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An electrically driven single-photon source has been monolithically integrated with nano-photonic cir-

cuitry. Electroluminescent emission from a single InAs/GaAs quantum dot (QD) is channelled

through a suspended nanobeam waveguide. The emission line has a linewidth of below 6 leV, demon-

strating the ability to have a high coherence, electrically driven, waveguide coupled QD source. The

single-photon nature of the emission is verified by gð2ÞðsÞ correlation measurements. Moreover, in a

cross-correlation experiment, with emission collected from the two ends of the waveguide, the emis-

sion and propagation of single photons from the same QD is confirmed. This work provides the basis

for the development of electrically driven on-chip single-photon sources, which can be readily cou-

pled to waveguide filters, directional couplers, phase shifters, and other elements of quantum photonic

networks. VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4965295]

The use of single-photons as flying qubits in quantum

networks1 provides a platform for quantum computation2

and the secure transfer of information3 in scalable optical

quantum information systems.4,5 For real-world applications,

high component densities are likely to be required,6 which

can be achieved using integrated semiconductor nano-

photonic circuits. In addition, integrated optical circuits are

inherently stable and dramatically reduce the experimental

complexity.7 A key requirement for this approach is a con-

trollable on-chip single photon source with favourable coher-

ence properties. Moreover, if the source can be driven

electrically, this provides an important advantage in terms of

scalability.

Embedded semiconductor quantum dots (QDs) are very

promising as on-chip light sources. Emission from single QDs

has been demonstrated with both optical8–11 and electrical

excitation,12 and the single-photon nature of the emission13–17

has been established. The integration of QDs with circuit ele-

ments, such as waveguides18–20 and beamsplitters,21,22 has

also been demonstrated. However, all experiments on inte-

grated single-photon sources so far have relied on the external

optical excitation. Although this has the benefit of limiting the

emission to QDs within the excitation spot, such an approach

becomes increasingly challenging for the networks requiring

multiple single-photon sources. By contrast, electrical injec-

tion is a viable method of creating a true on-chip source of

single photons. However, to limit the number of emitting QDs

in this case provides a major challenge.

In this Letter, we demonstrate the on-chip spatially selec-

tive electrical generation of single photons and their coupling

into a suspended nanobeam waveguide. The photons are gen-

erated by electrical injection into the self-assembled QDs.

Emission from only a few QDs located within a small area at

the end of the waveguide, where coupling to the waveguide

mode is strong, is used to produce a waveguide-coupled

single-photon electroluminescence (EL) source. Our results

show high photon coherence values comparable with the best

reported for diode structures,23,24 suggesting that the proxim-

ity of the doped layers and surfaces in the present devices

does not necessarily have a significant impact on the device

performance under EL conditions.

The devices are fabricated from a p-i-n diode structure

containing a layer of self-assembled QDs. The sample was

grown using molecular beam epitaxy (MBE) on an undoped

(100) GaAs substrate. A 160 nm thick p-i-n structure was

grown on the top of a 1 lm thick Al0.6Ga0.4As sacrificial

layer. A layer of InAs self-assembled QDs was grown in the

middle of the diode using the In-flush techniques25,26 with

a GaAs partial cap height of 2.5 nm and density below

1010 cm�2. The dot layer is sandwiched between 50 nm

GaAs spacer layers and a 30 nm Be-doped p-type layer on

the top and a 30 nm Si-doped n-type layer at the bottom of

the diode structure. A combination of several electron beam

lithography (EBL) steps, wet etching, and inductively cou-

pled plasma (ICP) etching was used to define the devices and

provide top contacts to the p- and n-doped layers. The free

standing waveguide structures were produced by selectively

etching the Al0.6Ga0.4As sacrificial layer with hydrofluoric

acid.

Figures 1(a) and 1(b), which present the device sche-

matic and a top view scanning electron microscope (SEM)

image of a typical device, respectively, illustrate the design.

It consists of an electrically contacted bar (horizontal on the

SEM image) running perpendicular to three suspended wave-

guides. Semi-circular air/GaAs grating output couplers27 at

the opposite end of the waveguides scatter light into the

detection apparatus. The 15 lm long waveguides have a
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height of 160 nm (which is the thickness of the p-i-n struc-

ture) and a width of 290 nm; the dimensions were chosen to

ensure a single-mode operation in transverse-electric (TE)

polarisation. The electrical connection across the device is

broken by a masked etch through the top p-type contact

layer, including 30 nm deep notches [see Figure 1(b)] across

two of the three waveguides (the third waveguide is used as

a control). This is done to limit the EL emission to the area

at the bottom edge [on the SEM image, Figure 1(b)] of the

two waveguides and to prevent emission from the remaining

part of the device; in particular, the notches prevent emission

from most of the area of the two waveguides (i.e., the middle

and the right-hand ones) and from the out-couplers.

Figure 1(c) illustrates how the propagation of EL down

a waveguide from only a single or a few QDs is achieved. It

shows the simulated electric field intensity profile of the opti-

cal mode, which interfaces the waveguide and membrane. It

was obtained by directly exciting the waveguide mode with

an eigenmode source (at 922 nm) and monitoring the electric

field intensity in the QD plane.28 The electric field intensity

at a given point is a measure of the coupling strength of the

emission of the QD at that location to the mode. Over the

QD ensemble emission range, 900–950 nm, the group veloc-

ity dispersion and, therefore, the spatial shape of the mode

are essentially constant. (Previous simulations20 have found

the group index of the mode to vary by not more than 3% in

this range.) In the vertical direction, the mode spatial profile

has a single antinode in the centre of the waveguide (i.e.,

where the QD layer is located), as expected for a fundamen-

tal mode in a rectangular waveguide. Figure 1(c) shows that

the coupling is efficient only for QDs either within the wave-

guide or close to the bottom edge of the waveguide, and rap-

idly diminishes as the emitter is moved further from the

waveguide. With a notch across the waveguide, which pro-

vides an electrical break, an effective excitation area of

approximately 0.5 lm2 can be expected.

The coupling efficiency between the QD and the wave-

guide is an important figure of merit. Our simulations show

that for an optimally positioned QD (i.e., at the electric field

maximum in the centre of the waveguide), 47%–48% cou-

pling to the mode propagating towards the outcoupler can be

achieved, in agreement with Ref. 20. The value is close to

the upper limit of 50% (with the remaining 50% of the emis-

sion coupling to the mode which propagates in the opposite

direction). Moreover, for the QDs located at the interface

between the waveguides and the electrically contacted bar

(i.e., not at the maximum of the electric field within the

waveguide), the coupling is only slightly lower at 45%. This

demonstrates that for a single QD located within the effec-

tive excitation area, efficient coupling to the waveguide is

expected.

Optical measurements were performed in a confocal

microscope system, with the sample and collection lens (NA

of 0.55) at 4.2 K in a helium exchange gas cryostat. The sys-

tem allowed out-of-plane collection from the two spatially

separated locations into two independent single mode fibres.

The EL spectra were recorded using a single 0.75 m spectrom-

eter and liquid N2 cooled charge-coupled device (CCD) cam-

era with the resolution of 17 leV. High resolution EL spectra

were taken using a scanning Fabry-Perot interferometer with

FIG. 1. (a) Device schematic. (Only one of the three waveguides is shown.) Red and blue colours represent biased and unbiased regions of the sample, respec-

tively, separated by a notch which breaks the electrical connection in the waveguide. The gold bars represent the top electrical contacts to the p- and n-doped

layers. Vertical arrows on the left- and right-hand sides of the waveguide denote the EL emission collected above the outcoupler and above the QD position,

respectively. (b) The top view false colour SEM image of a typical device. The red, blue, and gold colours show the biased and unbiased regions and the top

p-type contact, respectively, in the same way as in (a). Two thick green bars represent the notches. (c) Electric field intensity profile (normalised to the maxi-

mum intensity) of the waveguide mode in the QD plane, obtained by finite-difference time-domain modelling using an eigenmode source within the wave-

guide. The area of the figure corresponds to the dashed white square on the SEM image in (b). (d) Spectrally unfiltered EL map obtained by raster scanning the

collection from the tested device, to the same scale as (b), with units of single-photon avalanche diode counts per second.
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0.3 leV resolution, after initial filtering with a spectrometer.

For time-correlated single-photon counting measurements, the

emission was filtered using two separate 0.75 m spectrometers

with a bandwidth of 90 leV and detected by two single-

photon avalanche diodes (SPADs).

Figure 1(d) shows an EL map, which was obtained by

raster scanning the collection across the device using motor-

ised mirrors, while recording the integrated intensity on a

SPAD. The scan area matches the SEM image shown in Fig.

1(b), with the control waveguide on the left-hand side.

Emission is only observed from the electrically active

regions and out-couplers. The out-couplers are bright due to

coupling of the EL emission from the QDs in the contacted

regions to the waveguides. Brighter spots at the interface

between the waveguides and the electrically contacted bar

appear due to light scattering. The map confirms the design

performance of the waveguides and verifies the electrical

isolation. Current-voltage characteristics of the devices (not

shown) demonstrate typical diode behaviour, with turn-on

voltage around 1.4 V.

Figure 2 presents the EL spectra from a typical device,

collected separately from each end of a waveguide (i.e., ver-

tically above the emitting QDs and at the out-coupler). The

onset of predominantly single-dot EL emission occurs at

2.3–2.4 V, as shown in Fig. 2(b).29 With bias, the lines grow

in intensity. At approximately 2.9 V, the background emis-

sion also starts increasing, which can most likely be attrib-

uted to EL from other QDs, and becomes increasingly strong

with increasing voltage as seen in Fig. 2(d). A bright line is

observed in all spectra at 921.8 nm. We argue later that it is

an emission line from the same QD, both in the spectra col-

lected above the QD and from the out-coupler. The best

signal-to-background ratio for this line is achieved at 2.88 V.

At this bias, the line intensity (measured on the CCD) in the

spectra collected above the QD and from the out-coupler is

as high as 30 000 and 80 000 counts/s, respectively, which is

indicative of efficient coupling of the dot to the waveguide

mode. These spectra are shown in Figs. 2(a) and 2(c).

All further investigations were performed using the

emission line at 921.8 nm at 2.88 V. In the previous spectra,

its linewidth is limited by the spectrometer resolution. To

achieve higher resolution, the EL spectra were taken using a

Fabry-Perot interferometer, collected from the out-coupler.

These spectra, shown in Fig. 3, reveal that the line is a dou-

blet with a linewidth of 5.9 leV and a splitting of 15 leV.

The doublet is most likely to be due to fine structure splitting

(FSS) of the neutral exciton state. The measured linewidth,

which remains constant from EL onset to 2.9 V, is compara-

ble to the best reported values for p-i-n diode samples, such

as for EL emission in thicker structures, 400 ps (3.3 leV),23

and resonance fluorescence in membrane devices under

reverse bias, 0.62 GHz (2.6 leV).24 At higher bias, the line-

width increases with the rising background in agreement

with Ref. 23, in which it was attributed to charge noise fluc-

tuations. The observation of narrow linewidth EL is also in

agreement with the suggestion that applied electric fields can

stabilise the charge environment of quantum dots.30

Altogether, this result demonstrates that high coherence,

electrically excited emission can be achieved from QDs

incorporated in thin photonic diode structures.

The single-photon nature of the QD source was verified

with a Hanbury Brown and Twiss (HBT) experiment, in

which the filtered emission collected above the QD was

passed through a fibre beam splitter, and coincidences were

recorded. The resulting normalised histogram for the second

order correlation function gð2ÞðtÞ without background sub-

traction is shown in Fig. 4(a). A raw value g
ð2Þ
rawð0Þ ¼ 0:34

60:04 was measured. By deconvolving the experimental

data with the temporal response of the detection system

(Gaussian, full width at half maximum of 870 ps), gð2Þð0Þ
¼ 0:1060:03 was obtained, which shows that the source is

FIG. 2. Electroluminescence spectra collected from (a) above the QD at a

bias of 2.88 V and from the out-coupler at a bias of (b) 2.40 V, (c) 2.88 V,

and (d) 3.30 V. The line at 921.8 nm is observed in the spectra from both

above the dot and from the out-coupler, demonstrating the propagation of

single-dot EL down the waveguide.

FIG. 3. The high-resolution spectrum of the investigated emission line (open

black circles) at 2.88 V obtained by Fabry-Perot interferometry. Red contin-

uous line shows a fit to the data. The doublet structure very likely arises

from fine-structure splitting.
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strongly antibunched. The remaining multi-photon emission

probability is likely to be due to the residual background

emission that can be seen in Fig. 2(a).

The propagation of single-photons along the waveguide

was confirmed with an HBT experiment with the emission col-

lected from the out-coupler. Raw and deconvolved values

g
ð2Þ
rawð0Þ ¼ 0:3260:03 and gð2Þð0Þ ¼ 0:0760:02 were obtained,

as shown in Fig. 4(b). Again, the emission is strongly anti-

bunched, demonstrating that it passes through the waveguide

without the deterioration of the photon statistics.

To verify the origin of the line, a cross-correlation mea-

surement was performed, in which correlations were recorded

between the emission collected above the QD and from the

out-coupler. The resulting normalised histogram is presented

in Fig. 4(c). Raw and deconvolved values are g
ð2Þ
rawð0Þ ¼ 0:33

60:03 and gð2Þð0Þ ¼ 0:1060:02. This unambiguously proves

that the emission observed at both ends of the waveguide orig-

inates from the same QD, i.e., that the single-photon EL emis-

sion from a single quantum dot couples to the waveguide

mode and propagates along the waveguide.

In conclusion, we have demonstrated the monolithic

integration of an on-demand electrically driven high quality

quantum emitter, a single InAs self-assembled quantum dot,

with a nanobeam waveguide. With careful design and fabri-

cation, we are able to electrically excite and direct the highly

coherent single-photon emission from a single quantum dot

along the waveguide. This proof of concept device provides

the basis for practical on-chip electrically driven single-

photon sources, which can be readily coupled to waveguide

filters, directional couplers, and other elements of quantum

photonic networks.

This work was funded by EPSRC Grant No. EP/

J007544/1.
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