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Abstract

This critical and reflective literature review examines international research published over
the last decade to summarise the different kinds of measures that have been used to
explore cognitive load and critiques the strengths and limitations of those focussed on the
development of direct empirical approaches. Over the last 40 years, cognitive load theory
has become established as one of the most successful and influential theoretical
explanations of cognitive processing during learning. Despite this success, attempts to obtain
direct objective measures of the theory’s central theoretical construct — cognitive load —
have proved elusive. This obstacle represents the most significant outstanding challenge for
successfully embedding the theoretical and experimental work on cognitive load in empirical
data from authentic learning situations. Progress to date on the theoretical and practical
approaches to cognitive load are discussed along with the influences of individual
differences on cognitive load in order to assess the prospects for the development and
application of direct empirical measures of cognitive load especially in technology-rich
contexts.
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Introduction

One of the defining characteristics of educational provision in recent years has been the
increasing interest in collaborative and blended e-learning, fuelled by the increasing ubiquity
of educational technology and social media and their many affordances. Pressures for the
use of e-learning and interest in more collaborative pedagogies have also arisen from desires
to enhance institutional profile and “outreach”, from student demand, the prevalence of
open-access resources and interest in moving away from a top-down instructor-led

pedagogy.

These pressures have so far been felt more in higher and further education than in
mainstream provision but have combined to raise questions about the role of the traditional
instructor, about how to promote greater student engagement, and for ways to satisfy
student demands for learner-centred provision and respond to changes in funding regimes
that have increasingly elevated the importance of the student voice across all educational
sectors.

Such debates raise questions about the effectiveness of e-learning and collaborative learning



and interest in how we might develop blended learning and an instructional model that is
able to guide developments of technology use. Current technologies offer attractive
possibilities for more effective learning, may encourage anywhere anytime education, may
improve social interaction and enable individualised learning, efficiency gains for
institutions, and stronger student engagement (Shuler, 2009). Advocates of technology use
have argued that contemporary students are more attuned to learning with technology —
that they even think and learn differently than previous generations of students. Although
technology is felt to offer the prospect of more effective learning, there is relatively little
empirical evidence showing that gains in educationally desirable outcomes are greater with
the use of technology than with traditional approaches to learning. This is of special concern
where content retention may be becoming a necessary but insufficient output of education
in a world where higher order thinking skills, creativity, and problem solving are often seen
as the most valuable cognitive attributes for future citizens and the industries and
economies that will sustain them. So, whilst the growing use of digital technology and its
application to learning is argued to have the potential to significantly improve instructional
efficacy, particularly with regard to the successful learning of information and the
development of understanding or skill (Mayer, 2008; Miller, Chang, Wang, Beier, & Klisch,
2011), concerns persist about the degree to which the design and use of digital learning
materials have realised or optimised such potential (Argyris, 1976; Massa & Mayer, 2006;
Schnotz & Kiirschner, 2007; Sweller & Chandler, 1994; Tabbers, Martens, & Van
Merriénboer, 2000).

To ensure that educational interventions in e-learning, collaborative learning, and also
more traditional approaches to learning are optimum and effective, there is a need for
instruments with which to assess the outcomes from such learning in complex and ill-
structured domains as well as those of factual knowledge. Such assessments require a
theoretical model of learning that is accessible to empirical verification and extends beyond
mapping the retention of information, and for these reasons the concept of cognitive load
and cognitive load theory have attracted much interest.

Although there remains a preponderance of single-study work in the field of cognitive

load research, there has been activity across a wide range of subject areas from
mathematics, reading, physical exercise, repetitive spaced learning and testing, and in a
range of approaches including “brain training” learning games, embodied cognition (learning
through action), and the personalisation of experiential learning. Pedagogical approaches
have been similarly varied although the evidence of improved engagement and increased
learning with learning games is as yet limited to results from young adults (Howard-

Jones, 2014), and the established perceptions of educators about the efficacy of particular
methods are often not supported by research evidence (Coe, Cesare, Higgins, & Major,
2014; Martin, 2010).

This systematic review provides a comprehensive introduction to cognitive load and its
measurement and a synthesis and critical review of research findings in the field particularly
over the last decade for both newer and experienced researchers. This review also identifies
how previous research has approached the measuring of cognitive load in relation to
learning outcomes and summarises, evaluates, and critically reflects upon the implications.






Context

The application of cognitive load theory (Sweller, Van Merriénboer, & Paas, 1998) has been
at the forefront of much experimental work in cognition and has important implications for
optimising the design of educational multimedia (Martin, 2012; Mayer, 2003, 2009; Mayer
& Moreno, 2002). However, some writers express concern that the theory has developed
little since its proposition in 1998 (Moreno & Park, 2010), whilst others note that despite
its great influence on educational research in recent years cognitive load theory is by its
formulation difficult to disprove; a difficulty compounded by the lack of means by which
cognitive load may be measured directly (De Jong, 2010).

From Karl Popper’s perspective of critical rationalism, cognitive load theory cannot be
regarded as a truly scientific theory because several of its fundamental assumptions are not
falsifiable, as they cannot be tested empirically (Popper, 1959, 1963). For each of the three
types of cognitive load proposed by the theory (germane, extraneous, and intrinsic cognitive
load), similar assumptions are made: For example, with regard to extraneous cognitive

load, this is assumed to be caused by poor instructional design; and it is also assumed that
cognitive processes that do not support schema construction or automation result in
extraneous cognitive load; and that this is harmful for learning.

The difficulty with adhering to strict Popperian concerns about falsifiability is that it

leads to a situation where hardly any theory could be regarded as scientific. Many well
established scientific or logical statements and theories are based on fundamental
assumptions that are presupposed by the methods used to test them and are not therefore
falsifiable (see the “some swans are white” discussion in Blanshard, 1962). We tend to
accept and apply many ideas that cannot be proved to be true but provisionally accept them
because they can usefully be discarded if they can be proved to be false. So, we tend to use
theories in science primarily because they are able to explain our observations of the
empirical world and we replace them when theories with even more explanatory power
appear, as happened when Darwin’s theory of evolution by natural selection replaced the
Lamarckian theory of evolution by the inheritance of acquired characteristics.

So, critical rationalists would regard it as improper for researchers to assume, for

example, that any increase in measured cognitive load would result in poorer learning

(or vice versa), as this presupposes the assumption that higher cognitive load is unhelpful
for learning (an unproven hypothesis). It would therefore be necessary to remove such
presuppositions about the outcomes of experiments that are embedded within the rationale
for the experiment. To address such concerns, cognitive load theory would also need to use
measurement instruments that were able to accurately discriminate between the three
types of cognitive load. This remains problematic in much published research, where

many established instruments are not sensitive to different types of cognitive load and
provide only one composite measure of cognitive load (see Paas & Van Merriénboer,

1994, for physiological measures; Briinken, Plass, & Leutner, 2003, and Callan, Sutton,

& Dovale, 2010, for dual-task measures; and Paas, 1992, for single-item rating scales).
However, it may be possible for more recently developed objective measures such as
functional near infrared spectroscopy (fNIRS) to help meet Popperian concerns without
invoking the assumptions that provoke the criticism of structural rationalists (Cierniak,



Scheiter & Gerjets, 2009).
The review

Previously conceived as “mental load” (Moray, 1979), research on cognitive load has been
of significant interest for over forty years, during which time it has developed into what is
now a leading theory for describing cognition in learning, especially with digital technologies
(Chandler & Sweller, 1991; Martin, 2012; Mayer, 2001; Niegemann, 2001). The concept of
cognitive load and its associated theoretical framework are increasingly used to guide the
instructional design and evaluation of educational multimedia environments and web-based
instruction. However, despite decades of research on cognitive load, the direct
measurement of its key concept — cognitive load itself — remains elusive. Much research on
learning with digital technologies routinely uses cognitive load to explain individual
differences in learning outcomes but does not directly measure the actual cognitive load
experienced by learners (Briinken, Steinbacher, Plass, & Leutner, 2002). This is not because
of any lack of interest in obtaining such measures from the research community but is
attributable to a number of deep-rooted practical and theoretical issues that make achieving
reliable and valid measures of cognitive load challenging.

As a result of its widespread adoption, research and interest in cognitive load theory
ranges across many disciplines and contexts, and locating relevant scholarly studies
therefore involves searching a wide range of sources for appropriate material. The focus of
the present study was on empirical work where the measurement of cognitive load or
critiques of such measurement or of the instrumentation used or available to conduct such
measurements was a significant part of the work. The use of a systematic review was
therefore selected as this method uses a well-defined and rigorous approach that attempts
to identify, appraise, and synthesise all the empirical evidence that meets pre-specified
eligibility criteria to answer a given research question. The use of this explicit method aims at
minimising bias, in order to produce more reliable findings that can be used to inform
decision making and future research (Davies, 2000; Gough, Oliver, & Thomas, 2013; Higgins
& Green, 2011).

Key steps in a systematic review include the identification of relevant studies from a
number of different sources, selecting studies for inclusion and conducting an evaluation
of their strengths and limitations on the basis of clear, predefined criteria followed by the
systematic collection and appropriate synthesis of data. The research question was Under
what circumstances and with what instruments can cognitive load be measured in valid
and reliable ways? The minimum selection requirements for inclusion of material were
therefore about fitness for purpose and whether the material included empirical work and
the conducting or critique of measurements of cognitive load or of the instrumentation
used to conduct such measures. For potential inclusion, sources also had to include
content on measuring cognitive load in reliable and valid ways, ideally that are therefore
potentially transferrable across knowledge domains. The review was also on locating
relatively recent academic articles that were substantially about instruments or techniques
that reported some success in achieving this, particularly if they gave detail or analysis of the
metrics obtained, as discussed above. Because of the subject range of cognitive load theory
in the research literature, a total of 52 major academic databases were therefore searched



for appropriate material (Table 1).

Table 1. Databases searched.

Brill Journal Archive

Cambridge journals online

CERUK

Clinical Evidence

Cochrane library

COPAC (including British Library integrated catalogue)
Digimap

EBook Library (EBL)

EBSCO (including Business source premier, Cinahl Plus,

ERIC, PsycARTICLES, PsycBOOKS, PsycINFO and
SPORTDiscus

Embase

Emerald journals

FAME

Harvard University library digital projects

IEEE Xplore

Index to theses (ASLIB)

Informa Healthcare

InfoSci-journals

IngentaConnect

Institute of Physics Press

International Institute for Asian Studies (ITAS)

INTUTE

JSTOR

Lancet

LexisLibrary

Libraries of the world

Literature online

Medline

MIT Press Journals

NBER working papers

NDLTD Networked digital library of
theses and dissertations

New England journal of medicine

NFER

OECD-iLibrary

Oxford Journals online — includes
Oxford journals archive

Project Muse

Prola

Proquest (including ERIC and ProQuest
Dissertations and Theses)

PubMed

SAGE Premier (including SAGE
Archives)

Science Direct

Scientific World

SCIRUS

Scopus

Springer LINK

St. Jerome Publishing

Swetwise

TechXtra

The search variables employed were cognitive load and all derivatives of “measure”
including measure, measuring, measurement, measures, and so forth. As the review was
mainly focussed on activity over the last decade, the search included only items where the
full text was available online and that were published from January 2004 onwards. The
search located a total of 10,796 items including books or eBooks (415), book chapters (124),
conference proceedings (1,008), dissertations and theses (234), journal articles (8,719),
papers (1), reference texts (8), and reports (11). Material from unpublished dissertations,
conference papers, or technical reports was not included as their selective availability
seemed likely to bias the systematic review.

Two-hundred-and-seventy-six items were excluded on the grounds of academic unsuitability
or quality, for failing to meet the minimum requirements for inclusion, and/or where

there was little or no information about the instrumentation that was used; these tended to
be “overview” or promotional pieces with relatively little detail and comprised book reviews
(42), magazine articles (66), newsletters (53), newspaper articles (114), and one trade
publication. The remaining 10,520 relevant sources were then filtered for scholarly peer-
reviewed publications only where academic critique was brought to bear on any claims
made for validity, reliability, or the replicability of the outcomes that were claimed for the



measurement approaches described, which reduced the total of relevant items to 7,097
articles. Each of these shortlisted articles was reviewed manually for suitability of focus
within title, abstract and/or keywords, and concluding sections, and this process identified
136 articles, each of which was read in its entirety.

Current models of cognitive load theory are based upon the earlier work of schema theory
(Anderson, 1983), dual-coding theory (Paivio, 1986), working memory models (Baddeley,
1986), and generative theory (Wittrock, 1974). Early measures of cognitive load emerged
from item difficulty tests (Bratfisch, Borg, & Dornic, 1972), but these were limited by their
subjectivity (Paas & Van Merriénboer, 1994). This earlier work was subsequently integrated
into a theoretical framework developed by Sweller (1999) and incorporated within Mayer’s
theory of multimedia learning (Mayer, 2001).

Cognitive load theory seeks to explain how and why some material is more difficult to
learn than other material and is based on the proposition that the human brain uses two
types of memory: short-term (working) and long-term (storage) memory, where short-term
memory is seen as having a limited capacity, perhaps for as few as four “chunks” of
information (Halford, Baker, McCredden, & Bain, 2005) and long-term memory is seen as
having almost unlimited capacity (Sweller, 1994). Working memory is commonly

defined as “a brain system that provides temporary storage and manipulation of the
information necessary for such complex cognitive tasks as language comprehension,
learning, and reasoning” (Baddeley, 1992, p. 556). Working memory therefore represents a
limit on learning in terms of storage and working space for conscious cognition.Working
memory is thought by some to be fixed genetically, to grow with age (Miller, 1956) and to
limit our“thinking-holding space” (Johnstone, 1997) when processing or holding information
because the more information that has to be held the less space there is for processing.

In terms of developing greater understanding, learning therefore ceases when working
memory becomes overwhelmed by too much information and processing (Reid, 2008).
Cowan (2000) argues from an extensive review of research and theory that different
underlying forms of memory representation all indicate similar capacity estimates for
working memory. Although at any one time different memory chunks may be less or more
prominent in memory representation, the focus of our attention will determine how many
of the most prominent chunks in the representation we can attend to at once, and four
chunks appears to be a functional limit for optimal processing.

The existence of long- and short-term types of memory in humans is thought to be
important because it significantly influences the way we learn. Using short-term memory,
we develop schemas (“cognitive constructs that incorporate multiple elements of
information into a single element with a specific function” — Paas, Renkel, & Sweller, 2003,
p. 2) and store these in long-term memory. Schemas help us when solving problems that
we have not seen before by drawing on our learning about similar kinds of problems we
have solved in the past and thereby speeding up problem solving and task execution by
partially automating our cognitive activity when responding to situations or problems that
are similar to ones we have learned about in the past “by chunking individual elements into
a single element” (Sweller, 1994, p. 299). We use the limited capacity of short-term memory
to manipulate existing schemas (or to create new ones) and apply these to solving problems
that would otherwise prove too complex for us to deal with if we always had to begin from



first principles.

Baddeley’s widely used model of working memory assumes that a central executive

exists in the human brain and that this coordinates two other interconnected but separate
and independent systems, one auditory system that processes information such as music
or spoken material —the phonological loop —and a second system that processes written
material or pictures — the visuospatial sketchpad (Baddeley, 1986; Baddeley & Logie,

1999; Repovs & Baddeley, 2006). This dual-coding assumption was originally taken

from dual-coding theory (Paivio, 1986). The phonological loop and the visuospatial
sketchpad are thought of as slave systems and are presumed to have limited capacity and by
virtue of being independent from each other are unable to compensate for lack of capacity
in the other. If as a result of a learning experience the processing ability of either the
visuospatial sketchpad or the phonological loop approaches zero, the learner experiences
high cognitive load. The amount of this difference between the total cognitive load and the
processing capacity of the auditory or visual system is seen as the free cognitive resource of
the learner, and this has also been used to create one direct measure of cognitive load
(Briinken et al., 2003). In an alternative proposal, Barrouillet and Verbal proposed a
resource-sharing model for working memory which includes a time-based feature that
assumes that rapid switching occurs during processing (Barrouillet & Verbal, 2004;
Barrouillet, Bernardin, Portrat, Vergauwe, & Camos, 2007). According to the time-based
resource-sharing model, the cognitive load generated by any given task is a function of

the proportion of time during which it captures attention, during which it impedes other
attention-demanding processes, and information in working memory is therefore likely to
decay rapidly as soon as attention is captured by another activity (Barrouillet et al., 2007).

These and other theoretical models of the workings of the phonological loop and the
visuospatial sketchpad have been difficult to research, not least because the actual
amount of cognitive load that is created within these systems has proved difficult to
measure directly. Further, some have suggested that individuals with higher visuospatial
working memory capacity are affected differently by verbal working memory load than
those with lower capacity, suggesting that capacity in one may affect that in the other
(Ross et al., 2014). However, research on cognitive load routinely uses this theoretical
rationale to explain different learning outcomes for individuals using multimedia or
webbased learning resources (e.g., Briinken et al., 2003).

Cognitive load theory argues that whether particular material is easy or difficult to learn
depends in large part on the degree to which we are able to manage the amount of
processing (cognitive load) needed to solve a problem or learn something new by using
schema acquisition and automation. Cognitive load theory proposes that three different
kinds of cognitive load operate. Extraneous cognitive load is the difficulty associated with the
design of instructional material, especially the way information is presented to the learner.
High extraneous cognitive load inhibits learning because of unnecessary processing caused
by the instructional design. Germane cognitive load is the load created by constructing,
processing, and automating schemas (and can also be manipulated by the instructional
design) but is helpful to learning because it results from features of the design that direct
attention towards relevant learning processes. Intrinsic cognitive load is attributable to
the inherent complexity or difficulty of the material to be learned; this cannot be



changed by the teacher, is assumed to be unaffected by the instructional design, and is
thought to be the product of a combination of the learner’s prior knowledge and the
intrinsic complexity of the learning material (Sweller & Chandler, 1994).

Cognitive load theory proposes a mechanism whereby learner engagement in cognitive
tasks can be understood in neurophysiological terms, with some suggesting that the core
mechanisms of working memory are settled as early as during childhood (see Portrat,
Camos, & Barrouillet, 2009). However, overall mental performance is a multidimensional
construct, and cognitive load theory does not take account of factors such as the influence of
individual goals, expectations, or beliefs on cognitive performance (Moreno, 2006; Moreno
& Park, 2010). To achieve this would require a strengthening of the theoretical underpinning
of cognitive load theory to link it more closely to such individual differences and to

take individual motivation and development of expertise during courses of study or training
into account and to flexibly adapt instruction by better assessment of a learner’s expertise
on the basis of their performance (Van Merriénboer & Sweller, 2005).

Researchers in the field of cognitive load theory seek to arrange the instructional control
of cognitive load so as to optimise the load experienced by subjects in learning situations to
avoid extreme situations where there is too little load or too much load, because learning
deteriorates in both situations (Ayres & van Gog, 2009; Young & Stanton, 2002). Cognitive
load researchers wish to produce both the optimum amount of load for learning and to
promote load of the most helpful sort; that is, they seek to optimise the load that
contributes to learning (i.e., germane load) and reduce the load imposed by elements that
hamper learning (i.e., extraneous load). It is important to be able to separate and measure
the three types of cognitive load because each of them is related to learning in different
ways, but studies have found it difficult to empirically distinguish between their separate
effects in a learning context (Briinken, Seufert, & Paas, 2010).

For example, when learners find instructional tasks easy (where intrinsic load is low),

any extraneous cognitive load imposed by the learning resources or context may have little
or no significant negative effect on learning. This is not the case when tasks are more
difficult and the intrinsic cognitive load is high, and under these circumstances it is important
to take appropriate account of the extraneous load on learners (Van Merriénboer &
Sweller, 2005). However, in some learning situations it may be difficult to reduce the
intrinsic load because the learning tasks may be unavoidably complex, they may have
irreducible high element interactivity, or may require the use of many different schemas,
such as in situations where multiple choices are available to the learner regarding the
information to be selected and applied. Research using cognitive load theory has therefore
sought to find ways to manage high intrinsic cognitive load (Pollock, Chandler, & Sweller,
2002) by approaches that measure and compensate for learner’s prior knowledge (see
Kalyuga, Ayres, Chandler, & Sweller, 2003) or that allow for the level of germane load
imposed on learners by different instructional materials (Cierniak et al., 2009; Kalyuga,
Chandler, & Sweller, 1998; Salomon, 1984).

As part of this approach, cognitive load theory has argued that the physical integration
of multiple sources of information is generally beneficial for learners. Physical integration
happens when, for example, text and images are combined in multimedia applications or on



the page of a textbook so that each does not simply replicate the content contained in the
other. Physical integration reduces the need for learners to split their attention between
(for example) separate illustrations and text on a page or screen, otherwise the learner’s
attention may be divided unhelpfully between the separate elements, as they attempt to
process each one individually and make cognitive associations between them. This split
attention effect is regarded as unhelpful for learning because it increases extraneous load
and so learning materials featuring split-attention may overwhelm working memory
capacity (Chandler & Sweller, 1992; Eilam & Poyas, 2008; Sweller, 1994). Educationalists
using or designing multimedia or other technology-enhanced or e-learning resources would
therefore need to guard against inadvertently provoking the split-attention effect in any
resources they offered to students.

However, subsequent studies have found that in any given subject domain, certain

learning resources which are beneficial for less expert learners can be disadvantageous as
learners become more expert (Kalyuga et al., 1998). In particular, the physical integration

of information as a means to minimise the split-attention effect becomes less helpful to
learners as their expertise grows and it becomes counter-productive for learning as expertise
increases still further (Kalyuga et al., 1998). For more expert learners, the physical separation
of information can be more advantageous than its integration, because they are likely

to already possess the schema that the learning resources are attempting to promote in less
experienced learners. As a result, learning resources may become subject, therefore, to an
expertise-reversal effect (Schnotz, 2010). The expertise-reversal effect appears when more
expert learners find it easier to handle complex instructional material but more difficult to
learn from material that is designed to integrate separate elements in order to aid less
experienced learners to construct appropriate mental representations (schemas). In such
cases, experienced learners are confronted with instructional guidance that is redundant for
them, and this can be difficult to ignore, thus increasing cognitive load and reducing the
efficiency of their learning (Kalyuga et al., 2003). Intrinsic cognitive load can therefore

only be meaningfully measured with reference to a particular level of expertise (Schnotz

& Kiirschner, 2007). This could pose particular problems for educators wishing to avoid

the expertise-reversal effect if they did not have reliable information about the expertise
level of each learner in any given subject domain.

Obtaining valid and reliable measures of individual cognitive load from learners can be
problematic for other reasons also, not least because learners faced with a new topic or
domain may find it hard to report whether any difficulty they experience is due more to

the content or to the instructional design. In such circumstances, it may be impossible to
reliably identify and disentangle the origins of extraneous and intrinsic cognitive load
(Cierniak et al., 2009). As a result of either one or another type of cognitive load being higher
or lower for different learners, the overall load for different learners may be very similar but
we may not be able to know the source from which the load originates. Different measures
of cognitive load should therefore not be assumed to measure overall cognitive load, but it
may be possible to use them to measure different types of load. Different learning materials
(or learner characteristics) may produce different patterns of results that also might depend
upon the prior knowledge of the learner (Kalyuga & Sweller, 2005).

Because intrinsic load varies not just as a result of the inherent complexity of the learning



material but also with the expertise of the individual learner in a given subject or content
area, establishing the intrinsic load for individual learners is important for maximising their
learning. This is not straightforward because the measurement of intrinsic cognitive load
often relies on subjective or objective measurement instruments that have significant
structural limitations. One of the main problems with subjective instruments in general, for
example, such as self-report questionnaires, is attributable to the difference between
espoused theory and theory in use (Argyris, 1976), which is the difference between what
individuals say they do and what they actually do. A learner might employ entirely different
strategies (or experience entirely different difficulties) in practice from those they
consistently report in good faith on questionnaires or during interview.

The value of using subjective perceptions of cognitive effort to measure cognitive load

is based on the assumption that individuals are able to make reliable and valid estimates of
the amount of cognitive effort they are expending in a given situation. This approach has the
great benefit of simplicity but has the significant drawback that it usually involves singlepoint
post-hoc assessments with questionable content validity. It is also difficult to be sure

that retrospective assessments are accurate assessments of the cognitive load expended (as
opposed to what might in fact be assessments of the difficulty of the task), or to which type
of load an individual assessment relates, or which type of load created the perceived effort,
or to know how the assessment can be related directly to learning. Additionally, subjective
measures are frequently administered post-hoc and may therefore be mediated by faulty
recollection or rationalisation, or during activity breaks which may disrupt the activity

being investigated, and subjective methods have on these grounds been criticised as
suffering from low evaluative bandwidth (Lin, Li,Wu, & Tang, 2013). Despite these
reservations, some studies have argued in favour of self-rating instruments on the grounds
that participants have been able to detect differences in task complexity and have suggested
that subjective measures may therefore in practice be sensitive to intrinsic cognitive load, be
highly reliable, and also have the benefit of being relatively unobtrusive (see Ayres, 2006).

This view is supported by some studies interested in quantifying and evaluating cognitive
load in high frequency interaction scenarios, such as found in air-traffic control. In one
such study where task difficulty was mediated using the number and incoming direction
of aircraft, participants were judged to be able to discriminate between the three types of
cognitive load with over 74% accuracy (Lin et al., 2013).

Limitations also exist for other instruments proposed for measuring cognitive load
especially when this varies as a result of the learner’s changing framework of reference
and increased schema acquisition in response to progressive learning (i.e., as learner
expertise increases), because the difficulties that are perceived by the learner and the
associated degree of helpfulness of particular resources may be continuously changing as
learning proceeds (Schnotz & Kiirschner, 2007; Veenman, Prins, & Verheij, 2003). However,
work comparing different approaches for establishing item difficulty levels has shown that
individual learners do perform quite well when judging the difficulty level of items and are
likely to be more accurate than subject experts at establishing the “true” level of difficulty;
that is, the level established from a large sample size (Wauters, Desmet, & Van Den
Noortgate, 2012). Using student evaluations of item difficulty levels to help guide a
determination of the subject expertise of a particular learner may therefore in practice be an



effective way to match different instructional material to a learner’s developing mastery of
content.

Measurement of cognitive load In the early stages of the development of cognitive load
theory, measurement was undertaken mainly by indirect methods such as learner error
rates, the time taken to reach problem solutions, or computational models that were often
used alongside more established approaches such as dual-task methodology (Dutke & Rinck,
2006; Sweller, 1988).

These approaches have been largely superseded by self-rating Likert-scale measures
where learners are asked to report the perceived amount of mental effort they invest in a
learning experience (Paas, 1992), where mental effort is defined as “the aspect of cognitive
load that refers to the cognitive capacity that is actually allocated to accommodate the
demands imposed by the task; thus, it can be considered to reflect the actual cognitive
load” (Paas, Tuovinen, Tabbers, & Van Gerven, 2003, p. 64). In order to explore more

fully the different cognitive process within such global measures, a set of separate (but

still subjective) scale items has been proposed to measure intrinsic, extraneous, and
germane cognitive load individually (Cierniak et al., 2009).

Other measures have sought to assess the efficiency (quality) of learning by mapping

the relationship between the mental effort invested and test performance (Paas & Van
Merriénboer, 1993) or between the time invested and test performance (Gerjets, Scheiter, &
Cierniak, 2009; Van Gog & Paas, 2008). Although still widely used, self-rating Likertscale
measures have also attracted criticism on the grounds that they may be too subjective
(Briinken et al., 2003), or because they have been too often used to measure different types
of cognitive load inappropriately (Kirschner, Ayres, & Chandler, 2011), and because they
have not always been used in a consistent way (Van Gog & Paas, 2008). Some writers argue
that these different measurement approaches towards cognitive load have actually been
assessing different constructs and therefore are not equivalent or necessarily comparable
(e.g., Ayres & Paas, 2012; Ayres & Van Gog, 2009).

For the purposes of this review, the most commonly used mental workload metrics have
been divided into the three broad but somewhat overlapping categories of subjective
measures, physiological measures (direct objective), and secondary-task (indirect objective)
approaches. However, the specific techniques used in each case may be accessing slightly
different features of mental workload, and in practice there is thought to be some value in
using multiple measures, preferably from two or more of the broad categories shown in
Table 2 (Carswell, 2005).

Subjective measures

Subjective approaches most commonly use participant ratings of the difficulty of the
materials to be learnt as a measure of cognitive load (Kalyuga, Chandler, & Sweller,
1998), although differences in ratings between participants can also be influenced by the
difficulty of the task, the differing expertise or competency of individual participants, or
other factors such as variations in participants’ motivational levels or in their ability to
concentrate.



Indirect subjective measures include self-reports of stress or the mental effort expended

and commonly rely on the retrospective use of Likert-type scales or on data collected during
task performance (e.g., Antonenko & Neiderhauser, 2010; Ayres, 2006; Chang & Yang,

2010; Kalyuga & Sweller, 2005; Scharfenberg & Bogner, 2013). However, it is not clear

how these self-reports can be related directly to the actual cognitive load involved

(Briinken et al., 2003). This issue is problematic for many other approaches to measuring
cognitive load, where a small amount of mental effort could be taken to mean that the
learning task generated a small cognitive load (it was an easy task), or that the task was
difficult but the learner possessed high expertise (the learner found the task easy because of
their high degree of competence), or it could equally indicate that the cognitive load
demanded was so high that the learner gave up trying to understand or complete the task
(irrespective of their level of expertise). These “efficiency” measures are problematic when
some individuals reach similar levels of performance than others with less mental effort or
where higher levels of performance than others are attained with the same amount of
invested effort. In each case, the relationship between self-report values and the
experienced cognitive load means something different and should be interpreted differently.

Correlations between self-report scales, secondary visual monitoring tasks, and post-hoc
difficulty rating scales are not reliable or consistent and tend to be weak, and different types
of cognitive load are often dissociated from each other, are not highly correlated, and can
be sensitive to different measures of cognitive load, such as reaction times to secondary
tasks, effort ratings during learning, and difficulty ratings after learning (DeLeeuw &

Mayer, 2008).

If cognitive load is influenced by or composed of different elements as suggested

(Mayer, 2001; Sweller, 1999), different manipulations in the learning situation would

seem likely to cause different types of cognitive load to vary. It may therefore be dangerous
to assume that different measures of cognitive load each measure overall cognitive load, but
it may be that these may be used to measure different types of load. Different learning
materials (or learner characteristics) may also produce different patterns of results which
might depend on the prior knowledge of the learner (Kalyuga & Sweller, 2005).

These and similar complexities undermine any assumed linear relationship between
performance and mental effort, especially when we additionally allow for differences
between individuals with regard to interest in a given learning topic or levels of motivation,
as these also seem likely to influence an individual’s investment of mental effort. Higher task
demands are not necessarily associated with a higher mental workload because, as we

have seen, mental workload cannot be precisely measured using only the properties of

the task itself. Other, individual, factors such as expertise and environment have an

impact on the mental effort that subjects deploy to solve a particular task (Ayaz, Cakir, et al.,
2012; Ayaz, Shewokis, et al., 2012; Murai, Hayashi, Okazaki, Stone, & Mitomo, 2008).
Cognitive load may therefore need to be defined in terms of the interaction between the
given task and the individual involved in performing the task (Durantin, Gagnon,

Temblay, & Dehais, 2014), and, despite years of research, it remains unclear how mental
effort is related to actual cognitive load.



Table 2. Methods of measuring cognitive load (after Kalyuga, 2009; and Briinken, Seufert, &
Paas, 2010).

Data
Relationship Subjective Objective
Direct Self-reports of Eye-tracking,
stress Dual-task methods,
Brain activity measures (e.g., MRI, {NIRS).
Indirect Self-reports of Learning outcomes, time on task, help-seeking behaviour,
mental effort physiological approaches using EEG or cardiovascular

metrics, efficiency measures.

Simple subjective rating scales continue to be the most common approach to representing
cognitive load. Their reliability and validity rests on the questionable assumption that
learners are able to reflect and report on their own cognitive processes accurately (Paas

& Van Merriénboer, 1994), but by their very nature they are not able to provide us with
an absolute scale for ratings of mental effort or cognitive load, although they can be
useful for repeated comparisons of load with the same group of learners. Educators
should treat overall measures of cognitive load with some care, and differentiation
between germane, extraneous, and intrinsic load remains challenging for all current
instruments. Different instructional materials may also produce different outcomes
depending on

the prior knowledge and individual characteristics of each learner, and it may be that
cognitive load is an expression of the interaction of a number of these individual elements.

Direct objective measures

Direct objective measures include examples of eye-tracking, dual-task methodologies or
brain-activity measures using neuroimaging approaches, such as functional near-infrared
spectroscopy (fNIRS). The latter, whilst perhaps currently the most promising, is as yet
inconclusive because the connection between cognitive (memory) load and prefrontal
cortex activity is still imperfectly understood.

Dual-task methodologies (sometimes referred to as the dual-task paradigm) can be
regarded as objective in the sense that they use the assumption of a limited central
processing system in the brain to argue that learner performance on a simple (secondary)
task, such as reacting quickly to a separate event, maintaining a counting task, or being able
to remember items seen on a separate computer screen, can be used to add cognitive

load to the same working memory processing system as the primary task. This assumption
allows researchers to claim that the elapsed time or successful completion of the secondary
task can be used as a direct and individual measure of the cognitive load demanded by the
primary task, although some have concluded that dual-task methodologies may be
intrinsically limited for use with complex instructional designs where the identification of an
appropriate secondary task may present inherently complex challenges that may be very
difficult to overcome (Kirschner et al., 2011). Using reaction times to a secondary task

as a proxy measure for cognitive load has also highlighted the importance and difficulty



of choosing an appropriate secondary-task design (Block, Hancock, & Zakay, 2010;
Briinken et al., 2002; Schoor, Bannert, & Briinken, 2012). If the contiguous secondary
task becomes too intrusive, it may at times become the primary task, but secondary tasks
may not affect cognitive load when the task demand is low, because individuals would
possess sufficient working memory to successfully complete both primary and secondary
tasks. Additionally, the secondary task needs to align with the theoretical structure of the
theory, so that if we accept that the two subsystems of working memory for phonological
and visuo-spatial information are mostly independent, a visual secondary task may not
correctly reflect cognitive load in the auditory subsystem and vice versa, especially when our
understanding of how the cognitive load in these two subsystems affects overall cognitive
load is uncertain.

This approach seems likely to become more problematic with repeated use if we consider
that subject performance may change over time simply as a result of learning from

practice at completing secondary tasks. Additionally, the secondary tasks involved must
demand access to the same mental resources as the primary task, the performance
measures need to be reliable and valid, and the secondary task has to be simple, so that it
does not prevent simultaneous learning processes, but strong enough to potentially
consume all of the relevant cognitive capacity. The duration of a secondary task also appears
to influence activity more than its degree of difficulty (Towse & Hitch, 1995). Secondary-task
methodology is therefore regarded as a sensitive and reliable technique under certain
conditions but has drawbacks that may limit its wider use; it interferes with the primary task,
and this effect is more pronounced with more complex tasks or when cognitive load is high;
and it is unsuited to real-time or continuous measures (Lin et al., 2013).

Process-tracking methods such as concurrent or retrospective verbal reports from subjects
have also been applied along with eye-tracking studies that trace fixation patterns, eye
blink, and pupil dilation to evaluate cognitive load and map shifts in user attention (e.g.,
Chen & Epps, 2013; Irwin & Thomas, 2010; Klingner, Tversky, & Hanrahan, 2010;

Kramer, 1991; Theeuwes & Belopolsky, 2010; Zheng & Cook, 2012). Supporters of

these approaches promote their advantages in collecting data in real time and critique

other approaches such as performance scoring (e.g., accuracy or reaction times) and
subjective self-ratings as being too reliant on overt and discrete participant responses and as
postprocessing measures. Studies have found that blink activity (latency and rate), pupil size,
and fixation duration and rate all correlate significantly with different levels of demand

on working memory, with blink latency, pupil size, and fixation duration progressively
increasing in line with task difficulty and blink rate, fixation rate, and saccade speed and

size decreasing similarly. The hypothesis offered by such work is that eye blink, pupillary
response to tasks, and eye movement each reflect different but complementary information
about cognitive activity because they are each controlled by different parts of the nervous
system.

Some features of eye activity may therefore be useful approaches for discriminating
between different levels of cognitive load (Jacob & Karn, 2003). A significant amount of
research literature supports the view that pupil size varies as a function of experienced
cognitive load, the level of drowsiness, and mood, feelings, or attitude, or affective state
(Grandchamp, Braboszcz, & Delorme, 2014), although the results from some studies in



this area (e.g., Chen, Epps, Ruiz, & Chen, 2011) conflict with the findings of others
(Greef, Lafeber, Oostendorp, & Lindenberg, 2009; Van Orden, Limbert, Makeig, &
Jung, 2009).

The application of such research may still rely on self-report measures, where a number

of occulometric measures such as blink frequency, pupils size, and gaze position may be
used to monitor behaviour such as self-reported mind wandering, where participants use

a button press to indicate occasions when they had forgotten to continue a counting
exercise (Grandchamp et al., 2014). One limitation of this approach, as with other self-report
systems, is that it still relies on the validity and accuracy of user reports. In the above

study, for example, it is unclear whether subjects reporting fewer mind-wandering episodes
than others could have experienced fewer of these or instead may simply have been less
sensitive in detecting them. Other studies have suggested that the degree of pupil dilation
can be affected by conditions such as depression, making this approach to measuring
cognitive load ungeneralisable to the wider population (Siegle, Steinhauer, & Thase, 2004).
Also, pupil dilation is regarded by some as an imperfect measure of brain activity

because it does not control for many factors such as the brightness of the stimulus

applied, or tiredness. Additionally, many eye-related studies of cognitive load make use of
the Stroop Colour Naming Task, which is a widely used test of selective attention that
requires participants to name the colour of the ink in which words that are the names of
colours are written. Generally, people make more mistakes when the word is not the

same as the colour in which it is written (e.g., the word “blue” printed in red ink) than

when the word and the colour are the same (for a review, see MaclLeod, 1992).

However, results from such studies are felt to be influenced by other factors such as
participant attention, individuals reflecting on the previous stimulus, and also any mental
processing that is irrelevant to the task about which, of course, the experimenters would
have little or no information (Siegle et al., 2004). In particular, the use of the Stroop Test has
been shown to create increased distractor interference effects when cognitive load becomes
high (Gibbons & Stahl, 2010).

Although eye movement, pupil dilation, and blink rate are generally regarded as sensitive
psychophysiological metrics for monitoring cognitive load (Klingner, Kumar, & Hanrahan,
2008; O’Brien, 2006; Palinko, Kun, Shyrokov, & Heeman, 2010), they have at times

been found unsuitable for this use in older people, where, for example, mean pupil dilation
has been found to increase as a function of memory load in younger participants but has not
been found to be sensitive to memory load for older participants (Van Gerven, Paas, Van
Merriénboer, & Schmidt, 2004). The usefulness of this approach as a sensitive correlate

for fluctuations in memory load may therefore diminish with age, and age-related
differences in the sensitivity of the pupil to cognitive load would therefore make it difficult
to compare different age groups because different levels of dilation may not correlate with
the different levels of experienced cognitive load.

Brisson’s comparison study of pupil dilation using different eye-tracking equipment
systems also found that each system created different errors and that the written
construction and layout of the language being observed affected participant “arousal” as
measured by the three different systems (Brisson et al., 2013). In this study, a language like



English (left-to-tight, top-down sequence, and layout) could “arouse” participants most at
the start of reading but less towards the end, irrespective of the subject or content of the
text. Unless equipment from different manufacturers is able to compensate for point of gaze
in pupil size measurement, the use of eye tracking methodologies will need careful
experimenter calibration to ensure the reliability and replicability of their work.

So, although concurrent or retrospective verbal reporting, eye tracking, gaze fixation
duration, and concept mapping may be useful measures of cognitive load, they may actually
be measuring different constructs within this. As noted by Van Gog, Kester, Nievelstein,

and Paas (2009), subjects who report less invested mental effort can also have higher

mean fixation durations during parts of a task than others reporting higher invested

mental effort, which may be because data on mental effort usually relate to overall task
processes whereas mean fixation data are often calculated for parts of task processes.
Concurrent and retrospective verbal reporting are also problematic because they result in
different types of information and seem to be closely related to the time at which the
reports are generated (Van Gog et al., 2009). It seems probable that they therefore rely on
different memory systems and that different techniques such as verbal reporting, eye
tracking, and concept mapping are sensitive to different mental processes or cerebral
structures, and such concerns strengthen the argument for the use of combined measures
approaches. However, asking participants questions or to explain their experiences tends to
provoke reflection, which might lead to the construction of information that was not in fact
part of the process. On the other hand, whilst concurrent reporting during instruction
overcomes the risk of post-hoc reports being inaccurate, its application draws on working
memory, and it may therefore become difficult to maintain under high cognitive load.

Other approaches have used computer-based studies to infer the experiences of learners
from activity logs or real-time playback recordings to record cognitive-load experiences

and the problems that learners meet. Direct objective measures are probably the only

ones that could claim to measure cognitive load without having to rely on subjective
information such as self-report data, indirect measures, or other (e.g., physiological) factors
that may have only a tangential link to cognitive load and be potentially strongly affected by
other factors, but these are by no means free of difficulty, and data from them when used
in educational settings need to be interpreted cautiously.

Direct objective measures of cognitive load are highly desired by educators and educational
assessment systems internationally, but instruments attempting to secure these

require very careful use and interpretation by educators and many still rely on elements

of self-report. Others have produced conflicting reports and, as with subjective measures,

a number of studies have suggested that different constructs within overall cognitive

load, or even other mental processes, may be being measured along with a range of
individual physiological features.

Indirect objective measures
Indirect objective measures include physiological approaches using electroencephalography

(EEG) or cardiovascular metrics or learning outcome measures, often combined with
interaction features. These are regarded as objective because they are perceived as



measures of intellectual performance and as indirect because the factors measured are
affected by the information processing and retrieval process that is taking place. There is a
long history of the use of indirect objective approaches to evaluate stress, affective, and
arousal states especially when psychological measures are correlated with physiological
signals such as speech and linguistic features, facial expression, eye/body movement, or
galvanic skin response (Shi, Choi, Ruiz, & Taib, 2007; Yap, Ambikairajah, Choi, & Chen, 2009;
Yap, Epps, Ambikairajah, & Choi 2011). Many speech features have also been used to
measure cognitive load such as speech rate, pause rate, onset delay, and interruption rate,
along with mouse-speed and pressure, linguistic patterns, heart rate, performance
methods such as error-rates or tests, and subjective methods of rating experienced loads
(e.g., Khawaja, Ruis, & Chen, 2007; Lin et al., 2013; Yin, Chen, Ruiz, & Ambikairajah,

2008). Such measures have been found to be helpful because they are continuous and
allow very fine granularity in the measure which can also be repeated at high rates, but

for the most part they are probably outside the scope and resources available in the majority
of educational settings at this time.

Physiological measures can include heart-rate monitoring, EEG measures, eye tracking,
and pupillary response and assume that changes in cognitive load are highly sensitive to
physiological changes which are equally assumed to be involuntary and therefore objective
and have claimed high levels of classification accuracy, but it is recognised that such
outputs are also sensitive to confounds of subject expertise, age, and physical or mental
variations (e.g., Khawaja et al., 2007; Yin et al., 2008). For example, working memory

span appears to develop as children grow older (e.g., to around age 8-9) such that older
children can more easily switch their attention from their immediate mental task and can
exert more control over their attention, perhaps as a result of developing faster and more
efficient mental processing and more attentional capacity (Gavens & Barrouillet, 2004).
Individuals with high- and low-working memory spans differ in their ability to suppress
task-irrelevant behaviour and information (e.g., extraneous cognitive load). Low-span
individuals appear to find it more difficult to maintain task goals in working memory, and
this is argued to be due to their poorer attentional control (Unsworth, Schrock, & Engle,
2004). Low-span and high-span individuals differ in particular in the speed with which they
can switch attention between tasks or sub-elements of tasks whilst learning, although they
may in addition differ in their ability to process information, and both of these may

affect results (Unsworth et al., 2004).

Studies using indirect objective measures often feature a number of groups of participants
each using some variation of instruction about the same material. It is assumed that the
intrinsic cognitive load imposed is the same in all cases as the material to be learnt is the
same for all participants and, perhaps as a result of this feature, the use of this approach is
more common in educational settings than others discussed here. The assumption is that
the more effective and efficient the instructional method is, the more students will learn and
the lower will be the extraneous cognitive load due to the instructional process. However,
much can depend on the kind of measures that are used to test the outcomes, such as how
long a learner takes to complete a task, and some studies have identified this as a serious
weakness in this approach (Briinken, Steinbacher, Schnotz, & Leutner, 2001; Mayer, 2001),
whilst others have noted that such learning outcomes are also consistently influenced by
individual learner traits (Mayer, 2001; Plass, Chun, Mayer, & Leutner,



2003). Behavioural and physiological measures using eye-tracking, heart-rate, or
pupildilation analysis similarly assume that changes in cognitive load are highly sensitive to
physiological changes which are thought to be involuntary and therefore objective.
However, each has the drawback of providing only indirect connections to cognitive

load, and high levels of such activity may be due to individual differences in stress or
emotional reactions to the learning materials, which may be unknown to the instructor in
a given educational setting.

The left brain hemisphere is involved in speech and memory, whereas the right hemisphere
is necessary for physical response to external events and for attention shifting, and
electroencephalography (EEG) and magnetic resonance imaging (MRI) are two established
technologies for measuring and classifying such brain activity, although care is needed in
interpreting outputs from these and similar approaches (Freeman, Ahlfors, & Menon,
2009). EEG records electrical activity across the surface of the brain arising from currents
within the neurons in the brain, and these data can be used to detect how long it takes the
brain to process certain stimuli, such as those experienced during learning. During learning,
the neurons in different active areas of the brain will consume more oxygen and therefore
also generate different levels of a tiny magnetic signature which can be detected by the
powerful magnetic fields generated within a MRI scanner. Volumetric images of these
different signatures can then be created from the different levels of blood-oxygenation
level-dependent contrasts to make a functional image (map) of the neural correlates of
cognitive tasks.

Recent research in neuroscience has developed a number of instruments for studying

brain function during problem solving and learning. Event-related functional magnetic
resonance (fMRI) has been used to map the amount of hemodynamic activity (oxygen
saturation and blood flow) in regions within the brain during learning. This provides
researchers with longitudinal measures of rapidly changing cognitive activity across a range
of specific brain areas, and, it has been argued, may even be able to measure the different
types of cognitive load (Whelan, 2007). However, at present the bulky and sophisticated
equipment needed make the use of fMRI make it impractical for all but the most specialised
contexts, and this effectively rules it out as a practical application for almost all educational
settings.

Grimes, Tan, Hudson, Shenoy, and Rao (2008) used EEG to measure visual task difficulty
and extract related data for cognitive load, but could not easily distinguish between the
different sub-types of cognitive load, and determining task difficulty proved difficult. As

EEG measures are particularly sensitive to the specific user task, this was a significant
limitation. In a later study, Anderson et al. (2011) used EEG to estimate and classify the
cognitive effort dedicated to holding information in the mind for short periods of time while
performing another cognitive task. The results showed high memory load classification
accuracy both within and across different tasks, although variations across different users
were substantial. Instead of classifying individuals according to cognitive load, studies

such as these may therefore suggest that one potential way forwards might be to group
together those who exhibit similar characteristics in their EEG signal and then apply different
models to classify their load.



As an alternative to the bulky and highly expensive EEG and MRI/fMRI technologies,
functional near infrared spectroscopy (fNIRS) was developed in the 1990s and observes
closely similar physiological parameters to fMRI (Chance et al., 1998; Strangman,

Culver, Thompson, & Boas, 2002). Because it can be used to measure activity in localised
areas of the brain, most commonly in the anterior prefrontal cortex, it has emerged over the
last decade as a promising technology for brain imaging. The approach takes advantage of
the way light at near-infrared frequencies penetrates bone and biological tissue but is
absorbed by haemoglobin in the bloodstream. Neural activity (such as learning or cognitive
task completion) is accompanied by increased oxygen demands by neurons in order to
metabolise glucose for energy, and fMRI detects the opening of capillaries in cortical

areas where carbon dioxide has accumulated in response to neurons burning glucose.

First proposed in 2004 as a portable brain-computer interface suitable for long-term use,
fNIRS uses near-infrared light to detect levels of oxygenated and deoxygenated haemoglobin
on the surface of the prefrontal cortex (Coyle, Ward, Markham, & McDarby, 2004) and is a
low-cost non-invasive neuroimaging technique that has been shown to be sensitive to both
cognitive loads and states and is a viable alternative to fMRI (Fishburn, Norr, Medvedev, &
Vaidya, 2014). The validity of fNIRS measurement has been repeatedly confirmed in recent
years, and results can be reliably reproduced, even over time spans of 1 year. Studies also
have found that fNIRS results are highly consistent with fMRI findings (Afergan et al., 2014),
but its great advantage over MRl and EEG is that it has become increasingly portable with
relatively low-cost wireless instruments now available, and because it uses much less bulky
equipment it can more easily be used in authentic learning situations (Ferrari & Quaresima,
2012). Applications of fNIRS are steadily moving closer towards use in routine classroom
situations, and this promising technology seems set to make inroads into mainstream
educational research in the near future.

Some studies have used fNIRS to determine that haemodynamic levels in certain brain
regions are related to problem-solver expertise, explaining at least 73% of the variation
between participants solving tangram puzzles, suggesting that better problem solvers
increasingly become less dependent on neuronal resources as they continue working on
subsequent tangram puzzles (e.g., Cakir et al., 2011). Similarly Shaw, Satterfield,

Ramirez, and Finomore (2013) used Doppler tomography during a communication vigilance
task, reporting that novice learners produced greater mental activity than experienced
learners and were thus assumed to have expended greater cognitive effort; this study also
concluded that cerebral blood flow speed can be used to measure the amount of cerebral
resources used to complete a task. Similarly, Durantin et al. (2014) looked at the piloting
of remotely operated vehicles and compared fNIRS with two well-established measures

of mental workload (heart-rate variability and subjective self-reports) and found that fNIRS
proved effective at measuring mental overload detection.

Evidence supporting the possibility of more self-regulating technologies for managing
cognitive load comes from studies aiming to optimise workload and learning in real time
through measuring extended periods of boredom or cognitive overload. Participants in
one such study conducted path planning in a high-frequency interaction environment for
multiple unmanned aerial vehicles (“drones”) in a simulated environment. It was found
that fNIRS was able to detect variations in task difficulty by changing the task difficulty



dynamically, usually by adding or removing the number of vehicles to be monitored
simultaneously in response to measurement made with fNIRS (Afergan et al., 2014). This
approach reduced the operator failure rate by 35% whilst creating conditions where they
also exhibited higher levels of alertness for addressing problems, supporting findings
from earlier similar studies using military flight simulators (e.g., Huttunen, Kerdnen,
Vayrynen, Padkkonen, & Lenio, 2011).

Although increasing cognitive load produces different brain network responses in

younger than in older individuals, the key principle behind both fMRI and fNIRS is the

same; that selective brain regions show progressively increased activity as cognitive load

is increased (typically in the prefrontal cortex), but it is recognised that other brain

regions are also involved depending on the nature of the task (O’Hare, Lu, Houston,
Brookheimer, & Sowell, 2008) and that, generally, the longer and more intense the learning
stimulus the longer the duration required for recovery in cortical haemodynamics

between learning sessions (Leff et al., 2011). fNIRS therefore seems able to detect workload
in a wide range of different contexts that are not limited to a specific type of working
memory and has been used in studies where aircrew were piloting unmanned air vehicles
(Ayaz, Cakir, et al., 2012; Ayaz, Shewokis, et al., 2012), when participants were part of

a human-robot team (Solovey et al., 2011), when evaluating complex visual tasks (Peck,
Yuksel, Ottley, Jacob, & Chang, 2013), and whilst driving vehicles (Tsunashima & Yanagisawa,
2009). One study of groups during a driving video-game found that the left and

right prefrontal cortex differentiate between intrinsic and extrinsic cognitive load according
to the predictability of events such as manoeuvring a vehicle (e.g., turning). Regardless of
whether cognitive load was able to be attributed to intrinsic or extrinsic factors, this study
also identified additional different brain regions involved in preparation for action, although
load type did affect activation patterns (Liu, Saito, & Oi, 2012).

Earlier fNIRS studies have shown that if load increases to the point of reduced task
performance, the signal changes in ways that suggest a capacity-limited response (e.g.,
Callicott et al., 1999). However, the interpretation of such measures requires care, and the
relationship between task difficulty, mental effort, and brain activity is non-linear and
subtle (Jaeggi et al., 2003). Additionally, cognitive load produces different brain network
responses in younger than in older individuals (O’Hare et al., 2008), and so maturation
effects — at present poorly understood — should also be accommodated in future measures.

Physiological measures may therefore claim high reliability but pose difficulties of construct
validity because their outputs may be due to a range of factors that are exposed to
problems of multi-causality. Despite the ability of fNIRS to track the functional pathways of
the brain that mediate the maintaining and manipulating of attention, one problem with
current research is that there is no standardised approach to extracting features from the
signal or a prevailing consensus about which features of the fNIRS signal may result in the
highest levels of accuracy (Peck, Afergan, Yuksel, Lalooses, & Jacob, 2014). Researchers also
do not know in advance whether a period of interaction should be producing high or low
mental workload.

Novice performance often falls at difficult levels whilst expert users show a strong increase,
suggesting that fNIRS may have valuable potential for establishing user expertise in real



time as part of an adaptive system that could calibrate instructional content based on the
sensed expertise of the learner (Bunce et al., 2011). So whilst fNIRS is able to measure
signal changes over time with great accuracy, its use and the interpretation of its signal
outputs requires care (as with EEG and FMRI), not least because the biological response
of the brain to neurological changes is more sluggish, as changes in the oxygenation and
deoxygenation of blood take time to reach brain tissues (Peck et al., 2014).

Individual differences

The influence of individual differences on learning task performance is important because it
could significantly affect the interpretation of the role and impact of cognitive load in
working memory. Evaluation that relies on verbal feedback can be influenced by individual
preference and expectation, cultural biases in particular fields, or resistance to change
(Anderson et al., 2011).

Working memory capacity is strongly influenced by individual differences in controlling
attention. The capacity of working memory, or at least of its central executive element, is
therefore subject to volitional control and is variable between individuals. However,
although individuals possess different resources for mental processing, they may or may not
choose to make use of them in any given situation, as most experienced educators know
(Barrett, Tugade, & Engle, 2004). The cognitive load and participant confidence

of e-learners as they completed an asynchronous task showed that procedural and

subject knowledge or skill are not always enough to bring about successful learning and that
an individual’s self-efficacy and motivation are also important, possibly more so (Martin &
Vallance, 2008; McQuaid, 2010).

Educators and researchers are familiar with the phenomenon whereby increases in cognitive
load are not always accompanied by a decrease in task performance or an increase in

time on task, as learning may be sustained by drawing on resources such as effort,
commitment to task, and motivation (Briinken, Plass, & Moreno, 2010; Hockey, 1997; Peck
et al., 2014). Performance on long tasks is known to decrease with time on task, but there
has been disagreement about the substantive cause of this well-known effect, as decreases
in vigilance have also been known to appear in tasks lasting less than 10 min. (Matthews,
Davies, & Holley, 1993; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997). Cognitive
load theory appears to explain attentional intensity more successfully than arousal theory
(see Stroh, 1971, for an overview), where changes in vigilance are assumed to be associated
mainly with long-duration tasks. Several studies have argued that vigilance is determined
more by resource demands than by task duration, and subjective alertness may therefore
be a useful index of the availability of cognitive resources (Matthews et al., 1993; Robertson
et al., 1997; Smit et al., 2004; Stroh, 1971). Similarly, although the combination of the
effects of task difficulty such as pressure of time and alertness when executing a memory
task have been shown to have an overall effect, an important variable tends to be individual
differences, including alertness (Galy, Cariou, & Mélan, 2012).

It is therefore important to take due account of the large individual differences found in
fMRI research, especially with regard to differences in processing at capacity limits. These
differences are thought to most likely result from the more efficient use of resources that is



especially pronounced in high-performing individuals. It is unclear why these differences
are present, but it is thought to hinge on high-performing individuals’ better differentiation
between relevant and irrelevant information (Jaeggi et al., 2007; Unsworth et al., 2004).

Other studies have concluded that individuals with higher IQs have more cognitive
resources available for processing information and so experience lower cognitive

demands than less intelligent individuals engaged on the same task, probably as a result

of differences in the rates of information processing (Fink & Neubauer, 2005).

High workload has also been found to be more detrimental to individuals with low cognitive
abilities than to those with high cognitive abilities, in both traditional learning settings

and contexts featuring blended or technology-enhanced learning. Individuals with

low cognitive abilities also appear to be more sensitive to workload during such learning
than those with high cognitive abilities, and there appears to be a general link between
intelligence and learning in real-time dynamic decision making tasks (Fink & Neubauer, 2005;
Gonzalez, 2005). A negative correlation has been found to exist between brain activity
under cognitive load and intelligence, suggesting that individuals with high IQ scores
process information more quickly and perhaps differently and may use more optimal
mental strategies than individuals with low IQ scores, even when no reasoning tasks are
involved, perhaps due to differences in the central executive in rates of controlling,
switching and focussing attention and in inhibiting irrelevant processes (Fink & Neubauer,
2005; Gibbons & Stahl, 2010; Jausovec & JauSovec, 2004).

However, the concept of a central executive which controls this focus of attention in many
different situations remains the least well understood element of the working-memory
system (Baddeley & Hitch, 1994), and the outcome of some earlier studies even undermines
the important related notion that the limitation of working memory relates to the number of
“chunks” that can be held in memory (see Unsworth et al., 2004). It is possible that such
findings mask the operation of more complex underlying cognitive structures and prior
learned responses as, for example, when attempting to account for which cognitive
mechanism is responsible for the longer reading times spent on words that convey more
information. Frank (2013) proposes that this effect is due to the reducing of meaning
uncertainty (reducing entropy) when reading words in sentences, but a mechanistic model
has not to date been established to develop this.

Sex-related differences in cognition have also been found for some spatial measures,
where a male advantage was present (Voyer, Voyer, & Bryden, 1995), whereas a female
advantage has been found for some verbal measures (Crossley, D’Arcy, & Rawson,
1997; Kramer, Delis, & Daniel, 1988; Norman, Evans, Miller, & Heaton, 2000; Weiss

et al., 2006), when using object location memory measures (see Sykes Tottenham,
Saucier, Elias, & Gutwin, 2003; Voyer, Postma, Brake, & Imperato-McGinley, 2007), for
spatial cognition, language, and memory (Lejbak, Crossley, & Vrbancic, 2011). These findings
could have important implications for the use of different kinds of e-learning or
blended-learning solutions, and it may be necessary to take these into account when
instructors are designing or using multimedia or web-based resources. Other working
memory tasks have also shown gender-related differences in neural activity, although
findings have been inconsistent, and some studies have found contradictory outcomes,
suggesting that females and males may have used different strategies when completing



tasks and that older women had more difficulty completing the task, leading the authors to
speculate whether oestrogen levels played a part in this (Goldstein et al., 2005; Lejbak et al.,
2011; Nagel, Ohannessian, & Cummins, 2007; Speck et al., 2000).

We might reasonably expect that learners with different levels of content expertise will
probably report different levels of both cognitive load and task complexity for a given task
because of differences in their automated germane prior learning and schema acquisition.
The level of expertise does appear to influence brain response for some complex tasks, but
as yet we have no reliable way of measuring the extent of an individual’s schema resources
and the degree to which such automated prior learning mediates cognitive load during an
individual learning task (Ayaz, Cakir, et al., 2012; Brinken, Seufert, & Paas, 2010).

The prospect of obtaining indirect objective measures may lead educators to be less
concerned with the degree of individual schema acquisition, but it is likely that they

would be interested in metrics that provide insights into the implications of different

kinds of prior learning. Reasonably reliable and valid indirect measures may prove to

have more immediate value to educators than direct measures with higher levels of
complexity and uncertainty. However, this may be changing as fNIRS systems provide
increasingly sensitive interactive systems for mediating user experiences and subjective
alertness. It may also be the case that training students in more generic skills such as
attention switching would be attractive, providing such skills were able to be transferred
across different tasks and knowledge domains, although educators may need to remain alert
to persistent underlying influences of gender and intelligence.

Conclusion

Educators are understandably interested in promoting progressively higher levels of success
in learning outcomes whatever approach to educational pedagogy they adopt, and such
levels, however these are defined, are generally the main focus of instruments assessing
the effect of instruction. However, learning outcomes by themselves cannot be regarded
as valid measures of cognitive load and, perhaps more importantly, do not necessarily
offer sufficient guidance on which resources or approaches are best suited to maximising
the future learning of an individual. As we have seen, the measurement of cognitive load
needs to take account of factors such as motivation, self-concept, and engagement with
the task that have not yet featured strongly in empirical or theoretical work in this area,
and in the absence of overarching metrics in this area the professional judgement of
educators seems likely to retain a significant role.

Cognitive load measurements are also relative and transient and subject to a number of
individual and empirical factors that vary over time. Cognitive load therefore cannot be
seen as a constant factor related only to objective features of instructional format or
content, and more developmental or longitudinal studies might add significantly to our
understanding as a result. Similarly, the number of separate interacting elements needed
to solve a task is an index of task complexity (intrinsic cognitive load), and increasing

task complexity is likely to be reflected in greater demands on cognitive resources, but
objective measures of task complexity (e.g., by cognitive task analysis) are not currently
used in cognitive load research. Intrinsic load for a given task is also affected by individual
learner aptitudes such as prior expertise (Seufert, Janen, & Briinken, 2007), and it may



therefore be more useful to define task complexity in terms of the amount of information
that has to be extracted from a given information source in relation to the goal of the
learning task, and better statistical measures such as time series analysis have been
proposed to help with this in future research (Briinken, Seufert, & Paas, 2010).

What appears necessary for significant advances to be made in cognitive load research

are more unobtrusive and reliable means of continually monitoring different types of
cognitive demand in authentic learning situations over extended periods of time and
especially in complex or loosely structured domains. Measuring mental load has become the
single most problematic and important issue in cognitive load theory but:

To date, there is no model integrating the role of learner characteristics, such as individual
differences in prior knowledge, working memory capacity, and domain-specific abilities that
can help predict the relative intrinsic difficulty of the material for a specific learner in a specific
situation. (Briinken, Plass, & Moreno, 2010, pp. 257)

Cognitive load theory argues that learning helps promote schema development and
acquisition, but this too is as yet unproven. Direct empirical evidence for the cognitive
mechanisms by which schema acquisition comes about is lacking. As yet, we also have

no instruments to directly measure a learner’s working memory resources. We are still
working towards a full understanding of how cognitive load relates to specific forms of
knowledge representation, although we have some evidence that these are closely linked
and that the type of skills and knowledge that a learner acquires depend upon the particular
kinds of mental representations promoted by instruction (Schnotz, Boeckheler, & Grzondziel,
1999; Wallen, Plass, & Briinken, 2005).

We also do not yet know what kinds of mental processes in instructional design will

best promote schema acquisition or of what kind. For example, the introduction of an
appropriate image into textual learning materials tends to promote greater understanding
(Mayer, 2001), but cognitive load theory has difficulty in explaining whether such an
arrangement causes a decrease in the overall cognitive load, increases the germane

load, decreases the extraneous load, or enhances helpful schema formation. The
disentangling of different kinds of load and successfully measuring them in valid and reliable
ways remains a challenge for the research field. Understanding the basic foundations

of working memory is also an important priority for cognitive load theory as this

concept is central to its structure, but as yet the theory offers no explicit assumptions
about its architecture or operation.

Some writers seriously doubt that it will be possible to find the holy grail of cognitive
load theory, reliable and valid individual measures for the three types of cognitive load
(see Kirschner et al., 2011), although others report some limited progress (Leppink,
Paas, Van der Vleuten, Van Gog, & Van Merriénboer, 2013). In general, there has

been limited success in disentangling and measuring different types of cognitive load,
and current research in this area features considerable discrepancies in the wording of
cognitive load measures, when they are collected during an intervention and how
“efficiency” is defined and used. Securing valid and reliable metrics will need to take due
account of the importance of the sensitivity of instruments used to measure cognitive
load and also the importance of the diagnosticity of them —that is, the ability of an



instrument to discriminate between the different types of mental/cognitive load — and
reduce the intrusiveness of the instrument, as an overly intrusive measure will interfere
more with the primary task performance (Yuan, Steedle, Shavelson, Alonzo, & Oppezzo,
2006; Wiebe, Roberts, & Behrend, 2010).

At the moment, many performance test results do not correlate well with the subjective
measures used, and one or other of the two effects (load and performance) will appear, but
not both, and they occasionally conflict each other or confound the theoretical argument
being applied. Attempts to discriminate between and measure more than one type of load
have been highly problematical and so far have tended to fail because outcomes have either
been inconsistent or highly correlated. However, the theoretical and practical problems to
be solved are clearly identified, and despite all the remaining challenges, there are
indications that instruments such as fNIRS may offer ways towards empirical and objective,
valid, and reliable individual measures of cognitive load, and the field remains a rich source
of opportunity for the exploration and understanding of cognition.
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