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High resolution numerical modelling of flow-vegetation interactions 

ABSTRACT 

In this paper we present and apply a new three dimensional model for the prediction of canopy flow 

and turbulence dynamics in open channel flow. The approach uses a dynamic immersed boundary 

technique that is coupled in a sequentially staggered manner to a Large Eddy Simulation. Two different 

biomechanical models are developed depending on whether the vegetation is dominated by bending or 

tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been 

developed, while for tensile plants, an N-pendula model has been developed. Validation against flume 

data shows good agreement and demonstrates that for a given stem density, the models are able to 

simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag 

discontinuity and associated mixing layer. 

Keywords: Biomechanics; Large Eddy Simulations; streams and rivers; vegetated flows; 

vortex dynamics. 

1 Introduction 

Vegetation within lowland river channels has a profound influence on the functioning of the 

fluvial system. Historically, vegetation has been seen as problematic due to the reduction in 

conveyance it can cause through increasing flow resistance (Kadlec 1990, Nepf et al. 2007). 

Thus, the removal of vegetation has been undertaken to accelerate the passage of flow and 

reduce flood risk (Nepf et al. 2007). However, vegetation can also have a positive impact on 

the river system through promoting sedimentation and nutrient retention (Sand-Jensen et al. 

1989, López and García 1998, Sand-Jensen 1998), providing stable habitats for terrestrial and 

aquatic wildlife (Kemp et al. 2000, Lopez and Garcia 2001, Liu and Shen 2008, Liu et al. 

2008) and improving water quality (Schulz et al. 2003). Thus, aquatic vegetation can have 

both beneficial and detrimental effects (Haslam et al. 1975) and exhibits a complex 

relationship with the river system (Nepf 2012, Gurnell 2014). 

This paper recognises that management schemes need to be based upon a clear 

process understanding of the effects of different vegetation species on the flow. It necessitates 

coupling the plant stem-scale, which drives local energy losses, to the reach-scale, where the 

integration of these energy losses determines conveyance (Naden et al. 2006, Nepf and 

Ghisalberti 2008). Previous research to understand the interaction between flow and aquatic 

vegetation canopies (e.g. Ghisalberti and Nepf 2002, Nepf and Ghisalberti 2008) has built 

upon process understanding gained from terrestrial environments (e.g. Raupach et al. 1996, 

Finnigan 2000). Most of this research has been conducted by applying physically scaled 

flume experiments (Ghisalberti and Nepf 2002, Wilson et al. 2003, Nepf and Ghisalberti 



 

 

2008). These studies have led to a good process understanding of the mean and turbulent flow 

associated with canopies: vegetation extracts energy from the flow, via the process of drag, 

which transfers energy from the mean flow to both heat and to stem-scale turbulence (Yagci 

and Kabdasli 2008, Zong and Nepf 2010). It has been shown that within canopy flows the 

drag discontinuity induced by the vegetation creates an inflection point within the mean 

velocity profile at or close to the canopy top (Nepf 2012). This inflection point leads to the 

development of Kelvin-Helmholtz instabilities and the generation of coherent roller vortices 

along the canopy top (Ikeda and Kanazawa 1996, Nezu and Sanjou 2008). However, much of 

this research has been conducted with rigid (e.g. Dunn et al. 1996, Nepf 1999, Liu et al. 

2008), or idealised vegetation (e.g. Jarvela 2002, Yagci and Kabdasli 2008) that represents a 

significant simplification of the natural aquatic vegetation most common in lowland rivers 

(macrophytes). Therefore, further work is required to better understand the effect of complex 

aquatic vegetation on channel hydraulics (Kemp et al. 2000). 

Recently, flume (e.g. Siniscalchi and Nikora 2012) and field (e.g. Sukhodolov and 

Sukhodolova 2010, Sukhodolova and Sukhodolov 2012) studies using natural macrophytes 

have supported and added to results obtained from flows around idealised macrophytes. For 

example, Sukhodolov and Sukhodolova (2012) conducted in-depth field analysis of 

dynamical turbulence characteristics, introducing a phenomenological model for predicting 

canopy-layer vortex frequency. However, the extent of spatially concurrent flow 

measurements over a significant spatial area is often limited and analysis of the flow data is 

commonly restricted to time averaged, bulk hydraulic characteristics which have low 

temporal and spatial resolution. These data do not always capture the localised turbulent 

energy dynamics of the plant-flow interaction throughout the canopy. 

This paper focuses upon the development of numerical modelling approaches as an 

alternative to improve our process understanding of turbulence generated from macrophytes. 

The approach provides a time dependent, high resolution, spatially distributed set of hydraulic 

data, and as it is grounded in numerical simulation, it can provide the framework for 

evaluating turbulence, vegetation energy loss relationships, and potentially a step change in 

our understanding of flow vegetation interaction. Furthermore the models provide an 

environment within which to analyse particular processes without the data being confounded 

by the presence of information relating to other, un-modelled processes (Lane et al. 1999) and 

permits a sensitivity analysis of different vegetation configurations and flow conditions. 

2 Previous numerical models of flow-vegetation interaction in the fluvial 

environment 

A number of numerical models have previously been developed in order to represent flows 



 

 

through vegetation. One of the most widely used approaches involves a canopy-scale 

momentum sink term, based upon the drag force exerted by the vegetation (Fischer-Antze et 

al. 2001, Defina and Bixio 2005). This method requires prior knowledge of properties such as 

canopy density, projected plant area and a drag coefficient and is therefore not suitable for 

investigating canopy-flow dynamics as it requires a priori assumptions regarding their nature. 

Such techniques are not suitable for investigating stem-scale turbulent energy dynamics. 

To investigate the effect of turbulence production at the wake and leaf scales on 

turbulence structure and momentum transport, vegetation elements must be modelled at a 

scale where the vegetation diameter exceeds the spatial grid resolution of the model. This 

constraint on model resolution has meant that to date, most stem-scale models have focussed 

on high resolution analysis of smaller-scale canopy properties and have not fully considered 

large or highly submerged canopies. Stoesser et al. (2006) performed Large Eddy Simulation 

(LES) experiments on an array of submerged cylinders using a spatially variable very fine 

grid resolution in order to fully capture the stem-scale turbulence. Their results agreed well 

with previous experimental results, as well as replicating the classical vortex regimes known 

to be present (e.g. horseshoe, von Karman, rib and roller vortices as well as trailing vortices 

from the vegetation tops). Subsequent work has developed this analysis and begun to use 

larger domains, enabling larger patch-scale analysis at stem-scale resolution. Stoesser et al. 

(2010) undertook LES experiments on a patch of emergent vegetation using a combination of 

high resolution Cartesian and curvilinear grids. They used a range of different vegetation 

densities and were able to investigate the structural changes to wake turbulence patterns 

caused by changes in vegetation density and found that these changes had a significant effect 

on turbulence statistics and flow resistance. 

While these stem scale models are capable of capturing the fine turbulence structure 

with great accuracy, they do not include any treatment of flexible vegetation. Submerged 

vegetation exhibits four different motion characteristics when exposed to a flow: (i) erect with 

no movement; (ii) gently swaying; (iii) strong, coherent swaying; and (iv) prone (Nepf and 

Vivoni 2000). Rigid models are therefore unable to capture the complex feedbacks between 

flow and vegetation, which influence canopy processes (Nepf and Ghisalberti 2008, Okamoto 

and Nezu 2009). The first study to include flexible stems was conducted by Ikeda et al. 

(2001). They developed a biomechanical plant model for semi-rigid vegetation such as 

grasses and reeds (e.g. Phragmites australis) within a two dimensional LES framework. 

However, as the model was only two-dimensional, it was not capable of capturing the full 

three-dimensional stem-scale energy dynamics. Li and Xie (2011) extended this modelling 

approach to account for highly flexible vegetation, however the spatial resolution of the 

model was sufficiently low that stems were not explicitly resolved and thus the model relied 

upon a priori assumptions regarding plant-flow interaction. 



 

 

Abdelrhman (2007) developed a model for highly flexible stems, based on an N-

pendula model to represent plant motion (see Section 3.4). However, this model had several 

limitations. Notably, it used a simplified flow model which calculated the velocity at different 

heights based upon known velocity profiles. Therefore, energy loss from the flow was 

represented by introducing a simple force balance into the flow equation, similar to that used 

to drive the plant model. The model was therefore able to replicate the familiar mean velocity 

profile, but could not predict turbulent properties of the flow with accuracy. This approach 

was further extended by Dijkstra and Uittenbogaard (2010) who included a parameterisation 

of rigidity within the plant equations, allowing the model to be used more widely for plants 

exhibiting a range of flexibilities. The model was also used in conjunction within a one-

dimensional Reynolds-Averaged Navier-Stokes (RANS) flow model. The results showed that 

this vegetation model offered a significant improvement over rigid vegetation 

approximations, predicting plant positions and time-averaged flow characteristics. However, 

the model was very sensitive to the rigidity parameter, which is difficult to parameterise. 

Furthermore, the model was RANS-based and therefore unable to predict fully time-

dependent turbulence characteristics. Recently, Gac (2014) implemented a flexible vegetation 

model within a large eddy based lattice Boltzmann Model framework, which used a static 

version of the Euler-Bernoulli beam equation to calculate plant deflection (Kubrak et al. 

2008). This method reproduced mean velocity profiles well, however the treatment of plant 

motion did not account for inertial terms, solving only for a steady, static case at each time-

step.  

It is clear from the above discussion that, as yet, a numerical model does not exist that 

is capable of predicting the time dependent interaction between flow and plant movement 

within a high resolution, three dimensional framework. Consequently, none of the above 

models are suitable for evaluating temporal vortex dynamics within vegetated flows.  

The aim of this paper is to develop and evaluate two novel biomechanical vegetation 

models, implemented within a computational fluid dynamics (CFD) framework, which enable 

high resolution modelling of flexible vegetation canopies across a range of plant forms. LES 

is used in order to resolve the large-scale turbulence dynamics. Once the models are described 

they are then tested against flume data collected with high resolution particle image 

velocimetry (PIV). The merits of such models in elucidating high resolution flow and plant 

data are then discussed.  



 

 

3 Model Development 

3.1 Vegetation Conceptualisation 

In the approach developed here, vegetation is treated as an immersed boundary, using a dual 

grid system similar to Ikeda et al. (2001) where the vegetation grid and the LES grid interact 

at each time-step (Fig. 1a). The vegetation is represented as porosity within the LES grid. 

This builds upon the mass flux scaling algorithm (Lane et al. 2002, 2004, Hardy et al. 2005) 

initially developed for modelling flow over complex topographies. This method has been 

successfully applied across a range of different spatial scales, from millimetre scale sections 

of gravel beds (Lane et al. 2002, Hardy et al. 2007) through to kilometre scale large river 

reaches (Sandbach et al. 2012). Here, it is developed further into a dynamic mass flux scaling 

algorithm, capable of representing plant motion through a time-varying porosity term. Under 

this scheme, at each time-step, every cell in the numerical domain is assigned a porosity value 

between 0 and 1 (where 0 is fully blocked and 1 is no blockage) that controls the mass flux 

though the cell. This approach is similar to the cut-cell method used by Kim and Stoesser 

(2011) in modelling rigid vegetation canopies. It is also similar to the method employed by 

Ikeda et al. (2001) to model flexible vegetation within a two-dimensional model. The key 

difference between the model developed below and that of Ikeda et al. (2001) is that here the 

grid resolution is smaller than the vegetation stalk diameter, and therefore the porosity is not 

used to represent stem density (as in Fig. 1a) but rather to represent volume blockage due to a 

single stem (Fig. 1b). The vegetation grid and the LES grid interact at each time-step in a 

sequentially staggered manner (Felippa et al. 2001). Velocity and pressure data pass to the 

plant grid and are used to calculate plant motion before the new plant mass data pass back to 

the LES grid for the next flow solution. Plant motion is calculated based upon balancing the 

external forces exerted by the fluid on the vegetation, namely buoyancy and drag, against the 

internal vegetation rigidity force. 

The plant is assumed to comprise discrete components (Fig. 1), where the stem is 

conceptualised as a set of discrete connected masses. Consequently, at a very fine scale, the 

vegetation does not retain its shape, although plant mass is preserved (Ikeda et al., 2001). 

Each discrete component of the stem is treated as a fixed shape; cylinders for the semi-rigid 

model and cuboids for the highly-flexible model. The centre of mass of the shape is treated as 

the stem centre, which then moves according to force balance. As the centre of mass moves at 

each time-step, so the original shape of each plant section is translated and remapped 

separately. In this initial application we only consider single-stemmed plants without foliage 

or more complex plant form. However, the approach enables a multitude of individual stems 

to be modelled simultaneously, allowing the representation of realistic vegetation patches. 



 

 

3.2 Characterisation of plant form 

Aquatic vegetation covers a wide variety of plant species each exhibiting different plant 

morphologies and biomechanical characteristics. It is not feasible to develop an individual 

model for each vegetation species but it is necessary to classify and to distinguish between 

broad vegetation types. In this model development we apply the parameters used by Nikora 

(2010) and Nepf (2012): (i) the Cauchy number (Eq. 1) which is the ratio of the drag force 

(Eq. 3) to the plant rigidity force (Eq. 5); and (ii) the buoyancy number (Eq. 2) which 

represents the ratio between the buoyancy (Eq. 4) and rigidity force: 

 𝐶𝑎 =
𝐹𝐷

𝐹𝑅
  (1) 

 𝐵 =
𝐹𝐵

𝐹𝑅
 (2) 

 𝐹𝐷 =
1

2
𝜌𝐶𝐷𝑤𝑠𝑢

2𝑙𝑠 (3) 

 𝐹𝐵 = (𝜌 − 𝜌𝑠)𝑔𝑤𝑠𝑡𝑠𝑙𝑠 (4) 

 𝐹𝑅 = 𝐸𝐼/𝑙𝑠
2 (5) 

These two numbers are a function of both flow characteristics such as fluid density (𝜌) and 

velocity (𝑢) as well as vegetation characteristics such as stalk width (𝑤𝑠), length (𝑙𝑠) and 

thickness (𝑡𝑠), material density (𝜌𝑠) and flexural rigidity (𝐸𝐼). Nikora (2010) developed a two 

option classification for aquatic vegetation where vegetation was classified as either tensile or 

bending dependent upon the Cauchy number, following previous work to parameterise drag 

and reconfiguration of flexible bodies in fluid flows (e.g. Gosselin et al. 2010, Gosselin and 

de Langre 2011). Luhar and Nepf (2011) extended this single parameter approach by 

characterising the vegetation behaviour using both the Cauchy and the buoyancy number. 

Inclusion of the buoyancy number allows the categorisation of the dominant plant response 

force. They used these two parameters and their ratio (𝐵−1𝐶𝑎), which between them represent 

the balances between the three key forces (drag, rigidity and buoyancy), to predict plant 

reconfiguration. This categorisation approach has been shown to be a useful framework 

within which to characterise the interactions between plants and flow and, in this study, 

vegetation is classed as either bending (𝐶 ≈ 1, 𝐵 ≪ 1) or tensile (𝐶 ≫ 1,𝐵 ≫ 1). In reality, 

the Cauchy and buoyancy numbers represent a spectrum of different force balances beyond 

these two simple categories; however, this characterisation provides a useful initial 

framework. 

Following Nikora (2010), it is apparent that there is a fundamental biomechanical 

difference between tensile and bending vegetation and as such we require two different sets of 

governing equations to predict plant motion. Accordingly, two biomechanical models are 

developed: one structured on the Euler-Bernoulli beam equation to simulate bending 



 

 

vegetation; and the other structured on an N-pendula model to simulate tensile vegetation.  

The approach used for both models is outlined below. 

3.3 Euler-Bernoulli beam equation model 

The Euler-Bernoulli beam equation solves the deflection of a thin beam under external 

loading. It represents a simplification of linear elasticity theory and balances the external 

force against the rigidity force of the beam. It is appropriate for modelling vegetation with 

high rigidity that is controlled mainly by bending forces (Li and Xie 2011). The Euler-

Bernoulli beam equation has been used in previous studies both to model explicit vegetation 

elements (Ikeda et al. 2001) as well as to drive canopy-scale motion models (Erduran and 

Kutija 2003).  

The dynamic version of the Euler-Bernoulli beam equation is shown in Eq. (6). It can 

be split into 3 terms: a bending stiffness term, an inertial term and an external force term. It is 

these three forces which must be balanced to ascertain the plant movement and position. 

 
𝜕2

𝜕𝑠2
(𝐸𝐼

𝜕2𝜉(𝑠,𝑡)

𝜕𝑠2
)⏟          

Bending stiffness

= −𝜇𝑀
𝜕2𝜉(𝑠,𝑡)

𝜕𝑡2⏟      
Inertial

+ 𝑞𝑥(𝑠, 𝑡)⏟    

External

 (6) 

The equation assumes that the beam is initially straight and under no external load. Given a 

load, 𝑞𝑥(𝑠), along the beam, the perpendicular displacement, 𝜉(𝑠), from this initial straight 

position at a point 𝑠 along the beam can then be solved. The flexural rigidity (𝐸𝐼) and mass 

per unit length (𝜇𝑀) are key internal plant properties within the equation. For simplicity and 

initial development and testing, these have been assumed constant although this is not 

necessarily the case. Many plants will exhibit variations in flexural rigidity along the stem and 

it is likely that most vegetation stalks will also differ in diameter along the stalk (Miler et al. 

2012). This would lead to an 𝑠-dependence in both flexural rigidity and mass per unit length. 

For the mass term this is straightforward and could be implemented at a later stage. However, 

the flexural rigidity term lies within a differential operator, and therefore adding an 𝑠-

dependence would alter the numerical scheme considerably. Therefore, the model described 

below is only valid for stems of constant rigidity. The external load, 𝑞𝑥(𝑠), is calculated from 

the drag and buoyancy forces acting on the stem (Eqs. 3 and 4). 

The equation is solved using an implicit differencing scheme, which guarantees 

universal stability regardless of spatial and temporal discretisation, and the boundary 

conditions for a cantilevered beam (𝜉(0, 𝑡) = 𝜉′(0, 𝑡) = 𝜉′′(𝑙𝑠, 𝑡) = 𝜉
′′′(𝑙𝑠, 𝑡) = 0) were 

applied at the fixed and free ends. 

A key part in verifying the numerical model is demonstrating that the solution 

obtained from applying the model is independent of grid discretisation (i.e. grid resolution) 

(Hardy et al. 2005). In order to assess grid independence, steady-state solutions obtained 



 

 

using different grid resolutions along the stalk were compared (Fig. 2). The results show that 

at low resolutions, with fewer nodes, there is clear grid dependence. However, as the 

resolution increases, the grid becomes more independent. For the cases with n>34, the error is 

less than 2%. Therefore, n was set at 50, so that the vegetation grid discretisation matched the 

LES grid discretisation, whilst ensuring minimal discretisation error. 

3.4 N-pendula model 

The N-pendula model is conceptually different to the Euler-Bernoulli beam equation, being a 

local force balance model rather than a global differential equation based model. The main 

implication of this is that flexural rigidity and plant position can be considered within a more 

local context. This leads to a much more flexible model which is ideal for modelling highly 

flexible vegetation such as aquatic macrophytes (e.g. Ranunculus penicillatus). 

The model is conceptualised as a series of connected pendula of length 𝑙𝑠 (Fig. 3). 

Each pendulum is subject to a moment about its pivot, which is a combination of the external 

fluid forces and the internal resistive force in the manner previously used (Abdelrhman 2007, 

Dijkstra and Uittenbogaard 2010). The torque (𝐹𝑖
𝑇𝑂𝑅) and tension (𝐹𝑖

𝑇𝐸𝑁) forces at each hinge 

are linked such that: 

𝐹𝑖
𝑇𝑂𝑅 = 𝑞𝑧 cos 𝜃𝑖 − 𝑞𝑥 sin 𝜃𝑖 + 𝐹𝑖+1

𝑇𝐸𝑁 sin(𝜃𝑖 − 𝜃𝑖+1) − 𝐸𝐼𝜕
2𝜃𝑖/𝜕𝑠

2   (7) 

𝐹𝑖
𝑇𝐸𝑁 = 𝑞𝑥 cos𝜃𝑖 + 𝑞𝑧 sin𝜃𝑖 + 𝐹𝑖+1

𝑇𝐸𝑁 cos(𝜃𝑖 − 𝜃𝑖+1) (8) 

In these equations, 𝑞𝑥 and 𝑞𝑧 are the combined external fluid forces due to drag (Eq. 3) and 

buoyancy (Eq. 4), resolved in the horizontal and vertical directions respectively and 𝜃𝑖 is the 

angle between the horizontal and the pendulum as marked on Fig. 3. The model calculates the 

change in angle at each joint up the stem in turn, by resolving the forces at each joint further 

up the stalk into radial and transversal forces. After each angle change has been calculated, 

the resulting movement of the sections higher up the stem caused by the angle change lower 

down is taken into account by an additional drag force ∆𝐹𝐷that is added to the force 

calculations for subsequent nodes.  

The final term in Eq. (7) corresponds to a rigidity term. Initially the model was run 

with zero rigidity for two reasons. First, the model is designed to replicate vegetation with 

very low rigidity, and therefore rigidity should not play a major role in determining plant 

shape. Second, moving to a hinge model such as the N-pendula model creates difficulties in 

determining accurate rigidity parameters. Rigidity is not automatically related to the second 

derivative of the curvature as is the case in the Euler-Bernoulli beam model. Instead, a local 

treatment must be devised and this is less intuitive to relate to the physical characteristics of 

the vegetation. 



 

 

However, experiments with zero rigidity highlighted problems with the stability of 

the model in this setup. With no rigidity or smoothing of forces over nearby joints, individual 

joints throughout the plant experienced large instantaneous forces. This then initiated a 

chaotic N-pendula regime whereby joints freely rotated through more than 360 degrees. This 

is physically unrealistic and so to maintain model stability, a rigidity term was introduced. 

Introducing rigidity necessitates a term which is calculated based on the neighbouring 

hinges. Dijkstra and Uittenbogaard (2010) use such a term in their model, including an 

internal moment dependent on 𝜕𝜃/𝜕𝑠 where 𝑠 is the distance up-stalk. A similar term was 

implemented into the model presented here, based on a second order central difference 

scheme about each node. However, as the flexural rigidity of the stem was very low, this 

force term had little effect on the instability. Instead, instability within the model was linked 

to high angular velocities within the initial plant reconfiguration. Therefore a damping force 

was introduced. 

The introduction of resistance or damping can be achieved by two different means. It 

can either be set as a maximum change in angle per time-step, or as a resistive force that is 

proportional to the velocity. In order to minimise the restriction on the model, and limit 

parameterisation strictly to the cases where it was required for stability, this damping term 

was set as a maximum change in angle per time step. In practical terms, this represents a limit 

on the angular velocity (𝜕𝜃𝑖/𝜕𝑡). The limit was set to the angular velocity at which, assuming 

constant angular velocity along the stalk, the tip of the stalk would be moving at twice the 

fluid inlet velocity. Therefore, the restriction should only apply to extreme cases, such as 

when the plant is initially configuring into a stable position. Applying this velocity limit to the 

model removed the unrealistic plant motion and provided stable solutions. 

Therefore, in the model application, both the rigidity term and the damping restriction 

were implemented, one as a physical rigidity which in practice had little impact on the 

mechanics, and one as a stability parameter which was only activated in the initial stages of 

the model. This modified model offered a more stable solution and a more realistic 

representation of plant motion without being constrained by global plant curvature. 

3.5 Numerical model parameters 

Both vegetation models described above were implemented within a finite volume CFD 

model. A hybrid-upwind differencing scheme was utilised as in Hardy et al. (2007) to 

maximise both order and stability of the solution. The Navier-Stokes Equations were coupled 

and solved using the SIMPLEST algorithm (Patankar and Spalding 1972). At each time-step, 

the flow was solved iteratively, until convergence was obtained. The convergence criterion 

was set such that mass and momentum flux residuals were reduced to 0.1% of the inlet flux. 



 

 

Flow was simulated using LES with a standard Smagorinsky sub-grid model with CS = 0.17 

(Lilly 1967, Schumann 1991). It has been documented that values of CS may vary between 

0.07-0.24 and will be dependent upon local conditions (Rogallo and Moin 1984). However, 

without a priori information regarding the local values of CS, a single, average term was 

employed. This follows the work of Gac (2014) who used an averaged constant when 

applying a similar vegetation model, and showed there was very weak sensitivity to CS. In 

order to aid convergence, the simulations were started from a converged steady RANS 

solution using an RNG κ-ε turbulence model. 

4 Model assessment 

In order to assess the performance of the two biomechanical models, the data obtained from 

the models were compared against flume data, obtained from high-resolution flume 

experiments with both real and artificial vegetation. The Euler-Bernoulli beam equation was 

validated using artificial stems, whereas the N-pendula model was validated using natural 

vegetation (Ranunculus penicillatus). 

4.1 Flume setup 

The flume experiments were conducted in a flume 10 m long (l) and 1 m wide (w). The slope 

was set at a constant value of 0.01 and the depth was set at 0.4 m throughout the measurement 

section. Velocity data were collected for a 0.3 m long section of the domain using a DANTEC 

two-dimensional PIV system which is a nonintrusive, whole flow field technique for velocity 

measurement (Hardy et al. 2005). As the focus of this paper is within-canopy flows, any kind 

of flow measurement is a challenge and requires some sacrifice in the quality of data to be 

obtained. In particular, whilst intrusive flow measurement devices might be used, they have 

the disadvantage of perturbing not only the flow, but also the canopy behaviour which is a 

critical concern of the modelling. Use of PIV has the advantage that, whilst it may lose some 

representation within the canopy, it does allow quantitative flow visualisation of the entire 

flow field through time without any flow or canopy intrusion (Hardy et al. 2009, 2010) and 

for this reason it has been proven as a useful method for assessing CFD predictions (Hardy et 

al. 2005). This represents an increase in complexity from most canopy studies which have 

relied heavily upon point measurements of velocity (e.g. Nepf and Vivoni 2000, Ghisalberti 

and Nepf 2004), which are not able to provide detailed information regarding flow-vegetation 

interactions (Okamoto and Nezu 2009).  

Measurement is based upon seeding of the flow with neutrally buoyant tracer 

particles (hollow reflective glass spheres with a mean diameter of 10µm) and illuminating the 

flow field with a single pulsed Litron Nano laser light sheet. A charge-coupled device (CCD) 



 

 

camera was positioned perpendicular to the light sheet to capture the illuminated flow field at 

a temporal resolution of 50 Hz. The downstream and vertical velocity maps were derived by 

draping a digital mesh of 8 x 8 pixel interrogation regions over the image, where the 

dimension of each pixel was approximately 0.6 mm. In each interrogation region, a fast 

Fourier transform (FFT)-based spatial cross-correlation technique was applied to consecutive 

images to determine both velocity components (Westerweel 1997). In order to maximise the 

signal-to-noise ratio of the particle cross-correlations in the PIV analysis, six quality checks 

were applied to the data (Hardy et al. 2005) including a 25% overlap between interrogation 

regions. In addition, an adaptive correlation method was used whereby initially, interrogation 

regions of size 32 x 32 pixels and subsequently 16 x 16 pixels were used to increase the 

accuracy of the eventual 8 x 8 pixel cross-correlation. With this methodology, the mean bias 

error (accuracy) and RMS error (precision) of the derived velocities is in the order of 0.1 

pixels (Huang et al. 1997) and the uncertainty in the velocity measurements was therefore in 

the order of 0.003 ms
-1

. The resulting velocity map had a field of view of 0.52 m by 0.33 m at 

a spatial resolution of 0.0038 m collected at 50 Hz over a time length of 1 minute to provide a 

stationary time series. From this data, a suitable 30 s time series was selected for comparison 

with the model data. 

The artificial vegetation used to validate the beam model consisted of Versilic® 

Peroxide-cured silicone tubing (Fig. 4). The stems were 0.1 m in length with a diameter of 

0.005 m. The stems were set out in a staggered layout in line with previous studies (e.g. Dunn 

et al. 1996, Nepf 1999), with 0.05 m separation between stems in the lateral direction and 0.1 

m between stems in the downstream direction. This provided a solid volume fraction of 

𝜙 = 0.004 which is of the same order of magnitude as the sparser canopies used in previous 

studies, (e.g. Tanino and Nepf 2008), whilst maximising illumination within the canopy and 

limiting blockage of the flow field. The flexural rigidity of the stems was measured using 

bending tests as 0.0003 Nm
2
. 

In order to validate the N-pendula model, flume experiments were undertaken with 

natural vegetation. Samples of Ranunculus penicillatus plants were collected from a local 

field site on the River Browney, Durham, UK in early September 2011. The vegetation was 

transported in wet sacks to the laboratory and used in the flume on the same day to limit the 

effect of changes in plant biomechanics due to the vegetation having been removed from its 

natural environment and the consequent lack of light and nutrients. The vegetation was fixed 

to the bed of the flume using cable ties to replicate the natural patch configuration (Fig. 5). It 

was not possible to measure the flexural rigidity of the natural vegetation, as the force 

required to bend the vegetation was smaller than the resolution of the force-meter. This 

indicated the minor role in which flexural rigidity plays in determining plant position for 

highly flexible plants. 



 

 

4.2 Numerical setup: Euler-Bernoulli beam model 

The Euler-Bernoulli beam model was implemented within a CFD model where the numerical 

domain was set up to represent a section of the flume experiments described above. Due to 

the vegetation size, and subsequent limits on grid resolution, it was not possible to represent 

the full width and length of the domain numerically. Instead, a section 0.5 m long, 0.2 m wide 

and 0.4 m deep was used. The grid resolution was set as 0.002 m in the downstream and 

vertical direction and 0.001 m in the lateral direction (nx=250, ny=200, nz=200). The grid was 

twice as fine in the lateral direction in order to adequately capture the stem-scale wake 

separation at the lowest possible computational cost. Applying the same vegetation 

configuration as in the flume experiments, the numerical domain contained 35 individual 

stems, each with the same properties as those used in the flume experiments. The Euler-

Bernoulli beam model was only applied in the x-z plane. The model could be extended to 

include motion in the x-y plane too, but only one dimension was considered for this initial 

case. 

The inlet conditions for the numerical domain were set to match the inlet velocity 

profile measured in the flume experiment. The Reynolds number of the flow was 

approximately 14,500 and the Froude number was approximately 0.1. The flow was therefore 

both fully turbulent and sub-critical throughout the domain. The bed was treated as a no-slip 

boundary approximated using the log law of the wall while the side walls of the domain were 

considered frictionless boundaries. The free surface was approximated using a rigid-lid 

approach, but corrected to achieve the mass conservation following the approach of 

Bradbrook et al. (1998). The flow was simulated at 10 Hz temporal resolution. The temporal 

resolution was chosen such that it enabled time-efficient simulations that were suitable for 

validating the flow field within a realistic CPU time frame.  

4.3 Numerical setup: N-pendula model 

The N-pendula was designed to replicate highly-flexible macrophytes, rather than semi-rigid 

stalks similar to those used in the artificial vegetation experiments. Therefore, real vegetation 

was used to validate the N-pendula model. However, the plants used (Ranunculus 

penicillatus) were complex and varied in form, with multiple plants used, each with multiple 

stems. The N-pendula model is not currently capable of representing such complexities; 

nevertheless the validation framework used here seeks to assess the model’s usefulness at 

predicting the general characteristics of the canopy flow. 

The N-pendula model was implemented within a CFD model with similar boundary 

conditions and solution method to that used for the Euler-Bernoulli beam model except that a 

recirculating boundary condition was used in the downstream direction. In this case, the 



 

 

domain was 0.8 m long, 0.1 m wide and 0.3 m high. The domain length was increased 

compared to the Euler-Bernoulli beam case due to the longer stem length within the patch.  

The grid resolution was 0.002 m in each dimension (nx=400, ny=50, nz=150). Due to memory 

constraints imposed by the use of a longer domain, the domain height had to be limited to 0.3 

m, which was 0.1 m shallower than the flume. However, as the vegetation did not enter this 

portion of the domain within the experiments, this should only have a minor effect on the 

results. The Reynolds number was 12,000 and the Froude number was approximately 0.16 

and therefore the flow was both fully turbulent and sub-critical. This simulation was applied 

to investigate plant interaction processes as well as for validation and so was run for 30 s at a 

temporal resolution of 50 Hz. However, for validation purposes, the data were analysed at 10 

Hz, consistent with the Euler-Bernoulli beam model results. 

The length of the stalks was set equal to 0.15 m which was an estimate of the mean 

individual stem length of the canopy, with a stem diameter of 6 mm reflecting the mean 

diameter of stem and associated streamlined foliage within the real vegetation. In this 

application, pendulum length was set such that each element had equal length, width and 

height. This was necessary to minimise plant shape distortion as the plant was translated 

throughout the domain. As a result, the pendulum length was set at 0.006 m, with n=25. The 

domain contained 300 stalks, tightly packed (𝜙 ≈ 0.2) to resemble a natural vegetation patch. 

As with the Euler-Bernoulli beam model, the stems were restricted to movement only in the 

x-z plane. 

4.4 Model validation criteria 

In order to validate the numerical models, specific validation criteria were developed that 

considered both the mean and turbulent aspects of the flow. First, individual point 

measurements with the same geo-location were compared from numerical and experimental 

data. This is the most straightforward method of model validation, and is particularly useful 

for identifying spatial regions of the flow where prediction is particularly good or poor or 

there is any bias in the data from incorrectly prescribed boundary conditions (Ferguson et al. 

2003, Lane et al. 2004). 

Second, normalised velocity profiles were used to compare the performance of the 

models in predicting the mean canopy flow structure. This is a key element of canopy flows 

as it is the mean structure which dictates the generation and evolution of coherent turbulent 

structures at the top of the canopy (Nepf and Ghisalberti 2008). The time-averaged 

downstream velocity (𝑈) and height (𝑧) variables are normalised (Eqs. 9 and 10) using three 

characteristic mixing layer variables: the depth-averaged mean downstream velocity (�̅�) , the 

velocity difference (∆𝑈), defined as the difference between the mean velocities of the two 



 

 

regions forming the mixing layer, and the momentum thickness (𝜃𝑀) following previous 

experimental work (Rogers and Moser 1994, Ghisalberti and Nepf 2002, 2006). Here, 𝑧̅ is the 

height at which 𝑈(𝑧) = �̅� 

 𝑈∗ =
𝑈−�̅�

∆𝑈
 (9) 

 𝑧∗ =
𝑧−�̅�

𝜃𝑀
 (10) 

A full description of the normalisation process can be found in Ghisalberti and Nepf (2002). 

For this analysis, spatially averaged flow profiles were used in order to remove any velocity 

signal relating to individual canopy elements. The flume profiles were averaged in time, and 

in the downstream direction. For the numerical profiles, a two-dimensional downstream-

vertical (x-z) measurement plane, similar to that collected using the PIV, was extracted from 

the midline (y/w=0.5). This data was then averaged in a similar manner to the flume data. 

Using the variables 𝜃𝑀 and �̅�, calculated during the normalisation process, it is possible to 

estimate the frequency of the Kelvin-Helmholtz instability and therefore the frequency of 

shear layer vortices, using Eq. (11) (Ho and Huerre 1984, Ghisalberti and Nepf 2002).  

 𝑓𝐾𝐻 = 0.032
�̅�

𝜃𝑀
 (11) 

Third, wavelet analysis was used to assess the temporal characteristics (periodicities) of the 

turbulent structures above the canopy. Wavelet analysis involves the decomposition of a time 

series into a set of scaled and translated versions of a wavelet function (Hardy et al. 2009). 

The advantage of this technique over other frequency tools such as spectral analysis is that it 

is applied locally rather than globally and therefore the calculated spectrum retains a temporal 

dimension as well as a frequency dimension (Farge 1992). It is therefore particularly suitable 

for analysing time series’ which contain intermittency or non-stationary periodicities 

(Daubechies 1990, Farge 1992). Wavelets have successfully been used previously within 

turbulent flows in order to detect the presence of large-scale coherent turbulent structures 

(Farge 1992, Hardy et al. 2009, 2010). A full review of wavelet analysis is provided by 

Torrence and Compo (1998) and only methodological details are included here. In this study, 

a Morlet wavelet was fitted to data obtained from the canopy top in order to estimate the 

power present within the data over a range of different scales, at different points throughout 

the time series. The Morlet wavelet was chosen because of its similarity with the 

decomposition of turbulent energy from a characteristic eddy (Hardy et al. 2009). The 

resulting wavelet power spectrum highlights regions of periodicity within the data which 

correspond to turbulent flow structures.  

Following Hardy et al. (2009) four specific methodological issues arise: (1) reliability 

issues at the edge of the dataset due to aperiodicity in the data; (2) choice of scales for 



 

 

analysis; (3) conversion from wavelet scale to Fourier period; and (4) statistical significance 

testing of wavelet power. First, the wavelet transform is calculated using an inverse Fourier 

transform, which assumes that the given dataset is periodic on the domain (−∞,∞). 

Therefore, the wavelet transform will contain spurious values at the edges of the interval [0, t] 

where values outside of the measured interval are used to calculate the wavelet power 

spectrum within the measured interval. This region of error is dependent upon both wavelet 

scale (a) and the e-folding time which is a measure of scale-dependent wavelet half-width. 

The Morlet wavelet has an e-folding time of √2𝑎 that was used to define data reliability at the 

edges as a cone of influence, such that any wavelet power that depended upon a value beyond 

the bounds of the interval [0, t] was rejected. Second, it was necessary to specify a discrete set 

of time scales over which to measure wavelet power. The resolution of the numerical data (10 

Hz) and its associated Nyquist frequency (5 Hz) as well as the length of the time series (30 s) 

dictate that the scales examined should range between 0.2 s and 30 s. Scale resolution is also 

subject to computational constraint. Accordingly, scales were analysed for 0.1 × 2𝑚 for 

values of m between 1 and 8, with increments of 0.1, giving a range of scales from 0.2 s to 

25.6 s, subject to the cone of influence. This provided high-resolution scale information 

across the range of interest, excluding only very low frequency periodicities. Thirdly, the 

wavelet scale is not necessarily equivalent to the Fourier period, which is the equivalent scale 

measure of interest. Therefore, the wavelet scale was transformed into the equivalent Fourier 

period prior to visualisation of results (Torrence and Compo 1998). Finally, we determined 

whether the wavelet power magnitude was statistically significant compared to a background 

power spectrum (Torrence and Compo, 1998) associated with white noise, which we assumed 

to be present within the data (Biron et al. 1998). Values that were not statistically significant 

were discarded prior to visualisation. 

These three different aspects of model validation were designed to ensure that the 

model effectively reproduces the mean and turbulent flow dynamics for both spatial and 

temporal dimensions. In particular, the criteria were designed to assess the models’ 

performance in reproducing the turbulent energy extraction associated with canopy flows. 

4.5 Validation Results: Euler-Bernoulli beam model 

Initially, the time-averaged downstream (U) and vertical (W) velocity components are 

compared. The spot value comparisons (Fig. 6), taken at a random sample of 50 points across 

the domain, show variation in model performance throughout the domain. The time-averaged 

downstream velocity comparison shows that overall there is good agreement between the 

experimental and numerical data, with an r value of 0.953. Applying Ordinary Least Squares 

(OLS) regression to the data (Table 1) gives a line of best fit with gradient 0.93, highlighting 



 

 

that over the range of velocity values there is a near 1:1 relationship between the CFD and 

PIV data. In general, the model appears to under-predict the time-averaged velocity compared 

to the experimental data, which is shown by a clustering of points, following a similar 

gradient to the line of perfect agreement (1:1), and suggests that there may be some 

systematic error present within the data. There are a number of clear disparities within the 

data where the model significantly under-predicts the measured experimental velocity. These 

points occur predominantly in regions where the velocity is low (< 0.1 ms
-1

). 

In order to distinguish between model performance within different regions of flow, 

the spot data are categorised according to their height within the domain. This three-fold 

categorisation splits the domain into a canopy region (z < h), a shear layer region (h < z < 2h) 

and a boundary layer region (z > 2h) corresponding to the three general flow regimes present 

in canopy flows (Nezu and Sanjou 2008). This categorisation does not correspond exactly 

with the physical process regions within the flow, but instead provides a simple way of 

distinguishing model performance within broadly different flow regions. When a similar 

regression is performed within each region (Table 2), the boundary layer region data (red 

triangles) show the best agreement with a 1:1 relationship between the model and flume 

results, with a regression line gradient of 1.04. The associated r
 
value of 0.809 suggests that 

the model fits the majority of the data well. As with the entire dataset, there is a clear 

systematic under-prediction of velocity by the model, as demonstrated by the regression line 

intercept of 0.011 ms
-1

. 

Within the shear layer region (green) there is poor agreement between the regression 

gradient (0.386) and the line of perfect fit. However this is skewed by three particular points, 

with the lowest velocities, which appear erroneously inaccurate compared to the other shear 

layer values. It is thus suggested that the shear layer data display two distinct trends. For the 

data towards the upper end of the shear layer, model performance is similar to that for the 

boundary layer, as demonstrated by the cluster of points which appear to follow a similar 

trend. However, closer to the canopy top, where the velocity is lower, the interference of 

individual stems leads to poorer model prediction, as shown by three particular points with 

high disparity in velocity (0.03-0.05 ms
-1

). The transition from good to poor prediction occurs 

over a very short and well defined interval. Obtaining good agreement within this region will 

be particularly difficult: the shear is very high and so extremely small differences in the 

position of the canopy between modelled and measured values will lead to extremely large 

modelled errors. 

For the within-canopy values, there is very poor agreement between the model and 

flume values, with a regression gradient of -0.117 and r value of -0.063. Here, there is less 

evidence of consistent under-prediction by the model, with a wide spread of data on either 

side of the 1:1 line. We suggest that most of this disparity is due to error within the PIV data. 



 

 

Although PIV represents an increase in flow measurement capability compared with single 

point methods, there are still significant errors particularly with regard to taking 

measurements within the canopy. The reason for this is two-fold. Firstly, although the stem 

material was chosen to minimise light refraction through the stems, it is clear from the PIV 

images that there was significant blockage of light, caused by refraction, thus making the 

canopy regions of the PIV image darker and reducing the accuracy of the PIV. Secondly, due 

to refraction of light by the stems and filter width of the laser, the rest of the canopy outside 

of the measurement plane was partially illuminated. This resulted in additional stems, not 

within the measurement plane, appearing in the PIV image, providing a static background 

image within the canopy region and introducing error into the PIV measurements in those 

regions. 

The time-averaged vertical velocity spot data show a consistent under-prediction of 

vertical velocity within the numerical model throughout the domain with only a few 

exceptions. Agreement between the numerical and experimental data is poor (Table 1) with a 

regression gradient of -0.382 and corresponding r value of -0.519. For this case, there is no 

significant improvement in predictive capability when particular areas of the domain are 

considered individually. This poor level of prediction may be due to limitations of the 

isotropic turbulence model, as well as specification of the inlet boundary condition, which did 

not contain vertical turbulent velocity fluctuations. The boundary layer data show a 

reasonable correlation (r = -0.78) about a regression line with a gradient of -2.55. We suggest 

that this may be due to a streamwise gradient in vertical velocity throughout the flume 

domain, which was not present within the CFD data. This may be due to the simplified rigid-

lid approach used to model the free surface. 

The above discussion emphasises that there are a number of uncertainties in the data 

used to validate the model as well as the model itself. This is not surprising given the 

complexity of vegetation-flow interactions. Yet, the results are comparable with previous 

applications of CFD to laboratory flume studies but using far simpler configurations (e.g. 

non-moving boundaries, Reynolds averaged) where boundary conditions, notably domain 

geometry, are much more readily determined. For instance, Bradbrook et al. (1998) obtained 

an r
 
 value of 0.97 for the U-component of velocity when modelling a zero degree confluence 

of smooth rectangular channels. Another example was an application to study micro-scale 

flow processes over individual gravel particles, where Lane et al. (2004) reported an r value 

of 0.95 for the U-component of velocity. These studies used acoustic Doppler velocimeters 

(ADV’s) where the measurement volumes are typically 10-25 times the spatial discretisation 

and consequently complex shear flows are averaged.  

These point-wise statistical comparisons provide the most stringent test of model 

performance. We can also validate the model qualitatively by visually comparing measured 



 

 

and modelled normalised velocity profiles (Fig. 7). These show that the model agrees well 

geometrically with the flume data as well as with the idealised hyperbolic tangent profile (Ho 

and Huerre 1984, Ghisalberti and Nepf 2006), which characterises vegetated shear layers, and 

emphasise that at least some of the quantitative error described above will arise from small 

errors in the calculated position of the zones of strongest shear. Both the flume and model 

profiles show a slight asymmetry about the centre of shear layer, compared to the idealised 

profile. This may be due to the fact that the submergence ratio (H/h~4) meant there was 

greater depth available for shear layer formation above the canopy than within the canopy. 

The two full velocity profiles (Fig. 8) show this slight difference in shear layer velocity 

gradient either side of the canopy top (h~0.1). This figure also highlights the consistent under-

prediction of velocity by the model, approximately equal to 0.01 ms
-1

. This may be due to 

error within the specification of the upstream boundary condition within the model. 

The final part of the validation considers the temporal periodicities. The wavelet plots 

for the flume and model (Fig. 9) both highlight a range or periodicities present within the 

flow. These have been broadly classed into 3 scales. First, as most evident in the flume 

spectra, there are some low time-scale (high frequency) periodicities, typically with 

frequencies greater than 1Hz (labelled C in Fig. 9). Based upon the stem diameter and the 

average canopy flow velocity of 0.03-0.05 ms
-1

, the stem vortex shedding frequency 

(f=0.2𝑈/wl) is approximately 1-2 Hz and therefore we argue that these periodicities relate to 

stem-scale wake-shedding processes. Secondly, there are very large-scale (low-frequency) 

structures (< 0.2 Hz) present within both the flume and model results (labelled A in Fig. 9), 

which we argue correspond to domain-induced width-scaling secondary circulation (Hardy et 

al. 2009). 

Thirdly, there are medium-scale periodicities, with frequencies between 1-5 Hz which 

correspond to canopy shear layer generated vortices (labelled B in Fig. 9). The frequency of 

these vortices is dependent on the flow and canopy conditions and therefore this range will 

vary accordingly. As outlined in Section 4.1, it is possible to estimate the Kelvin-Helmholtz 

vortex frequency from the normalised velocity profile characteristics (Eq. 11). The estimated 

frequencies (Table 3) are plotted in black on both the wavelet spectra. The values are similar 

in magnitude, which highlights the accuracy with which the numerical model is predicting the 

dominant canopy-scale turbulence length scale. 

Both wavelet plots show periodicities with high wavelet power, at and around the 

frequencies estimated using Eq. (11) (0.419/0.555 Hz). For the numerical model, there is a 

strong periodicity present, at a relatively constant frequency which agrees very well with the 

predicted frequency. The wavelet power magnitude does vary through time, suggesting a 

time-varying strengthening and weakening of the canopy-layer signal, however, it is present 

throughout the simulation, following an initial configuration period (~6 s). 



 

 

For the flume case, the wavelet power is less strong than the numerical model case 

and this is expected given the additional level of turbulent noise present within the flume 

experiments. However, there is still a strong periodicity, which is more variable in terms of 

scale throughout the time series, and which occurs at a slightly lower frequency than that 

estimated from the velocity profile. It is more similar in frequency to that estimated for, and 

evident within, the model wavelet spectra. This suggests that the normalised velocity profile 

is a poorer predictor for the flume experiments. This may be due to the influence of erroneous 

data within the canopy on the velocity profile. Therefore, it can be seen that despite the small 

difference in predicted shear-layer vortex frequency (Table 3) the numerical model 

reproduces the shear layer vortices present within the flume data well. 

4.6 Validation Results: N-pendula model 

Due to the fact that the flume experiments were not directly analogous to the model 

simulations, spot values are not compared for this case. Thus, this represents a more 

qualitative validation; however, this is appropriate given the simplicity of the model 

compared with the complexity associated with the natural plant forms. 

The normalised velocity profiles (Fig. 10) show agreement in both geometry and 

magnitude of the profiles, both exhibiting the classic s-shaped velocity profile which 

characterises shear layers. There is a noticeable difference in the shape of the shear layer 

above and below the canopy top in the numerical simulation. This deviation from both the 

experimental and idealised profiles is due to asymmetry of the shear layer about the canopy 

top and may be due to the high stem density and relatively small canopy height. 

The two wavelet spectra (Fig. 11) show a much more complex pattern of periodicities 

within the flow than in the Euler-Bernoulli beam model case. Here, within both spectra there 

is still evidence of three scales of periodicity, at broadly similar ranges to those described 

above. However, there is also far more evidence of variability in frequency through time as 

well as interaction and potentially coalescence between the different periodicities.  

Compared to the Euler-Bernoulli beam model data there is more power contained 

within the smaller time-scales relative to the rest of the spectrum, and this particular 

periodicity appears to cover a wider range of frequencies up to ~2 Hz. In places, within both 

spectra, this periodicity appears to coincide with a larger scale periodicity (circled in Figure 

11), potentially related to the shear-layer. Particularly, within the flume spectra, this larger-

scale periodicity occurs at a frequency very similar to that estimated using Eq. (8) (Table 4), 

though the frequency is variable through time. The model data displays a different scale 

periodicity, which agrees less well with the estimated frequency (Table 4). In fact, there 



 

 

appear to be two periodicities that could relate to the shear-scale vortices: one above and one 

below the estimated periodicity. 

Finally, both the model and experimental data show evidence of low frequency 

periodicities, though as with the other scales, these are less well defined in terms of frequency 

than the earlier case. From the wavelet analysis, it is clear that the N-pendula performs less 

well in exactly reproducing the vortex frequencies evident within the experimental data. 

However, the model does reproduce an increased variability in frequency and interaction 

between the different scales of periodicity. Thus we argue that, despite the vast difference in 

complexity between the real vegetation experiments and the N-pendula model simulation, the 

model does reproduce key characteristics of the flow dynamics. 

5 Preliminary results 

Following the formal validation experiments, the vegetation model application was expanded 

to apply a sensitivity analysis to a range of different canopy conditions. This enabled 

investigation of conditions beyond those possible within the flume. Here we present two 

additional sets of results that help to qualitatively evaluate the models’ ability to reproduce 

canopy flow conditions.  

Firstly, we present results from an Euler-Bernoulli beam canopy simulation (Fig. 12) 

with a longer domain (1 m) and higher canopy density (𝜙 = 0.098) than that used in the 

validation experiments. The increased canopy length enabled the development of vortices 

over a longer timescale without disruption due to recirculation. Furthermore, the increased 

canopy density strengthens the drag discontinuity at the canopy top leading to a stronger shear 

layer (Nepf and Ghisalberti 2008). The solution methods and boundary conditions used within 

this model were the same as the validation experiments outlined above, except that we used 

recirculating boundaries in the downstream direction. 

Using both Eulerian (Q, λ) and Lagrangian (FTLE) vortex detection methods (Hunt et 

al. 1988, Jeong and Hussain 1995, Haller 2000), it is possible to detect the presence of 

canopy-scale vortices along the canopy top. Both Eulerian methods identify vortices 

consistent with canopy shear layer roller vortices (Fig. 13). The FTLE results suggest that the 

structure may relate to hairpin vortices (Green et al. 2007), associated with Finnigan et al.’s 

(2009) canopy flow model. However, due to the narrow width of the domain it is not possible 

with any certainty to deduce whether this is a roller or hairpin vortex. These vortex detection 

results also enable the calculation of vortex growth rate through time. For a canopy shear 

layer, this growth rate can be approximated as the growth of the shear layer thickness (𝛿), 

which can be calculated based upon velocity profile characteristics, ∆𝑈 and �̅� (Eq. 12). 

 
𝑑𝛿

𝑑𝑥
= 𝛼.

∆𝑈

�̅�
 (12) 



 

 

The term 𝛼 is constant with values between 0.06 and 0.12 depending on initial conditions 

(Pope 2000). Following Sukhodolova and Sukhodolov (2012), a value of 0.09 has been used 

here. The change in vortex thickness through time, as measured using the Q and λ2 criterion 

(Fig. 14), indicates linear vortex growth at a rate that agrees well with the predicted mixing 

layer growth rate using Eq. (12). Both criteria show a consistent rate of growth, though the Q 

criterion suggests a consistently larger vortex thickness. This is because in two-dimensional 

vortex detection, λ2 is a subset of Q (i.e. Q is a less discriminative vortex detection method). 

The agreement in growth rate in Fig. 14 implies that the model is capable of reproducing a 

vegetated shear layer, consistent with existing theory and observations within the literature.  

Secondly, we present an additional analysis of the wavelet spectra presented in 

Section 4.6. For the purposes of validation, the simulation data was analysed at a frequency of 

10 Hz in order to maintain consistency with the Euler-Bernoulli beam equation case. 

However, both the flume and numerical data were collected at 50 Hz and therefore here we 

analyse the wavelet spectra obtained from the higher resolution time series (Fig. 15). 

Increasing the temporal resolution reveals a more detailed picture of the periodicities 

within the flow. The flume spectra further shows the existence of a number of different scales 

of periodicity, from stem-scale high frequency, through to very low frequency patterns. What 

is clearer in this higher resolution image is the linkages between these scales of periodicity. In 

contrast to the Euler-Bernoulli beam canopy simulation, the scales are not distinct and there is 

a large amount of interaction between periodicities across the entire scale-range. This pattern 

is amplified within the N-pendula simulation, where scale linkages contain more wavelet 

power, and periodicities appear to coalesce and split through time (dotted lines on Figure 15). 

6 Discussion 

Model validation shows that, overall, both models predict both the spatial and the temporal 

characteristics of the mean flow and turbulent dynamics of the canopy system as previously 

described in experimental results (e.g. Ikeda and Kanazawa 1996, Ghisalberti and Nepf 2002, 

2006, Nezu and Sanjou 2008). For example, it has been shown that for a given stem density, 

both models are able to simulate the extraction of energy from the mean flow at the stem-

scale (Zong and Nepf 2010), which leads to the drag discontinuity and associated inflected 

velocity profile (Ikeda and Kanazawa 1996, Nepf 2012). The shape of the inflected velocity 

profile agrees well with that associated with a mixing layer (Ho and Huerre 1984) as 

previously observed in vegetation canopies (Ghisalberti and Nepf, 2002; 2006). Similar to 

previous studies (Ghisalberti and Nepf, 2002, Ho and Huerre, 1984), the normalised velocity 

profiles were used to predict the frequency of Kelvin-Helmholtz shedding. The similarity in 

magnitude between the predicted vortex frequencies from the flume and numerical results 



 

 

indicates that at a canopy-scale, this energy extraction method is being modelled 

appropriately.  

Within this study, wavelet analysis was used to identify the scale of vortices within 

the flow. To our knowledge, this is the first time wavelet analysis has been employed within 

vegetated flows. Previous studies that have used spectral analysis to identify dominant 

frequencies within the flow (e.g. Ghisalberti and Nepf, 2002; Okamoto and Nezu, 2009). 

Ghisalberti and Nepf (2002) found good agreement between the observed spectral peak and 

the predicted Kelvin-Helmholtz frequency. Similar agreement is evident in this application 

and has been shown within the wavelet spectra and predicted Kelvin-Helmholtz frequencies. 

This has been particularly well demonstrated for the Euler-Bernoulli beam model simulation, 

which was most analogous to previous experimental setups (Ghisalberti and Nepf, 2002). The 

advantage of wavelet analysis demonstrated here is that it illustrates the variability in vortex 

frequency throughout the duration of the simulation. This is particularly evident in the N-

pendula model, but is also present within the artificial vegetation experiments. 

One problem that has been highlighted in this study is the difficulty of obtaining high-

resolution, temporally continuous, whole flow field measurements of flow over both artificial 

and natural canopies. Previous work on studying fluvial flows in flumes has shown PIV to be 

a reliable methodology (Hardy et al. 2009, Cooper and Tait 2010a, 2010b, Hardy et al. 2010, 

Hardy et al. 2011). The application of PIV in this study, however, has not allowed the full 

interrogation of the canopy due to issues with illumination. Furthermore, using this 

experimental setup, it was not possible to measure plant motion, and therefore it is not 

possible to validate the plant movement component of the biomechanical model. Validation is 

only achievable through the product of plant movement and its influence on flow. Such 

aspects of the model performance require further testing and validation and we are currently 

devising new methodologies to improve the validation procedure.  

The results show the numerical models are able to capture high resolution flow 

dynamics in a manner not currently possible experimentally in flume and field environments. 

Furthermore, the results suggest the novel approach provides a useful tool for investigating 

flow structure and plant-flow interactions at high spatial and temporal resolution. The results 

from the N-pendula model highlight the complexity of interactions within real vegetation 

canopies and suggest coalescence between turbulent scales that is not included within the 

current canopy model. Furthermore, a wider range of turbulence scales has been identified 

within the canopy which supports the conceptual model of Nikora (2010).  

Although, the initial application of the model has been on relatively simple canopies, 

the new methodology presented here enables investigation of flow through complex canopies 

across a wide range of plant forms. This is essential as natural macrophyte canopies do not 

conform to the idealised canopy configurations traditionally studied (Dunn et al. 1996, 



 

 

Stoesser et al. 2010) and it is possible that different turbulent processes dominate in the non-

idealised case. The application of the N-pendula model permits the investigation of turbulent 

energy extraction, and thus the effect on the mean flow conditions through realistic canopies. 

The development of these two biomechanical models within a CFD framework provides a 

promising methodology for investigating key topics within canopy flows such as the nature of 

vegetative drag and its relationship with flow velocity, the role of feedbacks between flow 

and vegetation, and the role of plant form and biomechanics in determining canopy flow 

structure at a scale hitherto not possible.  

However, to realise this potential, the models still require further development. 

Firstly, the models are currently only able to represent single-stem plants of relatively simple 

morphology. The single-stem limitation can in some instances be countered by the use of 

multiple plants in close proximity, however, complex plant form and foliage may have a 

significant impact upon canopy dynamics (Jarvela 2002). Secondly, the models are not able to 

represent plant-plant collisions, which have been shown to have a significant effect on canopy 

behaviour (Doare et al. 2004). Both improvements are currently being developed. 

7 Conclusions 

The new biomechanical-CFD models outlined in this paper provide a methodology for 

understanding flow and turbulence dynamics for vegetation-flow interactions in a fluvial 

environment. The approach developed here extends a mass flux scaling algorithm originally 

developed for including complex topography into CFD models (Lane et al. 2002, 2004, 

Hardy et al. 2005) and transforms it into a dynamic immersed boundary technique that is 

coupled in a sequentially staggered manner (Felippa et al. 2001). Due to the range of 

characteristics of different aquatic vegetation, two separate biomechanical models were 

developed following the classification of Nikora (2010). For bending plants (𝐶 ≈ 1, 𝐵 ≪ 1) a 

model structured on the Euler-Bernoulli beam equation has been proposed while for tensile 

plants (𝐶 ≫ 1, 𝐵 ≫ 1) an N-pendula model has been developed. These approaches consider 

vegetation as a dynamically moving blockage that is coupled to the three-dimensional time 

dependent flow, and therefore, the model is a step change compared to the existing models of 

plant-flow interactions.  

The spot value comparisons from the model and flume data show that the quantitative 

detail of the model is reasonable, but is confounded by difficulties in geo-location, 

specification of boundary conditions and problems obtaining accurate experimental 

measurements within the canopy. However, qualitative assessment of the models, through 

analysis of normalised velocity profiles and wavelet spectra, is very promising and suggests 

that the models replicate the key features of canopy flows. Namely, the models reproduce the 



 

 

characteristic inflection point in the velocity profile, the subsequent development of a canopy 

shear layer and the generation of canopy-scale roller vortices. Thus, we suggest this provides 

a promising methodology for investigating more complex canopy flows for which we do not 

have a full process understanding. 
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Notation 

a = wavelet scale (s) 

B = buoyancy number (-) 

Ca = Cauchy number (-) 

𝐶𝐷 = drag coefficient (-) 

𝐶𝑆 = Smagorinsky constant (-) 

EI = flexural rigidity (Nm
2
) 

𝑓𝐾𝐻 = frequency of Kelvin-Helmholtz instability (Hz) 

𝐹𝑖
𝑇𝐸𝑁 = tensional force at node i (N) 

𝐹𝑖
𝑇𝑂𝑅 = torque force at node i (N) 

g = gravitational acceleration (ms
-2

) 

H = water depth (m) 

h = canopy height (m) 

l = domain length (m) 

𝑙𝑠 = stalk length (m) 

n = number of nodes (-) 

nx = number of grid cells in downstream direction (-) 

ny = number of grid cells in lateral direction (-) 

nz = number of grid cells in vertical direction (-) 



 

 

qx = horizontal component of the external force (N) 

qz = vertical component of the external force (N) 

r = correlation coefficient (-) 

s = up-stem coordinate (m) 

t = time (s) 

𝑡𝑠 = stalk thickness (m) 

u = instantaneous downstream velocity (ms
-1

) 

U = time-averaged downstream velocity (ms
-1

) 

�̅� = mean mixing layer velocity (ms
-1

) 

U* = normalised velocity (-) 

𝑤𝑠 = stalk width (m) 

w = domain width (m) 

W = time-averaged vertical velocity (ms
-1

) 

x = downstream coordinate (m) 

y = lateral coordinate (m) 

z = vertical coordinate (m) 

𝑧̅ = height at which U = �̅� 

z* = normalised height (-) 

𝛼 = constant (-) 

∆𝑈 = mixing layer velocity difference (ms
-1

) 

𝛿 = shear layer thickness (m) 

𝜃𝑀 = momentum thickness (m) 

𝜃𝑖 = angle to the horizontal at node I (-) 

𝜇𝑀 = mass per unit length (kgm
-1

) 

𝜉 = plant displacement (m) 

𝜌 = water density (kgm
-3

) 

𝜌𝑠 = material density (kgm
-3

) 

𝜙 = solid volume fraction (-) 
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Table 1 Ordinary Least Squares Regression statistics for the whole domain for the Euler-

Bernoulli beam experiments 

__________________________________________________                _ 

Velocity Component Intercept (ms
-1

)  Gradient r 
__________________________________________________                _ 

Downstream (U) -0.001   0.930  0.953 

Vertical (W)  -0.001   -0.382  -0.519 
__________________________________________________                _ 

 

Table 2 Ordinary Least Squares Regression statistics for different regions of the domain. The 

three regions correspond to those in Fig. 6 (i.e. canopy=blue crosses, shear=green circles, 

boundary=red triangles) 

__________________________________________________                _ 

Velocity Component Intercept (ms
-1

)  Gradient r 
__________________________________________________                _ 

U canopy  0.031   -0.117  -0.063 

U shear   0.117   0.386  0.834  

U boundary  0.011   1.040  0.809 

W canopy  0.011   0.273  0.184 

W shear   0.005   0.049  0.032 

W boundary  0.001   -2.550  -0.780 
__________________________________________________                _ 

 

Table 3 Normalised velocity profile characteristics for the semi-rigid vegetation. �̅� is the 

mean shear layer velocity, θM is the shear layer momentum thickness and 𝑓𝐾𝐻 is the predicted 

Kelvin-Helmholtz frequency using Eq. (8) 

___________________________________________________ 

  �̅� (ms
-1

) θM (m)  𝑓𝐾𝐻 (Hz) 
___________________________________________________ 

Flume  0.095  0.006  0.555 

Model  0.087  0.007  0.419 
___________________________________________________ 

 

 

 



 

 

Table 4 Normalised velocity profile characteristics for the real vegetation. �̅� is the mean shear 

layer velocity, θM is the shear layer momentum thickness and 𝑓𝐾𝐻 is the predicted Kelvin-

Helmholtz frequency using Eq. (8). 

___________________________________________________ 

  �̅� (ms
-1

) θM (m)  𝑓𝐾𝐻 (Hz) 
___________________________________________________ 

Flume  0.207  0.019  0.344 

Model  0.207  0.030  0.221 
___________________________________________________ 

 

 

Figure 1 Model schematic showing (a) Tandem plant and LES grid systems (reproduced from 

Ikeda et al. (2001)) where a stalk is conceptualised as a vertical array which then moves and 

maps onto the LES grid; and (b) the porosity cut-cell treatment (right) of original vegetation 

stalk (left). Here darker cells represent lower porosity values. Figure 1(a) reprinted from 

International Journal of Heat and Fluid Flow, 22, Ikeda, S., Yamada, T., Toda, Y., Numerical 

study on turbulent flow and honami in and above flexible plant canopy, Copyright (2001), 

with permission from Elsevier. 



 

 

 

Figure 2 The change in end-node displacement with increasing node number for the Euler-

Bernoulli beam model. The change is shown as a percentage of the total displacement. 

 

Figure 3 A schematic showing the basis for the N-pendula model. The circles represent model 

nodes connected by pendula of length 𝑙𝑖 each at an angle of 𝜃𝑖 from the horizontal. 

 

Figure 4 Flexible artificial vegetation used within the flume experiments. Picture taken during 

the experiments, with flow from left to right. 



 

 

 

Figure 5 Patches of Ranunculus penicillatus fastened to the bed of the flume at the base, for 

the flume experiments with natural vegetation. Flow is from left to right, with the PIV 

particles illuminated using a laser positioned downstream of the vegetation. 

 

Figure 6 Spot value comparisons for the time-averaged downstream (a) and vertical (b) 

velocity components. Data points are coloured by region: canopy (blue crosses), shear layer 

(green circles) and boundary layer (red triangles). The black line indicated a perfect [1:1] 

relationship. 



 

 

 

Figure 7 Normalised, time-averaged downstream velocity profiles for the artificial vegetation 

(PIV) and Euler-Bernoulli beam model (CFD) data. Profiles have also been averaged in the 

streamwise direction. The black line indicates the idealised hyperbolic tangent shear layer 

profile. 

 

Figure 8 Time-averaged downstream velocity profiles for both the experimental (PIV) and 

model (CFD) data. Profiles have also been averaged in the streamwise direction. 



 

 

 

Figure 9 Wavelet spectra for the artificial vegetation (a) and Euler-Bernoulli beam model (b) 

data. The black lines indicate the estimated Kelvin-Helmholtz frequencies from Table 3. 

 

Figure 10 Normalised, time-averaged downstream velocity profiles for the real vegetation 

(PIV) and N-pendula model (CFD) data. Profiles have also been averaged in the streamwise 

direction. The black line indicates the idealised hyperbolic tangent shear layer profile. 



 

 

 

Figure 11 Wavelet spectra for the real vegetation (a) and N-pendula model (b) data. The black 

lines indicate the estimated Kelvin-Helmholtz vortex frequencies from Table 4. The ovals 

highlight areas of coalescence. 

 

Figure 12 Schematic of the Euler-Bernoulli beam model canopy simulation. The dotted line 

shows the boundary of the flow recirculation region. 



 

 

 

Figure 13 Vortex detection results using the (a) FTLE, (b) Q and (c) λ2 criterion. In (a), areas 

in yellow/red represent vortex ridges. In (b) and (c) areas of black represent vortices. 

 

Figure 14 Change in vortex thickness through time using the Q (blue) and λ2 (green) criteria. 

The predicted shear layer growth rate is shown in black. 



 

 

 

Figure 15 Wavelet spectra for the real vegetation (a) and N-pendula model (b) data at 50 Hz 

resolution. The black lines represent the estimated Kelvin-Helmholtz frequencies. The dotted 

black lines highlight varying periodicities through time. 

 




