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Abstract—Feeder detection for single-phase ground fault 
(SPGF) is challenging in a resonant grounded system due to the 
difference in feeder capacitance to ground and the influence of 
the arc suppression coil. This paper utilizes semantic 
segmentation algorithms to implement feeder detection for SPGF 
in distribution networks. The proposed method overlays 
transient zero-sequence voltage (ZSV) derivatives and transient 
zero-sequence current (ZSC) waveforms on the same image. 
Then, a semantic segmentation algorithm is used to classify the 
pixel points of the image. The segmentation map output by the 
semantic segmentation algorithm contains category prediction 
results for each pixel in the input image. Detecting faulty feeder 
based on the number of pixels of different categories in the 
segmentation map can make the final decision-making process 
more transparent and easy to understand. The validity and 
adaptability of the proposed method have been confirmed 
through tests using both simulation and field data. The proposed 
method achieves an accuracy of over 95% on simulated data, 
even in the presence of noise interference and asynchronous 
sampling, etc. Furthermore, the proposed method achieves an 
accuracy of over 99% when applied to full-scale test data. 

Index Terms—distribution network, single-phase ground fault, 
feeder detection, artificial intelligence, semantic segmentation 

I. INTRODUCTION

HE SPGF is the predominant fault type, representing 
over 80% of the total fault occurrences[1]. In China, 
non-effective grounded systems are widely employed 

in medium voltage distribution networks[2]. A non-effectively 
grounded system, based on the different methods of neutral 
grounding, can be classified into an ungrounded and resonant 
grounded system[3]. Feeder detection of SPGF is challenging 
in a resonant grounded system due to the difference in feeder 
capacitance to ground and the influence of the arc suppression 
coil. If faults are not addressed promptly, they can pose 
significant safety risks, including but not limited to fire, 
equipment damage, and personal injury. Providing an accurate 
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and reliable method of detecting faulty feeder is essential to 
safeguard the secure and stable functioning of power systems 
and prevent the spread of accidents.  

The existing faulty feeder detection methods mainly include 
threshold method and artificial intelligence method. 

The threshold-based method employs threshold values of 
fault characteristics to identify faulty feeder. Wang et al. [4] 
conducted fault location by comparing the transient energy of 
fault section and non-fault section within the selected 
frequency band. Wei et al. [5] utilized transient energy and 
cosine similarity as features to achieve feeder detection using 
Laplace distribution and cumulative density function. Peng et 
al. [6] achieved feeder detection by comparing the transient 
zero-mode amplitude ratio at both ends of the feeder with the 
standard amplitude ratio. The choice of fault characteristics 
heavily relies on experience and is typically based on 
extensive experimentation and accumulated domain 
knowledge. 

With the rise of machine learning, the application of 
artificial intelligence techniques in fault identification is 
becoming more widespread. Classification models dominate 
the field of artificial intelligence techniques applied to fault 
identification. Okumus and Nuroglu [7] applied wavelet 
transform to three-phase voltage and current data and utilized 
random forests for fault section identification after feature 
extraction. This paper employs artificial intelligence 
algorithms for fault classification without relying on fixed 
thresholds but still follows a signal-processing approach for 
fault feature extraction. The accuracy of feeder detection still 
relies on the effectiveness of the feature selection. 

End-to-end deep learning, based on simple input data 
without relying on other complex operations, has shown 
remarkable performance in feature extraction and 
classification. Convolutional neural networks (CNN), known 
for their powerful feature extraction capabilities in image 
processing, have found extensive applications in various areas 
of vision research. Guo et al. [8] converted ZSC into grayscale 
image and then utilized CNN for feeder detection. Yuan and 
Jiao. [9] employed a specific order to superimpose different 
feeder ZSC in different images and utilized a CNN embedded 
with an attention learning block for feeder detection. Yuan et 
al. [10] superimposed ZSV and ZSC on the same image and 
employed a CNN with spatial attention residual learning 
blocks for feeder detection. Yuan and Jiao. [11] used CNN 
and long short-term memory networks to extract features from 
ZSC data for feeder detection. Gao et al. [12] accomplished 
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feeder detection by fusing the ZSC waveform of the first half-
cycle and employing a one-dimensional CNN. Yuan and Jiao 
[13] superimposed the ZSC waveforms of all feeders on the 
same image and then used a fully convolutional network 
(FCN) and fault trust degree to detect faulty feeder. The 
literature [8-12] applied deep learning algorithms for feeder 
detection, which can automatically extract features and 
perform classification by constructing deep neural networks 
and leveraging large amounts of data without relying on 
manually-designed feature extraction. However, the final 
decision process for feeder detection is difficult to understand. 

To address the above issues, this paper presents a threshold-
free method for detecting faulty feeder by utilizing a semantic 
segmentation algorithm. Semantic segmentation is the 
classification of the input image at the pixel level and finally 
outputs a segmentation map. It has been widely applied in 
remote sensing images[14] and biomedical images[15]. This 
paper utilizes the superimposed image of ZSV derivative and 
ZSC as the input for a semantic segmentation algorithm, 
which generates predicted labels for each pixel of the image. 
The feeder detection results rely on the segmentation map 
generated by the semantic segmentation algorithm, combined 
with additional criteria. The main contributions are 
summarized as follows. 

1)Faulty feeder can be detected even if start-up moment 
inaccuracy. This paper uses a semantic segmentation 
algorithm with pixel-level classification to detect faulty 
feeder. In cases where the deviation between the moment of 
start-up and the actual moment of failure causes the pixels 
occupied by part of the waveform in the image to be 
misclassified, it is still possible to accurately detect faulty 
feeder in conjunction with the feeder detection criterion used 
in this paper. 

2) The final decision-making process is more transparent 
and understandable. Each value in the segmentation map 
corresponds to the classification prediction result for each 
pixel in the input image. When the number of pixels occupied 
by a faulty waveform is greater than those occupied by a non-
faulty waveform in the segmentation map, the corresponding 
feeder is judged to be a faulty feeder. Otherwise, it is a sound 
feeder, making the final decision for feeder detection more 
transparent and understandable. 

The subsequent sections of this paper are structured as 
follows. Section 2 analyses the relationship between ZSV and 
ZSC when a SPGF occurs in the distribution network. Section 
3 describes the implementation process of the proposed 
method. Section 4 presents experimental validation, which 
includes testing of simulation and field data, as well as testing 
of the adaptability of the proposed method. Finally, Section 5 
summarizes the study. 

II. ANALYSIS OF THE PRINCIPLE OF SINGLE-PHASE GROUND 
FAULT IN DISTRIBUTION NETWORK 

When a SPGF occurs, the transient zero-sequence 
equivalent network can be simplified as depicted in Fig. 1, 
where Z for three times the sum of the transition impedance, 
line resistance and line inductance, L for three times the 

inductance of the arc suppression coil, uf for the SPGF current 
through the zero-sequence impedance generated voltage, C0 
for the zero-sequence capacitance to ground. 

 
Fig. 1. Equivalent network of single-phase ground fault. 

For resonant grounded system: 

  (1) 

  (2) 

Where i0k is the sound feeder ZSC, i0m is the faulty feeder 
ZSC, du0/dt is the ZSV derivative. 

A typical waveform when a SPGF occurs is shown in Fig. 
2. Fig. 2 displays the waveforms of ZSV derivative and ZSC 
of four feeders, consisting of three sound feeders and one 
faulty feeder. 

 
Fig. 2. Typical waveform of single-phase ground fault. 

Due to the impact of the arc suppression coil, the polarity of 
the ZSV derivative and ZSC for a faulty feeder changes from 
opposite to the same. The polarity of the ZSV derivative and 
ZSC for sound feeders is the same. Fault characteristics such 
as steady-state current polarity and amplitude no longer meet 
the requirements of feeder detection. Therefore, the non-
effective grounded system can use the transient ZSV 
derivative and ZSC relationship for feeder detection. 

III. FEEDER DETECTION METHOD 

A. Framework for feeder detection method 
This paper presents a feeder detection method utilizing a fully 

convolutional network, and its framework is depicted in Fig. 3. 
The developed prototype is a SPGF feeder detection module, 
placed on a 10kV distribution feeder pole. The data acquisition 
module collects ZSV and ZSC data and then transfers it to the 
Raspberry Pi 4B for data processing and feeder detection. The 
fault is detected and the moment of occurrence is determined 
using our team's start-up algorithm[16]. In data preprocessing, the 
ZSV and ZSC are first denoised and filtered. Next, the derivative 
operation is performed on the ZSV, and the transient waveform of 
one cycle after the fault point is extracted and normalized. 
Subsequently, the normalized waveforms are superimposed on 
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the same image as input for the FCN during training. The trained 
FCN can classify each pixel in the input image, ultimately 
generating a segmentation map. Each value in the segmentation 
map corresponds to the classification prediction result for each 
pixel point in the input image. The category of the corresponding 
pixel for the background, faulty feeder waveform, and sound 
feeder waveform are denoted by 0, 1, and 2, respectively. For 

visualization purposes, label 0 is displayed in grey, 1 in red, and 2 
in blue. If the number of pixels labeled as 1 in the segmentation 
map is greater than those labeled as 2, the corresponding feeder is 
judged to be the faulty feeder. Otherwise, it is identified to be the 
sound feeder. Finally, the result judged by the feeder detection 
algorithm is sent to the dispatch center. 

 

 
Fig. 3. Framework for feeder detection method. 

B. Waveform processing and image creation 
For the collected ZSV and ZSC data, the ZSV and ZSC are 

first denoised and filtered, then the derivative operation is 
performed on the ZSV, and the transient waveform of one 
cycle after the fault point is extracted and normalized. 

The amplitude of ZSV is directly normalized to [-1, 1], as 
shown in Equation (3). The ZSC is processed using Equation 
(4). 

  (3) 

  (4) 

Where u0nor is the normalized ZSV. 
Subsequently, the normalized transient ZSV and transient 

ZSC waveforms are superimposed on the same image. Pixel-
level labeling of the superimposed waveform image is also 
required before model training, as shown in Fig. 4. The 
categories corresponding to pixels in the background, faulty 
feeder waveform, and sound feeder waveform are labeled as 0, 
1, and 2, respectively. For visualization purposes, labels 0, 1, 

and 2 are displayed in grey, red, and blue, respectively. 

 
Fig. 4. Pixel-level labeling of waveform superimposed image. 

C. Fully Convolutional Network 
The structure of the FCN is depicted in Fig. 5. A FCN is 

constructed based on the ResNet-50 architecture, where the 
fully connected layers are replaced with convolutional layers, 
allowing for the processing of arbitrary-sized input images. 
Bilinear interpolation is used for up-sampling operations, 
resulting in a segmentation map with the same size as the 
input image, enabling semantic segmentation of the image. 
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Dilated convolution is used in FCN to increase the 
perception field without changing the convolution kernel's 
size[17]. Dilated convolution causes a grid effect during the 
convolution process. An appropriate dilation rate must be 
chosen to achieve adequate coverage of the input image to 
prevent loss of image information. The original ResNet50 
performs down-sampling on the input image by a factor of 32. 
The utilization of dilated convolutions in ResNet50 leads to a 
decrease of the down-sampling factor to 8, consequently 
resulting in a better effect during up-sampling. 

In FCN, the purpose of 1x1 convolution is to adjust the 
number of channels in the output of convolutional layers to 

accommodate subsequent up-sampling tasks better. Bilinear 
interpolation is used to up-sample the adjusted feature maps to 
the same size as the input image to generate pixel-level 
semantic segmentation results. 

The loss function used in this paper is the cross entropy loss 
function, which is applied to gauge the disparity between the 
model's predicted outcome and the true label. The formula is 
shown in (5). 

  (5) 

Where pi is the true label value, qi is the predicted value.

 
Fig. 5. Architecture of fully convolutional network. 

D. Feeder detection criteria 
The output of FCN is a segmentation map, where each 

value corresponds to the predicted classification result for 
each pixel in the input image. Where label 0, label 1, and label 
2 are the pixel categories corresponding to the background, 
faulty feeder waveform, and sound feeder waveform, 
respectively. If the number of pixels labeled as 1 in the 
segmentation map is greater than those labeled as 2, the 
corresponding feeder is judged to be the faulty feeder. 
Otherwise, it is judged to be the sound feeder. 

IV. EXPERIMENTAL VERIFICATION 

A. Software simulation models 
A simulation model for a 10kV distribution network was 

built using PSCAD/EMTDC, as depicted in Fig. 6. The lines 
consist of a combination of overhead lines and cable lines, 
totaling six lines. The Bergeron model was used for the lines, 
and the corresponding parameters are provided in Table I. The 
system operates in overcompensation mode with an 
overcompensation level of 5%, and the sampling frequency is 
5 kHz. Simulation data are obtained for different fault 
locations, fault resistances, fault phase angles, and SPGF 
models in the case of a three-phase unbalance. Table II lists 
the distribution of the above failure scenarios. 

TABLE I 
LINE PARAMETERS IN THE DISTRIBUTION NETWORK 

SIMULATION MODEL 
Line type Sequential 

component 
Resistance 

Ω/km 
Inductance 

mH/km 
Capacitance 

μF/km 

Cable lines Positive 0.27 0.255 0.339 
Zero 2.7 1.019 0.28 

Overhead 
lines 

Positive 0.17 1.21 0.0097 
Zero 0.23 5.478 0.008 

 
Fig. 6. Distribution network simulation model 
 

TABLE II 
FAILURE SCENARIOS INCLUDED IN THE TRAINING SET 

PSCAD simulation Training samples 
Fault location All lines 

Fault resistance 5Ω/10Ω/50Ω/100Ω/300Ω/500Ω/1kΩ/2kΩ/3kΩ/5kΩ 
Fault phase angle 0°/ 30°/ 60°/ 90°/ 120°/ 150° 

Single-phase 
ground fault model 

Resistance/Mayr model/Cassie model/Cybernetic 
model/Emanuel model 

 
The superimposed image of the transient ZSV derivative 

and the transient ZSC waveform of each feeder is used as a 
training sample, and pixel-level labeling is performed on 
them. A total of 2520 samples are selected as the training set, 
with a 1:1 ratio between fault samples and non-fault samples. 
The waveform superimposed images are input to the FCN to 
train the model, and the best model is saved after training is 
completed. The computer parameters used to train the FCN 
are shown in Table III. The FCN training uses the Pytorch 
framework with 100 epochs and a learning rate of 0.0001. 

( , ) log( )i i
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TABLE III 
COMPUTER PARAMETERS FOR TRAINING SEMANTIC 

SEGMENTATION ALGORITHM 
Computer configurations Parameters 

CPU Intel(R) Core (TM) i9-12900K 
Memory 64GB 

Hard Disk 3.6T 
Video Cards NVIDIA GeForce GTX3070 

 
To assess the performance of the model on the simulated 

data, simulation data from the training and testing sets were 
utilized for testing. The testing results are presented in Table 
IV. The indicators employed are presented in Equation (6), 
where Acc denotes accuracy, Pre denotes precision, and Rec 
denotes recall, Sens denotes sensitivity, Spec denotes 
specificity. The accuracy of the simulated data in both the 
training and testing sets is 100%, indicating excellent 
performance of the model on the simulated data. 

TABLE IV 
TEST RESULTS OF SIMULATION DATA 

Simulation data Acc/% Pre/% Sens/% F1/% Spec/% 
Simulation data from 

the training set 100 100 100 100 100 

Simulation data from 
the test set 100 100 100 100 100 

 

  (6) 

B. Full-scale test 
The network structure employed in the full-scale test is 

depicted in Fig. 7, with a total of four feeders. The grounding 
medium includes grass and sand, tree branches, brick and 
stone, and so on, as shown in Fig. 8. 

 
Fig. 7. Network structure of full-scale test 
 

 
Fig. 8. Full-scale test 
(a) Grounding via grass and sand (b) Grounding via brick and 
stone (c) Grounding via tree branches (d) Grounding via cable 
arc 

The ZSV and ZSC data for the half and one cycle after the 
fault point were selected and processed in different data 
processing methods, using the same training strategy and the 
same computational environment to train the models 
separately. Afterward, the full-scale test data was used for 
testing on a Raspberry Pi 4B. The number of test samples is 
480, with a ratio of 1:3 between faulty feeder and sound feeder 
samples. The outcomes of the tests are presented in Table V. 
Each row in Table V presents the test results of full-scale test 
data under different data processing methods. The du0/dt 
indicates whether the ZSV has been subjected to derivative 
operation, where "Yes" signifies differentiation has been 
performed, and "No" indicates otherwise. The L indicates the 
selected data length, which includes a half-cycle after the fault 
point and one-cycle after the fault point. The F indicates the 
filtering cut-off frequency, where "-" signifies no filtering. 

TABLE V 
TEST RESULTS OF FULL-SCALE TEST DATA UNDER DIFFERENT 

DATA PROCESSING METHODS 
du0/dt L/cycle F/Hz Acc/% Pre/% Sens/% F1/% Spec/% 
Yes 1 - 99.167 100 96.667 98.305 100 
Yes 0.5 - 96.458 99.048 86.667 92.444 99.722 
Yes 1 2k 99.375 100 97.5 98.734 100 
Yes 0.5 2k 96.875 99.065 88.333 93.392 99.722 
Yes 1 75 98.958 98.319 97.5 97.907 99.444 
No 1 - 94.375 98.947 78.333 87.442 99.722 
 
From the results of Table V, the algorithm is significantly 

more effective after performing the derivative operation on the 
ZSV. The selection of data length is also important. The 
algorithm's performance is noticeably better when transient 
waveforms of one-cycle after the fault point are chosen 
compared to transient waveforms of half-cycle after the fault 
point. This is because the ZSC undergoes an oscillatory 
process during a metallic ground fault, while during a high 
impedance fault, the transient process is longer. Therefore, a 
notable distinction can be observed in the superimposed 
waveform of the transient half-cycle and one-cycle ZSV 
derivatives and ZSC for the faulty feeder and sound feeders. It 
is feasible to extract data for half-cycle and one-cycle after the 
fault point. However, since the proposed method classifies 
based on the number of pixels occupied by different 
categories, a larger data range provides more fault tolerance 
when some waveforms are misclassified due to waveform 
distortion and start-up moment errors. Therefore, extracting 
data for one cycle after the fault point can yield better results. 
The filtering processing has less impact on the algorithm's 
effectiveness. Since filtering out harmonics above 2 kHz, 
taking the derivative of the ZSV, and taking data from one 
cycle after the fault point as input to the FCN gave better 
results, subsequent data processing was carried out using this 
method. 

The model utilized in this paper was trained on simulated 
data and subsequently tested using full-scale test data. If the 
model is trained using full-scale test data, when tested again 
on full-scale test data, metrics such as accuracy, sensitivity, 
specificity, etc., for feeder detection can reach 100%. 
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C. Adaptability of feeder detection method 
Consider the possible influencing factors of the feeder 

detection method in engineering applications. Modify the 
network structure of the distribution network model in Fig. 6, 
changing the number of feeders from 6 to 10, simulate and 
obtain simulation data to validate the adaptability of the feeder 
detection method. The number of simulation data used for 
testing is 1026, which includes low resistance ground fault and 
high impedance fault. The proposed method is tested for its 
ability to correctly identify faulty feeder in the presence of 
noise interference, sampling asynchrony, etc. 

1) Environmental noise 
In engineering applications, external noise may introduce 

interference to the signal, thereby affecting the accuracy of 
feeder detection. To assess the impact of noise on the 
proposed method in this paper, Gaussian white noise with 
signal-to-noise ratios of 20 dB, 30 dB, 40 dB, and 60 dB was 
respectively introduced into the simulated data for testing. The 
testing results are presented in Table VI. With the introduction 
of noise ranging from 30dB to 60dB, there was no change in 
the accuracy of feeder detection. Only when 20dB of noise 
was added did the accuracy experience a slight decrease, 
indicating that noise has minimal impact on the method 
proposed in this paper. 

TABLE VI 
TEST RESULTS OF SIMULATION DATA UNDER NOISE 

INTERFERENCE 
Noise/dB Acc/% Pre/% Sens/% F1/% Spec/% 

20 99.903 100 99.735 99.868 100 
30 100 100 100 100 100 
40 100 100 100 100 100 
60 100 100 100 100 100 

 
2) Sampling asynchrony 
In order to assess the impact of asynchronous sampling on 

the proposed method in this paper, the sampling times for ZSV 
and ZSC offsets were set at 0.2ms, 0.6ms, and 1ms, 
respectively. The testing results are presented in Table VII. 
From the results in Table VII, it can be observed that as the 
offset time increases, the accuracy of feeder detection 
decreases. This is because as the time offset increases, the 
phase relationship between ZSV and ZSC differs more from 
the original unshifted state, and the characteristics displayed in 
the superimposed waveform image may have become 
distorted. This makes it difficult for the algorithm to correctly 
identify the faulty feeder. 

TABLE VII 
TEST RESULTS OF SIMULATION DATA IN THE CASE OF 

ASYNCHRONOUS SAMPLING 
Offset type Offset 

time/ms Acc/% Pre/% Sens/% F1/% Spec/% 

Current lag 
voltage 

0.2 99.903 100 99.735 99.868 100 
0.6 97.758 95.165 98.942 97.017 97.068 
1 96.979 95.538 96.296 95.916 97.377 

Voltage lag 
current 

0.2 100 100 100 100 100 
0.6 98.733 100 96.561 98.25 100 
1 97.368 96.8 96.032 96.414 98.148 

 
 
 

3) Inaccurate start-up moment 
Currently, the majority of feeder detection methods rely on 

transient characteristics, and the deviation between the start-up 
moment and the actual fault moment has a significant impact 
on transient-based methods. In order to test the performance of 
the proposed method in this paper under an inaccurate start-up 
moment, deviations between the start-up moment and the 
actual fault moment were set at 1ms, 3ms, and 5ms, 
respectively. The test results are shown in Table VIII. When 
the actual fault moment lags behind the start-up moment, the 
captured waveform includes a portion before the actual fault 
moment and a portion after it. Due to the pronounced transient 
features in the captured waveform, the accuracy of feeder 
detection can reach 100%. When the start-up moment lags 
behind the actual fault moment, there is a slight decrease in 
accuracy. The misclassified samples share a common 
characteristic: they all have very low transition impedance. 
This is because when the transition impedance is low, the 
transient process of a SPGF is relatively short. If the start-up 
moment lags significantly behind the actual fault moment, the 
captured waveform may be closer to a steady-state waveform. 
This can lead the method proposed in this paper to erroneously 
classify the faulty feeder as a sound one. When the transition 
impedance is relatively high, the transient process of a SPGF 
is longer. Even if the start-up moment lags behind the actual 
fault moment, the captured waveform still exhibits prominent 
transient features. In such cases, the method proposed in this 
paper can still accurately identify the faulty feeder. 

TABLE VIII 
TEST RESULTS OF SIMULATION DATA IN THE CASE OF 

INACCURATE START-UP MOMENT 
Deviation type Deviation 

time/ms Acc/% Pre/% Sens/% F1/% Spec/% 

start-up moment 
lag the actual 

moment of failure 

1 99.513 100 98.677 99.334 100 
3 97.661 100 93.651 96.721 100 
5 95.906 100 88.889 94.118 100 

the actual moment 
of failure lag 

start-up moment 

1 100 100 100 100 100 
3 100 100 100 100 100 
5 100 100 100 100 100 

 
4) Different sampling frequency 
In practical applications, there are differences in the 

sampling frequencies of various data acquisition devices. To 
assess the impact of sampling frequency on the method 
proposed in this paper, simulations were conducted at 
sampling frequencies of 2kHz, 4kHz, 5kHz, and 10kHz. 
Simulated data was collected and subjected to testing. The test 
results are shown in Table IX. At sampling frequencies of 4 
kHz, 5 kHz, and 10 kHz, the accuracy of feeder detection is 
100%. This is because the method proposed in this paper 
involves the conversion of waveform data into images, thereby 
reducing the demands on sampling frequency. However, this 
does not completely eliminate the influence of sampling 
frequency. At 2kHz, there is a slight decrease in the accuracy 
of feeder detection. This could be attributed to the low 
sampling frequency, which result in the loss of some details in 
the superimposed waveform image, consequently reducing the 
accuracy of feeder detection. 
 



TABLE IX 
TEST RESULTS OF SIMULATION DATA WITH DIFFERENT 

SAMPLING FREQUENCY 
Sampling 

frequency/kHz Acc/% Pre/% Sens/% F1/% Spec/% 

2 99.61 99.471 99.471 99.471 99.691 
4 100 100 100 100 100 
5 100 100 100 100 100 

10 100 100 100 100 100 
 

D. Comparison of methods 
Full-scale test data was used to test the proposed method in 

this paper, and a comparison was conducted against methods 
[8], [18], [19], and [20]. The outcomes are presented in Table 
X. 

TABLE X 
COMPARATIVE ANALYSIS OF FEEDER DETECTION METHODS 

method Acc/% Pre/% Sens/% F1/% Spec/% 
Guo et al. [8] 87.083 82.222 61.667 70.476 95.556 

Feng et al. [18] 94.167 100 76.667 86.792 100 
Wei et al. [19] 84.583 69.167 69.167 69.167 89.722 
Yuan et al. [20] 83.333 67.857 63.333 65.517 90 

Proposed method 99.375 100 97.5 98.734 100 
 
Guo et al. [8] converted ZSC into a time-frequency 

grayscale image and then utilized CNN for feeder detection. 
This method transformed ZSC into time-frequency grayscale 
images, providing a more intuitive display of features. 
However, the time-frequency transformation may result in 
some loss of useful features[21]. Feng et al. [18] performed a 
least-squares linear fit to the transient ZSV derivative, the 
ZSC, and the feeder detection results depend on the fit 
function's slope. This method employed a single feature for 

feeder detection. While the approach is simple, the 
universality of this feature contributes to its effectiveness in 
feeder detection. Feng et al. [18] misclassified some faulty 
feeders as sound feeders, and some waveforms are depicted in 
Fig. 9. From the waveform point of view, this is mainly due to 
distortion of the faulty feeder ZSC waveform and the effect of 
start-up moment errors. Wei et al. [19] employed the multiple 
evidence estimation method to fuse transient energy, kurtosis 
value, and cross-correlation distance, selecting the feeder with 
the maximum fault degree as the faulty feeder. This method 
fused three transient features, which may lead to more reliable 
results in feeder detection compared to methods relying on 
individual features. Yuan et al. [20] utilized variational mode 
decomposition to acquire the cross-correlation coefficients of 
feeders, and subsequently employed these coefficients along 
with harmonic energy for faulty feeder detection. This method 
is applicable to distribution networks with distributed power 
sources. 

The method proposed in this paper leverages the 
relationship between transient ZSV derivatives and transient 
ZSC for feeder detection, a relationship characterized by broad 
applicability. Compared to the manually extracted individual 
features in Feng et al. [18], the algorithm used in this paper 
extracts more comprehensive features, leading to enhanced 
accuracy in feeder detection. Furthermore, the proposed 
method exhibits strong resistance to interference, enabling 
accurate identification of faulty feeder even in scenarios 
involving noise interference and inaccurate start-up moment, 
etc. 

 
Fig. 9. Waveform superimposition image and corresponding segmentation results. 
(a) Grounding via tree branches (b) Grounding via grassy sandy sand (c) Grounding via tree branches 



V. CONCLUSION 
This paper utilizes FCN to implement SPGF feeder 

detection. FCN is used to classify each pixel in the input 
image. Detecting faulty feeder based on the number of pixels 
of different categories in the segmentation map output by FCN 
can make the final decision of feeder detection more 
transparent and easily understandable. Furthermore, the 
proposed method doesn't entail setting thresholds, thus 
avoiding the influence of threshold selection on the results of 
feeder detection.  

Tests were conducted to validate the performance of the 
proposed method, using both simulated and field data. The 
outcomes demonstrate the proposed method is able to adapt to 
scenarios such as noise interference, sampling asynchrony, 
etc., and has strong anti-interference and generalization 
capabilities. The proposed method remains capable of 
accurately identifying faulty feeder, even in cases where there 
is a deviation between the start-up moment and the actual fault 
moment. 
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