Extended π-Conjugated Pyrene Derivatives: Structural, Photophysical and Electrochemical Properties

Manuscript Number: slct.201600598R1

Article Type: Full Paper

Corresponding Author: Takehiko Yamato
Saga University
Saga, JAPAN

Corresponding Author E-Mail: yamatot@cc.saga-u.ac.jp

Other Authors: Xing Feng, PhD
Nobuyuki Seto
Chuan-Zeng Wang
Taisuke Matsumoto, PhD
Junji Tanaka, PhD
Xian-Fu Wei, PhD
Mark R. J. Elsegood, PhD
Lynne Horsburgh, PhD
Carl Redshaw, PhD

Keywords: Pyrenes; Intramolecular charge-transfer; Single crystals; Luminescence material; Structure-property relationship

Manuscript Classifications: Supramolecular Chemistry

Abstract: This article presents a set of extended π-conjugated pyrene derivatives, namely 1,3-di(arylethynyl)-7-tert-butylpyrene, which were synthesized by a Pd-catalyzed Sonogashira coupling reaction of 1,3-dibromo-7-tert-butylpyrene with the corresponding arylethynyl group in good yields. Despite the presence of the tert-butyl group located at the 7-position of pyrene, X-ray crystallographic analyses show that the planarity of the Y-shaped molecules still exhibits strong face-to-face π-π stacking in the solid state; all of the compounds exhibit blue or green emission with high quantum yields (QYs) in dichloromethane. DFT calculations and electrochemistry revealed that this category of compound possesses hole-transporting characteristics. In addition, with strong electron-donating (-N(CH3)2) or electron-withdrawing (-CHO) groups in 2d or 2f, these molecules displayed efficient intramolecular charge-transfer (ICT) emissions with solvatochromic shifts from blue to yellow (green) on increasing the solvent polarity. Furthermore, the compounds 2d and 2f possess strong CT characteristics.

Response to Reviewers: Dear editor
Thank you very much for your E-mail about our manuscript, manuscript number: slct.201600598. We deeply appreciate for your acceptance. We have prepared all of the documents for the publication according to the comments from the editorial office.

Thank you very much for your time and consideration.

Yours sincerely,

Prof. Dr. Takehiko Yamato (corresponding author)
Department of Applied Chemistry
Faculty of Science and Engineering
Saga University
Honjo-machi 1, Saga-shi, Saga 840-8502, Japan
Fax: (internet.) + 81(0)952/28-8548
E-mail: yamatot@cc.saga-u.ac.jp
<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted solely to this journal?</td>
<td>Yes</td>
</tr>
<tr>
<td>Has there been a previous version?</td>
<td>No</td>
</tr>
<tr>
<td>Animal/tissue experiments?</td>
<td>No</td>
</tr>
<tr>
<td>If accepted, do you wish to publish your work in an open access format through OnlineOpen?</td>
<td>Yes</td>
</tr>
<tr>
<td>Was the work described in your manuscript funded by any of the following funding bodies?</td>
<td>No</td>
</tr>
<tr>
<td>Please select a Creative Commons license:</td>
<td>Creative Commons Attribution Non-Commercial NoDerivs License (CC-BY-NC-ND)</td>
</tr>
</tbody>
</table>
Extended π-Conjugated Pyrene Derivatives: Structural, Photophysical and Electrochemical Properties

Abstract: This article presents a set of extended π-conjugated pyrene derivatives, namely 1,3-di(arylethynyl)-7-tert-butylpyrene, which were synthesized by a Pd-catalyzed Sonogashira coupling reaction of 1,3-dibromo-7-tert-butylpyrene with the corresponding arylethynyl group in good yields. Despite the presence of the tert-butyl group located at the 7-position of pyrene, X-ray crystallographic analyses show that the planarity of the Y-shaped molecules still exhibits strong face-to-face π-π stacking in the solid state; all of the compounds exhibit blue or green emission with high quantum yields (QYs) in dichloromethane. DFT calculations and electrochemistry revealed that this category of compound possesses hole-transporting characteristics. In addition, with strong electron-donating (–N(CH$_{3}$)$_{2}$) or electron-withdrawing (–CHO) groups in 2d or 2f, these molecules displayed efficient intramolecular charge-transfer (ICT) emissions with solvatochromic shifts from blue to yellow (green) on increasing the solvent polarity. Furthermore, the compounds 2d and 2f possess strong CT characteristics.

Introduction

Large π-conjugated organic materials have attracted increasing attention in recent years, due to facile band-gap and colour control by structural modification, which makes them suitable for potential application in high performance organic electronics, such as organic light emitting diodes (OLEDs), liquid-crystal displays, organic field effect transistors (OFETs), and organic photovoltaic cells (OPVs), as well as optical storage devices. Extension of the π-conjugation chromophores contributes to a lowering of the HOMO-LUMO gap, leading to a red-shift in absorption and emission spectra with increasing fluorescence quantum yields. In addition, molecules which possess π-conjugation with a planar structure would enhance charge carrier transport in optoelectronic applications by self-assembly via intermolecular π-π stacking.

Pyrene9 is made up of four fused aromatic rings with a large π-electron system, which exhibits good solution-processable properties with an excellent blue emission spectrum (with a long excited-state lifetime, high fluorescence intensity and quantum yield). However, the development of pyrene as a host material in blue light-emitting diodes is scarce, due to its tendency to readily aggregate in most media. Several research groups including ours have reported many new types of pyrene derivatives, and various substituent groups have been attached to the pyrene core by –C–C–, –C–N or –C–C– bonds for suppressing excitation emission.$^{10-15}$ Some ethynyl-substituted pyrene-based compounds displayed more intriguing fluorescence characteristics, for instance, Ziesssel et al reported a greenish luminescent 1,3,6,8-tetra-(4-ethynylphenylaminoacyl)pyrene with stable liquid crystalline properties for the fabrication of OLED-like devices.16 Kim and coworkers synthesized a series of 1,3,6,8-tetakis(ethynyl)pyrenes functionalized with varying moieties as peripheral electron-donors and acceptors for chemiluminescent (ECL) active materials, that exhibited enhanced charge transfer compared with 1,3,6,8-tetra-1-N,N-dimethylaniline and 1-(trifluoromethyl)benzene moieties as peripheral electron-donors and acceptors for chemiluminescent (ECL) active materials, that exhibited enhanced charge transfer compared with 1,3,6,8-tetra-N,N-dimethylaniline or 1,3,6,8-tetra-trifluoromethylbenzene.17,18 Interestingly, Adachi et al have designed a number of inverted singlet-triplet (iST) pyrene-based derivatives, and the electronic structures, spin-orbit couplings, transition dipole moments, and vibronic couplings have been investigated by theoretical calculations.19

Generally, an acetylene group is one option among other (such as ethylene) choice to extend the π-conjugation of molecular skeletons, and the advantage over ethylene linker is a better stability. In addition, it’s very convenient to prepare this kind of compounds by Pd-catalyzed coupling reaction. Previously, in our laboratory, we synthesized cruciform-shaped and hand-shaped architectures incorporating π-conjugated alkynylpyrenes as highly efficient blue emissive materials by the Sonogashira cross-coupling reaction.20,21 The optical properties of both types of pyrene-based material exhibited pure blue fluorescence with good quantum yield, as well as similar crystal packing in the solid-state. Our recent report on the synthesis of 1,3-dibromo-7-tert-butylpyrene (1)22 prompted us to further explore 1,3-bis(arylpheny)pyrenes as blue emissive materials.
The arylphenyl groups located at the 1,3-positions were twisted by a considerable angle relative to the pyrene core, a feature that can play a curial role in hindering intermolecular interactions in the solid-state. In this article, a series of Y-shaped, extended \(\pi \)-conjugated pyrene derivatives have been synthesized by a Pd-catalyzed Sonogashira cross-coupling reaction using 1,3-dibromo-7-tert-butylpyrene and corresponding arylethynyl groups in reasonable yield. We anticipated that the extended \(\pi \)-conjugated pyrene derivatives would exhibit interesting topological structures, leading to attractive photophysical properties, as well being air-stable. Indeed, the designed \(\pi \)-conjugated molecules showed interesting CT characteristics in polar solvents as expected. Furthermore, we investigated the effect of the various substituents and substitution positions of the (arylethynyl)pyrenes for optical properties and crystal packing.

Results and Discussion

Synthesis and characterization

The synthesis of the Y-shaped arylethynyl-substituted pyrenes 2 are shown in Scheme 1. The target arylethynyl pyrenes 2 were obtained in 32–67% yield through a Sonogashira coupling reaction between 1 and the corresponding arylacetylenes. All of the new pyrene derivatives 2 have been characterized by \(^1 \)H/\(^{13} \)C NMR spectroscopy (Figure S1), HR-MS and elemental analysis. Y-shaped compounds 2 with arylethynyl groups display good air-stability and solubility properties in common solvents, such as dichloromethane (CH\(_2\)Cl\(_2\)), \(N,N \)-dimethylformamide (DMF), tetrahydrofuran (THF) and methanol (CH\(_3\)OH). Moreover, the structures of 2c (two polymorphs), 2d and 2f were further confirmed by X-ray single crystal diffraction. Very recently, compounds 2a and 2b have been prepared by cooper et al as key intermediation\(^{[23]} \). Herein, the effect of the substituents on the crystal packing, photophysical properties and electrochemistry has been further investigated in detail; for comparison, two position-dependent arylethynyl-functionalized pyrenes 3 and 4 are illustrated in Scheme 1. This work allows us to fully understand the effect of the various substituents and the relationship between molecular structure and optical properties.

Single crystal X-ray crystallography

Single crystals of the extended \(\pi \)-conjugated Y-shaped pyrene derivatives 2c were obtained from MeOH/CHCl\(_3\) or hexane/CH\(_2\)Cl\(_2\), 2d-CHCl\(_3\) from CHCl\(_3\) and 2f from CH\(_2\)Cl\(_2\)/benzene by slow evaporation at room temperature. All of the compounds crystallize in the triclinic crystal system with space group \(P\overline{1} \). Compound 2c was obtained as two different polymorphs. Number of reports showed that pyrene derivatives with terminal of methoxypyphenyl moieties tends to more easily to form good quality single crystal for X-ray crystallography. So this experience allows us to design pyrenes for insight into investigating the relationship between position-dependent, molecular conformation and the optical properties by using X-ray diffraction equipment. The molecular structures are shown in Figure 1 and Figure S2 and the crystallographic data is listed in Table 1.

![Scheme 1. The synthetic route to \(\pi \)-conjugated pyrene derivatives 2, and the cruciform-shaped and hand-shaped pyrenes 3 and 4 for comparison.](image)

As shown in Figure 2, the structure of 2cl displays face-to-face \(\pi \)-stacking at a distance of 3.54 Å, which involves 14 carbons in each pyrene molecule.\(^{[24]} \) One ethynylphenyl substituent is coplanar with the pyrene core, whilst another forms a twist angle of 28.4°. A number of \(\pi \cdots \pi \) stacking interactions between the phenyl rings and the neighbouring pyrene core were observed (3.32 Å). In addition, another weak but important interaction involves the methoxyl group, which has a contact with the next layer of the ethynyl fragment of pyrene via a C–H···π interaction (2.42 Å).

Similarly, the polymorphs of 2cII was crystallized from hexane/CH\(_2\)Cl\(_2\) solution. The X-ray structure determinations revealed that the 2cII belongs to the same space group as 2cl. The crystal packing analysis shows that polymorphs 2cII was arranged similar as 2cl. There is a fine distinction between both crystals are that the asymmetric unit cell of 2cII contained two molecules, whereas the crystals of 2cl were found to contain one molecule in the asymmetric unit. (See supporting information)
Table 1. Summary of crystal data for the π-conjugated molecules 2cl, 2cll, 2d-CHCl₃ and 2f.

<table>
<thead>
<tr>
<th>Complex</th>
<th>2cl</th>
<th>2cll</th>
<th>2d</th>
<th>2f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₂₉H₃₆O₂</td>
<td>C₂₉H₃₆O₂</td>
<td>C₂₉H₃₆N₂CHCl₃</td>
<td>C₃₇H₄₀O₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>518.62</td>
<td>518.62</td>
<td>664.07</td>
<td>514.59</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>P 1</td>
<td>P 1</td>
<td>P 1</td>
</tr>
<tr>
<td>a[Å]</td>
<td>8.926(2)</td>
<td>8.902(2)</td>
<td>10.8101(12)</td>
<td>8.9354(5)</td>
</tr>
<tr>
<td>b[Å]</td>
<td>12.408(3)</td>
<td>12.088(3)</td>
<td>11.1244(12)</td>
<td>11.8758(9)</td>
</tr>
<tr>
<td>c[Å]</td>
<td>13.559(3)</td>
<td>27.070(8)</td>
<td>14.3383(16)</td>
<td>13.0754(6)</td>
</tr>
<tr>
<td>α[°]</td>
<td>99.758(9)</td>
<td>101.774(18)</td>
<td>91.4712(18)</td>
<td>97.029(5)</td>
</tr>
<tr>
<td>β[°]</td>
<td>100.102(9)</td>
<td>93.904(19)</td>
<td>91.6750(18)</td>
<td>102.787(4)</td>
</tr>
<tr>
<td>γ[°]</td>
<td>98.809(6)</td>
<td>100.502(18)</td>
<td>101.8031(17)</td>
<td>103.349(5)</td>
</tr>
<tr>
<td>Volume[Å³]</td>
<td>1430.9(6)</td>
<td>2787.1(13)</td>
<td>1686.2(3)</td>
<td>1312.22(14)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Dcalc[Mg/m³]</td>
<td>1.204</td>
<td>1.236</td>
<td>1.308</td>
<td>1.302</td>
</tr>
<tr>
<td>temperature [K]</td>
<td>293(2)</td>
<td>296(2)</td>
<td>150(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>measured reflns</td>
<td>12587</td>
<td>36576</td>
<td>19720</td>
<td>7853</td>
</tr>
<tr>
<td>unique reflns</td>
<td>4927</td>
<td>9802</td>
<td>9976</td>
<td>5075</td>
</tr>
<tr>
<td>obsd reflns</td>
<td>2470</td>
<td>4722</td>
<td>7491</td>
<td>3892</td>
</tr>
<tr>
<td>Parameters</td>
<td>362</td>
<td>731</td>
<td>552</td>
<td>462</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0337</td>
<td>0.0548</td>
<td>0.0184</td>
<td>0.0219</td>
</tr>
<tr>
<td>R(int) > 2σ</td>
<td>0.0774</td>
<td>0.0887</td>
<td>0.0457</td>
<td>0.0545</td>
</tr>
<tr>
<td>wR²</td>
<td>0.2342</td>
<td>0.2725</td>
<td>0.1344</td>
<td>0.1687</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.007</td>
<td>1.010</td>
<td>1.059</td>
<td>1.052</td>
</tr>
</tbody>
</table>

*Conventional R on F = Σ||Fobs|| - |Fcalc||/Σ||Fobs||. #Weighted R on |Fobs|² = Σ|w(Fobs|² - Fcalc|²)|²/Σ|w(Fobs|²)|².
The asymmetric unit of 2f contains one molecular with no solvent of crystallisation. As shown in Figure 4, 2f displays a slightly curved core structure (torsional angle <5°) with shallow twist angles of 17.57(9) and 3.03(8)° between the pyrene core and the terminal phenyl groups. Obviously, the planar molecular structure would tend to form strong co-facial π···π stacking, and the pairs of pyrene units arrange in head-to-tail stacking via a centre of symmetry by π···π interactions (3.48 Å). In addition, the pyrene units and the adjacent phenyl rings display face-to-face π···π stacking at a distance of 3.32 Å. Interestingly, from the packing structure of 2f, there are two key π···π interactions leading to a three dimensional infinite supramolecular array.

Furthermore, in the packing structure of 3, the four phenyl rings are not coplanar with the central pyrene; the two unique dihedral angles are 18.3 and 23.6°. As shown in Figure 5, two neighbouring pyrene moieties possess a centroid to-centroid distance of 5.99 Å. No significant π-stacking interactions between the pyrene rings were observed and molecules adopt a herringbone packing motif. Non-covalent interactions play an important role in the stacking of the structures.

Table 2. The photophysical and electrochemical properties of compounds 2

<table>
<thead>
<tr>
<th>R</th>
<th>λmax max ns</th>
<th>λmax π* (nm)</th>
<th>Log ε</th>
<th>θ*</th>
<th>LUMO (eV)</th>
<th>HOMO (eV)</th>
<th>Energy gap (eV)</th>
<th>τns</th>
<th>Tm(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>406</td>
<td>421 (325)</td>
<td>4.87</td>
<td>0.93</td>
<td>-2.01 (-2.41)</td>
<td>-5.01 (-5.34)</td>
<td>2.99 (2.93)</td>
<td>2.89a</td>
<td>198</td>
</tr>
<tr>
<td>2b</td>
<td>409</td>
<td>423 (330)</td>
<td>4.88</td>
<td>0.93</td>
<td>-1.93 (-2.39)</td>
<td>-4.93 (-5.31)</td>
<td>2.99 (2.92)</td>
<td>2.93</td>
<td>288</td>
</tr>
<tr>
<td>2c</td>
<td>412</td>
<td>427 (333)</td>
<td>4.82</td>
<td>0.94</td>
<td>-1.85 (-2.37)</td>
<td>-4.79 (-5.27)</td>
<td>2.94 (2.90)</td>
<td>2.94</td>
<td>195</td>
</tr>
<tr>
<td>2d</td>
<td>431</td>
<td>517 (380)</td>
<td>4.74</td>
<td>0.86</td>
<td>-1.63 (-2.61)</td>
<td>-4.46 (-5.27)</td>
<td>2.83 (2.67)</td>
<td>3.51</td>
<td>237</td>
</tr>
<tr>
<td>2e</td>
<td>411</td>
<td>427 (313)</td>
<td>4.80</td>
<td>0.91</td>
<td>-2.37 (-2.42)</td>
<td>-5.33 (-5.32)</td>
<td>2.97 (2.90)</td>
<td>2.48</td>
<td>220</td>
</tr>
<tr>
<td>2f</td>
<td>425</td>
<td>485 (363)</td>
<td>4.77</td>
<td>0.80</td>
<td>-2.56 (-)</td>
<td>-5.39 (-)</td>
<td>2.83 (2.77)</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

* Measured in dichloromethane at room temperature. † DFT/B3LYP/6-31G* using Gaussian. ‡ Calculated from the empirical formulae HOMO = -(Eg+4.8). § LUMO=HOMO+Eg. ‡ Calculated from λmax. ¶ Melting temperature (Tm) obtained from differential scanning calorimetry (DSC) measurement. * Decomposition temperature (Td) obtained from thermogravimetric analysis (TGA), nd: not measured.

As mentioned above, the crystal packing is clearly marked off between pyrenes 2, 3 and 4. With the substituted group number increasing, the crystal packing has been transformed from face-to-face π···π stacking with off-set head-to-tail stacking to a herringbone arrangement on going from 2, 3 to 4. On the other hand, bulkier tert-butyl groups located at the 7-position of the pyrene can play a more crucial role in hindering the π···π stacking versus the arylethynyl-substituted group. In compound 4, due to the nodal planes passing through the 7-position of the pyrene, the phenyl moiety attached at this position would be of limited impact for the crystal arrangement, as well as the electronic interactions. The planar molecular structure of the pyrene derivatives 2, 3 and 4 is beneficial for extending π-conjugation and improving the optical density, which can lead to special photophysical properties both in solution and in the solid state.

Photophysical properties

The absorption spectra of the title compounds 2 in dilute dichloromethane are presented in Figure 6 and the optical data is summarized in Table 2. The maximum absorption wavelength of the ethynylpyrenes 2 is exhibited at least ca. 68 nm red-shifted compared with 2-tert-butylpyrene (338 nm). Notably, the photophysical properties are highly dependent on the substituent units present. Y-shaped 2a-c and 2e show similar absorption behaviour and exhibit two prominent absorption bands in the regions 300–350 nm and 375–425 nm, respectively. For 2d and 2f, the maximum absorption wavelength has obviously red-shifted (~19 nm) relative to 2a, arising from the intramolecular charge transfer (ICT) increase. Indeed, both 2d and 2f feature a broader and intense absorption in the long wavelength region 475–525 nm, indicating that the molecules tend to be more coplanar between the pyrene core and terminal ethynylphenyl groups by extending the π-conjugation, which is consistent with the crystalographic results. With an increased

Figure 5. The packing structure (a) side view and (b) top view for 3 and (c) side view and (d) top view for 4.

However, in compound 4, when a p-methoxypheyl moiety is located at the 7-position of pyrene, it is almost coplanar with the pyrene ring. The other four phenyl rings at the 4,5,9,10-positions of the pyrene form dihedral angles of between 6.1 and 47.3°, and two neighbouring pyrene moieties adopt a slipped face-to-face motif with off-set head-to-tail stacking with a centroid-to-centroid distance of 4.65 Å. Each molecule of 4 displays 24-point π···π stacking with molecules above and below using both the pyrenyl and ethynyl carbon with intermolecular distances of 3.42–3.58 Å.
length of π-conjugation, the molar absorption coefficients (ε) of 2d and 2f are lower than the others observed.

Especially, the 1,3-bis(4-methoxyphenylethynyl)pyrene 2c shows more planar structure than 7-tert-butyl-1,3-bis(4-methoxyphenyl)pyrene,\(^{25}\) which is beneficial to extend the conjugated pathway and increase the absorption cross-section. Indeed, the molar absorption coefficient of 2c (log ε = 4.82) is higher than 1,3-bis(4-methoxyphenyl)pyrene (log ε = 4.51). According to the reported,\(^{27}\) due to the special electronic structure of pyrene, substituents at different position would cause a great difference of electron distribution. For example, the absorption of 2a–c exhibited a great differences when compared to 3. Clearly, substitution at the K-region (4,5,9,10-positions) exerts a greater influence on the S\(_2\)←S\(_0\) excitation than substitution at the active sites of 1,3-position. The compounds 2a–c with similar S\(_2\)←S\(_0\) excitation coefficients (log ε = 4.87 for 2a, 4.88 for 2b and 4.82 for 2c) are much larger than 3 (log ε = 4.66).\(^{20}\)

![Figure 6](image1)

Figure 6. (a) Normalized UV-vis absorption and (b) fluorescence emission spectra of compounds 2 recorded in dichloromethane solutions at \(-10^{-5}–10^{-4}\) M at 25 °C.

The fluorescence spectra of 2a–c and 2e exhibit a sharp peak at \(λ_{\text{em max}} = 421, 423, 427\) and 427 nm with a shoulder. The emission spectra of 2d and 2f display a single broad peak at 517 nm and 485 nm, respectively, which indicates that the emission occurs from the lowest excited state with the largest oscillator strength. With the π-conjugation increasing, a gradual bathochromic shift in the \(λ_{\text{em max}}\) is clearly observed in the order of 2a ≈ 2b ≈ 2c ≈ 2e < 2f < 2d, implying that the energy gap between ground and excited states would decrease in this order. In this process, the ICT plays an important role in lowering the energy gap. The optical properties are consistent with Kim’s reports.\(^{28}\) All of compounds show strong emission from deep blue to green color with high PL quantum yield (QYs) in the 0.80–0.94 range. The quantum yield of the tilted compounds are higher than our previous reported by comparison of the series of 7-tert-butyl-1,3-diarylpyrenes.\(^{25}\) This was thought to be due to the increasing π-conjugation and delocalization of the electron density can improve the optical density, leading to strong FL emission in the solid-state.

Additionally, the fluorescence lifetime (\(τ_f\)) were measured in dichloromethane, and the results are listed in Table 2.

Furthermore, the effect on the optical properties of these compounds have been examined in solvents of various polarity, such as cyclohexane, 1,4-dioxane, tetrahydrofuran (THF), dichloromethane (DCM) and N,N-dimethylformamide (DMF). The solvent dependence of the absorption and fluorescence spectra of 2 are displayed in Figure 7 and in the supporting information (Figure S3). The fluorescence spectra of 2d and 2f showed an obvious intermolecular charge transfer (ICT) emission band in different solvents with different polarity; for example, in 2d, there was a remarkable solvatochromic color change from blue (432 nm in cyclohexane) to yellow (560 nm in DMF), owing to the presence of the terminal electron-donating N,N-dimethylamino groups (−N(CH\(_3\))\(_2\)) which lead to a large change singlet excited-state dipole moment,\(^{30}\) as the polarity of solvents increasing, the singlet excited states would decrease. The solvent effect of the absorption and fluorescence spectra was further evaluated by the Lippert-Mataga plot (Eqs. (1)–(2)),\(^{31}\) which is dependent on the Stokes shift (\(Δν_{\text{em}}\)) and the solvent parameter \(Δ(ε, n)\).\(^{32}\)

\[
Δν = \frac{1}{4πε_0hcR^2} \frac{2Δμ^2}{ℏcR^3} Δf + \text{const}
\]

(1)

Where \(Δν = ν_\text{max} − ν_\text{em}\) stands for Stokes shift, \(ν_\text{max}\) is the wavenumber of maximum absorption, \(ν_\text{em}\) is the wavenumber of maximum emission, \(Δμ = μ_\text{g} − μ_\text{e}\) is the difference in the dipole moment of solute molecule between excited (μ\(_\text{e}\)) and ground (μ\(_\text{g}\)) states, h is the Planck’s constant, R is the radius of the solvent cavity in which the fluorophore resides (Onsager cavity radius), and \(Δf\) is the orientation polarizability given by (Eq. 2).

\[
Δf = \frac{ε - 1}{2ε + 1} − \frac{n^2 - 1}{2n^2 + 1}
\]

(2)

Where ε is the static dielectric constant and n the refractive index of the solvent.

![Figure 7](image2)

Figure 7. (a) Emission spectra of 2d in cyclohexane, THF, CH\(_2\)Cl\(_2\), CH\(_3\)CN and DMF at 25 °C. (b) the solvatochromic colour change from blue to yellow, (c) Lippert-Mataga plots for compound 2d (−N(CH\(_3\))\(_2\)).

Similarly, the emission spectra of 2f was red shifted show ca. 76 nm depending on the polarity of solvents (from 432 nm in cyclohexane to 497 nm in DMF) with obviously ICT characteristics. However, the emission maxima of 2a–c, with the electronic-donating groups, and 2e were slightly red shifted less 10 nm depending on the solvent polarity even in DMF (see supporting information). Although the compounds 2a–c and 2e possess weak CT characteristics, they display relatively high QYs compared with the others.

Electrochemical properties
The electrochemical properties of the title compounds 2a-e were investigated by cyclic voltammetry (CV) in dichloromethane containing 0.1 M nBuNPF₆ as the supporting electrolyte, with a scan rate of 100 mVs⁻¹ at room temperature. As shown in Figure 8, all of the Y-shaped extended π-conjugated pyrene derivatives displayed an irreversible oxidation peak. In contrast, previous studies on similar Y-shaped pyrene molecules with aryl-substituted moieties have shown a quasi-reversible oxidation wave, which might be due to the terminal nature of the π-conjugated arylethynyl substitution effect on the electronic properties. For 2a-e, the CV peaks for the positive potentials range from 1.23 to 1.28 V. According to the CVs and the UV-vis absorption, the highest occupied molecular orbital (HOMO) were estimated from the onset values of the first oxidation, and the optical energy gap (Eₒ) was derived from the UV-vis data. The HOMO energy levels for 2a-e ranged from −5.28 to −5.34 eV, followed the empirical formula LUMO = HOMO-Eₒ, the LUMO levels of 2a-e are located from −2.37 to −2.61 eV. Given the considerable HOMO and LUMO energy values of the compound, it might have potential use as a luminescent hole transporting material in OLEDs.

Quantum chemistry calculations

To gain further insight into the electronic structures of the Y-shaped π-conjugated compounds 2, DFT calculations were performed at the B3LYP/6-31G(d) level of theory using the Gaussian 2003 program. The 3D-structures and energy density of the HOMO and LUMO levels of each material are displayed in Figure 9 and in the supporting information Figure S4. As the molecular geometries show, the substituent groups are almost coplanar with the pyrene core. Thus there is a close correlation between the quantum calculations and the single crystal X-ray diffraction results; minor differences of molecular geometry arise from the theoretical calculations being carried out in the "gas-phase". On the other hand, the various substituent groups play a significant role for the HOMOs and LUMOs, for example, as the electron-releasing ability increases from 2a to 2d, the destabilization of the HOMOs is greater than that of the LUMO, the HOMO levels are mostly located over the full molecular skeleton, whereas the LUMOs only spread in the center of pyrene rings; in contrast, with electron-withdrawing moieties, the LUMOs of 2e and 2f are almost fully localized on the entire molecular framework, and the HOMOs destabilized in the pyrene ring and a fragment of the phenyl groups. In addition, from the calculation data, we observed the energy gap of 2f is close to 2d with 2.83 eV, so both compounds exhibit similar UV spectra with a broad and strong absorption band in the 370-450 nm region. It is noteworthy that the HOMO-LUMO energy gaps of the title compounds 2 are lower than that previously reported for Y-shaped 1,3-bisarylfuctionalized pyrene species, due to the effect of arylethynyl moieties on the energies of the molecular orbitals.

![Figure 8. Cyclic voltammograms recorded for compounds 2a-e.](image)

![Figure 9. Selected computed molecular plots (B3LYP/6-31G*) of the compounds 2d and 2f.](image)

Conclusions

In summary, a series of Y-shaped arylethynyl-functionalized pyrenes 2 were synthesized by Pd-catalyzed Sonogashira coupling reaction in reasonable yield. The Y-shaped, extended π-conjugated pyrene derivatives display strong face-to-face π-stacking with off-set head-to-tail stacking as compared with a Y-shaped carbon-carbon single bond arylsubstituted pyrene. Furthermore, the effects of the substituents and their position on the crystal packing structure and photophysical properties of the chromophores has been evaluated. Compounds 2a-c and 2e in dichloromethane exhibited deep blue fluorescence with high quantum yield, while the chromophores 2d and 2f exhibit intermolecular charge-transfer (ICT) leading to intense optical absorbances over a wide spectral range. Strong fluorescence spectra of 2d and 2f show the maximum emission at 517 nm and 485 nm, respectively, with remarkable solvatochromic effects in polar solvents. Theoretical computation and experimental CV studies on their electrochemistry verify that Y-
shaped extended π-conjugated pyrenes can be utilized in OLED devices as luminescent hole-transporting materials. In future, we will attempt to fabricate highly efficient OLED devices using these materials.

Acknowledgements (optional)

This work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University)”. We also would like to thank the EPSRC (overseas travel grant to C.R.), The Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and The Scientific Research Common Program of Beijing Municipal Commission of Education for financial support (18190115/008).

Keywords: Pyrenes • Intramolecular charge-transfer • Single crystals • Luminescence material • Structure-property relationship

A series of high-efficiency luminescent material, namely 1,3-di(arylethynyl)-7-tert-butylpyrene, which were synthesized by a palladium-catalyzed Sonogashira coupling reaction. The detailed photophysical and electrochemical properties of titled compounds have been thoroughly investigated by experimental and theoretical.

Extended π-Conjugated Pyrene, Derivatives: Structural, Photophysical and Electrochemical Properties

Additional Author information for the electronic version of the article.

Xing Feng: 0000-0002-4273-979X
Author: ORCID identifier
Author: ORCID identifier
Figure Captions:

Scheme 1. The synthetic route to π-conjugated pyrene derivatives 2, and the cruciform-shaped and hand-shaped pyrenes 3 and 4 for comparison.

Figure 1. The molecular structures of 2cI, 2d-CHCl₃ and 2f.

Figure 2. X-ray crystal structure representations of 2cI, illustrating (a) and (b) the co-facial π-stacking structures and (c) the principal intermolecular packing interactions.

Table 1. Summary of crystal data for the π-conjugated molecules 2cI, 2cII, 2d-CHCl₃ and 2f.

Figure 3. X-ray crystal structure representations of 2d-CHCl₃, illustrating (a) and (b) the co-facial π-stacking structures and (c) CHCl₃ molecules were captured in voids supported by C-H···π interactions.

Figure 4. X-ray crystal structure representations of 2f, illustrating (a) and (b) the detail of the cofacial π-stacking structures and (c) the principal intermolecular packing interactions.

Table 2. The photophysical and electrochemical properties of compounds 2.

Figure 5. The packing structure (a) side view and (b) top view for 3 and (c) side view and (d) top view for 4.

Figure 6. (a) Normalized UV-vis absorption and (b) fluorescence emission spectra of compounds 2 recorded in dichloromethane solutions at ~10⁻⁵–10⁻⁶ M at 25 °C.

Figure 7. (a) Emission spectra of 2d in cyclohexane, THF, CH₂Cl₂, CH₃CN and DMF at 25 °C. (b) the solvatochromic colour change from blue to yellow, (c) Lippert-Mataga plots for compound 2d (-N(CH₃)₂).

Figure 8. Cyclic voltammograms recorded for compounds 2a–e.

Figure 9. Selected computed molecular orbital plots (B3LYP/6-31G*) of the compounds 2d and 2f.
Click here to access/download

Additional Material - Author

4. 0524 Response to Reviewers Comments.docx
Click here to access/download Supporting Information 2d.cif
Click here to access/download
Supporting Information
2cl-checkcif.pdf
Click here to access/download
Supporting Information
2d-checkcif.pdf
Click here to access/download
Supporting Information
2cII-checkcif.pdf
\[
\text{PdCl}_2(PPh_3)_2 \\
\text{CuI, PPh}_3 \\
\text{Et}_3\text{N, DMF} \\
100^\circ\text{C, 24h}
\]