could not be recovered and was not available online were excluded from further

analysis. Since unbalanced taxon sampling may reduce the accuracy of the phylogenetic

9T0Z ‘6T Joquiides uo [nH Jo AisleAlun ke /Bioseulnolpioxoaghy/:diny woly pepeojumoq


https://paperpile.com/c/xfXpvf/oBfRM
https://paperpile.com/c/xfXpvf/V3Bgf+vIaPU+FuioM+FF8qA
https://paperpile.com/c/xfXpvf/V3Bgf+vIaPU+FuioM+FF8qA
https://paperpile.com/c/xfXpvf/jWEEH
https://paperpile.com/c/xfXpvf/oOiQj
https://paperpile.com/c/xfXpvf/oOiQj
http://gbe.oxfordjournals.org/

Z
=
=
B
3
@)
>
23]
A
Z
<
=
@)
(@)
-
S
M
m
>
o
Z
m
)

reconstruction (Heath et al. 2008), we also included additional sequences from Silva (Quast et
al. 2013), representing the diversity of Nematoda. ReproPhylo 0.1 (Szitenberg et al. 2015) was
used to ensure the reproducibility of the phylogenetic workflow (S2 Results). A secondary
structure aware sequence alignment was conducted using SINA 1.2 (Pruesse et al. 2012), and
the alignment was then trimmed with trimAl 1 (Capella-Gutiérrez et al. 2009) to exclude
positions with missing data levels that lie above a heuristically determined cutoff. An ML search
was conducted with RAXML 8 (Stamatakis 2014) under the GTR-GAMMA model and starting
with 50 randomized maximum parsimony trees. Branch support values were calculated from
100 thorough bootstrap tree replications. After tree reconstruction, nodes that did not represent
a genome assembly (either the blast match or the Silva sequence substitute) were removed
from the tree programmatically using ETE2 (Huerta-Cepas et al. 2010). To characterize the
phylogenetic uncertainty, we generated a posterior distribution of trees using Phylobayes 3
(Lartillot et al. 2009). Two chains were computed, using the trimmed ML tree as a starting tree
and the GTR - CAT model (sensu (Lartillot & Philippe 2004)). The analysis was continued until
the termination criteria were met (specifically, maxdiff and rel_diff < 0.1, and effsize > 100), with
a burnin fraction of 0.2 and by sampling each 10th tree. The same subsample of trees was
used to generate a consensus tree. The reconstruction of the SSU rRNA tree is detailed in S1

Methods, section 1.

The effect of life cycle, RNAi and percent GC variation on TE loads

Primary literature was surveyed to determine the mating system of each species and to identify
parasites of plants and animals (S1 Table). The effect of these factors on the TE loads was
tested with an ANOVA of phylogenetically independent contrasts, using the R package Phytools
(Revell et al. 2008). Species were classified into the four mating systems dioecy, androdioecy,

facultative parthenogenesis (including both species that fuse sister gametes and species that
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duplicate the genome in the gametes) and strict apomixis. Species that had both hermaphroditic
and gonochoric life cycle stages were classified as gonochoric (e.g. Heterorhabditis
bacteriophora, (Poinar 1975)). We conducted three tests, in the first of which the four levels
were tested, in the second the parthenogenetic and androdioecious species were pooled, and in
the third, species were divided into dioecious and non-dioecious.

To test the effect of parasitism, free living species, plant parasites and animal parasites
were first tested as three separate groups, and then plant and animal parasites were pooled into
a single group for a second test. The necromenic lifestyle of Pristionchus pacificus was
classified as free living because this species is not reported to depend on any host function,
only on the organisms that build up on its carcass (Dieterich et al. 2008).

ANOVA of phylogenetically independent contrasts was also used to test the effect of the
variation in RNAi pathways on the TE loads. Six groups of species were determined based on
the presence or absence of PIWI, RRF1 and RRF3 proteins. In addition, for each of the three
proteins, the effect of their presence was tested independently of the other proteins. Finally,
dependency between GC content of genome assemblies and their TE loads was tested by a
regression of the squared contrasts of TE counts and the estimates of GC contents in ancestral
nodes (Revell et al. 2008). The execution of ANOVA and correlation tests is detailed in S1

Methods sections 10.23-10.25.

Phylogenetic signal in the TE data

The phylogenetic transformations A, k and 6 (Pagel 1994) were calculated with BayesTraits
(Pagel 1997) over the subsample of trees produced with Phylobayes (see above), to account for
phylogenetic uncertainty (S1 Methods, sections 10.4-10.10). They were estimated for the

pooled classes of DNA, LTR, LINE and SINE elements, as well as for individual superfamilies
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that occurred in at least 15 nematode species. The proportion of individual TEs that were

included in this analysis is depicted in S2 Figure (bottom).

Detection of selection and convergent evolution of TE loads

The Ornstein Uhlenbeck (OU) process (Gardiner 1985) was originally suggested as an
approach to model the evolution of continuous traits based on phylogenies (Felsenstein 1985).
Building upon this process, Hansen (1997) has developed a method to study changes in
selection regimes, on the macroevolutionary scale, neglecting stochastic effects on the process.
In the OU process, a change in character state depends on the strength of selection (a) and its
distance and direction from the current selection optimum (6). Goodwin later (Goodwin et al.
2003) added a Brownian Motion (BM) component to the model (0?), recognizing the confounding
effect that stochastic events related to demography might have on selection. The R package
PMC (Boettiger et al. 2012) was used to assess the power of our data to detect OU processes
in the evolution of TEs. The OU parameter a was estimated with Bayestraits (Pagel 1997),
neglecting stochastic effects, in superfamilies occurring in at least 15 nematode species. Where
a significant a was detected (p-value < 0.05, in the posterior distribution of trees), indicating
selection, we examined the possibility of convergent evolution between species with similar life
cycle or RNAI status with the R package SURFACE (Ingram & Mahler 2013). In these analyses,
selection optima shifts are detected in the trees’ branches through a heuristic search, which
uses AIC test results as the optimization criterion. Then, further improvement to the fit of the
model is attempted by unifying optimum shifts. Where the unification of two or more optimum
shifts improved the AIC score of the model, convergent evolution is inferred. SURFACE uses
the R package OUCH (Butler & King 2004) to fit OU models , and unlike Bayestraits, includes a
stochastic component (6%), expressed by BM, in the OU model. The steps described in this

paragraph are detailed in S1 Methods section 10.12-10.22.
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Magnitude of change at ancestral nodes

To identify nodes in the species tree that were hotspots of change in TE loads, we
reconstructed the ancestral character states for a subset of elements using an ML analysis
(Revell et al. 2008). Since the phylogenetically independent contrast of a root node is also the
maximum likelihood estimate of its character state (Felsenstein 1985), this analysis sequentially
treats each node as the root, in order to compute the TE load at this node. The element subset
included only classified elements from superfamilies that occurred in at least 15 species. Within
each of the three groups of “cut and paste”, LTR, LINE, and SINE elements, we calculated the
median change magnitude across the superfamilies in the group, and for each node. The
magnitude of change was expressed as the proportion of the load of a given element
superfamily at node X out of the load of the same superfamily at the parent of node X. The

steps described here are detailed in S1 Methods section 10.23, 10.26-10.27.

Supplementary Material

S1 Table. Life history information. Code: Species name abbreviation, corresponds with
species names in Figure 1. Species: corresponds with species names in Figure 1. Clade:
sensu Blaxer et. al (Blaxter et al. 1998). Mating: The mating system. M4: Mating system
information with four classes (gonochoristic, androdioecious, facultative parthenogen, apomict).
M3: Mating system information with three classes (gonochoristic, facultative sexual, apomict).
M2: Mating system information with two classes (gonochoristic, non-gonochoristic). Parasitism:
the parasitic or free living life-style of the nematode. P3: Parasitic lifestyle information with three
classes (plant parasite, animal parasite, free living). P2: Parasitic lifestyle information with two
classes (parasitic, free living).

S2 Table. Transposable element counts in Nematoda genome assemblies. Species
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abbreviations correspond with the species names in Figure 1.

S3 Table. Genome assemblies used in this study. Code: Species name abbreviation,
corresponds with species names in Figure 1. Genus: corresponds with genera names in Figure
1. Species: corresponds with species names in Figure 1. Clade: sensu Blaxer et. al (Blaxter et
al. 1998). N50 length: the length of the longest contig among the shortest contigs that amount to

half the assembly length. See S1 Methods, section 1, for detailed computation. Publisher: the
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assembly's publishing institute. Version/ Accession: The Assembly’s version or genbank
accession numbers.

S1 Fig. Correlation between TE loads and genome assembly statistics. The correlation
between TE loads and the N50 length, the genome assembly length and the genome size.
S2 Fig. Transposable element loads in Nematoda genomes. Species name abbreviation,
corresponds with species names in Fig 1.

S3 Fig. Phylogenetic transformations of Nematoda transposable element counts.
Transposable elements superfamilies are sorted by abundance, with most abundant on the
right. The transformation values from top to bottom are A, k and &. They are explained in the
Results section “Phylogenetic signal in TE load” and their computation is demonstrated in S1
Methods, sections 1

.4-10.10.

$4 Fig. Distribution of alpha in a deterministic OU model. Transposable elements
superfamilies are sorted by abundance, with most abundant on the right. The a parameter is
explained in the Results section “Detection of adaptive processes and convergent evolution”
and its computation is demonstrated in S1 Methods, section 10.18.

S5 Fig. Median change in selective optima. Black nodes represent close to stable median

selective optimum. Blue and red nodes represent an increase or decrease in the median
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selective optimum, respectively. The size of the node represents the magnitude and direction of
the change in the median selective optimum. The integer at each node denotes the number of
TE superfamilies for which the selective optimum shifts at this node. The OU model is
explained in the Results section “Detection of adaptive processes and convergent evolution”
and its computation is demonstrated in S1 Methods, section 10.18.

S1 Methods. The code for the analyses carried out in the study. Static Jupyter notebooks
containing the code used to carry out the analyses in this manuscript.

https://dx.doi.org/10.6084/m9.figshare.2056101.v3. Also available on github along with all the

intermediate and output files DOI:10.5281/zenodo.55462,

https://github.com/HullUni-bioinformatics/Nematoda-TE-Evolution

S$1 Results. 1)Taxonomic composition of the TE consensus library. Species codes correspond
with those appearing in S1 Table. 2) RNAI pathway protein phylogenetic trees. 3-5) Results of
Anova and correlation at ancestral nodes.

S2 Results. Phylogenetic analysis report. A ReproPhylo generated report describing the
data, methods and results of the phylogenetic analysis used to produce Fig 1.

https://dx.doi.org/10.6084/m9.figshare.2056107.v3
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