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The Evolution of Scientific Visualisations: A 
Case Study Approach to Big Data for Varied 
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Abstract 

Visual representations of complex data are a cornerstone of how scientific information 

is shared. By taking large quantities of data and creating accessible visualisations that show 

relationships, patterns, outliers, and conclusions, important research can be communicated 

effectively to any audience. The nature of animal cognition is heavily debated with no 

consensus on what constitutes animal intelligence. Over the last half-century, the methods used 

to define intelligence have evolved to incorporate larger datasets and more complex theories - 

moving from relatively simple comparisons of brain mass and body mass to explorations of 

brain composition and how neuron count changes between specific groups of animals. The 

primary aim of this chapter is therefore to explore how visualisation choice influences the 

accessibility of complex scientific information, using animal cognition as a case study. As the 

datasets concerned with animal intelligence have increased in both size and complexity, have 

the visualisations that accompany them evolved as well? We first investigate how the basic 

presentation of visualisations (figure legends, inclusion of statistics, use of colour, etc.)  has 

changed, before discussing alternative approaches that might improve communication with 

both scientific and general audiences. By building upon the types of visualisation techniques 

that everyone is taught at school (bar charts, XY scatter plots, pie charts, etc.), we show how 

small changes can improve our communication with both scientific and general audiences. We 

suggest that there is no single right way to visualise data, but careful consideration of the 

audience and the specific message can help, even where communications are constrained by 

time, technology or medium.  
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1 Introduction 
 

Humans have communicated using pictures since our ancestors first made cave art over 

45,000 years ago (Brumm et al., 2021). Today, outside of the arts, visualisation is gaining 

importance across domains including journalism, education, science, public information, and 

workplaces (Kennedy and Engebretsen, 2020). Visual tools are particularly important for 

conveying scientific information. The information being shared often takes the form of abstract 

ideas and numerical findings that are much easier to understand when represented pictorially. 

At their best, as Kennedy and Engebretsen (2020, pg.19) note, “visual representations of 

statistics and other, often quantitative data can convey complex facts and patterns quickly and 

effectively”. Just as everyone is aware that a picture can paint 1000 words, a complicated 

statistical finding, if visualised effectively, can be made accessible to a much wider audience 

than when it is presented only as prose.    

To foster scientific literacy, everyone taking high school mathematics or science is 

taught to make and interpret simple visualisations like bar charts, pie charts, histograms, and 

boxplots (Fig.1). These visualisations follow some straightforward rules, at least as we first 

encounter them – pie charts are for showing proportions of a whole, and XY scatterplots for 

showing the relationship between two variables, for example (Hawkins, 2019). Mastering these 

rules gives the student the tools to read and understand a broad spectrum of classic scientific 

literature, as well as the necessary background for advanced statistics courses that build on 

these foundations. In the modern life sciences, where testing a hypothesis increasingly requires 

‘big data’ (Pal et al., 2020), we rely on developments in computing, statistics, and – ultimately 

– visualisations, to make sense of our findings.  
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It is interesting, therefore, that even as life science datasets are increasing in size and 

complexity, scientists’ options when it comes to visualising their outputs seem to have 

remained more circumscribed. This may be because scientists are not explicitly trained in the 

creation of innovative imagery (McInerny et al., 2014), with existing courses – like Edward 

Tufte’s famous workshops on Analysing and Presenting Data and Information – primarily 

taking place outside of academia. Ongoing scientific discussions of the challenges of ‘big data’ 

in biology, furthermore, often mention challenges with storing, allowing access to, processing, 

and analysing vast datasets (Alyass et al., 2015; Marx, 2013; Pal et al., 2020), but rarely 

consider the challenges of visualisation. The example at the centre of this chapter comes from 

the study of brain size and cognition. Humans seem to have absolutely and relatively large 

brains (Preuss, 2017), at least when compared to other animal species. The question of exactly 

how large our brains are, and why they became that way, is one that neuroscientists and 

Fig 1: (a) bar chart, used to show quantities in specific categories; (b) pie chart, used to show numerical 

proportions in specific categories; (c) histogram, an approximate representation of numerical distribution of a 

data set; (d) box plot, used to show the range and average in different samples, as well as outliers. Example 

data sets created by author. 
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zoologists have been exploring for fifty years or more. One might think that we would see 

almost half a century’s worth of development and change in the visualisations used in the 

scientific literature. In fact (see Section 2), while the types of data and measurements used have 

changed, sometimes quite dramatically, the same basic approach to visualisation can be seen 

in papers from 1980 and 2020. Our primary aim in writing this chapter is therefore to explore 

this pattern in more detail and show how scientists’ choices about visualisation – at various 

stages and scales – influence the accessibility of scientific information for a variety of 

audiences. 

To find out, we first delve deeper into our chosen example (Section 2). Although 

scientists studying the brain size-body size relationship and biological indicators of intelligence 

are using the same broad approach to visualisation, we wondered whether the availability of 

technology and their choices about symbols, legends, colour, titles, placement, and other 

factors have an impact on accessibility. How are scientists creating images, and what level of 

interpretive skill and statistical knowledge do they assume in their audience? Then, in Sections 

3 and 4, we consider alternative approaches that might improve communication with scientific 

and general audiences respectively. The development of new statistics packages, and new 

functions in existing ones, allows writers to handle larger and larger datasets. These have 

changed the playing field for scientific visualisation. Can new techniques and visualisation 

approaches improve the way scientists communicate with one another? Do these new 

techniques also have the potential to help with wider scientific communication (e.g. across 

disciplinary boundaries or with non-specialists and public audiences)? A discussion of complex 

relationships relying on statistical values may quite quickly become near meaningless to non-

specialist readers, even if they have a keen interest in the subject. The way that data is visualised 

is thus key to engaging quickly and effectively with a variety of readers. Through this chapter 

we will demonstrate that there is no universal ‘right answer’ to visualisation, but that more 

effective visual communication can often be achieved through careful consideration of the 

intended audience and the message to be communicated. 
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2.  Visualisation Case Study: Animal Cognition  

 

 The visual representation of complex information is, without a doubt, one of the most 

important parts of scientific research. By translating numbers and observations into pictures, 

the data can be understood much more readily and relationships, outliers, and patterns can be 

shown in a way that is immediately accessible to the reader. Good visualisation is especially 

important where datasets are large, and relationships can only be described in terms of 

secondary numbers (statistics). This is because the human brain is not well-equipped to 

memorise large datasets, let alone to manipulate them, which means mathematics done on 

paper or on a computer needs translation to become meaningful.  

Animal cognition research is a field that has used large datasets for decades, and tackles 

some of the most heavily debated questions in the life sciences. How can we measure 

intelligence or cognitive capacities, especially in animals we cannot communicate with? 

Identifying specific traits that might indicate a higher level of cognition from knowledge of an 

animal’s natural behavioural repertoire is tricky, to say the least. To bypass the problems 

associated with intelligence experiments using behavioural traits, there has been a big push 

within the life sciences to find a quantitative biological proxy for intelligence. This search, 

however, has been challenging and - like many things in science - ideas about how we can best 

measure cognition have changed over the last few decades with the emergence of new 

technology, techniques, and information.  

As animal cognition science has evolved, so have the visualisations that have 

accompanied it. Cognition studies usually look for relationships between two variables, one 

typically being some measure of cognition or intelligence, e.g. ability to use different kinds of 

tools, and the other the proposed biological indicator, e.g. brain volume. Alternatively, studies 

may look at brain volume and body size, to look for purely biological relationships. Due to the 

nature of this sort of data (which typically comprises two continuous measures), the broad 

nature of the visualisations and statistics used have remained very similar for the past ~40+ 

years.  The standard analysis used is a linear regression. Linear regression is a statistical method 

which tries to predict the value of one thing (e.g. tool use) from a measure of the other (e.g. 

brain volume). It is usually represented via a graph with two axes and a scattering of points, 

one per animal. A line is usually added to show the best fitting statistical relationship. Points 

may fall above and below this line and (very occasionally) on it. In this section, by starting 
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with the literature on this specific relationship and looking at how scientists’ visual choices 

have affected the appearance and the accessibility of their data, we aim to consider how small 

decisions about colour, style, symbology and figure presentation affect the accessibility of our 

target area of research. We start with a little contextual information. 

 

2.1  How Linear Regressions are Visualised  

2.1.1 Context: Measuring Brains 

 

Brain mass has long seemed a likely contender for a biological measure of cognitive 

potential, on the assumption that a larger brain allows more neural connections and hence more 

learning. Body size, however, poses a problem for any absolute measure of brain mass. For 

example, an elephant or whale brain comfortably exceeds the mass of human and ape brains, 

without these animals necessarily being more intelligent: they have bigger brains but these 

brains may be a smaller proportion of their total weight and use a smaller fraction of their 

energy intake. By taking a relative brain mass (i.e. measuring brain mass and dividing by body 

mass), species of different body sizes can be compared more easily. Scientists generally 

anticipate that animals with larger brains relative to their body size will be more intelligent. 

The proportion of body mass made up by the brain decreases as bodies grow larger  (Herculano-

Houzel, 2016; Jerison, 1973; Roth & Dicke, 2005). Relatively bigger brains do seem to indicate 

higher levels of intelligence in primates, birds, carnivores, bats, and even some fish like guppies 

(Benson-Amram, et al., 2016; Garamszegi & Eens, 2004; Kotrschal, et al., 2013; Madden, 

2001; Ratcliffe, et al., 2006; Reader & Laland, 2002; Sol, et al., 2005). Some authors today 

prefer to look at absolute brain size (which has not been adjusted for body mass), or at other 

indicators, but a large quantity of the papers from the past forty years of cognition research 

have explored or used relative brain size data. 
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2.1.2 Position of Visualisations Within the Article 

 

Given that most scientists working on animal cognition are using the same types of data 

and the same statistical tools, the fact that they usually choose the same graphs is not surprising. 

There are, however, some variations in the ways that these graphs are presented in papers from 

different decades and with different priorities. The first of these relates to where graphs are put 

into an article, and how they relate to one another. 

The following two figures are classic examples of figures from the relative brain 

mass/animal cognition literature. They each explore relative brain mass in a multitude of 

species, in the form of a XY scatter plot. Fig.2 shows two figures (originally labelled figure 1 

and 2) from a 1981 paper by Robert D. Martin, which examined the relationship between body 

weight and brain weight across 548 species of mammals, birds, and reptiles. Martin was 

interested in how proportional brain mass affects how much energy animals need, and whether 

knowing more about this could tell scientists something about constraints on the evolution of 

brains. Fig.3 on the other hand shows a figure from Lefebvre, et al. (2004). Lefebvre and 

colleagues showed that innovation rate, which they used as an indicator of higher intelligence, 

increases in proportion to the size of certain parts of the brain in birds and primates. 
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Fig 2: Figures 1 and 2 (and legends) from Martin, R. D., 1981. Two XY scatter plots of body weight against 

brain weight in primates and other mammals (figure 1) and birds and reptiles (figure 2), showing the 

relationships between the body weight and brain weight. Primates and the remainder of mammals are 

grouped together, while birds and reptiles form two separate distinct groups with no overlap. Reprinted by 

permission from “Springer Nature”: Springer Nature, Nature, Martin, R. D., 1981. Relative brain size and 

basal metabolic rate in terrestrial vertebrates. Nature, 293(5827), pp. 57-60. Copyright ©1981 
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Fig 3: Figure 2 (and legend) from Lefebvre, L., 2004. A panel of six graphs showing how 

innovation rate (an indicator of higher intelligence) varies among primates and birds. Here 

Lefebvre shows that innovation rate is positively correlated with relative brain size. Reprinted by 

permission from “S. Krager AG”: Krager, Brain, Behaviour, and Evolution. Lefebvre L, Reader 

S, M, Sol D: Brains, Innovations and Evolution in Birds and Primates. Brain Behav Evol 

2004;63:233-246. doi: 10.1159/000076784. Copyright ©2004 
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The first difference one might see when comparing these two examples is the location 

of the figures relative to one another within their respective articles. Martin’s figures (Fig.2) 

are located one after the other, with the text explaining the results on the next page. For a reader, 

this allows easy comparison between figures, but requires that they refer back to them when 

reading the supporting text. Lefebvre and colleagues (Fig.3) on the other hand display their 

figure followed immediately by a small section of text discussing the associated results, before 

presenting their next finding. This allows the reader to see the figure and the supporting text 

together, without having to refer back several figures and increases the overall readability of 

the text. However, it assumes that the reader can absorb the content of a figure and remember 

it for comparison with other visualisations. Each of these approaches has advantages and 

disadvantages, and different readers may have their own preference. A visually-oriented and 

statistically-savvy reader, for instance, may not need all the text detail to get the message of 

Martin’s paper, while someone who prefers the unfolding of a detailed storyline, with visuals 

as backup, might engage more with Lefebrve et al.’s more incremental approach. Certainly 

they suggest that the authors of these papers were either operating within different constraints 

(e.g. numbers of full pages that could be devoted to figures) or else making choices, consciously 

or otherwise, about which comparisons they wanted to encourage readers to make. Without 

consulting the authors and journals, it is impossible to say for sure whether each figure was 

more shaped by choice or constraint. Their differences, however, arguably interact with other 

small variations in, for example, symbology to shape the reader’s experience in quite distinctive 

ways.  

 

2.1.3 Data Point Identification 

 

In Fig.2, Martin uses a solid triangle (▲) for points that represent primates, and a 

hollow one (△) for other mammals. The same symbols, on another chart, are used for birds 

(▲) and reptiles (△). This makes it simple for a reader looking at a single chart to tell apart the 

two groups it compares, but does not facilitate easy comparison between charts – unlike the 

placement of figures, which seemed at first look to encourage it. This use of symbols prioritises 

the reader spotting the difference between birds and reptiles (which plot out separately) and 

primates and mammals (whose symbols overlap). It’s much harder to see how birds and 

mammals would compare. Differences in the two figures’ axes and shapes, for instance, make 
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it difficult to imagine them superimposed even if the reader is confident enough in their 

statistical understanding to be sure direct comparison was possible. 

Lefebvre, et al. (2004) also use labels to identify specific points, giving information 

about taxonomic family (Fig.3 (A)) and species (Fig.3 (B)), but instead of shapes they use 

numbers with corresponding information in the figure legend. Numbers like this allow the 

interested reader to locate specific animals in the chart, but the bird and primate charts use the 

same numbering system (1-16), so a given number doesn’t always mean the same thing. 

Number 1, for instance, is either a corvid or a chimpanzee depending on which panel you look 

at. The primate analysis (Fig.3 (B)), furthermore, only expressly labels 16 species, saying 

“some points are not numbered due to space limitations”. Labelling all the data points might 

well have led to visual overload and obscured the pattern the chart is meant to show.   

 

2.1.4 Figure Legends 

 

Another important part of the figure which has a huge impact on its accessibility to the 

reader is the figure legend. The figure legend is a piece of accompanying text that describes 

the figure and helps the reader understand it without reference to the rest of the manuscript. In 

2009, Yu and his colleagues looked at how well people understood information when they were 

just given a short and highly condensed summary of the paper (the abstract), a particular figure, 

and the legend that goes with it. They found that people only understood roughly a third of 

what they were reading by comparison with their understanding if they were given the full text 

to read. This suggests that improving figure legends would do a lot to help readers to skim 

articles for cruical information, and might reduce reliance on textual summaries like abstracts. 

It is particularly useful for legends to stand alone, so that in papers like Martin’s (above), a 

reader who is visually inclined and statistically knowledgeable can extract the detail of key 

findings from a single page, without having to refer backwards or forwards in the text. This 

does, however, imply that different papers will require different lengths and levels of detail in 

their legends depending on the complexity of their figures. Comparing Martin (Fig.2) to 

Lefevbre et al. (Fig.3) above, for instance, shows that the numbered symbols in the latter 

necessitate a much longer legend. Decisions about symbology, legends and other visual 

elements have knock-on effects for one another. 
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Despite Yu et al.’s findings that figures and legends alone, with a text abstract, did not 

convey the full contents of a paper, visual abstracts are increasingly popular in new academic 

journals. They sometimes use a key figure from the text, but can also be stand-alone designs a 

bit like cartoons or tiny conference posters. Visual abstracts are particularly useful for those 

needing to ‘preview’ an article and decide how much more time to invest in it, and for sharing 

at meetings or on social media (Ramos & Concepcion, 2020). Adopting some of the techniques 

used in creating visual abstracts might help scientists with ordinary figure legends too – though 

proponents of the new approach note that maintaining quality is already a challenge, so this 

requires further exploration.  

 

2.2 Known Issues with Brain Size-Body Size Approaches to Intelligence 

 

The simple use of relative brain mass to predict intelligence has its critics. Some smaller 

animals, such as the elephant shrew (Family: Macroscelididae), appear to have much larger 

brain sizes relative to their body sizes than we might expect, with their brains making up around 

10% of their total body weight (Roth & Dicke, 2005). Human brains, by comparison, are 

around ~2% of their total mass  (Bélanger, et al., 2011; Snodgrass, et al., 2009). If intelligence 

was only about proportional brain size, then you would expect elephant shrews to be smarter 

than humans, and there is no evidence to support this assumption. There have been various 

efforts to correct for these presumed outliers, or adjust measurements to recognise scaling 

variation and find broader patterns instead of simply calculating proportional brain size.  

One such adjusted measure is the encephalisation quotient. In 1973, Harry J Jerison 

proposed the encephalisation quotient (EQ) which measures the ‘actual’ brain mass compared 

with the ‘expected’ brain mass, to create a numerical value that attempts to indicate the level 

of intelligence (Jerison, 1973). For our example above, if we used a sample of animals that 

included both elephant shrews and humans to characterise how brains change as you increase 

in body size, we can see whether the human value of 2% is unusually large or small for a 

mammal of human size, rather than just larger or smaller overall than that of the elephant shrew. 

There are thus no universal EQ values as the expected brain size is calculated each time for a 

study, based on the animals sampled. This means that the results of an analysis of EQs depend 

on which animals are included in any particular calculation. If, for example, you had a study 

that looked at the relative EQ of humans and elephants, that would give a different EQ score 



13 | P a g e  
 

for humans than a study that compared humans and sheep. The value itself indicates how much 

larger or smaller the brain of the animal in question is compared to its expected mass, which 

has been calculated using the larger dataset of all included animals. In a wide sample of 

mammals, a typical value of 1 (the expected brain mass is the same as the actual brain mass) is 

usually assigned to cats, with humans obtaining the highest values at around 7~8. The 

suggestion therefore is that the human brain is 7~8 times larger than would be expected, while 

a cat is a ‘typical’ mammal with a brain exactly as large as we might predict (Roth & Dicke, 

2005). However, EQ does not consider other factors such as age, gender, or body fat percentage 

(Cairó, 2011). A study by Minervini, et al. (2016), who calculated EQ values for the domestic 

pig (Sus scrofa), demonstrates this by showing how the EQ values varied between piglets 

(2.42), young adults (0.58), and adult pigs (0.38) without a noticeable change within their 

behaviorual repertoire that would indicate changes in intelligence. Ultimatly, in visual terms, 

the use of EQ means that after fitting the line that describes the overall pattern of a XY 

scatterplot, instead of comparing which animal falls absolutely highest on the y-axis you can 

look at which falls proportionally highest above the line. 

Another alternative to using relative brain measures is using absolute brain size, or the 

raw data on the mass of a species’ brain. The absolute mass of the brain in mammals ranges 

from <0.1g in the Etruscan shrew (Naumann, 2015) to ~9000g in some species of whale (Roth 

& Dicke, 2005), and so, on its own, cannot be used as an indicator of intelligence. It might, 

however, have advantages when comparing animals that are broadly similar in size. In 

particular, absolute brain mass has been suggested to provide a more accurate indication of 

higher-order brain function when working within a certain animal group or taxonomic orders 

(Benson-Amram, et al., 2016; Deaner, et al., 2007; MacLean, et al., 2014; Street, et al., 2017). 

This is because within such a group of animals, all species share the same brain scaling rules 

and are likely to be similar in size and ecology, making comparisons of actual size differences 

in the brain more meaningful than when comparing animals of very different groups.  
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2.3 How Linear Regressions are Visualised Continued 

2.3.1 Figure Axes Titles 

The questions scientists ask when working within groups of animals are different to 

those they might look at on a broader scale, and often focus more on the relationship between 

brain size and some systematically applied measure of practical intelligence. This is because 

behavioural or ecological indicators of cognitive capacities that apply to animals with different 

diets, body plans and social systems can be hard, but it is much easier to do for groups that are 

more uniform. As an example, Fig.4 shows a figure from Deaner, et al. (2007) (pg. 115), who 

suggests that “absolute brain size measures were the best predictors of primate cognitive 

ability” when compared with the encephalisation quotient and relative brain mass measures. 

  

Fig.4 Figure 1 (and legend) from Deaner, R.O. et al., 2007 who suggest that absolute brain size measures were the 

best predictors of primate cognitive abilities. The bigger the primate brain, the more intelligent they seem to be. The 

important graph for this finding is (A) and (B) as it shows the total size of the brain or neocortex (where intelligence 

is thought to originate from) having a positive correlation with their cognition score. Reprinted by permission from 

“Krager Publishers”: Krager. Brain, Behavior and Evolution. Deaner, R.O., Isler,K., Burkart, J., and Van Schaik, C., 

2007. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. 

Brain, Behaviour and Evolution, 70(2), pp.115-124. Copyright © 2007, Krager Publishers, Basel, Switzerland 
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Fig.4 contains a lot of complicated information that, unless you are a specialist in the 

area and have been able to read the accompanying method text in detail, is perhaps harder to 

understand. For example, a lay reader may not start the paper knowing what unweighted 

regression, progression index, or global cognition mean. Even if they have read the method, a 

quick note reminding them of the definition of the progression index or global cognition within 

the figure legend could aid quick comprehension of the figure. Having only one y-axis label 

(“Global Cognition”) is an effective way of reducing the figure’s word count and increasing 

the clarity. Labelling each of the 6 graphs within the figure with the y-axis wouldn’t add 

anything specifically helpful to the graph but would increase the visual ‘clutter’ of an already 

complex figure. The x-axes, on the other hand, could have their readability slightly improved. 

For example, saying “log brain mass” instead of just “log brain” does not really impact on the 

overall impression of the figure, but could reduce the cognitive load on the reader who no 

longer has to refer back to the methods to interpret an abbreviation as well as their definitions. 

There is an obvious trade-off here between readability and clarity, and perhaps another between 

house style (e.g. a stated preference for short, succinct legends) and the broader accessibility 

of the figure. This might be particularly important if a paper is intended to have a wide 

audience, or to be used for science communication, e.g. as a visual abstract, but it is worth 

considering at other times too. 

 

2.3.2 Statistics 

 

The inclusion of statistical information within a figure is quite often used to aid quick 

understanding of the data, though it arguably only works if the reader already has an 

understanding of statistics or specific field knowledge. The presentation of statistical 

visualisations to a general, non-specialist audience is discussed in Section 4, but even within 

the scientific literature intended for a more specialist audience, attention to how statistics can 

be incorporated into visuals is important.  

As discussed previously, figures and their legends should ideally be self-contained so 

all the information the reader requires is present without reference to the remainder of the 

article. If we look back at Fig.2 (Section 2.1.2), even though this graph is from 1981, statistics 

are still included in the form of regression line equations. As figures are, by definition, 

visualisations, using additional visual features upon the graph is a good way of adding more 
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information. Fig.4 does this by adding regression lines to the charts which demonstrate 

significant differences only, therefore, immediately showing the reader which charts are 

significant. Within statistics, this could also be the inclusion of the asterisk symbol (*) to 

indicate the level of significance. Using a note in the legend that states, “p>0.05 (NS), p<0.05 

(*), p<0.01 (**), p<0.005 (***), p<0.001 (****)”, and then labelling the figure with the 

corresponding symbol would show the reader the level of significance within the figure. This 

is a good way of conveying a lot of information through a simpler, visual means, and is useful 

for the reader that already understands what a p-value is. It is helpfully also unlikely to be too 

distracting for those who don’t understand the p-value, as the asterisk symbology doesn’t 

dominate the figures. 

 

2.3.3 The Use of Colour 

 

The use of colour in scientific visualisations is a fairly new development, which has 

become widespread as online publication has become more normal. Traditionally, all science 

communication has been through physical journals, usually held in University libraries, and 

the technology used in both the printing and dissemination of journal articles has undergone a 

quantum change over the last few decades. Even comparing 1981 (Fig.2) and 2007 (Fig.4) 

there is a noticeable lack of colour in both our chosen figures, and some journals still require 

black-and-white versions for print, which might discourage its addition. Colour is, however, 

not only visually appealing to the reader, but, if used correctly, it can add an additional layer 

of information to the figure. Similarly to using shapes (as discussed earlier), additional layers 

of information through the addition of colour allow for more patterns, relationships, and 

outliers to be visualised on the figure, and can potentially enhance the reader’s intuitive ability 

to grasp patterns.  

In 2014, MacLean and his colleagues undertook behaviour experiments (two tests, 

called the “A not B task” and “Cylinder test”) to assess cognitive ability in eight groups of 

animals. The measurements that they took for both tasks were combined to create a composite 

graph (Fig.5). The findings suggested that across species, the absolute brain volume (marked 

as ECV on the figure) was “a robust predictor of performance” across all tests. This method of 

taking two similar graphs and combining them to create a composite graph can be used if you 

want to run a series of different tests, but end up with an overall result. It is also a nice example 
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of an animal cognition chart that uses colour effectively to bolster communication of its 

findings. 

 

Fig.5 clearly demonstrates the benefits of using colour to distinguish between species, 

especially if compared with the black-and-white symbol approach shown in Fig. 2. It is visually 

appealing, and a reader can immediately see that apes (red) consistently performed highest in 

both tests while birds (dark purple), lemurs (green), and some New World monkeys (yellow) 

Fig.5 Figure 2 (and legend) from MacLean, E.L. et al., 2014. Eight groups of animals were tested in 

two different cognition experiments, the “A not B test” and “Cylinder test”. The panel displays results 

from those two tests and a composite score of both for Endocranial Volume (ECV or Absolute Brain 

Mass) and Endocranial Volume Residuals.  Reprinted by permission from “Proceedings of the National 

Academy of Sciences”: PNAS. MacLean, E.L., Hare, B., Nunn, C.L., Addessi, E., Amici, F., Anderson, 

R.C., Aureli, F., Baker, J.M., Bania, A.E., Barnard, A.M. and Boogert, N.J., 2014. The evolution of 

self-control. Proceedings of the National Academy of Sciences, 111(20), pp.E2140-E2148. 
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scored on the lower end. It also clearly identifies elephants (pink) as an outlier point on the top 

middle graph (log ECV against “A not B task”). 

 So, even just looking at two example figures (Fig.4 and Fig.5) that use absolute brain 

mass as a proxy for intelligence, it has become clear how the presentation of the data has 

evolved, even over a short time, to become more accessible to readers of both specialist and 

non-specialist backgrounds. However, there are still problems with using absolute brain mass 

as an indicator of higher cognition. For those who want to understand cognition more broadly, 

the hunt is still on: there is still a need to find a single, clear-cut and easily interpretable 

biological proxy for intelligence. Recent efforts have tended to focus on cortical neuron counts 

and scaling relationships that describe patterns in brain composition, rather than just in size. 

 

2.4 Cortical Neuron Count as a Biological Proxy for Intelligence 
 

While absolute brain mass has been shown to correlate with cognitive abilities, it can 

only be used within those animal groups (taxonomic orders) which share the same brain scaling 

rules. Scaling, when used in the context of brains, describes how the neuron composition of the 

brain changes as each brain type changes in volume/mass. There are no universal brain scaling 

rules. Instead, specific groups like primates or carnivores each have their own scaling patterns. 

Understanding the differences help us show, for example, that in a rat (or any rodent) as the 

brain increases in size, the neurons get larger and are added at a slower rate, whereas in humans 

the neurons remain the same size, so as the brain gets larger, proportionally more neurons are 

added. Ultimately, this results in more neurons within a primate brain compared to a rodent 

brain of the same mass, which allows primates to pack in more neurons without the additional 

costs of a larger (and heavier) brain (Gabi, et al., 2010; Herculano-Houzel, et al., 2007; 

Herculano-Housel, 2009).  

Looking at scaling rules gives us a more nuanced way to assess potential intelligence. 

The human brain is divided into three different broad sections: the brain stem, which controls 

basic functions such as heartrate and breathing, the midbrain or cortex that includes feelings 

and emotions such as fright and flight, and the new or neocortex which is the part on the outside 

with the distinctive folds in it. This section, the human neocortex, is where abilities and 

attributes indicative of higher intelligence are thought to originate from. In humans it contains 
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around 16 billion neurons which makes up a massive proportion of the overall brain neuron 

count (around 19% of a total of 86 billion neurons) (Azevedo, et al., 2009).  Humans have the 

largest number of cortical neurons of any species on the planet (Herculano-Houzel, 2012), and 

it is this, the sheer amount of cortical neurons, that has been suggested to account for our 

enhanced cognitive abilities. Even when compared with brains that are 3~4 times larger than 

ours, such as the African elephant's (Loxodonta africana) (whose whole brain contains 257 

billion total neurons), different mammalian scaling patterns mean that humans still have far 

greater numbers of cortical neurons (16 billion as opposed to 5.6 billion) (Herculano-Houzel, 

et al., 2014).   

If cortical neuron count is an accurate indicator of what currently constitutes 

‘intelligence’, it could potentially be used to compare animals across the vertebrates.  Non-

mammalian vertebrates have an equivalent structure to the neocortex, called the dorsal pallium 

(Herculano-Houzel, 2017). The amount of neurons in either of these two structures thus gives 

us a new contender for a simple biological proxy for intelligence that has neither of the 

disadvantages we have already considered. It does not use body mass (such as relative brain 

mass or the encephalisation quotient do), and so does not have the associated problems 

discussed earlier in the chapter, and as it bypasses the issues of brain scaling, can be applied 

much more widely than any absolute measure of brain size. This leads to a new generation of 

papers looking at cortical neuron counts. This methodology tends to use quite complex datasets, 

and correspondingly relies on combinations of strategies to make figures more accessible (see 

below). 

  



20 | P a g e  
 

2.5 Points of Interest and Print/Disability Friendly Figures 

2.5.1 Flagging Points of Interest 

 

Suzana Herculano-Houzel’s 2017 paper (Fig.6) highlights how the number of neurons 

in the cortex (or pallium) correlates with cognition measures, and how the pallium within birds 

can pack more neurons than some primate cortices do of similar masses. This specific 

visualisation is a good way of pulling lots of the previous points made in this chapter together 

to form a more accessible visualisation despite it including some very complex data. 

Fig.6 Figure 2 (and legend) from Herculano-Houzel, S., 2017. This figure shows how the number of neurons 

in the cortex (or pallium) correlate with cognition measures, and how the pallium within birds can pack 

more neurons than some primate cortices do of similar masses Reprinted by permission from “Elsievier”: 

Current Opinion in Behavioral Sciences. Herculano-Houzel, S., 2017. Numbers of neurons as biological 

correlates of cognitive capability. Current Opinion in Behavioral Sciences, 16, pp.1-7.Copyright © 2017, 

Elsievier  
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Fig.6 has a very detailed legend that explains what each part of the plot shows, as well 

as the significance values for the graph which are in a consistent format – making it easier to 

read, at least for those readers with the statistical knowledge required to understand this content 

(see Section 2.3). It also uses clear, concise axis titles and colour schemes with legends on the 

figures to allow quick interpretation. 

A new visual strategy this figure deploys is the combination of letters and colours as 

labels to pick out points of interest. The human (“h”) and African elephant (“e”) are labeled on 

all graphs while remaining the same colour as their close relatives. Furthermore, the letter 

labels are discreet enough not to cause visual clutter or distraction, but prominent enough to be 

easily spotted and looked up in the legend by a curious reader. Identifying points of interest is 

not necessarily a new feature of figure creation, as (for instance) Martin used an arrow to 

identify a dolphin in his 1981 figure (Fig.2). But using these identifiers helps place the data in 

context for the audience, and is a good way of identifying points at either extreme as well as 

possible outliers. Fig.7, by Lunn et al., (2021), shows another example where points of interest 

are identified through imagery rather than letters. For example, Fig. 7 highlights that pigs lie 

away from the remaining points in their group (Artiodactyls), donkeys are the only member of 

their group included (Perissodactyla), and wolves and dogs can be rapidly compared by those 

interested in intelligent carnivores. Both Fig. 6 and Fig. 7 thus manage to highlight both the 

overall patterns their authors found, and the placement of specific animals that might be of 

particular interest to some or all of their readers. 
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Fig.7 Figure 4.1 (and legend) created from Lunn et al., (2021) showing a linear regression analysis of 

measurements on a feature on cervical vertebra (transverse foramina) which indicates the level of blood 

flow to the brain, and a ranking system that is indicative of intelligence, where the higher the rank, the 

higher the proposed intelligence. Transverse foramina measurements are averages between both foramina 

present, and then displayed as a percentage of the vertebral canal (also present on the cervical vertebrae) to 

adjust for total organism size across the data set. This figure indicates that the higher the blood supply to 

the brain (so larger average transverse foramina measure), the more behavioural traits indicative of higher 

intelligence the species has.  

Figure 4.1) A linear regression of the logged transverse foramina area adjusted for the area of the 
vertebral canal and the total assigned rank across 40 Mammalian species from 8 taxonomic orders. 
A positive significant relationship was found (R2(38) = 0.1879, p<0.01**), and some key species 
are illustrated. 
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2.5.2 Print and Disability Friendly Figures 

 

The use of colours and shapes has become increasingly more common to add additional 

layers of information to figures, but if you’ve ever opened an exam paper or journal article and 

been greeted by a photocopied graph in varying shades of grey, you will have some indication 

of the difficulties with using a wide variety of colour without explicit attention to what happens 

in reproduction or subsequent iterations. One final improvement that could be made to the 

graphs just discussed is to design the colour in such a way that the figure can be reproduced 

and read in a greyscale format or by someone with a disability (such as red-green “colour 

blindness”, hereafter referred to as “colour vision deficiency”). Red-green colour vision 

deficiency is the most common type of colour vision deficiency, with 1 in 200 women and 1 in 

12 men affected (or 0.5% and 8% respectively) (National Health Service, 2019; Levine, 2008). 

Photocopiers that only work in black and white, or black and white reproductions of colour 

figures available only in online versions of journal articles affect many more of us. Usefuly, 

some resources, such as Microsoft Office PowerPoint, now have built in accesibility features, 

and other online sources (such as Coblis (Wickline & HCIRN, 2022) which allows a user to 

see what their visualisations look like to someone with colour vision deficiency) are allowing 

authors to see their visualisations in different ways, and, hopefully, resulting in more inclusive 

and accesible visualisations. 

Fig.8 visualises these differences by using an example, fictitious, data set created by the 

author to show how colour choice can affect the figure and therefore the reader. 
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Fig.8 shows how a bar chart (right) in a monochrome scale (blue in this example) can 

be read in its natural form, a greyscale print, and for someone who lacks the full range of colour 

vision (red-green colour vision deficiency), compared with a graph with a range of colours 

(left). It is important to note here that the colour vision deficiency graph is simply used as an 

indication of how someone who is affected by it, may see the figure. Colour vision deficiency 

can affect each person differently, with some people seeing duller versions of the colour while 

others may be unable to differentiate between the two extremes of the red-green axis, or are 

Fig.8 Bar charts with a fictitious data set created by the author to demonstrate how colour choice can affect the 

figure (and therefore, the reader). The left hand demonstrates a ‘bad example’ with multiple colours, while the 

right-hand side demonstrates a ‘better example’ with a blue monochrome scale. The first horizontal row 

represents how the graph would look in its natural colour form. The second horizontal row represents a greyscale 

version of the same graph. The third horizontal row shows a proposed view for someone with colour vision 

deficiency – specifically red-green.  



25 | P a g e  
 

affected more strongly by only one end of the axis (National Health Service, 2019). From Fig.8, 

it quickly becomes obvious that although the graph with multiple colours (left-hand side) is 

visually appealing, in it’s original form, it becomes much harder to read either in greyscale, or 

with a disability. The monochrome scale on the other hand (right-hand side), is still visually 

appealing and is greyscale/disability friendly. By taking the colour scheme and readability of 

figures into account, graphics and articles can become more inclusive, comprehensible, and 

accessible to everyone. 

 

2.6 The Evolution of Cognitive Abilities and Brain-Body Mass Visualisations 

 

As the science investigating the relationship between cognitive ability and biological 

indicators/methods of measuring cognition has evolved, so have the datasets used and their 

visualisations. In particular, there has been a major move away from using relative brain size 

measures as proxies for intelligence, and towards either restricted but simple measures like 

absolute brain size or – more recently – measures like cortical neuron count. While the basic 

display of this data has remained the same, in the form of XY scatterplots representing linear 

regression analyses, the complexity of charts has changed in line with changes in the datasets 

used, and as technology has progressed. As science has moved on to online publishing and 

efficient printing, detailed computer-generated graphs with finite details and additional features 

(such as colour, etc.) have been added into figures. There also seemed to be a trend in earlier 

research that assumed much more about the statistical competence of the reader, though some 

elements even of recent figures (like Fig. 6’s exponential axis labels) suggest this assumption 

still holds for academic papers. While many readers will understand the statistics within these 

articles, making figures and legends more detailed and easier to comprehend improves the 

accessibility of science to anyone and everyone, and fits well with the current trend towards 

greater inclusivity in general, e.g. via use of colour and greyscale (print) friendly formats. 

Overall, our explorations of even this small part of the scientific literature has turned up 

multiple ways in which authors’ choices and constraints both affect the accessibility of their 

visuals. 
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3 Approaching Visualisation Differently 

 

 Figures can be invaluable tools for scientists. Scientific writing is typically concise, 

with articles using a standard introduction, method, results, discussion, conclusion (sometimes 

called IMRaD) structure and journals imposing a word count to constrain the authors. As an 

author, this means that if the word count can be reduced while the readability and accessibility 

increase, that is a win-win scenario. Figures and visualisations are key to displaying findings 

and, especially when considering complex datasets, are the parts of the research that really 

“pull” people in. Figures can take a long time to make, however, so there is little point in having 

a graph or figure if a “single simple sentence can convey all the information more efficiently” 

(Schriger & Cooper, 2001). It is, as we’ve already discussed, important to take each dataset 

case-by-case and consider which visualisation methods are most appropriate. This section aims 

to describe some of the alternative visualisations scientists might use, and the advantages and 

disadvantages of each. 

(Note: The following visualisations were created using RStudio (v.1.4.1106) with the additional 

packages: beanplot; dplyr; ggplot2; ggpubr; ggsci; ggsignif; ggthemes; gridExtra; lattice;  

rstatix and, scales.) 

 

3.1 Alternatives to XY Scatterplots 

 

As Section Two showed, in the field of animal cognition the use of brain-body mass 

ratios and specific biological proxies for intelligence usually results in articles that analyse data 

with linear regressions. In papers from 1980 to 2000, the natural visualisation method has been 

an XY scatter plot. XY scatter plots, as noted, are good at displaying the relationship between 

two continuous numerical variables and can be useful for identifying patterns or outliers within 

the data set. A simple addition to a basic XY scatter plot is the separation of data by a third 

categorical or numerical value (i.e. through different colours or symbols). In the examples 

shown in Section Two, these categorical variables may be groups of animals or species. With 

the exception of resolving overplotting (an issue where data points overlap one another 

resulting in some data points becoming difficult to read), there are few ways in which an XY 

scatter plot can be improved to aid readability once general figure considerations (axis titles, 
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point shape, and legends, for example), have been addressed. However, it is possible to 

envision ways to add detail to a XY scatterplot, to reinforce or clarify the relationships it shows 

For instance, a scientists can add visualisations of each of the variables outside the main 

chart. These are called marginal density plots. Fig. 9 adapts data from Lunn et al. (2021) to 

show the relationship between a ranking system indicative of animal intelligence, and the 

average transverse foramina area, or diameter of the holes in the neck bones (cervical vertebrae) 

that the vertebral blood vessels flow through to get to the brain. This measurement can be used 

as a proxy for blood flow to the brain through these arteries. Here, marginal density plots have 

been added in the form of boxplots (Fig. 9a) and density curves (Fig. 9b) on both axes. These 

show the reader that primates (in grey on the chart and in the box plot) are both more intelligent 

and have more blood flowing to the brain through the vertebral arteries than the other two 

groups. The additional information the marginal plots convey (ranges, median values, and 

densities for example) can also be useful in showing the reader contextual information about 

the data that could not easily be incorporated into the symbology of the main plot. 
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Fig.9 Two XY scatter plots with marginal density plots adapting data from Lunn et al. (2021) to show the 

relationship between a ranking system indicative of animal intelligence (“Total Assigned Rank”) and the 

logged average transverse foramina area (an accurate indicator of vertebral artery blood flow to the brain), 

adjusted for overall size through measurements of the vertebral canal on cervical vertebrae. Three taxonomic 

orders (Artiodactyla: Blue, Carnivora: Orange, and Primate: Grey) are plotted with two types of marginal 

density plot (boxplots (a) and density curves (b)) included to demonstrate the additional information that can 

be added to standard XY scatter plots. 

a) 

b) 
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3.2 Boxplots and Beanplots 

 

While those working on measuring intelligence and brain size usually use XY 

scatterplots, it can be informative to consider alternatives. Another typical visualisation 

approach is through boxplots. Boxplots are designed to show the distribution(s) of values of a 

continuous variable within one or more groups. As an example, a boxplot could show the range 

and amount of overlap in ranges of heights of males and females in a single population side by 

side. Boxplots are good for comparing distributions of large datasets, but do not usually work 

on smaller datasets and generally do not show the individual data points (Franzblau & Chung, 

2012; Schriger & Cooper, 2001).  

Fig.10 again adapts data from Lunn, et al. (2021) to show how blood flow to the brain 

varies between three animal groups. Fig.10a shows the data visualised as a boxplot, while 

Fig.10b shows the same information visualised in a beanplot. Beanplots expand upon boxplots 

to include individual data points as well as the density curve (bean shape). The inclusion of a 

density curve has already been visualised as a marginal density plot (Fig.9b), but in a beanplot, 

it is integral to the visualisation. The ‘shape’ of the data can be easily identified through this 

method as well as the density of data, i.e. where most of the data points fall on the graph. 

Specifically, a beanplot doesn’t create an artificial box shape around a set of averages and 

extreme values the way a boxplot does. Instead, each beanplot shape is different, with a wide 

part of the plot indicating lots of variation, and a narrow part indicating limited variation.   

For example, when comparing the two parts of Fig.10, you can instantly see on the 

beanplot the small cluster of artiodactyl points (even-toed ungulates including pigs, sheep, 

cattle, giraffes, deer, hippopotami, etc). These would not be picked out on the boxplot. 

Furthermore, it is easier to see on the beanplot that more of the primate points fall above the 

median line than below it (where there is a larger spread). This tells the reader that there are 

more primates that are above their group average, and that more carnivores and artiodactyls are 

below their group’s average. Ultimately, as for most visualisation choices for figures, the 

quality and attractiveness of the final output of a boxplot or beanplot is dependent on the 

specific dataset and author/editor preference – but it is still important to consider all options in 

light of how much information the author wants or needs to communicate, and how effectively 

each approach can do this. 
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b) 

a) 

Fig.10a Boxplot of taxonomic order (Artiodactyla: Blue, Carnivora: Orange, and Primate: Grey) with average 

transverse foramina area (an indicator of blood flow to the brain through the vertebral arteries), adjusted for total 

organism size through measurements of the vertebral canal. Data adapted from Lunn et al. (2021). A one-way ANOVA 

test was undertaken and found a statistically significant difference between taxonomic orders and average foramina 

area (F(2,132)=28.588, p<0.005***). Further Tukey post-hoc analysis showed specifically strong significant 

differences between Artiodactyl and Primates (p<0.005***) and Carnivores and Primates (p<0.005***), with primates 

obtaining larger average transverse foramina areas. Between Artiodactyl and Carnivora there was also a statistically 

significant difference (p<0.05*), however this was less strong. Outliers are shown through 8-point star symbols. Tukey-

HSD post-hoc significance values are shown above each ‘box’ (p>0.5 = ns, p<0.5 = *, p<0.01 = **, p<0.005=***). 

Fig.10b Uses the same data (and, therefore, same statistical values) as the boxplot but offers an alternative visualisation 

method for the data. Individual data points (dots), the median value (horizontal black line) and density of points 

(density-curve/”bean” shape) are all shown upon the plot. 
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3.3 Bar Charts and Pie Charts 

 

As well as box- and bean-plots, another common way to visualise measurement data is 

through the production of bar charts (or graphs) and pie charts. Bar charts are widely used for 

making comparisons and reading them relies on the ability of the reader to judge the relative 

height of columns. Being relatively simple to read, however, does not mean they require less 

careful attention to their construction than other types of visualisations. All the usual figure 

elements such as labelling, text size, and axes configuration need to be thoughtfully considered, 

and some features that may visually pull in the reader, such as the use of 3D plots or colour 

simply for decoration, are best avoided as they may detract from the clarity of information 

presentation (Franzblau & Chung, 2012). Even with simple plots that only compare a few 

groups, other alterations can be made to increase the clarity of the figure. Fig.11 demonstrates 

just a few of these possible alterations using data from Lunn, et al. (2021). For example, in 

Fig.11b the bars have been reordered from alphabetical order to descending order. This allows 

values that are close to one another (such as the gorilla and chimpanzee) to be directly 

compared. Furthermore, the use of colour, here within the same colour palette, increases the 

visual appeal and separates each bar visually from the next. It is important to note that the green 

colour palette here does not impede the accessibility as there is no comparison with other 

primary colours (red for example), and the shading will still be present even if the reader is 

affected by the green colour (perhaps seeing shades of grey or a dull green instead). 

 

 

  

Fig.11 A standard bar chart (ordered alphabetically, as is typical in some statistics package default 

settings (11a), and right ordered in descending order (11b)) of seven primate species and the average 

transverse foramina area (an accurate indicator of blood flow to the brain through the vertebral arteries), 

adjusted for overall organism size through measurements of the vertebral canal on cervical vertebrae - 

data from Lunn et al. (2021). The use of colour within the right-hand graph indicates different species. 

b) a) 
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However, while this graph is easy to interpret, some data sets contain many more 

categories than this one. Fig.12 shows bar charts of 40 mammal species and their average 

transverse foramina area sizes visualised in both an alphabetical order (Fig.12a), and 

descending order (Fig.12b). While both bar charts clearly label each animal, the sheer number 

of categories present detract from the overall readability and accessibility of either chart. 

Unless the intention is to show something about the distribution of scores (e.g. using 

descending order patterns to highlight an outlier or that some animals have high values and 

others have low values in a stepped pattern), these charts may not be helping the reader very 

much. Those interested in specific blood flow values for each species could extract those from 

a table or appendix, perhaps more easily than from a chart. 

. 

 

 

 

 

 

 

 

 

 

 

Is there nothing to be done to visualise this data more clearly? Fig. 13 suggests 

otherwise. Using a combination of colour and re-ordering of bars, Fig.13a works better, though 

it has required much more conscious work to create. Fig. 13a gives the reader a clear idea of 

how values change within specific animal groups (visualised through different colours) and 

also emphasises trends within and between groups.  

  

Fig.12  A standard bar chart (left ordered alphabetically (12a), and right ordered in descending order (12b)) 

of 40 mammal species and the average transverse foramina area (an accurate indicator of blood flow to the 

brain through the vertebral arteries), adjusted for overall organism size through measurements of the 

vertebral canal on cervical vertebrae - adapted from Lunn et al. (2021).  

b) a) 
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b) 

a) 

Fig.13a  A bar chart of 40 mammal species and the average transverse foramina area (an indicator of blood 

flow to the brain through the vertebral arteries), adjusted for overall organism size through measurements of 

the vertebral canal on cervical vertebrae - data from Lunn et al. (2021). Data is ordered in decreasing values, 

as well as by taxonomic order. Fig.13b shows the same data but flipped (so the x-axis now runs vertically) 

and visualised in a stem plot form instead. Artiodactyl: Dark Blue Square, Carnivora: Orange Circle, 

Diprotodontia: Yellow Triangle, Eulipotyphla: Light Blue Hollow Circle w/ Cross, Perissodactyl: Brown 

Hollow Square w/ Cross, Primate: Grey Diamonds, Proboscidea: Purple 8-Point Star, and Rodentia: Black 

Crosses.   
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Fig.13b, in contrast, shows the same data but visualised as a stem plot as opposed to a 

bar chart. Stem plots maximises the “data-ink” ratio, where the intention is to have the most 

amount of data present while having the lowest amount of “ink” on the graph. This is helpful 

if you plan to print the figure (Kosourova, 2021) or want to avoid overlapping or densely 

packed elements. They therefore increase the clarity, accessibility, and readability of the data 

even further. The ‘flip’ of the plot, so the x-axis now runs vertically, adds the additional benefit 

of allowing the reader to easily read the species present on the figure without having to 

physically turn their head (as they would for Fig.12 and Fig.13a). These changes for the stem 

plot further reduce the cognitive load placed upon the reader. 

Unlike bar charts, solitary pie charts are rare in scientific publications. Schriger & 

Cooper, (2001) state that “solitary pies have no role in scientific publications since readers 

should be able to generate the picture from tabular data, making the picture redundant with text 

and tables.” However, an exception to this is when multiple pie charts are used within the same 

figure (eg. Fig.14). This allows for easy comparisons of patterns within the dataset that would 

be less easy to spot in a table.   
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Fig.14 Comparison pie charts showing the percentage neuron distribution in the Cerebral Cortex and Rest 

of the Brain in six species within three taxonomic orders (Primate: Grey, Artiodactyl: Blue, Carnivora: 

Orange). Data from Herculano-Houzel, (2017), Herculano-Houzel, (2016) and Herculano-Houzel, et al., 

(2015). 
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Specifically, Fig.14 shows a simplified example of a comparison pie chart, by showing 

the neuron distribution (%) in the cerebral cortex and rest of the brain within two primates 

(capuchin and macaque), one artiodactyl (steenbok), and three carnivores (jackal, red fox, and 

racoon) all with similar brain masses (between 44g~70g).  While this figure indicates that the 

proportion of neurons in the cerebral cortex is larger in primates (a likely result of economic 

brain scaling rules as discussed in Section 2.4 (Herculano-Houzel, et al., 2006; Herculano-

Houzel, 2011)), without supporting statistical information on the chart, it is impossible to say 

whether the difference in proportions is statistically significant 

  

3.4 Infographics  

 

 Infographics are visualisations that convay complex information efficiently through the 

use of photos, maps, charts, graphics, and other visual elements (Naparin & Saad, 2017). They 

are becoming increasingly more common in science communication due to their ability to 

convey lots of information in a small space through both written and visual elements. 

Infographics convey information in a more visually appealing manner than some other 

visualisations already discussed.  

As a way of comparing the level of information that can be conveyed by a pie chart or 

an infographic, compare Fig.15 below to Fig.14 which uses the same data and colour scheme. 

Instead of using pie charts, Fig.15 uses coloured symbols (to indicate taxonomic order), written 

elements (species and Latin names), simple statistical values (percentages), and size differences 

between symbols (which reinforce the percentages) to show the data.  
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The type of infographic used in any given context will depend on the communication 

goal of its creator. Fig.15 would be perfect for a presentation or communication to a general 

audience, but would perhaps not be included in a scientific publication. In an article, taking up 

this much space to convey the same information as could be covered in a table a fraction of the 

size would be considered overkill.  

 

 

 

Fig.15 Infographic showing the percentage of neuron distribution within the cerebral cortex and rest of the 

brain in two primates, one artiodactyl and three carnivores. Coloured symbols indicate taxonomic order, 

written elements show species and Latin names, simple statistical values (percentages) and size differences 

(indicates the percentage value as well) are all included on the figure. 
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3.5 The Importance of Clear Goals When Creating Visuals 

 

 Ultimately, visualisations are created to aid in the comprehension of information and 

ensure a target audience gets the ‘message’ of a paper or data analysis as the author sees it. 

Those choosing visualisation strategies need to take into account both their target audience, 

and their goals - the most important points that they want to communicate to their reader. These 

two factors together are important because they determine how much detail and complexity a 

visualisation can reasonably contain without either over- or underestimating the audience’s 

expectations and needs. The example given above of the pie charts and the infographics is a 

demonstration of choosing both how much information, and which format to present it in to fit 

different audiences and goals. Both expectations and needs will be substantially different at an 

academic conference made up of specialists in the same field as the author, and a talk for the 

general public with a broader interest in science. This section has shown a few ways in which 

conscious consideration of audience and goal can improve the accessibility of specific types of 

scientific visualisation, whether intended for scientists or a wider audience. This is by no means 

an extensive list or a ‘recipe’ for good visualisations; instead we have focused on the 

advantages and disadvantages of each choice in context. Some of the options suggested would 

involve only small changes to the figures shown in Section 2, while others are more ambitious. 

We would note, however, that  such small changes, like adjustments to a colour palette, might 

give scientific visualisations much more flexibility and reach, within and beyond the audience 

of their peers. Communicating effectively with the interested public is, however, a rather 

different aim than communicating with other scientists – and our final section considers how 

visualisation choices might affect science communication specifically. 
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4 How Scientists Share Information  

 

Public engagement is crucial for building strong connections between science and the 

public. It can limit the spread of misinformation, encouraging active involvement within 

science, and help the public see the relevance of scientific research. A stronger relationship 

between science and non-scientists also has the potential to foster real change in our lives and 

livelihoods. This can be clearly seen in the environmental sciences, where topics like climate 

change generate substantial public interest and engagement (Pham, 2016). It is important that 

scientists can learn to effectively convey information beyond a purely academic context. This 

effort is complicated, however, by the fact that most science degrees do not include any explicit 

training in science communication (Heard, 2021).  

 

4.1 Presenting Science  

4.1.1 Presentations to A General Audience 

 

 Only 20 years ago, talks about science were limited to in-person events, and most were 

aimed primarily, or exclusively, at other scientists. The proliferation of YouTube and specialist 

organisations like TEDTalks and National Geographic Live have dramatically changed this 

today. General audiences, we believe, find it easier to engage with talks with a story-like 

structure and find visualisations designed to tell a story easier to understand than traditional 

publication-style visualisations which focus on efficiency and accuracy  (Dahlstorm, 2014; 

Grainger, et al., 2016). This is not to say that efficiency and accuracy are not important in 

scientific communication (quite the opposite in fact), but rather that if they wish to make 

information accessible to a wide audience, scientists’ default approach to visualisation must 

change.  

Expert talks often use narrative features to great effect in attracting and informing a 

general audience (Reynolds, 2011).Usually, the narrative is communicated orally, with 

visualisations as back-up.  Here, we focus on two examples of good practice in our case study 

field, namely the TEDTalks “What is so special about the human brain?” by Suzana Herculano-

Houzel (2013), and “What are animals thinking and feeling?” by Carl Safina (2015).  
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The visualisations in both talks are kept to a minimum to reduce the possibility of 

distraction to the audience. Both presenters typically show a single image on any given slide, 

with images selected to be visually interesting without detracting from the speaker. There is 

little-to-no text on any slides. For example, Herculano-Houzel uses an illustration to exemplify 

her point on brain scaling rules, while Safina uses amusing or dramatic wildlife photography 

as a backdrop for his presentation. The exception to using only one image is when some slides 

are used to demonstrate specific ideas (as discussed next).  

Presentations like these may also combine visual and audio cues to convey specific 

scientific ideas. In these cases, the images are typically much more than simple decoration. For 

example, Herculano-Houzel uses a series of visualisations that each build upon one another to 

explain how primate brains contain a much larger number of neurons than rodent brains of a 

similar mass. The developing composite visualisation clearly shows how rodent neurons 

increase in size as the brain grows, while primate neurons always stay the same size, so can be 

more numerous (Fig. 16).  

  



41 | P a g e  
 

 

 

  

Fig.16 Mock-up visualisations from Suzanna Herculano-Houzel’s 2013 TEDTalk “What is so special about the 

human brain?”. The slides show a series of visualisations that build and expand upon one another to explain how 

primate brains contain a much larger number of neurons when compared to a rodent brain of a similar mass. 

Coloured circles (Red=Rodent, Green=Primate) are used to indicate neurons with the size of the circles indicating 

neuron size. This visualisation therefore shows that, in rodent brains, as the brain increases in size (between a 

mouse and capybara for example), the neuron size also increases, while in primates they do not. Therefore, 

allowing more neurons within a primate brain compared to a rodent brain of a similar mass.  

The Expensive Brain

Primate

Rodentia

Slide 1

The Expensive Brain

Primate

Rodentia

Slide 3

The Expensive Brain

Primate

Rodentia

Slide 4

1) 2) 
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Presentations also tend to use far fewer graphs and statistics than papers. In a scientific 

article, visualisations are often complex and multi-layered, and many require specialist 

knowledge to interpret. If the primary aim of science communication is to make science 

accessible to anyone, then it is obvious why they rarely include similar visuals. Graphs are 

typically only included within a public presentation if they are clear, simple, and are directly 

relevant to the narrative of the presentation. For example, the only graph Herculano-Houzel 

shows in her talk is used at the end to demonstrate the effect of cooking on human evolution. 

Cooking food allowed human ancestors to eat more calories in a set period of time, which in 

turn gives us more energy to power our brains’ higher neuron counts. This graph is a simple 

line graph that is clearly labelled and looks to have been designed specifically to convey this 

point – it contains very little extraneous information (Fig.17). It is therefore much less 

‘complete’ than a figure from a scientific paper might be but adds significantly to the talk’s 

ability to communicate a finding. Similarly, in Safina’s talk, maps are used to show the 

geographical distribution of animals. These maps are essential to the conclusions, are very 

visually appealing, and it would be difficult to convey the talk’s core message without them.  
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Fig.17 Mock-up visualisation from Suzanna Herculano-Houzel’s 2013 TEDTalk “What is so special about the 

human brain?”. A simple line graph to show the effect of cooking on brain size (here in weight, kg) in human 

evolution. This figure looks to have been designed specifically to convey that the development and evolution of 

cooking to create calorific dense foods that could be consumed and digested quicker, resulted in rapid brain 

expansion to a general audience. The axes are easy to understand (described in the talk as “Time in millions of 

years ago” (x-axis) and “Brain weight (kg)” (y-axis)) and overall aids the speaker in their delivery of the 

information. 
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Visualisations can also help scientists describe their methods for a wider audience. For 

example, in a National Geographic Live talk titled “Dolphins: Even Smarter Than You 

Thought”, presenter Brian Skerry describes a series of behavioural experiments that show 

increasing evidence of dolphin intelligence. Both publications that he discusses ((Kuczaj, et 

al., 2015) and (Clark & Kuczaj, 2016)) contain very detailed, step by step methodologies. 

However, in his public engagement talk, instead of describing his experiments in detail, Skerry 

explains the broad principles orally and shows pictures of dolphins taking each test. This allows 

the audience to see how the animals reacted to the experiments without any detail of analysis 

or setup that would detract from the core questions being investigated. In this way, science 

communication presentations are more likely to focus on the main findings and implications of 

the research described, as these are the parts that contain the narrative and are the most 

interesting to the audience. If we compare a complex conclusion from Kuczaj, et al., (2015): 

“However, tugging rate for both dolphins was significantly higher in the presence of 

the other animal than when interacting with the object alone (Alfonz, t(22) = 2.86, P<.05; 

Kimbit, t(22) = 2.61, P<.05)” 

And a simpler explanation from the same manuscript: 

“Our results suggest that dolphins can cooperate in order to achieve a common goal when 

given an unfamiliar task.”  

It quickly becomes obvious how more streamlined conclusions and, by extension, the simpler 

visualisations that accompany them are more suitable for a science communication presentation 

to a general audience. 

 

4.1.2 Presentations for Younger Audiences. 

 

The future of science relies on future generations. It is through education and accessible 

science in their everyday life, that we hope that young people will be inspired to engage with 

science and ultimately further human knowledge. Scientific training from a young age also 

helps develop other skills such as teamwork, communication, and problem-solving. 

Presentations for younger audiences place an even greater emphasis on narratives and 

visualisations than those for adult general audiences. They also tend to be shorter.  For example, 
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if we look at a TED-Ed talk (TED’s education and youth initiative) by Lori Marino (2015) 

titled “How smart are dolphins?”, in theory almost directly comparable to Skerry’s dolphin 

TEDTalk described above, the increased importance of the visualisations in TED-Ed is 

immediately obvious. The ~5-minute video presents the information and research through a 

voice-over and continuous animation. The animation keeps the audience engaged and turns 

complex data into comprehensible information. There are no publication-like visualisations 

(XY scatterplots, bar chart, etc.) at any point in the presentation, just the animation. 

Furthermore, within the animated video, technical terms like encephalisation quotient are 

explained using images and simple spoken sentences rather than equations. The narrative focus 

and continued visual stimulation help summarise the findings from multiple dolphin 

intelligence studies in an accessible and memorable way, but one that is clearly different to the 

approach taken by talks aimed specifically at adult non-specialists.  

 

4.2 Science Communication Articles 

 

 In addition to presenting specifically for non-specialists, science communicators can 

also write for them. The rapid expansion of the internet has led many consumers to become 

part of a culture that can access information immediately. If you need to find out the name of 

a film, buy a book, or update your friends and family on your holiday plans, you can do so at 

the click of a few buttons. And accessing science is no exception. How hot is the sun? Which 

dinosaurs lived in the Jurassic? Do chimpanzees have a theory of mind?  It should come as no 

surprise to scientists that writing for the internet or wider-circulation magazines can be another 

way to encourage active involvement within science and limit the spread of misinformation. 

 Science communication articles can therefore take many forms depending on the 

author, editor, and type of article. If the information is presented in a news article (The New 

York Times, The Conversation, and Nature Briefing for example), then the narrative is usually 

rather short and to the point. As in scientific talks, statistics and graphical visualisations are 

rare as articles typically focus on the conclusions and any visualisations that are included 

usually take the form of an easily digestible infographic or picture. News articles often also 

include quotes from original pieces of work, an eye-catching image to draw in the reader, and 

bold statements or questions as titles. A good example of this is the 2012 BBC News Article 

entitled “Dolphins deserve same rights as humans, say scientists”, which only contains 425 
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words and a single large photograph of dolphins. Outlets that have specific sections for science 

news may permit longer text but tend to follow the same less visual style. Rapp’s (2021) 

Discover article “Just How Intelligent Are Dolphins?” for instance is over 1,200 words long 

but still only contains one image, a photograph. Askham’s 2021 article “Evolving a Bigger 

Brain Isn’t Always About Intelligence”, by contrast, is roughly the same length but uses four 

different images to engage the reader. Three of these are photographs, but with captions that 

give detail of how the subjects fit with the science discussed, while the fourth is an artist’s 

impression of mammal brain evolution, specifically created to communicate an idea about 

relationships among animals with different brains. These are very different visual choices to 

the more complex visualisations of data that Smaers et al. (2021) used in the scientific 

publication Askham is summarising.  

   

4.3 Popular Science Books 

 

The final, and perhaps most involved, format that scientists use to communicate with 

non-scientists is the popular science book. Popular science books are distinct from talks and 

articles in that they require sustained engagement from the reader and take a much longer and 

more detailed look at a subject. Although it might seem intuitively that science book authors 

will rely primarily on narrative text, many also use visualisations – and in a different way to 

scientists communicating via shorter media. In a 2016 book “The Human Advantage: How Our 

Brains Became Remarkable”, for instance, Herculano-Houzel guides the reader through her 

research on brain anatomy to explain how we measure intelligence in animals, and how humans 

evolved their extraordinary cognitive abilities. As the science behind this is rather complex, 

both accessible language and visualisations are used throughout to engage the reader. The text 

focuses more on personal accounts and stories than summaries of projects and develops a 

strong narrative that helps place the science in context for the reader. In contrast to the scientific 

presentations and articles discussed earlier, however, this book also contains lots of graphical 

visualisations and statistical data (in fact, it is on the more complex end of the popular science 

spectrum). The visualisations are, however, adapted to make them more accessible and visually 

appealing.  

When we compare images from Herculano-Houzel’s book (2016) and the original 

papers that it is based on, for example, we see several strategies used to make the book visuals 
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more engaging, including the use of wildlife imagery to label points on a graph (the effect is 

similar to Fig.7’s cartoon animals labelling points of interest, see Section 2.5.1). Other 

graphical features, such as regression lines (lines that best fit the data points to minimise 

variance) are also used in the book to make the key patterns and relationships within a graph 

jump out. These are likewise not always used in the corresponding articles, where the reader 

would instead be anticipated to be able to read the supporting statistical information. Finally, 

when you compare the figure legend, axis titles, and axis tick labels on Herculano-Houzel’s 

book and article visualisations, they are much simpler in the book. By plainly saying “Neurons 

in the cerebral cortex (millions)” as an axis title (Chapter 4 of Herculoano-Houzel 2016), the 

reader has a much clearer idea of what the variable is, compared with “Cx neurons (n)” (the 

equivalent title in Herculano-Houzel, 2011).  

 

4.4 Creating Accessible Science Communication 

 

 The importance of accessible science communication cannot be underestimated. 

Advances in communication technology have allowed important research to reach a much 

wider audience than it might of previously but necessitates changes in written and visual style 

to make it engaging and interesting. This section has considered some of the typical forms that 

science communication work can take, and how each one modifies or develops new visual 

styles to suit its audience and their needs. Overall, we would suggest that visualisations remain 

important in all forms of science communication, though their complexity and prominence may 

vary significantly. The same simple adjustments that can help scientists communicate more 

easily with their peers can suffice, in some cases, to communicate with a particularly interested 

general audience, like those willing to read a popular science book. For other more bitesize 

format, we see more adventurous and considered visualisations like infographics and 

animations coming into their own. The same principle of considering both audience and aim 

seems to hold true for visualisations intended for non-specialists as for specialists and produces 

some rather different outcomes in each case. 
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5 Conclusion 

 

This chapter has shown that even small changes in how visualisations are presented can 

have a big effect on the accessibility of the information. Using our example of the science 

investigating biological indicators of intelligence in animals, it’s easy to see how, as the science 

developed, the visualisations have also changed. Although authors writing for scientific 

audiences still use the same types of data, analysis and visualisation, they have also adjusted 

graphical features like colour, data point identification, titles, legends, etc. to make their 

visualisations more readable and to foreground different ideas and findings. Even small tweaks, 

like the addition of extra component graphs or changes to the sequence in which data are 

presented, can change the core message the reader takes away. 

Whenever science is communicated, a meaningful and effective visualisation can only 

be created by actively considering both the identity and needs of the target audience and the 

most important points that you wish them to take away (which we have called the authors’ 

goal). Different audiences – members of the same disciplinary community, of other disciplinary 

communities, from the wider academic world, and from other worlds entirely – have different 

expectations when they are presented with scientific information. It is not as simple as being 

able to assume more or less specialist knowledge depending on the reader’s background. 

Different audiences also have different visual repertoires and experiences, and may find 

specific styles or approaches to visualising data more or less engaging, and more or less 

informative. Even where background knowledge is present and interest can be assumed to be 

high (for instance, where an audience has actively chosen to engage with a piece of science 

communication), visualisations created to communicate one purpose cannot be substituted for 

those created or adapted to communicate something else. Instead, we have shown that 

visualisation is an important subject in its own right, and merits scientists’ attention even where 

disciplinary norms would initially suggest choices are limited. When we visualise our datasets 

well, we can increase their reach and impact substantially.  
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