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Abstract 
 

We report temperature dependencies of material properties such as dielectric anisotropy, 

birefringence, splay ( 11K ), twist ( 22K ), and bend ( 33K ) elastic constants of the uniaxial 

nematic (N) phase formed by flexible dimers of DTC5C9 and compare their behavior to 

that of a corresponding monomer MCT5.  DTC5C9 forms a twist-bend nematic (Ntb) at 

temperatures below the N phase.  Anisotropic properties of MCT5 are typical of the rod-

like mesogens.  In particular, birefringence increases as the temperature is reduced, 

following the classic behavior, described by Haller. The elastic constants also follow the 

standard behavior, with their ratios being practically temperature-independent.   In 

contrast, DTC5C9 shows a dramatic departure from the standard case. Birefringence 

changes non-monotonously with temperature, decreasing on approaching the N-Ntb phase 

transition.  33K  decreases strongly to 0.4 pN near the N - Ntb  transition, although remains 

finite.  The ratios of the elastic constants in DTC5C9 show a strong temperature 

dependence that can be associated with the bend-induced changes in the orientational 

distribution function.  The measured elastic properties are consistent with the tendency of 

the dimeric molecules to adopt bent configurations that give rise to the Ntb phase. 

 

Keywords: dimeric nematic; elastic constants; birefringence; negative dielectric anisotropy; 

twist-bend nematic. 
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1. Introduction 

In the past few years, dimeric liquid crystals (LCs), formed by molecules with two rigid 

rod-like units connected by a flexible bridge, attracted a strong research interest because 

of their fascinating features [1, 2, 3, 4, 5].  In particular, dimeric mesogens with an odd 

number of methylene flexible links form oblique helicoidal director structures in the 

nematic phases, in which the local director experiences bend and twist deformations.  

There are two experimentally observed realizations of the oblique helicoidal structures.  

First, the twist-bend nematic (Ntb) phase, exhibits the oblique helicoidal director with a 

nanometer pitch [3, 4]  that exists as a ground state in a certain temperature range, below 

the standard uniaxial nematic (N) phase, in absence of any external fields and any chiral 

dopants [3, 4]. The second is a heliconical director state of a cholesteric liquid crystal, 

formed in the N phase doped with chiral molecules that is stabilized by an applied electric 

(or magnetic) field; as the external field changes, so does the heliconical pitch, usually on 

the micrometer length scales much larger than the molecular nanoscales [6, 7].  We denote 

this state as ChOH, where the subscript OH stands for “oblique helicoid”.  These two types 

of heliconical states represent yet another spectacular illustration of the subtle interplay 

between the details of molecular structure and macroscopic properties of LCs.  This 

interplay has been envisioned in the theoretical predictions of the Ntb [8, 9, 10] and field-

induced oblique helicoidal structures [11].  In particular, Dozov  [9] suggested that the 

twist-bend nematic could appear upon cooling of a uniaxial nematic formed by the 

molecules of a bent shape.  The model [9] suggests that the bent shape can result in 

spontaneous bend deformation of the director and a change of the sign of the bend elastic 

constant 
33K  from positive to negative as one crosses the N - Ntb transition point ( NtbT ). 

Note that the transition might involve an appearance of other intermediate phases [12], 

but we do not discuss this possibility here as the focus is on the properties of the uniaxial 
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N phase.  Uniform bend, however, cannot be realized in space without other types of 

deformations, either splay or twist.  Thus two different variations of the nematic with 

spontaneous bend have been proposed by Meyer [8] and Dozov [9]: a twist-bend nematic 

and a splay-bend nematic (yet to be discovered experimentally).  The relative stability of 

the two is controlled by the ratio of the splay 
11K  to twist 

22K  constants.  Namely, in the 

twist-bend phase, 
11 22/ 2K K  , while in the splay-bend case, 

11 22/ 2K K   [9, 10].   As 

for the ChOH state, Meyer [11] predicted that it can be induced by an external electric or 

magnetic field in a cholesteric liquid crystal only when 
33 22K K .  In calamitic nematics 

formed by rod-like molecules, the latter condition is not satisfied; the expected and 

universally observed trend follows the inequalities 
33 22 11K K K   [13]. 

Prior research indicates that the dimeric materials feature elastic properties very 

different from those of rod-like nematogens.  Atkinson et al. [14] demonstrated a strong 

odd-even effect in the behavior of 
33K . Two dimers, one with an even number of alkyl 

groups in the spacer chain and another one with an odd number, were characterized by 

the splay Frederiks transition technique.  In this approach, 
11K  is determined from the 

threshold field of reorientation, and 
33K  is obtained by extrapolating the voltage 

dependence of capacitance far above the threshold.  
33K  of the odd homolog was about 

(3-4) pN, much smaller (by a factor 10  ) than the corresponding value for the even 

homolog; the results were in good agreement with the theoretical consideration of the 

odd-even effect by Cestari et al [15].  

The discovery of the Ntb phase in the material abbreviated as CB7CB resulted in 

a strong interest in characterization of this dimer in its N phase.  Yun et al [16] applied 

the  extrapolation technique to extract 33K  from the splay Frederiks transition and  found 

that in the temperature range (99.6-105) 0C, 33K  decreases as the material is cooled.  33K  
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is significantly smaller than both 
11K  and 

22K  , reaching a minimum value of about 0.3 

pN near the N- Ntb transition.  The ratio 
11 22/K K  determined by Yun et al [16] was 

approximately 1.7 near NtbT  , i.e., lower than 2.  The latter result is somewhat surprising, 

as 
11 22/K K  is expected to be larger than 2 in CB7CB, since this material does exhibit the 

Ntb phase rather than a splay-bend nematic, as demonstrated in the freeze-fracture 

transmission electron microscopy studies by Borshch et al [4] and by the resonant carbon 

soft X-ray scattering by Zhu et al [17].  Xiang et al. [6] explored the very same dimer 

CB7CB at the temperature 106 0C and found that 
11K =5.7 pN and 

22K = 2.6 pN, i.e., 

11 22/ 2.2K K  , as expected; for CB7CB doped with 1wt % of the chiral dopant S811, 

33K  was determined to be 0.3 pN.  Finally, Parthasarathi et al [18] measured 
33K  by the 

extrapolation approach similar to that of Yun et al [16] but arrived at a very different 

conclusion that 
33K  of pure CB7CB is monotonically increasing as the sample is cooled 

down. It is only when CB7CB is mixed with a monomer 7OCB in some proportions that

33K  shows a non-monotonous behavior, first increasing and then decreasing as the 

temperature is lowered from the clearing point ( NIT ). 

Balachandran et al [19] used the splay Frederiks transition approach for another 

typical bimesogen, CB11CB, and found that as the temperature decreases, 
33K  becomes 

smaller than 11K ; namely, 
33K =6 pN, while 11K =15.5 pN near NtbT .  Adlem et al [20] 

explored multicomponent mixtures of dimeric materials by the dynamic light scattering; 

the latter allows one to extract all three bulk elastic constants of the material in the region 

close to the phase transition.  They found even more dramatic difference, with 33K  (0.3-

2) pN and 11K   (11-14) pN in the N phase at the temperature about one degree above 

NtbT  ; the ratio 11 22/K K  was determined to be somewhat higher than 2 [20]. 
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All the experiments listed above were performed on materials with a positive 

dielectric anisotropy, 0      , where the subscripts refer to the orientation of the 

director with respect to the field.  The standard approach to measure 
11K  and 

33K  is to 

use a single uniformly aligned planar cell and apply the electric field across it.  The 

threshold determines the splay constant 
11K . As the field increases, the director acquires 

bend in addition to the predominant splay.  By extrapolating and fitting the response 

function (such as capacitance of the cell or transmitted light intensity), one deduces 
33K  

[21].  The approach is very reasonable when 
33K  is comparable to 

11K .   However, when 

33 11K K , one might wish to add an independent technique.  A suitable direct method 

is a bend Frederiks transition caused by an external electric field in a so-called 

homeotropic cell, in which the director is perpendicular to the bounding plates and 

parallel to the applied field.   To date, however, homeotropic alignment of dimeric 

nematics has been achieved only for the materials with negative dielectric anisotropy, 

0   [4].   Borshch et al [4] used homeotropic cells of a 7:3 mixture of DTC5C9 and 

MTC5,  to measure 
33K  directly.  

33K  was much smaller than 
11K , decreasing to  0.8 pN 

near NtbT . 

The goal of this work is to determine the temperature dependencies of basic 

material properties, such as dielectric anisotropy  , birefringence n , and elastic 

constants of splay 11K , twist 
22K  and bend 

33K  of the N phase formed by the dimeric 

molecules of DTC5C9 and to compare them to the corresponding values in the N phase 

formed by its monomer MCT5.  All elastic constants are determined directly, by detecting 

the threshold of the Fredericks transitions for splay and twist in planar cells and for bend 

in homeotropic cells.   
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The results demonstrate that the monomer behavior is in line with the models 

based on rod-like building units, in which the ratios of the elastic constants such as 

11 33/K K  and  
22 33/K K  are practically temperature-independent, while all the constants 

grow as the temperature is lowered.  In contrast, DTC5C9 shows a strong temperature 

dependence of 
11 33/K K  and 

22 33/K K . The ratio 
11 22/K K  remains larger than 2 as 

expected for the material capable of forming the Ntb phase as opposed to the splay-bend 

phase.  Both 
11K  and 

22K  increase strongly when the temperature is lowered;  
33K  

exhibits a non-monotonous temperature dependence, first growing and then decreasing 

as the material is cooled down from NIT .  Near NtbT ,
 33K  reaches very small values, about 

0.4 pN, that is more than one order of magnitude smaller than the corresponding value 

for MCT5.   

2. Materials and methods 

2.1 Chemical structure, phase diagram and alignment 

Figure 1 shows the chemical structures and the phase diagrams of the two studied 

materials, the monomer MCT5 (Figure 1a) and the dimer DTC5C9 (Figure 1b). The 

chemical formula of MCT5 is 2´,3´-difluoro-4,4´´-dipentyl-p-terphenyl (Kingston 

Chemicals Limited), while that one of DTC5C9 is 1,5-Bis(2´,3´-difluoro-4´´pentyl-

[1,1´:4´1´´-terphenyl]-4-yl)nonane (synthesized in Hull).  MCT5 shows N phase, while 

DTC5C9  exhibits N phase at high temperatures and Ntb phase at lower temperatures.  The 

presence of the Ntb phase in DTC5C9 was established on the basis of the polarizing-

microscopy textures showing the characteristic stripes and focal conic domains (Figure 

2d), similar to those observed in other studies of the Ntb phase [1, 4, 12, 22, 23].  DTC5C9 

behavior mirrors broadly that of analogues with shorter and longer internal spacers and 
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mesogens with negative dielectric anisotropy [24, 25, 26, 27, 28].  The clearing 

temperature of DTC5C9 increases in strong magnetic fields, with a rate ~0.6 oC/T [29]; 

in all our experiments, we used magnetic field less than 1 T. Note that the formation of 

the Ntb phase has been demonstrated by transmission electron microscopy for the 7:3 

mixture of DTC5C9 and MCT5 [4]. 

 To align both DTC5C9 and MCT5 homeotropically, we developed the following 

procedure.  Glass substrates coated with transparent  indium-tin-oxide (ITO) electrodes 

were treated with 1% water solution of Dimethyloctadecyl[3-

(trimethoxysilyl)propyl]ammonium chloride (Sigma-Aldrich), on top of which a layer of 

polyimide aligning agent SE5661 (Nissan Chemical Industries) was spin-coated. The 

homeotropic alignment was stable in the entire N range, Figures 2a,b and 3a,b. Planar 

alignment was achieved by using rubbed polyimide PI2555 layers (HD Microsystems), 

Figure 2c,d and 3c,d.  On cooling the homeotropic and planar cells, the N - Ntb transition 

is clearly evidenced by a propagating front that quenches fluctuations of the director in 

the N phase. All textural observations were performed using a polarizing optical 

microscope (POM) [Nikon, Optiphot-2 Pol] equipped with a home-made hot stage with 

the temperature control accuracy 0.1 °C.  The cells thickness d  was set by silicon 

microspheres of a calibrated diameter dispersed in a UV-curable glue; d   was measured 

with a light interference technique using a spectrometer. 

2.2 Dielectric anisotropy 

For dielectric characterization, we used LCR meter (HP4284A) to measure the 

capacitance of the cells.  The dielectric measurements of MCT5 were performed using a 

planar cell with 19.3 0.1μmd   ; and a homeotropic cell with 19.5 0.2 μmd    . For 

the measurements of DTC5C9, we used a planar cells with 21.5 0.2 μmd   ; and a 



8 

 

homeotropic cell with 37.6 0.2 μmd   .  Dielectric permittivities were measured using 

an AC electric field at frequencies f  40 kHz for MCT5 and f  10 kHz for DTC5C9. 

The relatively high frequency of the field assured that the flexoelectric and surface 

polarization contributions [30] to the electro-optical response of the cell are minimized.  

The dielectric permittivity   was determined from the capacitance of the homeotropic 

cells, while    was measured using the planar cells;       is negative in the entire 

N range for both materials, Figure 5. 

2.3 Birefringence 

The temperature dependence of the birefringence n  for MCT5 and DTC5C9 was 

determined by measuring the optical retardance, nd   , on cooling at a rate of 

2.0oC/min using LC PolScope (Abrio Imaging System) [31, 32], Figure 6. The sample 

was probed with a monochromatic light of wavelength 546 nm  . The accuracy of the 

retardance measurements is not worse than 1 nm. The measurements of  n  were 

performed using planar cells of thicknesses 3.56 0.05 μmd   for MCT5 and 

5.09 0.05 μmd   for DTC5C9.  

2.4 Elastic constants 

The elastic constant of splay 11K  was obtained by determining the magnetic threshold, 

1thB , of  the splay Frederiks transition in a planar sample caused by the magnetic field 

applied perpendicularly to the bounding plates.  The director reorientation was probed by 

measuring the transmitted light intensity passing normally through the LC cell between 

crossed polarizers. 11K was determined from the relationship  
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2

1
11

o

thdB
K



 

 
  
 

, (1) 

where 1thB  is the magnetic threshold,   is the diamagnetic anisotropy, and 

7 -14 10 H mo    . 

There are several approaches to measure 
22K , such as the Frederiks transition in 

a twisted nematic (TN) cell [33], in-plane realignment in a planar cell [34], a dynamic 

light scattering method [35], etc.  The measured value of 
22K  in these methods is usually 

less accurate than those of 
11K  and 

33K , since the twist deformations are accompanied 

by bend and splay.  For example, in the TN method, 
22K  depends on 

11K  and 
33K , so 

that the errors in 
11K  and 

33K  are accumulated into the value of 
22K .  In the in-plane 

switching cell method, 
22K  is independent of 

11K  and 
33K , but the electric field within 

the cell is not uniform, resulting in an additional source of errors [36].  To avoid these 

complications, we use the twist Frederiks transition caused by the magnetic field acting 

on a planar cell in such a way that the field is perpendicular to the director but lies in the 

plane of the cell. At a certain threshold, 
2thB , the uniform cell experiences pure twist 

deformation, which allows us to determine the twist elastic constant as 

 

2

2
22

o

thdB
K



 

 
  
 

. (2) 

 We used a planar sample placed between two crossed polarizers and tested 

transmittance of a He-Ne laser beam ( 632.8 nm  ). The beam was directed at an angle 

large enough to overcome the Mauguin regime [37, 38]. The output light intensity was 

measured as a function of the magnetic field to determine 2thB  and thus 22K .   
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In order to obtain 
33K , we applied an AC electric field using LCR meter and 

measured the voltage dependence of  the transmitted light passing through a homeotropic 

cell. We applied 40 kHz for MCT5; 10 and 40 kHz for DTC5C9 measurements. The bend 

Frederiks threshold, 
3thV , was determined from the optical phase retardation vs voltage 

curve using the so-called double extrapolation approach [39, 40], from which the value 

of 
33K was extracted, 

 
2

o 3
33 2

thV
K

 




 . (3) 

Figure 4 illustrates the typical field dependence of optical phase retardation used to find 

3thV  by double extrapolation.  We also employed the capacitance method [41] for 

determining the bend elastic constant using the capacitance vs voltage dependency 

measured for a homeotropic cell.  

 The bend Frederiks transition in a homeotropic cell can also be triggered by the 

magnetic field directed perpendicularly to the director, as   of MCT5 and DTC5C9 is 

positive, 0      . The magnetic threshold 3thB  was determined by measuring 

the transmitted light intensity passing through the homeotropic LC cell. Using the 

expression  

 

2

3
33

o

thdB
K



 

 
  
 

 (4) 

 

and comparing the bend constant to the value obtained in the electric Frederiks effect, we 

determined the diamagnetic anisotropy, 

2

3

3

th
o o

th

V

dB
   

 
    

 
. For example, 
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6(1.1 0.1) 10      (SI units)  at – NIT T  = -22 o C  for MCT5, and 

6(1.4 0.1) 10      (SI units) at – NIT T  = -25 o C  for DTC5C9.  The measured values 

of    are used in measuring the splay and twist elastic constants in planar cells. 

We used two cells of different thicknesses (19.4 μm and 37.6 μm ) with the same 

homeotropic alignment layer and found the same value of thB d  for both cells. The latter 

justifies that the polar anchoring of the homeotropic alignment is strong enough and that 

the threshold field and the 
33K  data are not affected by the finite surface anchoring.  The 

threshold field values in other geometries were determined in a similar fashion.  

3. Results 

3.1 Dielectric anisotropy 

Both MCT5 and DTC5C9 liquid crystals show a negative dielectric anisotropy, Figure 5. 

MCT5 exhibits a monotonous temperature behavior that agrees with data collected by 

Urban et al for the same compound (referred to as KS3) [42]. Behavior of DTC5C9 is 

dramatically different near the N-Ntb transition: the absolute value of the dielectric 

anisotropy starts to decrease in the pretransitional region, similarly to the data by Borshch 

et al obtained for the 7:3 mixture of DTC5C9 and MCT5 [4] . 

3.2 Birefringence 

Birefringence of MCT5 increases monotonically as the temperature is reduced, in a 

fashion typical for rod like molecules [43], following the Haller’s rule [44] in the entire 

nematic range, Figure 6a.  Haller’s rule is of the form 

 1
*

T
n n

T




 

   
 

, (5) 
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where n , *T  , and  are the fitting parameters.  For MCT5 we find 0.309 0.003n  

, * 390.3 0.2 KT    and = 0.178 0.004  .  As suggested by Geppi et al [45], validity 

of the fit in Equation 5 allows one to approximate the temperature dependence of the 

order parameter as 
( )

( )
n T

S T
n


 . Using this approximation, we find the value of S  

increasing from 0.4 to 0.7 within the entire N phase, Figure 7, in agreement with the data 

presented by Geppi et al [45] for the compounds very similar to MCT5, such as KS7, in 

which one of the aliphatic tails is shorter than that of the aliphatic tails of MCT5 by one 

methyl group.  

In contrast to the monotonous behavior of n  in MCT5, the birefringence of 

DTC5C9 cooled down from the isotropic phase first increases and then decreases on 

approaching NtbT , Figure 6b. The decrease of n  near the Ntb phase is consistent with 

other studies of dimers [4, 46, 47].  The behavior of n  does not obey Haller’s rule, 

clearly deviating near the N-Ntb transition.  The temperature range of this deviation is 

broad, about 10 K.  For this reason we use the Haller fit only for the data above T  = NtbT

+ 10 K. The result is shown in Figure 6b, yielding 0.219 0.006n   , 

* 434.6 0.4 KT    and = 0.140 0.009  .  Non-monotonous ( )n T  behavior suggests 

that the order parameter ( )S T  might also be non-monotonous.  As a rough approximation, 

we assume that the two functions are connected in a linear fashion, 
( )

( )
n T

S T
n


 , where 

0.219n   is the value obtained from the fit above.  More accurate measurement of 

( )S T would require independent measurements of ordinary and extraordinary refractive 

indices. The dependence ( )S T calculated from the entire range of data on ( )n T , is non-

monotonous, with a maximum max 0.68S   achieved at about 10 K above NtbT , Figure 6b.   
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Interestingly, the non-monotonous ( )S T with the maximum at NtbT +10 K has been 

already reported by Emsley et al [48] who measured the order parameter from chemical 

shift anisotropies in NMR experiments.  A similar conclusion about pretransitional 

changes of  ( )S T that start at NtbT +10 K were made by Burnell et al [49] for the mixture 

of flexible dimer CB9CB with 5CB. 

3.3 Elastic constants 

The elastic constants of MCT5 (Figure 8) follow general behavior of calamitic LCs, as

33 11 22K K K   [19, 50]. The temperature behavior of the elastic constants of DTC5C9 

is dramatically different in comparison to MCT5. The ratio 11 22/ 2K K   ( Figure 9a), as 

expected by Dozov for materials exhibiting the Ntb phase [9]. On departure from NIT , 33K

first increases and then dramatically decreases on approaching NtbT  (Figure 10). 

4. Discussion 

In conventional rod-like nematic liquid crystals (such as MCT5), far from the phase 

transitions into lower-symmetry phases, the anisotropic properties such as birefringence 

and dielectric anisotropy change linearly with the scalar order parameter.  The 

birefringence obeys the Haller type behavior, Figure 6, implying that the scalar order 

parameter of MCT5 monotonously increases as the temperature is lowered from NIT .  In 

the simplest mean-field models, the elastic constants are expected to follow the 

relationship 
2

iiK S , while showing the inequalities 33 11 22K K K   [13, 50]. The 

temperature behavior of the elastic constants for MCT5 follows these expectations rather 

well. Indeed, Figure 8 demonstrates that 33 11 22K K K  .  The ratio of any two elastic 
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constants is roughly independent of temperature, as shown for MCT5 by open symbols 

in Figure 9.  

DTC5C9 shows a dramatically different behavior. First of all, n  shows a non-

monotonous temperature dependence, decreasing near N-Ntb transition, within a rather 

broad temperature range.  The maximum n  is achieved at the temperature ~10 K above 

NtbT , suggesting that S  follows a similar non-monotonous behavior with a maximum at 

a similar temperature.   NMR measurements by Emsley et al [48] for DCT5C9 show that 

 S T  is indeed reaching a maximum at 10 K above NtbT .  The non-monotonous 

temperature dependencies of n  and S could be associated with the growth of the 

population of molecular conformers with a bent shape at lower temperatures and higher 

densities.  It is very likely that these bent molecules form pretransitional clusters with the 

structure closely resembling the structure of the Ntb phase. We remind here that according 

to the theory, the driving force of the Ntb phase formation is the tendency of molecules to 

bent; this bend is uniform in only when accompanied by twist [8, 9]. The twist-bend 

distortions set up a one-dimensional periodic modulation of the local director. In the 

pretransitional region, one would expect a similar interplay of spontaneous bend and twist 

so that the pretransitional clusters could develop some pseudo-layered structure.   

We turn now to the discussion of the elastic properties of DTC5C9. The splay 

elastic constant is noticeably larger than that in MCT5, Figure 8.  For example, at the 

temperature 
o10 CNIT T   , MTC5 and DTC5C9 show  11K = 4 and 7 pN, respectively, 

while at 
o20 CNIT T   , the values are 11K = 7 and 10 pN. This result correlates with 

the model proposed by Meyer, in which 11K  is expected to increase linearly with the 

length L  of the molecules [51], 11
4

Bk T L
K

d d
 , where Bk  is the Boltzmann constant, T  is 

the absolute temperature, d  is the diameter of the rod-like molecule. Splay deformations 
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require creation of gaps between the molecules. To keep the density constant, these gaps 

must be filled with the ends of adjacent molecules. The formula above follows from the 

consideration of the entropy loss associated with rearrangements of the molecular ends 

assumed to behave as non-interacting particles of an ideal gas [51]. Such an assumption 

is well justified for long molecules, but might be less accurate for relatively short ones.  

It is worth noticing that other monomer-dimer comparative studies do not show such a 

large differences in the values of 11K  [52] and sometimes even show that 11K  of dimers 

is smaller than 11K  of a monomer. Dilisi et al [53] measured 11K  for a monomer 4,4’-

dialkoxyphenylbenzoate [C5H11OC6H4COOC6H4OC5H11], its related “even” dimer with 

a spacer of ten methylene groups [52] and an “odd” dimer  with nine methylene groups 

in the flexible bridge [53]. It turned out that the odd dimer, presumably of a bent shape 

similar to that one of DTC5C9, produced the lowest 11K  among the three studied 

molecules [52, 53], contrary to our case.   For example, at 
o10 CNIT T   , the values 

of 11K  for the monomer, even dimer, and odd dimer, are 7.5, 8.5, and 5  pN, respectively 

[52, 53]. One might argue that a reduced scalar order parameter of the odd dimer (which 

is indeed evidenced by the lower diamagnetic anisotropy [53]) might lead to a smaller 

11K .  However, this mechanism is apparently not the main one governing 11K  in DTC5C9 

and MCT5, and the increase of the molecular length appears to be dominating. 

The twist elastic constants of DTC5C9 and MCT5 show similar values in the 

upper temperature range but behave differently at lower temperatures. Namely, 22K  of 

DTC5C9 increases noticeably near the transition into the Ntb phase. An increase of 22K  

is typical near the nematic – smectic A phase transition phase and is explained by the 

formation of cybotactic clusters with periodic structure of equidistant layers that hinder 

deformations of twist and bend of the normal to the layers. A similar mechanism should 
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be expected in the vicinity of NtbT , even if the smectic order, in the sense of periodic mass 

density modulation, does not develop. The Ntb structure is one-dimensionally periodic 

because of twist-bend director modulation and thus also prohibits deformations of twist 

and bend of the heliconical axis. The increase of  22K  can thus be treated as a 

pretransitional effect potentially caused by the formation of pretransitional clusters with 

a pseudo-layered structure.  Such an effect correlates well with the pretransitional 

decrease of birefringence and scalar order parameter in DCT5C9 discussed above.  The 

measured values of 11K  and 22K  show that ; the result agrees with the Dozov 

model of the Ntb phase [9]. 

The most spectacular deviation of DTC5C9 from the classic picture of nematic 

elasticity is demonstrated by 33K , Figure 10. As the temperature decreases from NIT , 33K  

first increases, but after reaching a maximum, 33K  decreases to a very low value of 0.4 

pN.  The rate of the decrease is slowed down near the N-Ntb transition; there seems to be 

a small plateau or even an increase right before the transition.  Such a behavior has been 

already observed in other studies and is associated with the bent conformations of the 

dimeric molecules [20, 46].  Importantly, the temperature dependence of 33K  in DTC5C9 

does not correlate with the expected behavior of the scalar order parameter, as clearly 

evidenced by a strong temperature dependencies of the ratios 22 33/K K  and 11 33/K K , 

Figure 9b,c.  

The idea that bent shape of molecules can lead to a small bend constant 33K  dates 

back at least four decades to the theoretical works by Gruler [54] and Helfrich [55]. The 

underlying mechanism is that in presence of bend deformations, the distribution of 

molecular orientations is no longer axially symmetric; the molecules can realign 

cooperatively, mimicking the director bend by adjusting their bend shapes and thus 

11 22 2K K 
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relieving the elastic strain.  A reduction of 33K  through bent conformations has also been 

predicted by Terentjev and Petshchek [56] for semiflexible molecules.  Experimentally, 

a reduction in 33K  was indeed confirmed for mixtures [57] and pure compounds with 

rigid bent core molecules [58, 59, 60].   

The considerations by Gruler and Helfrich have been recently reinforced in the 

density functional theory by De Gregorio et al [61]. Namely, mesogens of bent shape are 

shown to exhibit a non-monotonous dependence of 33K  on the number density of the 

molecules.  As a function of an increasing S , 33K  is predicted [61] to first increase (near 

NIT ), then reach a maximum and decrease to 0, presumably when the material undergoes 

a transition into the Ntb phase. Importantly, the effect of a reduced 33K  is observed only 

if the bent-core molecules are collectively adjusting to the imposed bend. If the 

orientational distribution of the bent region remains locally uniaxial, the model [61] 

predicts a strong increase of 33K  with the enhancement of S , a classic result for the rod-

like mesogens.  

It is important to stress that the experimental values of 33K , unlike some of their 

theoretical counterparts, never reach zero at NtbT   and might even slightly increase near 

the transition [20].  The most likely reason is formation of pretransitional clusters with 

local bend and twists which establish a pseudo-layered structure, similarly to the 

discussed case of an increased 22K . 

Finally, 33 22K K found for DTC5C9 opens a possibility for realization of the 

ChOH cholesteric under an applied electric field as predicted by Meyer [11] making the  

cholesteric pitch and thereby the selective reflection band tuneable [6, 7]. 
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5. Conclusion 

We determined the material parameters of the uniaxial nematic phase formed by a 

monomer MCT5 and the flexible odd dimer DTC5C9.  The monomer shows a classic 

temperature dependence of the material properties expected for rigid rod-like mesogens. 

The dimer DTC5C9 exhibits a dramatic departure from this behavior. First, the 

birefringence of DTC5C9 does not follow the Haller’s rule in a broad temperature range 

of width ~10 K near NtbT . This behavior correlates well with the idea that the scalar order 

parameter in the pretransitional region decreases, because of the growth of population of 

molecules with bent conformations and formation of pretransitional clusters with local 

bends and twists. The twist elastic constant increases near the N-Ntb transition, while the 

bend constant decreases to about 0.4 pN.  The ratios of the elastic constants such as 

11 33/K K and 22 33/K K show a strong temperature dependence, emphasizing that 33K  does 

not correlate with the scalar order parameter.  It is very likely that the bend deformations 

used to directly determine 33K  in the bend Frederiks transition are relieved by formation 

of polar biaxial structures with the bent molecules packed in a similar fashion, thus 

modifying the orientational distribution function. Finite values of 33K  and an increase of 

22K near the transition into the Ntb phase can be associated with the pretransitional 

formation of pseudo-layered clusters.  
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Figure 1.  Chemical structures and phase diagrams of the liquid crystal monomer MCT5 

(a) and dimer DTC5C9 (b) with negative dielectric anisotropy. The phase diagram was 

determined on cooling at the rate of 0.1oC/min from the isotropic phase. 

 

 

Figure 2.  Polarizing optical microscope textures of DTC5C9 in the (a,b) homeotropic N 

cell ( 19.4 μmd  ) and (c) planar N cell ( 21.5 μmd  ); (d) planar  Ntb cell with stripes 

and focal conic domains ( 21.5 μmd  ). Part (b) shows the conoscopic pattern 

characteristic of a homeotropic uniaxial nematic. The director in part (c) is along the 

rubbing direction R; polarizer and analyzer are labelled as P and A. 



23 

 

 

Figure 3. Polarizing optical microscope textures of MCT5 in the (a,b) homeotropic N cell  

(cell thickness 19.5μmd  ); (c,d) planar N cell ( 19.5 μmd  ). Part (b) shows the 

conoscopic pattern characteristic of a homeotropic uniaxial nematic. The director in part 

(c) and (d) is along the rubbing direction R. 

 

 

Figure 4.  Determination of 3thV  for DTC5C9 material in a homeotropic cell with 

19.4μmd   at 
o

NI 24 CT T   .The bold straight lines illustrate how the threshold is 

determined by double extrapolation.  
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Figure 5.  Temperature dependence of the dielectric anisotropy for liquid crystal 

monomer MCT5 (open symbols) and dimer DTC5C9 (filled symbols) measured at 

frequencies of 40 and 10 kHz respectively. The dashed vertical line represents N-Ntb 

transition temperature for DTC5C9. 

 

 

Figure 6. Temperature dependence of n  for (a) monomer MCT5 (open symbols) and 

(b) dimer DTC5C9 (filled symbols). The wavelength of the probing light was 546 nm.  

 

 

Figure 7. Temperature dependence of S  for the monomer MCT5 (open symbols) and 

dimer DTC5C9 (filled symbols). Dotted lines connecting the data points are guides for 

eyes. 
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Figure 8. Temperature dependent elastic constants of MCT5 (open symbols) and dimer 

DTC5C9 (filled symbols).  

 

 

Figure 9.  Temperature dependencies of the ratios (a) 11 22/K K  (b) 22 33/K K  and
 
(c) 

11 33/K K  for MCT5 (open symbols) and DTC5C9 (filled symbols).  
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Figure 10.  Temperature dependence of  33K  for DTC5C9. Filled and empty circles 

represent the results obtained by the light intensity measurements with applied electric 

fields at 10 and 40 kHz respectively. The stars represent 33K  extrapolated from the 

capacitance vs voltage curve.  

 


