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Abstract. Climate is one of the main drivers for landscape evolution models (LEMs), yet its representation is
often basic with values averaged over long time periods and frequently lumped to the same value for the whole
basin. Clearly, this hides the heterogeneity of precipitation — but what impact does this averaging have on erosion
and deposition, topography, and the final shape of LEM landscapes? This paper presents results from the first
systematic investigation into how the spatial and temporal resolution of precipitation affects LEM simulations
of sediment yields and patterns of erosion and deposition. This is carried out by assessing the sensitivity of
the CAESAR-Lisflood LEM to different spatial and temporal precipitation resolutions — as well as how this
interacts with different-size drainage basins over short and long timescales. A range of simulations were carried
out, varying rainfall from 0.25h x 5km to 24 h x Lump resolution over three different-sized basins for 30-year
durations. Results showed that there was a sensitivity to temporal and spatial resolution, with the finest leading to
> 100 % increases in basin sediment yields. To look at how these interactions manifested over longer timescales,
several simulations were carried out to model a 1000-year period. These showed a systematic bias towards
greater erosion in uplands and deposition in valley floors with the finest spatial- and temporal-resolution data.
Further tests showed that this effect was due solely to the data resolution, not orographic factors. Additional
research indicated that these differences in sediment yield could be accounted for by adding a compensation
factor to the model sediment transport law. However, this resulted in notable differences in the topographies
generated, especially in third-order and higher streams. The implications of these findings are that uncalibrated
past and present LEMs using lumped and time-averaged climate inputs may be under-predicting basin sediment
yields as well as introducing spatial biases through under-predicting erosion in first-order streams but over-
predicting erosion in second- and third-order streams and valley floor areas. Calibrated LEMs may give correct
sediment yields, but patterns of erosion and deposition will be different and the calibration may not be correct
for changing climates. This may have significant impacts on the modelled basin profile and shape from long-
timescale simulations.

Landscape evolution models (LEMs) have been extensively
developed to understand how Earth surface processes influ-
ence drainage basin dynamics and morphology. One of the
important forcings of erosion and morphodynamic change
in these models is climate — usually in the form of precip-
itation. However, all LEMs use some degree of spatial and
temporal averaging for their driving climate or precipitation
data. Spatially, rainfall (or climate parameters) are usually

lumped over the whole basin and changed together. This
clearly removes the effects of spatial heterogeneity in the
rainfall that may be caused by atmospheric factors (i.e. con-
vective vs. frontal) or due to topography (orographic effects).
Temporally, there is always some form of averaging, whether
decadal, annual, daily or hourly, that conceals heterogeneity
in the precipitation input. However, the temporal resolution
may be important with, for example, short intense periods of
rainfall being capable of generating flooding that would not
occur if it were averaged over a longer time period. There
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are important practical reasons for using averaged or coarse
spatial- and temporal-resolution precipitation data, including
data availability, model parsimony and model efficiency. Us-
ing spatially lumped climate values makes models simpler
to construct and coarse temporal resolutions can make them
faster to run by enabling longer time steps. Furthermore, the
availability of high temporal- and spatial-resolution precip-
itation data is often poor — especially if the quality and va-
lidity of the data are considered. Finally, many LEM studies
run over tens to thousands of years where it is impossible to
generate or reconstruct suitable records of precipitation of a
high resolution.

There has been a limited exploration of precipitation
resolution impacts in previous LEM studies; S6lyom and
Tucker (2007) argued that over the long timescales that
LEMs are often applied, spatial effects will become less im-
portant. For example, as the modelled period of a simula-
tion increases, the probability for separate convective rain-
fall cells hitting all parts of the basin increases. Additionally,
Sélyom and Tucker (2007) suggest that temporal effects be-
come less important when the basin is of sufficient size that
hydrological travel times from the top to the bottom of the
basin are greater than the duration of precipitation events.

As morphodynamic changes within basins are heavily as-
sociated with basin hydrology, further insights may be drawn
from hydrological modelling studies — where the influence of
the spatial and temporal resolution of rainfall inputs has been
discussed for over 3 decades (Lobligeois et al., 2014). In this
literature, there is a general agreement that finer detail in the
representation of spatial and temporal variability of rainfall
in a hydrological model will improve the outputs, especially
when observing hydrographs from a single event (Beven and
Hornberger, 1982; Bronstert and Bardossy, 2003; Finnerty
et al., 1997; Hearman and Hinz, 2007; Ogden and Julien,
1994; Wainwright and Parsons, 2002; Wilson et al., 1979).
Coarser resolutions will result in a long, low-intensity pre-
diction of the runoff, and finer resolutions result in shorter,
higher-intensity predictions (Hearman and Hinz, 2007). Sev-
eral authors have suggested that finer spatial resolutions are
required for smaller basin sizes (Andréassian et al., 2001;
Gabellani et al., 2007; Lobligeois et al., 2014), as coarser
spatial resolutions tend to incorporate a greater proportion of
rainfall that did not fall within the basin. For example, Gabel-
lani et al. (2007) found that to achieve a model performance
of less than 5 % RMSE in the discharge, the spatial resolu-
tion of the rainfall is required to be no more than 20 % that
of the basin size, and the temporal resolution no more than
20 % of the basin time of concentration. However, Lobligeois
et al. (2014) argued that the appropriate resolution depends
on the scale of the basin, the characteristics of the basin and
the characteristics of individual rainfall events. Additionally,
Krajewski et al. (1991) claimed that the temporal resolution
had a greater impact than the spatial resolution.

It is important to also consider that the uncertainty within
rainfall products increases with finer spatial and temporal
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resolutions, meaning that improved model performance is
tempered by increased uncertainty surrounding the precipi-
tation data (McMillan et al., 2012). Therefore, to reduce the
propagation of rainfall uncertainties through a hydrological
model, the spatial and temporal resolutions are often aggre-
gated to coarser scales, such as a basin-average areal value
and daily, decadal, monthly or annual totals. In such cases,
Segond et al. (2007) suggested that a reliable basin-average
value is sufficient, provided that there is not enough rainfall
variability to overcome any dampening effects of the basin.
This is supported by Lobligeois et al. (2014), where results
from modelling 181 basins in France across a range of hydro-
climatic conditions with lumped and semi-distributed hydro-
logical models showed that in almost every case the perfor-
mance of lumped and semi-distributed models was very sim-
ilar. Other studies have also observed that models utilizing
basin-averaged rainfall show similar performances to those
utilizing more detailed rainfall (Kouwen and Garland, 1989;
Nicétina et al., 2008; Pessoa et al., 1993). The apparent lack
of improved performance with finer spatial and temporal res-
olutions may also be explained by the ability to highly cali-
brate hydrological model outputs to field data.

In summary, the above studies show that for basin-scale
hydrological modelling, the temporal and spatial resolution
of rainfall can have an impact on model outputs, but the
model calibration process can account for this. It would seem
sensible to apply this knowledge to LEMs; however, erosion
and deposition processes within drainage basins do not lin-
early reflect the hydrology. For example, an LEM driven by
hourly precipitation data (Coulthard et al., 2012b) has shown
that erosion, deposition and sediment yields responded expo-
nentially to flood size. Tucker and Hancock (2010) also iden-
tified this sensitivity of erosion and deposition to discharge
in their review of LEMs. They examined research consider-
ing the role of discharge variability through time on erosion
and landscape development (e.g. Lague et al., 2005; Mol-
nar et al., 2006; Tucker and Bras, 2000) and illustrated how
precipitation variability can have an equal or greater erosive
impact than precipitation amount (Tucker and Bras, 2000).
Additionally, Tucker and Hancock (2010) noted that erosion
and sediment transport rates will also tend to increase with
greater flow variability — and flow variability may in turn be
affected by the spatial and temporal resolution of precipita-
tion. Work has been carried out to account for precipitation
resolution in the SIBERIA LEM, where Willgoose and Ri-
ley (1998) and Willgoose (2005) used a scaling approach
to calibrate “effective parameters”. This involved measuring
runoff and sediment erosion at a high temporal resolution in
test plots and using this to calibrate a relationship to mean
annual sediment transport, thereby accounting for changes
in sediment yield due to temporal precipitation resolution,
though only in terms of bulk basin sediment yields. In their
study, the impact of finer temporal-resolution precipitation
data is clearly important as Willgoose (2005; p. 84) stated
“It is possible for this temporal-resolution error in the simu-
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lated erosion record to be as much as an order of magnitude
in size.”

Modelling studies have also shown that geomorphic re-
sponses can be chaotic and highly variable with similar-
size flood events delivering highly different volumes of sed-
iment and producing significantly different patterns of ero-
sion and deposition (Castelltort and Van Den Driessche,
2003; Coulthard and Van De Wiel, 2007; Coulthard et al.,
1998, 2005; Simpson and Castelltort, 2012; Van De Wiel
and Coulthard, 2010). Furthermore, Coulthard et al. (2013a)
showed that the timing and size of the flood wave generated
by a hydrodynamic flow model in LEMs had an important
impact on sediment yield. It is therefore reasonable to ex-
pect that whilst there is a relationship between hydrology,
erosion and deposition, basin morphodynamics may have
greater sensitivities to spatial and temporal resolutions of
rainfall data.

An additional, yet important difference between hydro-
logical and LEM studies is the metrics used for model as-
sessment. Hydrological studies are frequently measured on
the basin hydrograph — a spatially lumped metric of water
delivered over time at the basin outlet — whereas landscape
evolution models are assessed on the spatial patterns of ero-
sion and deposition such as basin shape or hypsometry (Han-
cock et al., 2016; Tucker and Hancock, 2010). Furthermore,
over longer timescales spatial patterns or erosion and depo-
sition become more important, as positive feedbacks lead to
streams/gulleys incising, growing and increasing their basin
area. Therefore, the basin outlet metric used by most of
the previously mentioned hydrological studies will be hid-
ing evolving spatial heterogeneities within the basin that over
time are important for LEMs.

This raises the following questions:

1. How does the spatial and temporal resolution of precip-
itation/climate data impact upon basin erosion and de-
position patterns and ultimately longer-term landscape
evolution?

2. Can any differences in sediment yield and erosion and
deposition patterns due to spatial and temporal precipi-
tation resolution be accounted for via adjustment or cal-
ibration of model parameters?

3. Are the metrics and methods commonly used for as-
sessing the performance of basin hydrological models
appropriate for LEM and morphodynamic models?

This paper will address these three questions by develop-
ing the CAESAR-Lisflood LEM (Coulthard et al., 2013a) to
incorporate spatially variable rainfall and use it to test the
impacts of spatial and temporal precipitation resolution on
basin geomorphology over a range of basin sizes.
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2 Methods

2.1 CAESAR-Lisflood and model developments

CAESAR-Lisflood is a grid-based LEM that uses a hydro-
logical model to generate surface runoff, which is then routed
using a separate scheme generating flow depths and veloci-
ties. These are then used to drive fluvial erosion over sev-
eral grain sizes integrated within an active layer system. In
addition, slope processes (mass movement and soil creep)
are also simulated. Previous versions of CAESAR-Lisflood
used a lumped hydrological model based on TOPMODEL
driven by one precipitation time series for the whole basin.
This study required the spatial and temporal resolution of the
precipitation inputs to be altered, which led to some model
adaptations. A detailed description of the revised hydrologi-
cal components is provided below, but for elaboration on the
hydraulic, fluvial erosion and slope model operation readers
are referred to Coulthard et al. (2013a).

The hydrological model within CAESAR-Lisflood is
based on an adaptation of TOPMODEL (Beven and Kirkby,
1979), based on an area-lumped exponential store of water,
where storage and release of water is controlled by the m pa-
rameter. m is responsible for controlling the rise and fall of
the soil moisture deficit (Coulthard et al., 2002) and there-
fore influences the characteristics of the modelled flood hy-
drograph (Welsh et al., 2009). Higher values of m increase
soil moisture storage, leading to lower flood peaks and a
slower rate of decline of the recession limb of the hydro-
graph and therefore represent a well-vegetated basin (Welsh
et al., 2009). Conversely, lower values of m represent more
sparsely vegetated basins. If the local rainfall rate » (mh™=")
specified by an input file is greater than 0O, the total surface
and subsurface discharge (Qo; in m3 s~ 1) is calculated using
Eq. (D).

=—1
Orot T 0g .

m ((r —jt)+jtexp(%))
Ji=— :
(Ftew ((55)+1))

Here, T is time (s), j; is soil moisture store and j;_ is soil
moisture store from the previous iteration. If the local rain-
fall rate r is zero (i.e. no precipitation during that iteration),
Eq. (2) is used:

i T
Ot = glog (1+ (”7))

j= Ji—1
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Equations (1) and (2) calculate a combined surface and sub-
surface discharge, and these are separated prior to runoff flow
routing. This is done using a simple runoff threshold, which
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is a balance of the hydraulic conductivity of the soil (K),
the slope (S) and the grid cell size that here is 50 m (Dx)
(Coulthard et al., 2002) (Eq. 3).

Threshold = K S(Dx)? (3)

The volume of water above this threshold, or above a user-
defined minimum value (Qmip), iS subsequently treated as
surface runoff and routed using the hydraulic model.

CAESAR-Lisflood can already use precipitation data over
a range of temporal resolutions, and for most previous ap-
plications this resolution has been hourly, though the model
has also been run with daily (Coulthard et al., 2013b) and at
10 min resolutions (Coulthard et al., 2012a). To enable spa-
tially variable precipitation inputs and hydrology, CAESAR-
Lisflood was modified so that precipitation rates could be in-
put via spatially fixed predefined areas. These areas are de-
fined with a raster index file with numbers corresponding to
the areas. In this study regular square areas of rainfall were
used that corresponded to the available rainfall data, but any
shape area can be used. For each area, a separate version of
the hydrological model (Egs. 1-3) is run, enabling different
levels of storage and runoff to be generated in different areas.

The volume of runoff in a cell (determined by the hy-
drological model above) is then treated as surface flow and
routed across the digital elevation model (DEM) surface us-
ing the Lisflood-FP hydrodynamic flow model developed by
Bates et al. (2010) and described further in Coulthard et
al. (2013a). This model is a 2-D hydrodynamic model con-
taining a simple expression for inertia. Flow is routed to a
cell’s four Manhattan neighbours using Eq. (4):

q; — ghy At
1073’
1+ gh, Atn2q, /b )

qi+At = ( )

where At is length of time step (s), ¢ and r+ At respec-
tively denote the present time step and the next time step,
g is flow per unit width (m?s~!), g is gravitational accelera-
tion (ms~2), A is flow depth (m), z is bed elevation (m), x is
grid cell size (m), W is water surface slope and 7 is the
Manning roughness coefficient.

Flow depths and velocities determined by the hydraulic
model are then used to calculate a shear stress that is then
fed into a sediment transport function to model fluvial ero-
sion and deposition. CAESAR-Lisflood provides a choice of
sediment transport function with the Einstein (1950) or, as
used in this study, the Wilcock and Crowe (2003) method.
Sediment transport is then determined for (up to) nine differ-
ent grain size classes, and these may be transported as bed-
load or suspended load. A distinction is made between the
deposition of bed load and suspended load, where bedload
is moved directly from cell to cell, whereas fall velocities
and the concentration of sediment within a cell determine
suspended load deposition. Importantly, the incorporation of
multiple grain sizes and model formulation of the selective
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Figure 1. Map showing the extents of the three test basins with the
Upper Swale in green and the Arkengarthdale extent in red. Addi-
tionally, the 5 km rain radar grid cells overlaying the three basins
are shown — coloured according to the basins they cover.

erosion, transport and deposition of the different sizes allows
a spatially variable sediment size distribution to be modelled.
However, as this grain size heterogeneity is expressed verti-
cally as well as horizontally, a method for storing sub-surface
sediment data is required. This is achieved by using a sys-
tem of active layers comprising a surface active layer (the
stream bed), multiple buried layers (strata) and, if needed, an
un-erodible bedrock layer (Van De Wiel et al., 2007). Slope
processes are also simulated, with landslides occurring when
a user-defined slope threshold is exceeded and soil creep car-
ried out as a linear function of slope.

2.2 Study area

The basin studied is the River Swale in northern England.
The mean basin relief is 357 m, ranging between 68 and
712m with an average river gradient of 0.0064. The head-
waters of the Swale are characterized by steep valleys and
the geology is Carboniferous limestone and millstone grits
(Bowes et al., 2003). Downstream, valleys are wider and
less steep, with the underlying geology becoming Trias-
sic mudstone and sandstones (Bowes et al., 2003). This
basin has been extensively modelled in previous studies
(Coulthard and Macklin, 2001; Coulthard and Van de Wiel,
2013; Coulthard et al., 2012b, 2013a), and a pre-calibrated
version of the CAESAR-Lisflood model was readily avail-
able. The basin was sub-divided to provide test subbasins of
various sizes, giving three basin sizes — herein referred to as
the complete Swale, the Upper Swale and the Arkengarthdale
tributary (Fig. 1; Table 1).

2.3 Precipitation data and model configuration

The rainfall data used were derived from the UK Compos-
ite NIMROD rainfall radar (Met Office, 2003) that has a
native resolution of Skm grid cells and 0.25h time steps
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Table 1. Basin areas and elevations for the three test basins used.

Catchment Area Minimum Maximum
(km3) elevation (m) elevation (m)
Complete Swale 415 68 712
Upper Swale 181 182 712
Arkengarthdale 62 198 664

with rainfall intensities in millimetres per hour. The maxi-
mum available 10-year record was extracted from the period
2004-2014 for the 5 km cells lying over the Swale basin. The
0.25h x 5 km resolution were the finest-scale data available,
and to provide a range of different resolutions these data were
resampled to the scales detailed below (Table 2). When ag-
gregating to coarser spatial scales, the relative contribution
of each 5km cell was weighted, equal to its relative contri-
bution to the basin. Therefore, with each spatial resolution
the same volume rain input is applied at each daily time step.
Note that this differs from some studies of the effect of spa-
tial resolution, where some of the variation can be explained
by producing rainfall records from a domain that exceeds the
bounds of the basin. Here, only the spatial representation of
the same rainfall record was examined.

To study the absolute role of spatial and temporal precipi-
tation data, a matrix of model runs was carried out as shown
in Table 2. Spatially, rainfall was lumped into basin-average
(henceforth “Lump”), 20, 10 and 5 km cells and temporally
averaged into 24, 12, 8, 6,4, 1 and 0.25 h time steps. This ma-
trix of runs was applied to all three basins (complete Swale,
Upper Swale and Arkengarthdale), though as the smallest
basin (Arkengarthdale) is smaller than the 20 km resolution
grid cell, it is run at 5 and 10km and Lump spatial resolu-
tions.

To investigate any longer-term impacts of precipitation
resolution, two 1000-year simulations were carried out on
the Upper Swale basin using the end members of our
driving data, the 24 h x Lump and 0.25h x 5km resolution
data. Both simulations used the 10-year precipitation record
looped 100 times. However, as this test would result in the
same spatial patterns of rainfall being applied to the same
area 100 times that could bias areas of erosion and deposi-
tion to those receiving the most precipitation rather than be-
ing a test of the spatial and temporal resolution. Therefore,
to disrupt any spatial pattern legacies, two additional 1000-
year simulations were carried out, where after every simu-
lated 10 years, the locations of each rainfall pixel were ran-
domly reassigned (called random 1 and random 2). Only two
random simulations were carried out, due to long model run
times and as these random runs gave very similar results. Re-
sults from the two long-term simulations were then compared
against both of these random simulations.

One aim of this research is to see whether any changes
in sediment yields and erosion and deposition patterns due
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to the spatial or temporal resolution of the precipitation
could be accounted for by adjusting model parameters. To
investigate this, three series of comparison runs were car-
ried out, where a factor was added to the sediment trans-
port model to allow erosion totals to be adjusted to match.
This allowed us to normalize the sediment yields from
the simulations being compared, with the aim of observ-
ing any differences in spatial patterns of erosion and de-
position in the DEMs. The following three sets of com-
parisons of patterns of erosion and deposition were car-
ried out: for spatial resolution changes (0.25h x Lump vs.
0.25h x 5km), temporal-resolution changes (24 h x Lump
vs. 0.25h x Lump), and spatial and temporal resolutions
(24h x Lump vs. 0.25h x 5km).

In order to adjust the sediment output, an additional term
or compensation factor C was added to the Wilcock and
Crowe (2003) sediment transport formula used here, as
shown in Eq. (5) below (as fully described in Van De Wiel
et al., 2007). Here, g; is the sediment transport rate in square
metres per second, g is gravitational acceleration (ms™2), ps
and p are the density of sediment and water respectively, F;
is the fractional volume of the ith sediment in the top active
layer, U, is the shear velocity (U, = [t/,o]o's), and W is a
function that relates the fractional transport rate to the total
transport rate.

FUW}

—c— " 5
((os—p)—Dg ®)

qi

For each of the three comparisons identified above (e.g.
24h x Lump, 0.25h x Skm and 0.25h x Lump) runs were
carried out, varying C from 1 to 2.5 in increments of 0.1,
resulting in an additional thirty 1000-year simulations. After
this, the closest matching sediment yields over the 1000 years
were used to compare differences in spatial patterns of ero-
sion and deposition.

A final test was to determine whether changes in erosion
and deposition were due to orographic effects. Previous re-
search indicates a geomorphic sensitivity in the CAESAR
model to rainfall magnitudes (Coulthard et al., 2012b), so it
is therefore important to disentangle whether any increased
erosion totals were due to the precipitation data resolution
or orography. To test for this we carried out a series of ad-
ditional simulations using the 0.25h x 5 km data, where the
5 km rainfall grid cells were randomly redistributed or “jum-
bled” to produce 20 different records. These jumbled data
were then averaged to each of the temporal resolutions and
the 30-year simulations were re-run.

All simulations were carried out over a 50 m resolution
DEM, with no bedrock representation and no vegetation pa-
rameters applied. Excluding the 1000-year simulations, all
runs shown in Table 2 were carried out for a 30-year pe-
riod based on the 10-year rainfall record repeated three times.
The initial simulation conditions were based on a precondi-
tioned “spun-up” DEM generated by a 30-year model run
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Table 2. Matrix of runs using different temporal (x) and spatial (y) resolutions.

24h 12h 8h 4h 1h 0.25h
Lump 24hxLump 12hxLump 8hxLump 4hxLump 1lhxLump 0.25hx Lump
20km 24hx20km 12hx20km 8hx20km 4hx20km 1hx20km 0.25hx20km
10km 24hx10km 12hx10km 8hx 10km 4hx10km Ihx10km 0.25hx 10km
Skm 24h x Skm 12h x Skm 8h x 5km 4h x Skm 1h x 5km 0.25h x 5km
Table 3. CAESAR-Lisflood model parameters used.
CAESAR-Lisflood parameter Values

Grain sizes (m)
Grain size proportions (total 1)
Sediment transport law

Max erode limit (m) 0.002
Active layer thickness (m) 0.01
Lateral erosion rate 0.0000005

Lateral edge smoothing passes 40

Metre value 0.01
Soil creep/diffusion value 0.0025
Slope failure threshold 45°
Evaporation rate (m day ™ ) 0
Courant number 0.7
Mannings number 0.04

0.0005, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128
0.144, 0.022, 0.019, 0.029, 0.068, 0.146, 0.220, 0.231, 0.121
Wilcock and Crowe (2003)

Table 4. Maximum rainfall intensities from the 10-year record for
each resolution, taken from the domain for the complete Swale
catchment.

Maximum rate 24h 12h 8h 6h 4h 1h 025h
(mm h™)

Lump 2.87 4.08 5.90 5.96 7.83 17.30 37.74

20 km 3.29 5.03 7.10 8.21 10.54 18.66 70.63

10 km 3.29 5.03 7.10 8.21 10.54 19.06 70.63

5km 4.06 5.77 7.58 8.70 11.24 25.23 76.75 ‘

using the 24 h x Lump rainfall. This “spinning up” process
removes sharp gradient changes in the DEM that may be a
legacy of its generation and also allows the model to evolve a
surface channel grain size distribution from the initial global
distribution described in Table 3. Apart from rainfall param-
eters and the basin DEM, all model parameters were kept
constant, with one exception where the input—output differ-
ence allowed was set at 10m? s~! for the complete Swale,
5m3s~! for the Upper Swale and 2.5m>s~! for the Arken-
garthdale. This ensured that the model ran efficiently, with
each value appropriate for the basin size and the hydrolog-
ical regime. A list of CAESAR-Lisflood parameter values
used in the simulations is shown in Table 3. The 1000-year
simulations were carried out for the Upper Swale only, as the
longest run times here were 4 weeks compared to 8+ weeks
for the whole Swale.

Earth Surf. Dynam., 4, 757-771, 2016

For all simulations, water and sediment outputs were sam-
pled from the model at 0.25 h time steps and the DEM saved
every 10 simulated years. From these data, mean annual out-
put and values above the 95th percentile (representing peaks)
were calculated for both water (discharge rate m*s~!) and
sediment yield (m?). To allow better comparison between the
basin sizes, the above metrics were calculated as a percent-
age deviation from the baseline, which was taken to be the
24 h x Lump resolution. To assess the impact of different res-
olutions on the modelled basin hydrology, outputs were com-
pared to discharge data at Catterick Bridge using RMSE and
Nash-Sutcliffe metrics for the 10-year record 2004-2014.

3 Results

3.1 Hydrology

Table 4 shows the influence that the spatial and temporal res-
olutions of the rainfall data have on the peak rainfall inten-
sities, showing a marked increase with finer resolutions, as
found in previous hydrological studies (e.g. Tustison et al.,
2001). These changes are largely translated to the basin hy-
drology (Tables 5 and 6) but with some differences. Looking
at mean annual discharge (Table 5), there is an increase in
water output with finer temporal and spatial resolution for the
largest complete Swale basin, though only an increase with
finer temporal resolution for the smaller two basins. Look-
ing at peak values (Table 6) these changes are even less ap-
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Table 5. The percentage deviations for each catchment of the mean
annual hydrological outputs using different spatio-temporal resolu-
tions.

Complete Swale 24h 12h 8h 6h 4h Th 0.25h
Lump 1.19 1.61 1.54 1.68 1.63 1.66
20 km 0.80 1.62 1.90 2.11 236 2.53 249
10 km 0.74 1.72 2.15 2.38 2.55 2.58 2.61
5km 0.76 1.96 235 2.52

Upper Swale

Lump 1.05 1.40 1.61 1.71 1.90 1.97
20 km 0.93 1.38 1.50 1.74 1.88 1.91
10 km 0.21 0.96 1.57 1.65 1.81

5km 0.22 1.13 1.69 1.67 1.85

Arkengarthdale

Lump 0.00 2.2 2.88 3.26 3.76
10 km 228 2.67 k) 3.74
5km 226 2.26 3.07 3.44

Table 6. The percentage deviations for each catchment of the vol-
ume of hydrological outputs above the 95th percentile using differ-
ent spatio-temporal resolutions.

Complete Swale 24h 12h gh 6h 4h 1h 0.25h
Lump 372 419 4.65 4.96 5.16 5.15
20 km 4.05 453 5.14 5.50 5.76 5.75
10 km 425 4.76 5.38 5.74

5km 3.96 4.49 5.16 5.51 5.72 5.75
Upper Swale

Lump 3.61 482 527 5.58

20 km 3.51 4.69 5.14 5.45 589 59
10 km 3.58 478 5.25 5.57

5km 3.41 447 4.97 531 5.77 5.72

Arkengarthdale

Lump 6.75 7.26 833 8.94
10 km 8.38 727 8.31 8.89
5 km 6.56 gAlS) 8.35 8.86

parent, with most differences linked to finer temporal reso-
lutions. However, overall these changes are relatively minor
(ca. 4 % for mean annual discharge and 5-10 % for peak dis-
charges) especially when compared to the difference in max-
imum rainfall intensity (Table 4).

A full evaluation of hydrological performance could not be
ascertained because the location of the nearest gauging sta-
tion incorporates the contribution of a tributary outside of the
modelled domain, though as this tributary was small in com-
parison to the whole domain a relative comparison could still
be made. The relative comparisons showed that the change in
resolution also influences the performance statistics for the
hydrology with Table 7 showing an improvement in perfor-
mance (RMSE and Nash—Sutcliffe) with finer temporal reso-
lution, with only very small improvements due to finer spatial
resolutions (RMSE only).

3.2 Sediment outputs

Tables 8 and 9 describe how with changing temporal and spa-
tial resolution there is a clear trend of increasing sediment
yields with finer spatial and temporal resolutions. Compared
to basin hydrology, the results show that the sediment yield
is notably more sensitive, with the greatest deviation being
118.1 % in the mean annual volumes, with the corresponding
hydrological deviation being 2.8 %. Each basin shows a sen-
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Table 7. Hydrological performance statistics from the Upper Swale
catchment, comparing daily discharges from the CAESAR-Lisflood
model and observed daily discharges recorded from Catterick
Bridge. Red shading indicates the worst performance statistics and
the green the best performance statistics.

RMSE (m’* s™) 24h 12h 8h 6h 4h Ih 0.25h
Lump 19.37 18.61 18.05 17.54 2
20 km 19.46 18.68 18.13 17.61
10 km 19.47 18.69 18.14 17.59
5km 19.50 18.74 18.19 17.64
Nash-Sutcliffe 24h 12h 8h 6h 4h Ih 025h
0.33 0.38 0.42 0.45
0.32 0.38 0.41 0.45
0.32 0.38 0.41 0.45
0.32 0.37 0.41 0.45

Table 8. The percentage deviations for each catchment of the mean
annual sediment yield outputs using different spatio-temporal reso-
lutions.

Complete Swale 24h 12h 8h 6h 4h 1h 0.25h
Lump 44.04 51.96 48.54 53.50 66.50 66.18

20 km 27.78 63.16 72.56 73.12 83.15 91.09 91.74

10 km 30.99 64.85 78.46 72.59 87.91 98.71 100.54

5 km 34.72 67.94 90.64 84.03 101.28 _
Upper Swale

Lump 16.14 22.77 22.39 29.88 35.02 40.25

20 km 14.18 15.28 20.36 26.06 34.00 37.49

10 km 14.68 20.45 23.21 28.81 38.02 38.85

5km 3.02 22.70 29.75 37.81 41.30 _
Arkengarthdale

Lump 30.06 42.76 54.01 58.83 5105 77.44

10 km 37.84 49.28 53.23 61.45 75.01 74.75

5 km 50.49 50.49 61.63 67.36

sitivity to spatial resolutions, which increases with the basin
size though differences are reduced between the 1 and 0.25h
temporal resolutions.

For the 1000-year simulations, there are differences in ero-
sion and deposition patterns between the random 1 (with
0.25h x 5 km resolution data) and the 24 h x Lump simula-
tion (Fig. 2). Notably there is more erosion in all headwater
and first-order streams and substantial amounts of deposition
in the valley floors. The six cross sections (Fig. 3a to f) pro-
vide more detail on morphological changes at these sites with
a 3-5 m additional incision at cross section B and 6 m at cross
section D, along with up to 3 m of deposition at cross sec-
tions D and E. Interestingly, these are not restricted to single-
channel threads; at E this occurs across some 350 m of val-
ley floor. The results for the random 1 simulation were very
similar to those for the random 2 simulation (not shown).
However, there was a significant difference between random
1 and the 1000-year 0.25 h x 5 km resolution simulation and
the random runs. These differences are a facet of repeating
the 10-year rainfall sequence 100 times and are presented in
Fig. 5, where the most notable difference is > 2.5 m in the val-
ley floor to the western side of the basin along with smaller
changes in the valley floor downstream.

For the 1000-year comparison runs, to account for the
temporal resolution difference, the 24h x Lump simula-
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Figure 2. DEM of difference for the 1000-year Swale test. The differences shown are elevations from the 24 h x Lump simulation minus the
elevations from the random 1 0.25h x 5 km. Cross sections (Fig. 3) are marked A-F. Yellows to reds indicate where the first (24 h x Lump)
simulation has eroded more and deposited less than the second (random 1) simulation. Blues indicate more deposition and less erosion.

Table 9. The percentage deviations for each catchment of the vol-
ume of sediment yield outputs above the 95th percentile using dif-
ferent spatio-temporal resolutions.

Complete Swale 24h 12h 8h 6h 4h 1h 0.25h

Lump 4454 49.62 4847 54.83 63.76 63.50

20 km 17.81 53.18 66.84 62.02 72.51 79.50 82.67

10 km 23.26 51.26 69.28 56.03 7242 84.76 84.67

5km 25.28 5426 78.76 70.22 85.10 _

Upper Swale
20.08 26.65 27.70 34.05 39.88 4384
18.03 20.03 24.82 30.96 38.02 40.99
17.94 23.75 26.99 32.98 41.57 42.02
23.35 29.55 37.00 41.46 _

Arkengarthdale

Lump 3227 4335 55.16 59.67 73.18 76.78

10 km 39.32 S1.18 51.31 59.64 71.47 71.93

5km 39.25 51.48 61.22 65.81 _ 75.84

tions gave sediment yields that were within 3% of the
0.25 h x Lump simulation with a compensation factor of 2.0.
For spatial simulations, 0.25h x Lump with a compensation
factor of 1.1 gave yields within 4 % of 0.25 h x 5 km simula-
tions, and for spatial and temporal simulations, 24 h x Lump
with a compensation factor of 2.2 was within 5% of the
0.25h x 5 km simulation. Figures 6, 7 and 8 describe the spa-
tial patterns of the differences between the two final DEMs
from these simulations. These show areas of greater differ-
ence in the lower half of the basin for different temporal-
resolution data, in the upper half of the basin for spatial res-
olution data, and in both upper and lower halves for changes
in spatial and temporal resolution. In each figure a series of
cross sections are highlighted to illustrate vertical changes.
For the simulations to test the impact of orography, Fig. 9
shows there is a general, though not significant orographic
relationship for rainfall intensity in the Swale. However, the
results of the jumbled runs (Fig. 10) show that as the tempo-
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Figure 3. Cross sections identified in Fig. 2.

ral resolution of the rainfall increases, so do the hydrological
and sediment totals from each run. Furthermore, the trend
lines show a clear offset between the different resolutions.
This strongly indicates that it is the spatial and temporal res-
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Figure 5. DEM of difference (DOD) between 1000-year random 1 and the 0.25 h x 5 km resolution simulation.

olution and not any orographic effects within the data that
are responsible for the increased sediment yields described
previously.

4 Discussion

4.1 The impact of precipitation spatial and temporal
resolution on sediment yield and longer-term
landscape evolution

Clearly, both the temporal and spatial resolution of precip-
itation have an important effect on the amount of sediment
coming from a basin and where it is eroded and deposited
(Tables 8 and 9; Figs. 2 and 3). Finer-resolution (spatial and
temporal) rainfall inputs can increase the local rainfall inten-
sity over parts of the basin, whilst the overall rainfall vol-
ume remains the same. This leads to a slight increase in the

www.earth-surf-dynam.net/4/757/2016/

basin water discharge (<5 %) but a much greater increase in
sediment yields, which are in some cases doubled (Tables 8
and 9). Changes in rainfall resolution also alter spatial pat-
terns of erosion and deposition (Figs. 2 and 3) with increased
local rainfall intensities (from finer-resolution data) leading
to increased local runoff and thus increased erosion in the
smaller first- and second-order streams (Fig. 2, cross sections
B, D, F). The transporting capacity of third-order streams,
however, does not increase proportionally to the increased
sediment supply from the first- and second-order streams as
the peak discharges in the larger systems are less sensitive
to locally high rainfall intensities, thereby limiting erosion in
third-order streams. The Lump simulations lead to lower ero-
sion rates in the first- and second-order streams so that trans-
porting capacity is not reached in the third-order streams,
leading to greater amounts of erosion (and less deposition)
in third-order streams and valley floor sections (e.g. Fig. 3,
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tion for each 5 km pixel within the complete Swale basin.

cross sections A and E). The disproportionate relationship
between changes in hydrology and erosion and deposition
is highly important in this context, as small changes in hy-
drology (here local and temporal) can clearly have a signif-
icant impact on basin sediment yield and local erosion and
deposition patterns. This affirms the findings of Coulthard
et al. (2012b), who noted the “geomorphic multiplier” effect
between rain, runoff and sediment yield.

For existing and previous LEM studies, these results
suggest that there may have been a systematic under-
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representation of basin-wide sediment yields by using
lumped and coarse temporal-resolution climate/precipitation
data. These is may not be of concern to many LEM studies,
which are interested in exploring general relationships be-
tween processes, drivers and subsequent landscape change.
However, the spatial changes in erosion and deposition pat-
terns generated by the different-resolution rainfall data will
affect results and findings. Over the 1000 years we have sim-
ulated in this study, the coarser-resolution data lead to more
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incision/erosion in third-order and higher streams and less
in first- and second-order streams. This has led to a change
in the shape of the basin long profile and thus, when pro-
jected over even longer timescales, will lead to changes in
the shapes of predicted basins, landscapes and landforms.
Resolving this is troublesome as for many existing models,
especially those dealing with longer timescale simulations
(e.g. >10000 years), incorporating high-resolution precipi-
tation data is impractical. The data are simply not available,
and generating synthetic rainfall is complex. Therefore, can
these changes in erosion and deposition patterns (and sedi-
ment yields) be compensated for via model adjustment rather
than calibration?

4.2 Adjusting to compensate for spatial and temporal
rainfall resolution effects

In our final set of 1000-year comparison runs, erosion and
deposition totals were adjusted so simulations with differ-
ent spatial and temporal rainfall resolutions could be com-
pared. Sediment yields could easily be matched; however,
there were differences in erosion and deposition patterns pro-
duced by different temporal (Fig. 6) and spatial resolutions
(Fig. 7). This indicates that such adjustment (similar to that
carried out by Willgoose and Riley, 1998) can be carried out
but with some notable effects and possible limitations.

Adjusting for temporal changes in rainfall resolution led
to good results in the upland, western side of the basin, with
very few areas where there were differences in erosion and
deposition patterns greater than 0.5 m (Fig. 6, cross section
A). However, changes in the valley floor sections lower down
are greater, with more erosion and less deposition generated
by the adjusted 24 h resolution simulation (Fig. 6, cross sec-
tions B and C). In the steeper upland areas a larger compen-
sation factor (2.0) is required for the 24 h rainfall to gener-
ate similar amounts of erosion as the more intense, flashier
events from the 0.25h data. As the 2.0 compensation factor
is applied globally, in the lower parts of the basin where there
is less difference in flow magnitudes generated by the 0.25
and 24 h runs, this leads to more erosion or less deposition.

Conversely, adjusting for spatial resolution leads to very
small differences in the lower, eastern sections (Fig. 7, cross
sections B and C) but major changes in the upland area with
8 m more erosion and less deposition from the adjusted Lump
simulation in Fig. 7, cross section A. As for Fig. 2, by lump-
ing local rainfall heterogeneity there are smaller flows in
first- and second-order streams but greater flows in third-
order ones — leading to the incision at cross section A. Here
the incision at A is greater than values shown in Fig. 2 as
the temporal resolution of the data is 0.25 h rather than 24 h.
There are very few differences in the lower sections of the
basin (Fig. 7, cross sections B and C) as for both simulations
here the flows will be the sum of the total basin rainfall (as
rain cells are reassigned every 10 years in the 0.25h x 5km
random simulation).
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Adjusting for both (Fig. 8) best represents how most LEMs
may be adjusted for using coarser spatial- and temporal-
resolution data. This comparison required our largest com-
pensation factor (2.2) and generated patterns that could be
described as a merging of Figs. 6 and 7 — with more erosion
and less deposition in cross sections A, B and C. As per the
discussion for Fig. 2, the coarser-resolution data drives more
erosion and less deposition in third-order streams and val-
ley floor areas; if continued for more thousands of years, this
would result in a considerably different long profile, which
would change the morphometry of the basin.

There are further difficulties associated with adjusting
models to compensate for different-resolution data. For ex-
ample, if we have a convective 4h event of 6mmh~! and a
synoptic 24 h event of 2mmh ™!, then adjusting erosion rates
for 24 h resolution data would scale erosion from the convec-
tive storm down and the synoptic event up. This adjustment,
however, would assume the same erosion—deposition rela-
tionship between our synoptic and convective event, and in
the context of climate change, it is highly likely that this will
change. For example, climate changes may lead to more or
less rainfall as well as greater or lesser rainfall durations and
intensities. In other words, the relationship between mean
annual erosion rates and mean annual rainfall is nonstation-
ary, yet any calibrated adjustment or scaling factor is fixed
to the properties of the period it was calibrated against. This
could readily lead to “over-calibration”, a phenomenon noted
by the hydrological community (Andréassian et al., 2012),
where the parameters in hydrological models are adjusted
too tightly based on too few observations. The issue of non-
stationary calibration of parameters is also widely acknowl-
edged in the hydrological modelling literature (for example,
Beven, 2006) where the period simulated is far shorter, and
therefore possibly less varied, than the longer timescales over
which LEMs may operate.

In summary, the adjustment of model parameters can
be used to compensate basin sediment yields for different-
resolution rainfall data, but there is an impact on patterns of
erosion and deposition within the basin. Using such adjust-
ments is likely to be basin-specific and the correction will
not be correct over changing climates. Calibration, the ad-
justment of sediment yields to match field data, will likely
encounter the same issues.

4.3 Are hydrological basin-wide metrics suitable for
LEM/morphodynamic models?

This study raises some interesting issues regarding the suit-
ability of hydrological-type metrics (e.g. basin discharge) for
evaluating LEMs, morphodynamic or geomorphic models.
Basin sediment yield may be a useful indicator of overall
LEM performance but will conceal much of the important
geomorphic change within a basin. Therefore, a good hydro-
logical and/or sediment yield prediction from an LEM does
not necessarily translate to a good morphodynamic predic-
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tion. Similar hydrographs of water and sediment at a basin
exit may come from completely different parts — and leave
a very different geomorphic signature. Here is an important
distinction between the hydrology and geomorphology — as
different hydrological responses will not necessarily leave
any sort of hydrological record in the system. But geomor-
phological changes in response to the hydrology will.

Largely, model metrics are driven by the aims of the
model. For example, a hydrograph may be a very useful out-
put for a basin hydrological model (to feed, for example, into
a flood model), whereas for a morphodynamic model we are
interested in the changes occurring throughout the basin, not
just those reflected at the end. This is especially important for
LEMs, where patterns of erosion and deposition feedback to
control the shape of basins and landscape development — and
this effect increases with the duration of model study or sim-
ulation. This point is identified in recent work by Hancock
et al. (2016), showing that using the SIBERIA model, over
10000 years, different-shape landscapes can evolve yet gen-
erate very similar sediment yields.

4.4 Limitations

It is important to consider that these findings are based
on numerical simulations that contain many simplifications
and assumptions. CAESAR-Lisflood is driven by a hydro-
logical model where changes in land use are represented
through altering model parameters (i) leading to flashier or
more reduced hydrographs. This may prove to be a consid-
erable sensitivity to precipitation temporal and spatial res-
olution, and in these simulations we have deliberately used
a moderate value for an m of 0.01 — which in previous
CAESAR-Lisflood simulations has been used to represent
natural scrubland. We would suggest that lower values for
grassland (e.g. 0.005) would increase sensitivity and larger
values for forest/woodland (0.02) would reduce sensitivity,
though further simulations would be required to show this.
Basin hydrology is a balance between precipitation, evapo-
ration, infiltration and groundwater effects. These processes
are all spatially and temporally variable, but we have quite
deliberately only altered the rainfall to determine model sen-
sitivity to just this parameter. Within CAESAR-Lisflood the
TOPMODEL m parameter is used to account for evapora-
tion, infiltration and groundwater effects and can also be
changed spatially and temporally (Coulthard and Van De
Wiel, 2016). Examining model sensitivity to both may be
useful future research.

There may also be issues with the DEM resolution (here 50
m) and how that interacts with different spatial resolutions of
rainfall inputs, with other researchers showing that grid res-
olution in LEMs can have an impact (Hancock et al., 2016).
Furthermore, there are uncertainties associated with the up-
scaling of the precipitation data and the transfer of rain radar
data to actual values. However, notwithstanding the above
limitations, our results provide very useful insight into how
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spatially and temporally changing precipitation can alter sim-
ulated basin geomorphology and sediment yields.

5 Conclusions

Our findings show that simulated basin sediment yields and
spatial patterns of erosion and deposition are sensitive to
the spatial and temporal resolutions of precipitation data
used to drive models. The impact of temporal changes is
greater than that of spatial changes. Using finer-resolution
data for both leads to significant increases in sediment out-
puts, with 0.25h x 5km resolution data leading to a dou-
bling in basin sediment yields compared to the 24 h x Lump
data. These changes are due to finer-resolution data gen-
erating increased erosion in upland and first-order streams
with increased deposition and aggradation in valley floor
areas. Further simulations indicated that the differences in
total sediment yield could be removed with a compensa-
tion/adjustment factor inserted in the sediment transport law.
However, using such a factor resulted in notable differences
in the topographies generated, especially in third-order and
higher streams. Overall, the implications of these findings
are that uncalibrated past and present LEMs using coarse
spatial- and temporal-resolution precipitation drivers may be
under-predicting basin sediment yields and under-predicting
erosion in first-order streams but over-predicting erosion in
third-order streams and valley floor areas. Calibrated LEMs
may give correct sediment yields, but patterns of erosion and
deposition will be different and the calibration may not be
correct for changing climates. It is highly likely this will have
significant impacts on the modelled basin profile and shape
from long-timescale simulations. Our findings are placed
in the context of LEMs — but it should be considered that
such issues of rainfall spatial and temporal resolution may
be highly important to soil erosion models and other basin-
based sediment models that may be using coarser-resolution
precipitation data.
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