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Abstract: There is no consensus regarding a common set of metrics for robot task
complexity in associated human-robot interactions. This paper is an attempt to address
this issue by proposing a new metric so that the educational potential when using robots
can be further developed. Tasks in which students in Japan and UK interact in a 3D virtual
space to collaboratively program robots to navigate mazes have resulted in quantitative
data of immersion, circuit task complexity and robot task complexity. The data has
subsequently been collated to create a proposed new metric for tasks involving robots,
which we have termed task fidelity. The paper proposes that task fidelity is a quantitative
measure of a set robot task in relation to a learner’s solution. By quantifying task fidelity
educators utilising robots in schools and in higher education will be able to provide tasks
commensurate with the expected successful outcomes achieved by the learners.
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Introduction

The educational potential of using robots in schools and higher education can only be
fully realised through understanding the specific categories of knowledge being
employed when learners are engaged in robot specific tasks (Gaudiello and Zibetti,
2013). In any task design it is also important to consider its difficulty for the intended
learners. Therefore, task designers such as teachers and higher education practitioners
need to provide tasks commensurate with the expected successful outcomes which, it is
anticipated, will be developed by the learners; although achieving this is not
straightforward. In this paper we demonstrate how tasks can be matched and quantified
with learner outcomes within the particular context of communicating the programming
of robots.

The motivation for programming robots in a simulated 3D virtual world was the
Fukushima Daiichi nuclear power plant disaster of March 2011, which revealed much
about Japan'’s lack of preparedness for nuclear accidents. Despite the brave efforts of its
labour force leading up to and in the aftermath of the reactor explosions it became
apparent that coordination and communication were disorganised. One of the most
surprising technology related episodes during the post-disaster efforts was Japan'’s lack of
robots to assist with the recovery operations. Despite Japan being a robotics-friendly
nation with the world’s highest levels of automation, it had to count on foreign

assistance in the form of disaster recovery robots donated by iRobot USA (Vallance

et al.,, 2013) and it took two weeks of training before the robots were allowed to inspect
the damaged reactors. Japan may be a nation whose image is that of advanced technology
and creative media, but the actual uptake of technology in Japan’s education system
‘remains comparatively low’ (UNESCO, http://www.unescobkk.org/index.php?id=1381).
As described by Mima (2003), the Japanese educational curricula are largely designed for
fact-based, exam-oriented learning and the pedagogy is founded upon a hierarchical flow
of information from ‘knowers to non-knowers’ (ibid ., p.266). This has a significant
impact on the nature of university education in Japan.

Japanese undergraduates arrive at university ill-equipped with computer literacy skills
and are incapable of applying studied theoretical concepts; for instance, they are often
unable to progress from static declarative knowledge to active procedural knowledge.
Moreover, Japan’s assessment-dominated educational culture dismisses collaboration as a
supplementary activity, rather than a core learning experience to be valued. In addition,
science and engineering courses remain unattractive to Japanese teenagers. This is likely
to have a negative impact upon Japan’s future ‘human capital’ if not reversed. Our

solution to this is to engage undergraduate students to actively participate in international



tele-collaboration tasks involving basic robots in both the real world and a virtual world
simulation.

Robot-mediated interaction (RMI) of this kind is a novel but effective form of
communication, promising significant benefits in remote collaboration. Systems that
afford RMI provide remote users with the ability to navigate in a local environment and
communicate with individuals in that environment (Rae et al., 2013). LEGO robot
programming components have been shown to be useful in quantifying task complexity
and for iteratively increasing the challenges given to students (Vallance and Martin,
2012).

3D virtual simulations provide interesting, engaging, realistic yet safe contexts where
robots are ordinarily utilised; such as in disaster recovery situations. A virtual world
simulation allows remotely located students to enter as avatars to communicate and
collaborate with other students, often across different continents. Cross cultural
collaboration is seen as increasingly valuable and necessary in many fields of science,
technology, engineering, research and education and international teams increasingly rely
on synchronous, asynchronous and virtual technologies in such work. Although many of
these intellectual domains may share procedural and content knowledge, this is not
always the case with educational experiences and habits, where cognitive approaches to
learning and thinking may draw on different cultural pedagogical traditions. Bringing
individuals together who have very different pedagogical experiences may also be a
valuable way of creating discussion and facilitating new thinking. This is important when
trying to encourage students to think about which approaches are most helpful in problem
solving and as an approach to promoting metacognitive learning. The use of students
from different cultures also may allow for the exchange and modification of acquired
learning strategies and could also be useful in testing some of the implicit assumptions in
taxonomies such as Bloom’s.

Higher education academics, researchers and school educators therefore need to find
ways to support the experience of collaboration in virtual spaces. To facilitate such work
we developed an OpenSim 3D virtual space (Figure 1) and a simulation of the Fukushima
nuclear power plant in a Unity3D virtual space (Figure 2) for Japanese students to
collaborate with UK students. Both groups of students were highly motivated by this
setting: Japanese students because of its national proximity and immediate impact on
themselves, their families or their friends; and UK students because of the international
interest the accident generated, especially in light of similar incidents in recent history
and also because of the UK’s current review of its strategy towards replacing its ageing
nuclear power infrastructure and concerns about meeting future energy needs for a
growing economy.



Figure 1 Student as an avatar manoeuvring a robot in our 3D virtual world
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Figure 2 Instructor as an avatar in our virtual Fukushima nuclear plant
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We begin with a brief summary of task complexity in the disciplines of robotics and
human-robot interaction (HRI) then set the context of programming robots in 3D worlds
within a new interpretation of complexity. After that the development of ‘circuit task
complexity (CTC)’ and ‘robot task complexity (RTC)’ are explained within the specified
context. In order to give educational value to these terms so that transfer can be made
across various robot and HRI contexts, the term task fidelity (TF) is proposed. Data is
collated and analysed from 29 RMI s involving students in the UK and Japan
collaborating in constructing and programming robots. Finally we discuss the value of a
common metric such as TF for educators in schools and higher education when teaching
with robots. An illustrative video is available to view on our companion website at
http://www.mvallance.net.



Robot task complexity

Common metrics are valuable for benchmarking within many domains. An example is
road transportation, where cars, motorcycles and trucks can be compared on important
objective features such as top speed, acceleration, engine capacity, fuel economy,
transmission and price. However, although there are a number of measures which can be
applied to robot-related tasks and the complexity of a given domain where robots are
utilised, common metrics do not exist in the same way because, as Steinfeld et al. (2005)
state, “the primary difficulty in defining common metrics is the incredibly diverse range
of human-robot applications” (p.33).

An attempt at common metrics has ben provided via the USUS Evaluation

Framework for HRI by Weiss et al. (2009), which focuses on usability, user experience,
social acceptance and social impact. Usability is the extent to which a robot can be used
by specified users to achieve specific goals and produce effectiveness, efficiency and
satisfaction in a particular context of use. Metrics include effectiveness (i.e., task
completion rate), efficiency (i.e., speed at which a task is completed), learnability (i.e.,
how easily the system can be learned by human users), flexibility (i.e., the number of
different ways users can communicate with the system), robustness (i.e., the level of
support provided) and utility (i.e., the number of tasks the interface is designed to
perform). However, although useful, the USUS outcome is descriptive and does not
produce objective numeric comparators.

In another study Murphy and Schreckenghost (2013) conducted a meta-analysis of

29 papers that between them proposed 42 different metrics for HRI. These metrics were
categorised according to the object being directly measured; such as the human (N = 7),
the robot (N = 6), or the system (N = 29). The metrics for the system were subdivided

into productivity, efficiency, reliability, safety and coactivity. However, metrics were

often not measured directly but were instead inferred through observation and the authors
concluded that they “have no functional, or generalizable, mechanism for measuring that
feature” (ibid ). Although many attempts have been made to develop a taxonomy of
metrics, the research community has yet to develop a standard framework and many
metrics remain highly task-specific.

Perhaps because of this complex situation, when discussing robots that undertake
specific manoeuvres, some researchers adopt task complexity as a common metric, where
tasks are defined as physical action units that are undertaken by a robot and the
designation ‘complexity’ is used to characterise the task that consists of different parts in
potentially intricate arrangements. In an example of robots which manoeuvre around
obstacles and follow distinct circuits (or mazes), Barker and Ansorge (2007) derive task
complexity as TC = XS + time, where XS is the number of portions or turns of a maze.
Olsen and Goodrich (http://icie.cs.byu.edu/Papers/RAD.pdf) define task complexity as
TC =TE +IE, where task effectiveness (TE) reflects the number of commands
successfully programmed into the robot and interaction effort (IE) the amount of time
required to interact with the robot (to take into account mistakes).

These metrics (Barker and Ansorge, 2007; Olsen and Goodrich http://icie.cs.byu.edu/
Papers/RAD.pdf) have been successfully adapted in the development of our research
(Vallance and Martin, 2012) although due to the absence of a common set of metrics, we



feel it appropriate to develop our own task complexity value specific to the context of our
RMIs discussed in this paper.

Robot tasks in 3D virtual worlds

Our research collated data from students collaborating in a 3D virtual world to program a
LEGO robot to successfully navigate mazes from start to completion in both the physical
world and within our 3D virtual space (see Figure 1). This was undertaken by:

1 designing circuits which necessitate the use of robot manoeuvres and sensors

2 students in Japan and UK experiencing collaboration in virtual worlds.

These experiences led to the development of personal strategies for teamwork, planning,
organising, applying, analysing, creating and reflection. Complex problems were
presented which necessitated the use of programming skills, design, cross-cultural
collaboration and RMIs.

We divided task complexity into CTC and RTC because the task focuses upon the

robot and what the human has to do to manipulate that robot. We call this the ‘product’ of
arobot task. We appreciate that HRI is the ‘intelligent interaction’ between a human and
arobot but the word ‘interaction’ assumes that the human and the robot are engaged in
two-way communication. We call this the ‘process’ of a robot task. Although there is
feedback from the robot in our tasks we would not necessarily claim that there is any
intelligent interaction; it is simply feedback. Therefore, we consider the collaboration to
be an example of RMI where humans act upon feedback provided by both robot and

other humans.

Method

Task fidelity

In this section we explain our use of TF, which is the value resulting from the complexity
of the circuit compared with the complexity of the program to complete that circuit. We
will provide an example problem and a possible solution as illustrated in Figures 3 and 4,

respectively.

Figure 3 Example of CTC
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Figure 4 LEGO NXT program solution

800 LEGO MNDSTORMS Education NIT frogramming
G-Elow8 8 00~ : : v st [Svan
—

oot —~ . ~ a7y 7 . 7 E
< ) y Do 1 L = » [ e ee 1
g ) % v =8 |

In the first iteration of our research, quantifying each task complexity the programming
of the LEGO robot required a determination of an action and a vector (Vallance and
Martin, 2012). Given the specific purposes of the robot in our research, we utilised the
work of Barker and Ansorge (2007) and Olson and Goodrich (http://icie.cs.byu.edu/
Papers/RAD.pdf); where task complexity is calculated according to the number of
portions that make up a given maze. We called this CTC which is composed of the
number of directions (d) + number of manoeuvres (m) + number of sensors (s) + number
of obstacles (0), which may be written as:

CTC=X(d+m+s+0)

For example, in Figure 3 the robot must manoeuvre around at least two obstacles in order
to reach its target. The number of directions to be programmed is 4, the number of
manoeuvres is 3 and the number of sensors is 2 (i.e., two touch sensors), so this can be
expressed as:

CTC=ZX (d+m+s+0)

CTC=ZX (4+3+3+2) =11
However, we found that the logic we were using to assign task complexity to circuits was
inadequate. Initially we assigned complexity values to distinct manoeuvres such as

forward - turn - back, but we found over the course of our research that as circuits
became more challenging, the Mindstorms NXT programming became more complex.



This was especially the case when we needed to add sensors to manoeuvre around and
over obstacles. Simply adding the number of obstacles to the CTC was insufficient
because the programming required to manoeuvre over a bridge using touch sensors, for
instance, was far more complex than that required to manoeuvre around a box using
touch sensors. Consequently, we modified our task complexity so as to be determined by
the NXT program solution rather than the circuit to be navigated. We now call this RTC,
which is measured as:

RTC = Mv; + Svo + SW + Lvs

where
M number of moves (direction and turn)
S number of sensors

SW  number of switches
L number of loops.

Also, where v = number of decisions required by the user for each programmable block
so that, as explained below, v; =6,vz; =5and vz = 2.

In the NXT Mindstorms software, the ‘Move’ instruction block controls the direction
and turns that the LEGO robot will take. There are six variables that need to be
considered: NXT processor port, direction, steering, power, duration and next action. In
other words, students have to make six specific decisions about the values that make up
the programmable block and so we assign v; a value of 6. There are eight common
sensors which are used in our tasks (timer, light, ultrasonic, colour, touch, sound,
distance, wait) with each sensor’s capabilities determined by five variables (so we assign
vz = 5). Although some sensors have six decisions built in and some have five, the
difference is that the extra decision is simply cosmetic as in ‘speak an alert’ so does not
impact on the robot’s performance or capability to complete the task. All sensors are
tagged as S . A loop has only two variables (if/else) to consider so we assign vz = 2.

Given the circuit shown in Figure 3, the robot has to be programmed to move in four
directions, with three turns and two touch sensors. A possible NXT program solution
such as shown in Figure 4 can then be used to calculate the RTC, which can be written
as:

RTC = Mv; + Svz + SW + Lvs
There are eight move blocks, three sensors and three switches.

RTC = (8x6) + (3x5) + 3+ 0
RTC = 66

[t is acknowledged that other possible programming solutions could produce different
RTC values.



TF is the resulting value of the complexity of the circuit compared with the
complexity of the program generated to complete the circuit.

In order to develop a measure that includes the most relevant variables the collated
data will need to include values for total challenge and skill, CTC and RTC. In order to
compare the data from all tasks it is therefore useful to scale the students’ challenge and
skill values between 0 and 1. To do this, in each task we divide the sum of the challenge
values of the students by the maximum score possible. Similarly, we divide the sum of
the skill values of the students by the maximum score possible. For the CTC values we
take the maximum CTC value and divide it into each CTC value. Similarly, for the RTC
values we take the maximum RTC value and divide it into each RTC value. Measures are
thus converted to values between 0 and 1. This allows us to represent comparative data
graphically and thus the immersion in the case of challenge and skills and TF (see below)
in the case of CTC and RTC.

As a result, the complexity of the task can now be quantified by the new metric, TF,
which is calculated as:

Task Fidelity = Circuit Task Complexity - Robot Task Complexity or

TF=CTC-RTC

Immersion

When linked to students’ immersion in tasks, TF is a useful indicator of the complexity of
a task. To record ‘immersion’ [a cognitive phenomena also referred to as ‘flow’
(Csikszentmihalyi and Nakamura, 2010)], data can be collected from the students during
and after each task, using questions developed from research in immersivity by Pearce

et al. (2005). The assumption is that with optimal parameters for challenge and for skill
relationship, students become ‘immersed’ in the RMI tasks. In order to determine how
deeply immersed students were in each task we asked them about the challenge and their
skills during and after all tasks. In our initial development we had a virtual iPad appear in
front of the avatars where the two questions were displayed for the avatars to answer. The
data automatically transferred to a database but this system proved unreliable so we have
resorted to pen and paper until this is resolved.

To calculate immersion we utilised Pearce et al.’s flow criteria of task challenge and

skill: “Amongst the various studies researching flow, an ongoing issue has been to find a
method for measuring flow independently from the positive states of consciousness (such
as enjoyment, concentration, control, lack of self-consciousness, lack of distraction). One
solution has been to use a measure of the balance between the challenge of an activity
and the participant’s perception of their skill to carry out that activity” (ibid , p.250). In
order to capture this data immediately after the completion of a task and while still in
communication with their virtual collaborators in the virtual world, the students reported
on the task’s challenge and their skill in attempting the task. For ‘challenge’ they had to
report whether they considered the task difficult, demanding, manageable or easy. For
‘skill’ they had to report whether they considered their ability to undertake the task as



hopeless, reasonable, competent or masterful. Once the task had been completed, students
logged out of the virtual world and a general discussion of the task process and its
outcome was held locally with the researchers.

To calculate an immersion value, the challenge and skill metrics were assigned scores
of 1 to 4: for challenge, difficult = 4, demanding = 3, manageable = 2 and easy =1; for
skill, hopeless = 1, reasonable = 2, competent = 3 and masterful = 4. Then the number of
participants was used to determine a task’s maximum challenge and skill score. An
example is given in the results section.

We acknowledge that we have applied our modified RTC metric only to the LEGO
Mindstorms robot, but argue that this provides a useful indicator of experiential learning
during collaborative tasks and so the next section will demonstrate the development of
TF from collected data.

Participants

Prior to entering the virtual spaces undergraduate students in Japan studying media
architecture (N = 6) and A-level students in UK studying science-based subjects (N = 10)
have been undertaking robot related tasks in a learner-designed, OpenSim 3D virtual
space. Of the 16 participant students two are female, 14 are male, all are aged between 17
and 19 and none have experienced working with LEGO Mindstorms or in OpenSim prior
to this project.

Tasks

To date we have conducted and recorded reliable data from 39 tasks conducted in our
OpenSim 3D virtual space and our Unity 3D virtual Fukushima nuclear power plant
space. Task 1 was an introductory task while tasks 13 to 15 and 22 to 27 were remote
robot manoeuvring. These tasks were removed from the data set as no programming was
involved. All tasks are summarised in Table 1. We posit that this data can be used in
conjunction with previous data of learning and communication to develop a framework
for virtual world learning. Some tasks have involved Japanese students collaborating with
other remotely located Japanese students and some with Japanese students collaborating
with UK students. Tasks have included manoeuvring around obstacles using distance and
turn commands, using touch sensors to find ways around obstacles, constructing a bridge
and using touch sensors to move over obstacles, using light sensors to avoid obstacles,
using RGB sensors to locate items and manipulating the telerobotic controls to virtually
manoeuvre our LEGO robot within the virtual Fukushima space as part of ‘search and
rescue’ simulations. Communication between students required the use of virtual world
tools such as text panes, voice, live video streaming of respective real-world labs and 3D
presentation boards where NXT program images could be deposited. The use of avatars
in-world enabled students to remotely manoeuvre a real-world robot (tele-robot
communication). The 3D space represented a disaster-area simulation in order to engage
students in a contextualised task challenge.



Table 1 Tasks conducted in 3D virtual spaces

Tasks 1~ 13 Tasks 14 ~ 26 Tasks 27 ~ 39

T1 Assemble LEGO robots. T14 Programming LabView  T27 Remote control for search
JPN + UK students for remote control. and rescue circuit.
introductions

T2 NXT program + circuit. T15 Programming LabView  T28 Move to black line, stop
JPN teaching UK for remote control. and throw ball to hit over

obstacle. UK teaching
Japan.

T3 NXT program + circuit  T16 UK teaching Japan. Robot T29 Assemble LEGO robots.
(90 degree turns + construction + NXT NXT program + circuit.
measured length). UK program + stop and swing Move fwd + touch sensor
teaching JPN arm to hit ball. + stop + move back. JPN

teaching UK students.

T4 Circuit + NXT program. T17 Suika robot. Rotate + T30 NXT program + circuit.
Move. Touch sensor. follow line+ sensor + Move fwd + sound sensor
Turn 90 degrees. JPN chop down. Japan + stop + turn 90 degrees
teaching JPN. preparation 1. + move JPN teaching

JPN

TS5 Circuit + NXT program. T18 Suika robot. Rotate + T31 NXT program + circuit.
Around obstacles. JPN follow line+ sensor + Program robot to race
teaching JPN. chop down. Japan fwd + touch + return.

preparation 2. Telerobot robot to race
fwd + touch + return.
Compare average times.

T6 Circuit + NXT program. T19 Suika robot. Rotate + T32 Assemble LEGO robots.
Around obstacles. JPN follow line+ sensor + NXT program + circuit.
teaching JPN. chop down. Japan Program robot to race

preparation 3. fwd + touch + return
using gears.

T7 NXT program + touch T20 Robot construction + T33 Telerobot controlling.
sensors + circuit. Locate NXT program + obstacles Robot to move fwd + turn
and press switch off. JPN + sensors. left + move fwd + turn
teaching JPN. left + move fwd + turn

left + move fwd + turn
right + move fwd + turn
right + move fwd + stop
(pathfinder circuit)

T8 Over an obstacle. NXT  T21 Suika robot. Rotate + T34 Assemble LEGO robot.
program + sensors + follow line+ sensor + NXT program + circuit.
bridge building chop down. Japan teach Robot to move fwd + turn
(cardboard boxes). JPN UK. left + move fwd + turn
teaching JPN. left + move fwd + turn

left + move fwd + turn
right + move fwd + turn
right + move fwd + stop
(Pathfinder circuit)




Table 1 Tasks conducted in 3D virtual spaces (continued)

Tasks 1~ 13 Tasks 14 ~ 26 Tasks 27 ~ 39

T9 Over an obstacle. NXT  T22 Programming LabView T35 NXT program + circuit.
program -+ sensors + for remote control. Robot to move fwd + turn
bridge building (wood). left + move fwd + turn
JPN teaching JPN. left + move fwd + turn

left + move fwd + turn
right + move fwd + turn
right + move fwd + stop

(pathfinder circuit)
T10 Robot arm + scoop. UK T23 Remote control T36 NXT program -+ circuit.
teaching JPN Robot to move fwd + tumn

left + move fwd + turn
left + move fwd + turn
left + move fwd + turn
right + move fwd + turn
right + move fwd + stop
(pathfinder circuit). Use
of ultrasonic + sound

Sensors.
T11 Robot arm + NXT T24 Remote control for search T37 NXT program + circuit.
program. JPN preparation and rescue circuit. Robot to move fwd + tumn

left + move fwd + turn
left + move fwd + turn
left + move fwd + turn
right + move fwd + turn
right + move fwd + stop
(pathfinder circuit). Use
of colour sensor.

T12 Robot arm + scoop + T25 Remote control for search T38 NXT program + circuit.
NXT program. Streaming and rescue circuit. Robot to move from start
video. JPN teaching UK. point + a colour sensor

for ‘follow the line’ +a
touch sensor + a move to

goal.
T13 Programming LabView T26 Remote control for search T39 Assemble LEGO robot.
for remote control. and rescue circuit. NXT program + circuit.

Robot to move from start
point + a sensor + a touch
sensor + a move to goal.

Results

We conducted tasks of various specifications over three semesters and for each task we
measured CTC and RTC. In order to compare data from all the tasks for the CTC values
we first took the maximum CTC value and divided it into each task’s CTC value. Then

we looked at the program solutions by our students and calculated the RTC. Similarly, for
the RTC values we took the maximum RTC value and divided it into each task’s RTC



value. All values could thus be represented between 0 and 1. Finally, we could calculate
TF as explained (see Table 2).

Taking task 2 (T2) as an example, this consisted of constructing and programming a
LEGO robot to move in a maze in order to reach a specific target, as illustrated in
Figure 3. The task was designed by the UK students who then had to ‘teach’ the circuit
and its solution to the students in Japan with all communication taking place in the 3D
virtual world.
As explained above,

Circuit Task Complexity (CTC ) =X (d + m+s +0 )
CTC for T2 was determined to equal 11.
In this series of tasks with the same students in the same lab configuration in UK and
Japan and with the same technologies (MacBook Pros and LEGO NXT 2.0), the
maximum CTC of all the tasks was determined as 20. For comparison, the CTC of T2
was calculated as 11/20 = 0.55.
Similarly for RTC, as explained above,

(RTC ) =EMv; +XSv2 +ESW +XLv3

RTC for T2 was determined to equal 66.

The maximum RTC of the tasks was 300. For comparison, the RTC of T2 was
calculated as 66/300 = 0.22.

Task Fidelity = Circuit Task Complexity - Robot Task Complexity
Task Fidelity = CTC - RTC - 0.55 - 0.22 = 0.33

All CTC, RTC and TF values for all the tasks were calculated and tabulated in Table 2.



Table 2 CTC.RTC and TF

Task CT1C RTC TF Task CcTC RTC TF

T2 0.55 0.22 0.33 T20 0.70 0.48 0.18
T3 0.50 0.42 0.08 T21 0.30 0.65 —0.35
T4 0.80 0.22 0.58 T28 0.25 0.17 0.08
TS5 0.80 0.57 0.23 T29 0.45 0.31 0.14
T6 1.00 0.85 0.15 T30 0.55 0.31 0.24
T7 0.70 1.00 —0.30 T31 0.40 0.93 —0.53
T8 0.25 0.39 —0.14 T32 0.40 1 -0.6
T9 0.30 0.33 —0.03 T33 0.6 1 0.4
T10 0.20 0.20 0 T34 0.6 0.46 0.14
T11 0.65 0.76 —0.11 T35 0.6 0.70 —0.1

T12 0.65 0.84 —0.19 T36 0.7 0.78 —0.08
T16 0.55 0.83 —0.28 T37 0.7 0.29 0.41

T17 0.25 0.22 0.03 T38 1 0.82 0.18
T18 0.30 0.65 —0.35 T39 1 0.89 0.11

T19 0.30 0.65 —0.35

To calculate an immersion value, the challenge and skill metrics were assigned scores of
1 to 4: for challenge, difficult = 4, demanding = 3, manageable = 2 and easy =1; for skill,
hopeless = 1, reasonable = 2, competent = 3 and masterful = 4. Then the number of
student participants were used to determine a task’s maximum challenge and skill score.
In order to compare the data from all tasks it was necessary to mathematically translate
and scale challenge and skill to values between 0 and 1. In each task we therefore divided
the sum of the challenge values provided by the students by the maximum score possible.
Similarly, we divided the sum of the skill values provided by the students by the
maximum score possible.

For example, in T2 there were six students so maximum challenge and skill score
equals 4 x 6 = 24. The Task challenge score was then calculated by dividing the total task
challenge score indicated by the participants by the maximum task challenge score.

e Total T2 challenge score = 12.
e Maximum T2 challenge score = 24.

Therefore, T2 challenge score =12/24 = 0.5

This process was repeated for the task skill score. Calculations were repeated for all

the tasks and results tabulated in Table 3. The values obtained in this way for task
challenges will always come to a value between zero and 1. This allows our data to be
comparable across different experimental settings, even with different numbers of
students. The advantage of this approach is that this metric therefore allows cross-study
and interdisciplinary comparisons.



Table 3 Thble of task challenge and skill

Task Challenge Skill Task Challenge Skill
T1 0.5 0.75 T19 0.25 1
T2 0.5 1 T20 0.94 0.5
T3 0.75 0.5 21 0.75 0.75
T4 0.5 0.75 T28 0.75 0.58
TS 1 0.67 T29 0.25 0.83
T6 0.8 0.67 T31 0.33 0.92
T7 0.67 0.8 T31 0.66 0.83
T8 0.67 0.5 T32 0.83 0.75
T9 0.42 0.92 T33 0.92 0.58
T10 0.42 0.5 T34 0.4 0.58
T11 0.8 0.5 T35 1 0.5
T12 0.58 0.58 T36 1 0.5
T16 0.8 0.45 T37 0.92 0.58
T17 0.25 1 T38 0.3 1
T18 0.7 0.7 T39 0.3 1

According to Pearce et al. (2005) these values are a valid indicator of flow or
immersivity. The ‘optimal line’ of immersivity is shown in the graph of Figure 7 where
boredom and anxiety are indicated at the two extremes of the graph (ibid ). However,
boredom is not a particularly accurate descriptor as the students were very positive in
their reflection reports in all the tasks. A more appropriate suggested descriptor is
therefore ‘disengaged’ although the students admitted to much anxiety when tasks were
deemed very challenging.

The collated data included total challenge and skill values, CTC values and

RTC values. To re-iterate, in order to compare the data from all tasks it was necessary to
scale challenge and skill to values between 0 and 1. In each task we divided the sum of
the challenge values provided by the students by the maximum score possible.
Similarly, we divided the sum of the skill values provided by the students by the
maximum score possible. For the CTC values we took the maximum CTC value and
divided it into each CTC value. Similarly, for the RTC values we took the maximum

RTC value and divided it into each RTC value. All values are thus represented between 0
and 1. This allows us to represent the data graphically and thereby determine the
immersion in the case of challenge and skills and TF (see below) in the case of CTC and
RTC values.

As a result, the complexity of the task could be quantified by a new metric which we
term TF. For example, from the data discussed below, the graph in Figure 5 of CTC
versus RTC reveals the plotted differences in the researcher’s (in the role of instructor or
teacher) expected level of complexity (i.e., the CTC) and the students’ achievement (i.e.,
the RTC). As CTC is increased (see Figure 5), one might expect the two plotted areas to



merge; in other words, the researcher (or teacher) has provided a task commensurate with
the expected successful outcome that is likely to be developed by the learners. We can

also represent numerically the differences between anticipated task complexity and
successful accomplishment, which we refer to as TF.

Figure 5 Graph of CTC - RTC in order of task challenge
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TF is defined as an indicator of the complexity of the circuit compared with the
complexity of the program created to complete the circuit. The Y axis in Figure 6
indicates TF; or task complexity where zero is the ideal state. Data above the zero line
indicate that the robot program was more complex than the circuit the robot had to
manoeuvre. Data below the zero line indicate that the circuit was more complex than the
optimum robot program required to successfully navigate it.

Figure 6 TF in order of increasing challenge
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Discussion

In our research numerical values for task complexity (as determined by the ‘teacher’) and
task solution (as determined by the ‘student’) have been calculated. The difference
between teacher task complexity and student task solution has been calculated as TF. TF
was calculated by subtracting the RTC from the CTC. We plotted TF against the order of
increasing challenge as determined by the students. Ideally, one might anticipate that TF
should be zero. The tasks above the zero line indicate that the teacher’s task value (of
CTC) was higher than the students’ solution value (RTC). In other words, the parts of the
graph above the Y-axis zero value in Figure 6 reveal that the task was difficult or that the
students did not meet an anticipated solution. The tasks below the zero line indicate that
the students’ solutions exceeded the teacher’s expectations of task complexity. Ideally,
the teacher should provide a task commensurate with the expected successful outcome to
be developed by the learners. If that was the case for all our tasks then TF would be zero
and a horizontal line plotted in Figure 6.

The data represented in Figure 6 reveals that for most tasks the programming required
to complete the circuits was less than the considered complexity of the circuit (i.e., most
data points are below the zero line of TF). This appears to be the case across the range of
challenges faced by the students. This reveals that students mostly found the tasks easier
than expected. The tasks above the zero line (T2, T4, T5, T20, T30 and T37) all have one
factor in common: they all necessitated the use of sensors. For example, TF value for T28
was only + 0.08; slightly above the optimal TF line and slightly below the optimal
immersivity line; similarly for T10, with immersivity slightly above optimal path and TF
at +0.01. Students found tasks that involved sensors most difficult and they were also
more anxious during these tasks as we will see from our immersion data below. T10, T28
and T36 had small TF values so these would be considered the ideal tasks of those
undertaken. These tasks also involved the use of sensors. It is acknowledged that the use
of sensors contributes to the proficiency of the program, but it needs to be recognised by
educators that, for the students, the inclusion of sensors represents additional demands.
Combining the observations of data of Figure 6 and Figure 7, the data for TF and
immersivity suggest that T10 and T28 could be considered the most successful tasks
when students are engaged in robot mediated interactions because the TF value for T28
was only + 0.08; slightly above the optimal TF line and slightly below the optimal
immersivity line. Similarly for T10, with immersivity slightly above the optimal path and
TF at +0.01.



Figure 7 Students’ immersivity
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So even though sensors were used in the task and even though students reported that they
found sensor related tasks difficult, being immersed in a task with sensors led to greater
student success. An examination of the screen capture videos of communication by
avatars in-world revealed that the UK students used more procedural language and
confirmation questions, whereas the Japanese students offered only instructional
language with no checking for understanding. This might suggest that the UK students
were more adept at giving instructions than the Japanese students and is a feature
reported in Vallance and Martin (2012). This may have more to do with normative
cultural communication strategies than English fluency and is a factor which all
international collaborations must consider.

The challenge for researchers and teachers is to seek tasks similar to T10 and T28
where immersivity is close to or on its optimal path and task complexity is close to or on
the optimal line of TF. Another major challenge is to seek ways to transfer our
understandings of this to the creation of further tasks with different participants so that
we may develop more reliable optimal learning tasks for RMIs. For instance, tasks could
be designed around simulations such as ‘search and rescue’ where the students are
required to collaboratively program robots to solve specified scenarios. The metric for
optimal task complexity can be developed by experienced engineers working with
educators. From the students’ task solution the RTC value can be calculated. TF for all
participants can then be calculated.



Limitations of the study

The number of participants (N = 16) is too low to generalise our findings at present,
although we argue that it is sufficient to demonstrate proof of concept. This paper
therefore presents a rationale plus an implementation of proposed metrics for tasks
involving robots that will be of use to educators in schools and higher education.
Although the skills versus challenge data is specific to the participants in this research, it
has allowed us to determine how immersed our participants were in each task and
concurrently associate their programming success in order to locate optimal task
complexity. It is also acknowledged that to more fully contextualise and supplement our
development of metrics a more effective method of collecting and collating cognitive
data from educational interventions would be helpful, especially the use of psychometric
data in order to measure skills, knowledge and achievement and this forms part of the
next phase of our work, to be reported separately. As a result of developments and
progress to date we will also be recruiting an increased number of participants that may
permit more generalised solutions to be proposed.

Conclusions

For educators at schools and in higher education, the teacher seeks to provide a task
commensurate with the expected successful outcome to be developed by the learners. To
understand if this is happening in practice, the complexity of a task can be compared with
the solution developed by the student and we have used robot programming and student
collaboration to determine a metric which we have called TF to assist with this. By
combining TF data with immersion data we can observe and quantify the usefulness of a
task for promoting learning. For example, we found that the programming of robot
sensors by the students proved to be more complex than manoeuvring a robot and this
was also reflected in the immersion data mentioned above; students were most anxious
when engaged in tasks requiring sensor programming and were thus less immersed in the
challenge. However, as their skills in sensor programming increased, immersivity
increased; as indicated by task 28 where Japanese students were taught by UK students
within our 3D virtual space to program the robot’s use of light and colour sensors to
initiate specific actions. The TF value for T28 was + 0.08; only slightly above the optimal
level. The challenge is to seek tasks similar to T28 where immersivity is close to or at its
optimal value and task complexity is close to or on the optimal line of TF. Our evidence
suggest that this will create better engagement with learning and a greater likelihood that
students will succeed in reaching their learning objectives.

To sum up, this applied research is developing metrics for recognising the most
effective learning when learners are engaged in collaborative virtual world tasks:

» the motivation to implement this research was the nuclear disaster of 3-11 in Japan: a
situation that we had never imagined (Lochbaum et al., 2014)

e avirtual Unity 3D Fukushima nuclear plant and an OpenSim training space have
been iteratively designed and constructed

« international collaboration by students as non-experts has highlighted the benefits
and challenges posed when engaged in constructing RMIs within the context of



distance-based communication in 3D spaces
e students’ immersion, CTC, RTC and TF have been calculated
» optimal learning tasks have been identified.

The literature reveals that there is no common consensus about metrics for RTC and
associated HRIs. Our proposals for CTC and RTC, alongside appropriate arrangements
for immersion, are suggested as ways to determine a new metric for measuring tasks
involving robots, which we have termed TF.

We are continuing with our work to implement these metrics in diverse robot
scenarios within our 3D virtual space involving synchronous collaboration between
students in Japan and UK. We will attempt to overcome the current limitations and will
publish further findings in the future.
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