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1 Introduction 22 

Nitroaromatic compounds (NACs) are the major components of explosives. NACs, 23 

including TNP, are also common chemical reagents that are extensively used in the wider 24 

chemical, pharmaceutical, leather and dye industries (Zan et al., 2022). However, as a result 25 

of its widespread use, as well as in explosives, once TNP in particular is released into the 26 

environment, due to its high solubility in water, it readily contaminates soil and aquatic 27 

systems (Liu et al., 2022a).  Furthermore, due to its electron-deficient nature, TNP is difficult 28 

to be degraded in both biosystems and the environment, thus becoming one of the major 29 

environmental pollutants (Kumar et al., 2023). Significantly, TNP exhibits various toxic 30 

effects towards living organisms, such as carcinogenicity, mutagenicity, liver damage, skin 31 

irritation, etc (Goel and Malhotra, 2022). Consequently, the United States Environmental 32 

Protection Agency (EPA) included TNP in its list of priority pollutants (Ilyas et al., 2022). It 33 

is therefore of significant interest and relevance to develop accurate and sensitive analytical 34 

methods for the selective detection of TNP. 35 

To date, many analytical techniques have been developed to detect NACs, such as HPLC 36 

(Gledhill et al., 2019), GC-MS (Weiss et al., 2004), ion mobility spectroscopy (Kostarev et al., 37 

2022), surface-enhanced Raman spectroscopy (Wang et al., 2022), electrochemistry analysis 38 

(Zheng et al., 2023) and fluorescence spectroscopy (Liu et al., 2022b). Among these various 39 

methods, fluorescence based sensing methodologies have proven to be excellent 40 

candidates by virtue of their excellent selectivity and sensitivity, short response time, 41 

real-time monitoring, and operational simplicity (Harathi and Thenmozhi, 2022; Qu et al., 42 

2020). In this regard, fluorescent materials including conjugated polymers (Nguyen et al., 43 

2023), supramolecular ensembles (Hu et al., 2023), MOFs (Kaur et al., 2023), COFs (Zhu 44 

et al., 2022), AIEgens (Wang et al., 2020a), small organic molecules (Thippeswamy et al., 45 

2022), nanoparticles (Kayhomayun et al., 2022), nanoclusters (Bener et al., 2022), carbon 46 
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dots (Wang et al., 2019), and quantum dots (Mukherjee et al., 2022) have been developed 47 

for the detection of NACs. 48 

The click reaction has been extensively employed to synthesize a wide range of 1,2,3-49 

triazole-based fluorescent sensors that have been developed for the sensing of ionic species 50 

(Lau et al., 2011; Bryant and Bunz, 2013; Ahmed and Xiong, 2021). Nevertheless, these 51 

fluorescence systems have scarcely been specifically designed for the detection of NACs. The 52 

1,2,3-triazole ring possesses three nitrogen atoms and thus, their lone pair electrons can 53 

coordinate to metal ions, and can be hydrogen bond and/or proton acceptor(s). On the other 54 

hand, NACs commonly function as electron acceptors owing to the electron-withdrawing 55 

nature of the nitro group(s) (Gole et al., 2011). As a result, significant noncovalent 56 

interactions may be formed between 1,2,3-triazole and NACs. These factors inspired us to 57 

design an efficient fluorescent sensor for sensing NACs via the click reaction. 58 

In connection with our ongoing research on sensors for environmentally and biologically 59 

important guest species (Wu et al., 2023; Xie et al., 2020; Wu et al., 2018), herein, we report a 60 

novel hexahomotrioxacalix[3]arene-based sensor L with preorganized triazoles as recognition 61 

sites and has pendant pyrenes as the fluorophores for the fluorometric and colorimetric 62 

sensing of TNP. The sensing mechanism was systematically investigated by UV-63 

vis/fluorescence titrations, fluorescence lifetime measurements, 1H NMR spectroscopic 64 

titration analysis, and DFT caculations. Sensor L was successfully employed to detect TNP in 65 

actual water and soil samples with satisfactory results. As well, fluorescent test strips were 66 

also fabricated for the convenient and cost-effective real-time monitoring of TNP. The 67 

findings of this work present an appropriate strategy for the design and fabrication of 68 

fluorescent sensors for the rapid identification and quantification of the potentially TNP 69 

pollutant. 70 

2 Experimental 71 
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2.1 Materials 72 

All reagents were obtained from commercial suppliers and utilised without additional 73 

purification. NMR spectra were measured on a Bruker 400 MHz instrument. HRMS spectra 74 

were recorded using a mass spectrometer (Agilent 6540 Q-TOF). Fluorescence spectra were 75 

performed on a Shimadzu RF-5301PC spectrometer. Quantum yields were measured using 76 

absolute method using a Hamamatsu C11347-11 Quantaurus-QY Analyzer. Fluorescence 77 

lifetimes were determined on the Edinburgh FLS1000 steady-state transient fluorescence 78 

spectrometer. UV-vis spectra were taken on a Shimadzu UV-2600 UV-vis spectrometer. 79 

HPLC analysis was carried out on Agilent 1290 II-6460. 80 

2.2 Synthesis and Characterization 81 

The 1-azidomethylpyrene (Park et al., 2008) and precursors 1, 2 (Ni et al., 2012) were 82 

produced according to the reported procedures. A suspension of compound 2 (890 mg, 1.0 83 

mmol) and K2CO3 (1.24 g, 9.0 mmol) was heated at reflux for 1 h in dry acetone (80 mL), 84 

then propargyl bromide (480 mg, 4.0 mmol) was added, and the reaction mixture was 85 

refluxed for 24 h. After that, the reaction was cooled to room temperature, and the filtrate was 86 

concentrated. The residue was purified by column chromatography (dichloromethane as 87 

eluent) to afford the desired compound 3 (750 mg, 75 %). 1H NMR (400 MHz, CDCl3): δ = 88 

7.58 (s, 6H, ArHcalix), 4.87–4.91 (d, 6H, J = 13.2 Hz, ArCH2(eq)O), 4.86 (s, 6H, OCH2-89 

alkynyl), 4.66 (s, 6H, ArOCH2), 4.49–4.52 (d, 6H, J = 13.2 Hz, ArCH2(ax)O), 3.28–3.41 (dq, 90 

12H, NCH2CH3), 2.51 (s, 3H, C≡CH), 1.12–1.21 (dt, 18H, NCH2CH3). 
13C NMR (100 MHz, 91 

CDCl3) δ = 166.84, 164.72, 159.90, 132.03, 131.86, 125.08, 78.13, 74.72, 72.26, 68.93, 92 

52.19, 41.06, 40.11, 14.32, 12.98. HRMS (FAB+): calcd. for [C54H64N3O15 + H]+ 994.4337; 93 

found 994.4335. 94 

A well-stirred solution of Compound 3 (500 mg, 0.50 mmol), 1-azidomethylpyrene (425 95 

mg, 1.65 mmol), and CuI (30 mg) in 50 mL of THF/H2O (4:1) was refluxed for 24 h. The 96 

solvent was removed, and the resulting residue was subsequently purified via column 97 
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chromatography (ethyl acetate as eluent) to afford L  as white solid (600 mg, 68 %). 1H NMR 98 

(400 MHz, CDCl3): δ = 8.03–8.05 (d, 3H, J = 8.0 Hz, Py-H), 7.93–7.95 (d, 3H, J = 8.0 Hz, 99 

Py-H), 7.87–7.89 (d, 3H, J = 8.0 Hz, Py-H), 7.68–7.81 (m, 21H, Py-H (18H) and triazole-H 100 

(3H); overlapped), 7.12 (s, 6H, ArHcalix), 5.96 (s, 6H, triazole-CH2-Py), 5.18 (s, 6H, OCH2-101 

triazole), 4.58–4.60 (d, 6H, J = 12.8 Hz, ArCH2(eq)O), 4.45 (s, 6H, ArOCH2), 3.93–3.95 (d, 102 

6H, J = 12.8 Hz, ArCH2(ax)O), 3.18–3.34 (dq, 12H, NCH2CH3), 1.06–1.12 (q, 18H, 103 

NCH2CH3). 
13C NMR (100 MHz, CDCl3) δ = 166.81, 165.21, 159.96, 143.54, 131.77, 131.70, 104 

131.57, 130.72, 130.13, 128.51, 127.75, 127.40, 126.85, 126.79, 125.88, 125.42, 125.32, 105 

124.71, 124.61, 124.48, 124.36, 123.99, 121.76, 71.96, 68.68, 57.97, 51.94, 40.89, 39.96, 106 

14.21, 12.91. HRMS (FAB+): calcd. for [C105H96N12O15 + H]+ 1766.7230; found 1766.7228. 107 

2.3 UV-vis and fluorescence titrations 108 

Both the sensor L and the analytes were prepared as 1 mM stock solutions by dissolving 109 

them in acetonitrile. The stock solutions were diluted to the appropriate concentration with 110 

acetonitrile and buffer solutions. In titration experiments, a 3 mL solution of L was typically 111 

added to a quartz cuvette, followed by the addition of various stock solutions of analytes 112 

using a micro-syringe. Each titration was replicated three times in order to obtain consistent 113 

results. 114 

2.4 Fluorescence sensing of TNP in real samples 115 

Prior to usage, the crude water samples were filtered via a 0.22 μm membrane filter. The 116 

pH of the water samples was adjusted to 7.4 with HEPES buffer, and then different amounts 117 

of TNP were added. The obtained samples underwent further treatment using L and CH3CN, 118 

resulting in the formation of final mixtures containing 50% CH3CN. Subsequently, the 119 

fluorescence spectra of the mixes comprising L (with a final concentration of 1.0 μM) and 120 

TNP were recorded within 30 seconds. For the soil sample analysis, 1 g of soil samples were 121 

mixed with 1.0 mg and 2.0 mg of TNP, respectively, and subsequently dissolved in 100 mL 122 

deionized water. The soil samples were then filtered through a 0.22 μm membrane filter after 123 



6 
 

being ultrasonically treated for 15 minutes. Then, the fluorescence was measured after the 124 

stock solution of L (with a final concentration of 1.0 μM) was introduced. 125 

2.5 HPLC analysis 126 

For HPLC analysis, the C18 column (250×4.6 mm2 id, 5 µm) was used as a stationary 127 

phase and 357 nm was chosen as detection wavelength. The mobile phase consisted of a 128 

mixture of methanol and 0.2% acetic acid in a 50:50 ratio. The temperature of the column was 129 

kept at 40 °C.  130 

2.6 Fluorescent Test Strips 131 

Fluorescent test strips were fabricated through the immersion of filter paper into the 132 

dichloromethane solution of L, followed by subsequent air drying. The detection method 133 

involved immersing the test papers into an aqueous solution of TNP, followed by drying and 134 

then observation under a 365 nm UV light. 135 

3 Results and discussion 136 

3.1 Synthesis 137 

The synthetic pathway of sensor L is outlined in Scheme 1. The calixarene 138 

skeleton was fixed in the cone conformation by first introducing N,N-diethylamide by 139 

O-alkylation of the hydroxyl groups located at the lower-rim of the 140 

hexahomotrioxacalix[3]arene 1. Subsequent base hydrolysis of the upper-rim ester 141 

yielded the corresponding triacid derivative 2, and the intermediate 3 was successfully 142 

synthesized by employing propargyl bromide in the presence of K2CO3 as base. 143 

Submitting 1-azidomethylpyrene to a Cu(I)-catalyzed 1,3-dipolar cycloaddition 144 

reaction with compound 3 at click conditions resulted in a 68% yield of the sensor L. 145 

All chemicals synthesised in this study were completely characterised by 1H and 13C 146 

NMR spectroscopy, and HRMS (Fig.S1–S3). 147 

3.2 Luminescent properties and detection of TNP 148 
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In order to obtain the optimal conditions for analytical applications, the 149 

fluorescence characteristics of compound L were examined in various solvent 150 

mixtures. As shown in Fig.S4, L emitted much stronger fluorescence in the 151 

CH3CN/H2O mixed solvents. In addition, the emission spectra of L were recorded by 152 

introducing varying water fractions (fw) into the CH3CN solution. As can be seen from 153 

Fig.S5, the fluorescence intensity enhanced gradually when fw increases from 0% to 154 

60%. However, a significant fluorescence decrease can be observed when the water 155 

content exceeds 70%. Subsequently, an assessment was conducted to examine the 156 

impact of pH on the fluorescence signals of L. This was achieved by altering the pH 157 

values within the range of 2.0 to 12.0. Fluorescence signals exhibited little variation 158 

with alteration of pH throughout the range of 5.0 to 12.0 (Fig.S6). Based on the above 159 

experimental findings, the CH3CN/HEPES (v/v, 1:1, pH=7.4) system was applied in 160 

the experiments that followed. 161 

The photophysical properties of L were studied by the absorption and 162 

fluorescence spectra in a 1:1 CH3CN/HEPES pH=7.4 mixed solvent system (Fig.S7). 163 

The UV-vis absorption spectrum of L shows two absorption peaks characteristic of 164 

pyrene at 328 nm and 343 nm. The most intense absorption maximum (λabs) was 165 

observed at 343 nm, and the molar absorption coefficient (ɛ) was 8.58 × 104 L mol-1 166 

cm-1. Upon excitation at 343 nm, the emission spectra of L exhibits a prominent 167 

excimer emission at 484 nm arising from the intramolecular π-stacked pyrene units, 168 

with a quantum yield (φ) of 0.22. To evaluate the sensing ability of the designed 169 

receptor L in detecting NACs, we conducted preliminary fluorescence titration studies 170 

against TNP. The excimer emissions were efficiently quenched upon the incremental 171 

addition of TNP, and the shapes of the emission spectra did not significantly change 172 

(Fig.1). Meanwhile, the quenching in the fluorescence emission could be readily 173 

observed when illuminated with a UV lamp at 365 nm. To compare the sensing 174 
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selectivity of L toward TNP, fluorescence titration experiments using L were also performed 175 

with other NACs and potential interferents, including metal ions and anions. The results 176 

presented in Fig.2 and Fig.S8 demonstrate that the relative quenching efficiencies of different 177 

analytes towards sensor L are barely affected, implying that L may be potentially usable for 178 

TNP detection in actual samples. Among the tested analytes, it is worth noting that only TNP 179 

demonstrated a significant quenching efficiency, and the initial fluorescence intensity of L 180 

decreased by 93.2% when only 200 μM TNP was added. The calibration curve obtained for 181 

TNP exhibits clear linearity within the concentration range of 0 to 50 μM. Thus, the given 182 

TNP determination method achieved a detection limit of 9.17 × 10-7 M and a quantitation 183 

limit of 3.06 × 10-6 M, especially the precision (RSD%) was found to be 0.33% (Fig.S9). 184 

Significantly, the degree of emission quenching observed at the 10-second interval was nearly 185 

identical to that observed after a 24-hour period (Fig.S10), confirming the fast response and 186 

the stability of present system. This system therefore represents a fluorescent sensor that can 187 

be used to determine the concentration of TNP quantitatively.  188 

Subsequently, UV-vis absorption titration experiments were also investigated to assess 189 

whether L could serve as a colorimetric sensor for TNP. As depicted in Figure 3, a notable 190 

increase in the initial absorption intensity was observed when TNP was gradually introduced 191 

into the solution of L. In the meanwhile, it was observed that the solution underwent a distinct 192 

and readily observable alteration in hue, transitioning from a state of transparency to a reddish 193 

orange appearance (Fig.3, inset). A linear correlation was observed between the concentration 194 

of TNP and the absorption intensity over the range of 0 to 160 μM (Fig.S11). This means that 195 

in addition to its use as a fluorescence sensor, L can also be a reliable colorimetric sensor for 196 

the detection of TNP at low concentrations. Significantly, in terms of selectivity, sensitivity, 197 

and limit of detection, L acts as a more sensitive TNP sensor than many other sensors that 198 

have been described thus far (Table S1). 199 

3.3 The mechanism for the sensing of TNP with L 200 
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To better understand the quenching behavior exhibited by sensor L when exposed to 201 

TNP, the quenching mechanism needs to be well corroborated. Quenching can manifest 202 

through multiple mechanisms, typically categorised as static quenching and dynamic 203 

quenching. By using the Stern-Volmer equation (I0/I = 1 + KSV[Q]) to fit the observed data, 204 

we were able to get insight into the specifics of the quenching process in L. As depicted in 205 

Fig.S12, the Stern-Volmer plot exhibits a linear trend at low concentrations (up to 50 μM) and 206 

a non-linear upward curving at higher quencher concentrations. The linear regression analysis 207 

of the plot obtained at lower concentrations yielded a quenching constant of 2.44 × 104 M-1 208 

for TNP. This result suggests that sensor L has a considerable quenching effect on TNP. 209 

Generally, a linear Stern–Volmer plot represents a singular (static or dynamic) quenching 210 

mechanism, whereas a positive deviation from linearity suggests the existence of a combined 211 

quenching process involving both static and dynamic mechanisms (Sun et al., 2015). The 212 

nature of Stern–Volmer plot in the present system falls into the latter category, indicating that 213 

a combination of quenching processes contribute to the emission quenching. In order to 214 

clarify which factor is the dominant one, time-resolved fluorescence measurements were 215 

conducted in the absence and presence of TNP. The lifetime decay plot of L, as depicted in 216 

Fig.S13, demonstrated that the introduction of TNP in a sequential manner resulted in 217 

negligible changes to the fluorescence lifetime. The average lifetime value (τ) of L at 484 nm 218 

(λex = 343 nm) was found to be 141.45 ± 0.22 ns, further addition of 25 and 50 equivalents of 219 

TNP into the solution of L gave lifetime values of 140.89 ± 0.14 and 140.54 ± 0.18 ns, 220 

respectively. In the static mechanism, it can be observed that the fluorescence lifetime 221 

remains unaffected. This is due to the binding of the quencher with the sensor in its ground 222 

state, resulting in the formation of a non-fluorescent complex or "dark state" with the 223 

quencher. Consequently, the molecules that are not bound exhibit their inherent lifetimes. In 224 

contrast, the fluorescence lifespan of the dynamic mechanism is expected to decrease as a 225 

result of diffusive collisions occurring between the quencher and the excited sensor (Santra et 226 
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al., 2016). Therefore, the findings from the time-resolved fluorescence tests provide further 227 

evidence that the primary mechanism responsible for the quenching of fluorescence is static 228 

quenching, which occurs through the formation of a non-emissive ground state complex 229 

between sensor L and TNP. 230 

Furthermore, it is worth noting that UV-vis absorption investigations conducted on L 231 

with TNP revealed the emergence of a novel band at around 425 nm accompanied by a level-232 

off tail (Fig.3), further suggesting that charge transfer occurs between them (Gupta et al., 233 

2015). As a matter of fact, dynamic quenching exclusively impacts the excited states of the 234 

fluorophore, so it is expected that the absorption spectrum will not change. In contrast, the 235 

absorption spectrum of the fluorophore is frequently disrupted due to the formation of 236 

ground-state complex (Divya et al., 2022). As a result, the observed disruption in the UV-vis 237 

spectrum is fully consistent with the static type of quenching mechanism via charge-transfer 238 

complex formation. 239 

In order to further clarify the mechanism for TNP-induced fluorescence quenching, DFT 240 

calculations were also carried out. The most energetically-favoured optimized structure of L 241 

was first determined, and as can be seen in Fig.4, it’s frontier molecular orbital diagrams 242 

reveal that the majority of the electron density in the HOMO is concentrated within two 243 

pyrene molecules. The LUMO can be seen to be localized over the neighboring pyrene. Thus, 244 

the intense excimer fluorescence in sensor L is most likely driven by the HOMO-LUMO 245 

interactions between the ground state and excited state pyrenes (Py-Py*) (Choi et al., 2006). 246 

More importantly, the favorable charge-transfer from the sensor L to TNP is also 247 

understandable from a consideration of the energies of the LUMOs of L and the NACs. The 248 

LUMO of the electron-rich L is at a higher energy than the LUMOs of electron-deficient 249 

NACs, allowing transfer of the excited state electron from the LUMO of L to the LUMOs of 250 

NACs (Fig.5). The lower LUMO energy levels reflect the relative ease with which excited 251 

electrons can be transported from the higher-energy LUMO of L to the lower-energy LUMO 252 
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of NACs during the quenching process (Dinda et al., 2014). Particularly, the LUMO energy of 253 

TNP is the lowest of all the NACs studied, making it the most potent electron acceptor in its 254 

excited state. Thus, the maximum fluorescence quenching for TNP is due to more facile 255 

electron transfer from sensor L to TNP compared to other NACs. Nevertheless, there is a 256 

discrepancy between the observed order of quenching efficiency and the LUMO energies of 257 

the other NACs. This observation suggests that the charge transfer process alone is not the 258 

exclusive mechanism responsible for the remarkably selective fluorescence quenching 259 

observed towards TNP. Apart from the transfer of charge, the relocation of energy among 260 

fluorophore and NACs may lead to the quenching of fluorescence. Such transfer of energy are 261 

widely known as the inner filter effect (IFE) and resonance energy transfer (RET) (Gunture et 262 

al., 2022; Wang et al., 2020b). 263 

As depicted in Fig.6a, the absorption spectrum of TNP has a broad range spanning from 264 

280 to 480 nm. The observed spectrum demonstrates substantial overlap with the emission 265 

and excitation spectrum of sensor L, thereby establishing the necessary conditions for RET 266 

and IFE to occur. In general, IFE happens when there is a significant spectral overlap of 267 

absorption spectra of the quencher with excitation and/or emission spectra of the fluorophore. 268 

On the other hand, in the context of RET, the spectral overlap exclusively arises from the 269 

absorption spectra of the quencher and the emission spectra of the fluorophore (Tanwar et al., 270 

2018). In addition, the fluorescence lifetime of the fluorophore is constant during IFE, while 271 

the fluorescence lifetime reduces for RET. The aforementioned insignificant change in the 272 

fluorescence lifetime (Fig.S13) provides confirmation that the quenching seen is of a static 273 

nature, hence ruling out the occurrence of any RET which falls into the classification of 274 

dynamic quenching (Goswami et al., 2023; Cui et al., 2023). Therefore, IFE may serve as the 275 

primary mechanism accountable for the fluorescence quenching of sensor L induced by TNP. 276 

This can be explained by the ineffective overlap between the excitation/emission spectra of L 277 

and the absorption spectra of other NACs, which leads to low IFE efficiency (Fig.6b). The 278 
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efficiency of IFE is dependent on the spectral overlap extent, thus, the selectivity toward TNP 279 

could also be explained by the IEF mechanism. 280 

To corroborate the interaction between L and TNP, a 1H-NMR spectroscopic titration of 281 

L with TNP was conducted. As shown in Fig.7, the addition of 50 equivalents of TNP 282 

resulted in obvious downfield shifts for the peaks of L corresponding to the triazole, triazole–283 

CH2–pyrene and O–CH2–triazole protons by ∆δ = 0.14, 0.11 and 0.07 ppm, respectively 284 

(Table S2). The downfield shift of the triazole and the adjacent methylene protons after 285 

complexation is consistent with the loss of electron density of the triazole groups upon 286 

coordination with TNP. Furthermore, significant downfield shifts and extensive broadening 287 

are also observed for the peaks assigned to the TNP phenolic protons. To better understand 288 

how L interacts with TNP, DFT calculations were performed. The gas phase DFT 289 

calculations for L with TNP were simplified and sped up by focusing solely on a 1:1 complex 290 

which is also supported by a Job’s plot (Fig.S14). The most stable optimized structures of L 291 

and TNP were used to generate three possible 1:1 (L:TNP) complexes (Fig.S15). The most 292 

energetically-favoured optimized structure for the complex is one in which the TNP is 293 

“sandwiched” between two pyrene groups through π-π stacking, with the orientation of the 294 

hydroxyl and both ortho nitro groups strongly directed toward the interior of the host (Fig.8). 295 

It can also be seen that hydrogen bonding exists between the phenolic hydroxyl and the N2 296 

nitrogen of the middle triazole with an interatomic distance of 1.997 Å. The optimized 297 

structure of the putative complex had a computed interaction energy of -132.93 kJ mol-1 298 

which was energetically-favoured by greater than 24 kJ mol-1 over the next best optimized 1:1 299 

host:guest complex (Fig.S16). With increasing numbers of TNP molecules, molecular 300 

mechanics modeling suggests that the TNP molecules associate more strongly and closer to 301 

one another. This can explain the relatively much larger chemical shift changes seen for the 302 

hydroxyl groups (∆δ = 1.5 ppm) compared to the other shifts noted above in the 1H-NMR 303 

titration. On the other hand, protonation of the nitrogen atom(s) of the triazole(s) by the 304 
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strong-acid TNP results in making the triazole ring(s) cationic and electron-deficient and 305 

hence can also result in similar downfield shifts of the triazole protons as noted in the 1H-306 

NMR titration and as is also likely in the fluorescence quenching seen in the mixed 307 

acetonitrile-HEPES solvent. Particularly, an analogous protonation by TNP with a pyrazoline 308 

nanoparticle fluorescent sensor was proposed by Ahmed and co-workers (Ahmed et al., 309 

2017). It is noteworthy also that the chemical shifts of the axial protons in the Ar–CH2–O 310 

methylene bridges, which are related to the conformation of hexahomotrioxacalix[3]arene, 311 

were shifted to lower magnetic field (from 3.93 to 4.08 ppm) as also were the equatorial 312 

protons and the methylene protons of ArO–CH2 shifted downfield although less so. The 313 

pyrene aromatic protons also displayed different downfield or upfield shifts (Fig.S17). These 314 

findings provide additional evidence suggesting that the hexahomotrioxacalix[3]arene 315 

undergoes a conformational change when it coordinates with TNP. Previous reports have 316 

demonstrated that the flexible hexahomotrioxacalix[3]arene framework possesses the 317 

capability to modulate its conformation in order to effectively bind with a specific target 318 

(Carpentier et al., 2022; Miranda et al., 2022; Lambert et al., 2020; Teixeira et al., 2020).  319 

3.4 Practical application 320 

Based on the remarkable sensitivity and selectivity of sensor L for TNP detection, the 321 

standard spike/recovery method was employed to conduct spectrofluorimetric detection of 322 

TNP in real water and soil samples. As shown in Table 1, the recoveries of the samples varied 323 

from 97.14% to 103.20%, indicating that the proposed method has wonderful practicability. 324 

In addition, the RSD (relative standard deviation) of each sample was below 1.28%, revealing 325 

the high reproducibility and precision of this approach. To check the reliability of such a 326 

spectrofluorimetric approach, HPLC experiments were also conducted on the same samples. 327 

The results obtained from the HPLC analysis show a high level of concordance with the 328 

spectrofluorimetric approach that was provided. This indicates that the current method is 329 

accurate for determining TNP in real samples. 330 
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In order to conduct a more comprehensive examination of the potential uses of sensor L, 331 

the development of low-cost and portable fluorescent test strips was performed. These test 332 

strips were specifically designed for the purpose of detecting TNP in real-time at the location 333 

of interest. As depicted in Fig.9, the blank test strip exhibited a prominent blue fluorescence 334 

upon irradiation with a 365 nm UV lamp. When the test strips were immersed in an aqueous 335 

solution of TNP, a noticeable phenomena of fluorescence quenching was observed. An 336 

evident disparity in the extent of quenching appeared as the concentration of TNP increased. 337 

Additionally, the contact-mode response of the strips to TNP was examined by covering a test 338 

strip with TNP crystals for one minute; this produced black spots when illuminated with a UV 339 

lamp (Fig.10). In particular, the test strips were successfully used to identify TNP vapor as 340 

well as in real water samples. These results demonstrate that the sensor L has outstanding 341 

sensing performance toward TNP, which served as a convenient and efficient test kit for the 342 

instant visualization of TNP. 343 

4 Conclusions 344 

In conclusion, a C3-symmetrical pyrenyl-triazole functionalized 345 

hexahomotrioxacalix[3]arene L has been developed as a novel TNP-selective fluorometric 346 

and colorimetric sensor. The high sensitivity of sensor L toward TNP is achieved by the 347 

combination of ground-state charge-transfer complex formation and the inner filter effect. 1H-348 

NMR spectroscopic titrations confirmed that the preorganized 1,2,3-triazole played a crucial 349 

role as the hydrogen-bonding motif for bonding with TNP. Moreover, fluorescent test strips 350 

based on L were fabricated for practical applications in the detection of TNP in real samples. 351 

This work presented herein demonstrates the potential of a click-chemically derived triazole-352 

functionalized hexahomotrioxacalix[3]arene for the design of high-efficiency fluorescent 353 

sensors for the hazardous trinitrophenol pollutant. 354 
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HIGHLIGHTS 

♦ A facile and sensitive fluorescent sensor was constructed for sensing of TNP based 

on hexahomotrioxacalix[3]arene. 

♦ The present spectrofluorimetric method is extremely sensitive and selective for TNP 

detection. 

♦ The inner filter effect and charge-transfer complex dominated the sensing 

mechanism. 

♦ Test strips were fabricated to facilitate the visual detection of TNP. 
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A facile and sensitive hexahomotrioxacalix[3]arene-based fluorescent 1 

sensor for the detection of trace amounts of 2,4,6-trinitrophenol 2 

 3 

Abstract:  4 

Nitroaromatic compounds are common explosives and toxic pollutants, the selective and 5 

sensitive detection of which is of great importance. Herein, a facile and sensitive fluorescent 6 

sensor L was constructed for the sensing of TNP based on the hexahomotrioxacalix[3]arene 7 

skeleton. The fluorescence emission of L was drastically quenched in the presence of 2,4,6-8 

trinitrophenol (TNP), while other tested NACs, metal ions, and anions induced negligible 9 

changes. Under the optimized conditions, the spectroscopic studies revealed that L exhibited 10 

extremely sensitive and selective TNP recognition, with a detection limit of 9.17 × 10-7 M and 11 

a quenching constant of 2.44 × 104 M-1. The sensitivity of sensor L for TNP was attributed to 12 

the formation of a ground-state charge-transfer complex and an inner filter effect, which also 13 

contributed to the special selectivity of the sensor among the various nitroaromatic analogues. 14 

Compared with previous reports, L can serve as a highly efficient sensor for the sensing of 15 

TNP and can be employed over a wide pH range of 2 to 12. Sensor L was effectively used to 16 

quantify TNP in real water and soil samples. Additionally, fluorescent test strips were also 17 

developed for visual and rapid detection of TNP in both the solution and vapour phases. 18 

Keywords: Fluorescent sensor, Hexahomotrioxacalix[3]arene, Click reaction, Trinitrophenol 19 

detection. 20 
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1 Introduction 22 

Nitroaromatic compounds (NACs) are the major components of explosives. NACs, 23 

including TNP, are also common chemical reagents that are extensively used in the wider 24 

chemical, pharmaceutical, leather and dye industries (Zan et al., 2022). However, as a result 25 

of its widespread use, as well as in explosives, once TNP in particular is released into the 26 

environment, due to its high solubility in water, it readily contaminates soil and aquatic 27 

systems (Liu et al., 2022a).  Furthermore, due to its electron-deficient nature, TNP is difficult 28 

to be degraded in both biosystems and the environment, thus becoming one of the major 29 

environmental pollutants (Kumar et al., 2023). Significantly, TNP exhibits various toxic 30 

effects towards living organisms, such as carcinogenicity, mutagenicity, liver damage, skin 31 

irritation, etc (Goel and Malhotra, 2022). Consequently, the United States Environmental 32 

Protection Agency (EPA) included TNP in its list of priority pollutants (Ilyas et al., 2022). It 33 

is therefore of significant interest and relevance to develop accurate and sensitive analytical 34 

methods for the selective detection of TNP. 35 

To date, many analytical techniques have been developed to detect NACs, such as HPLC 36 

(Gledhill et al., 2019), GC-MS (Weiss et al., 2004), ion mobility spectroscopy (Kostarev et al., 37 

2022), surface-enhanced Raman spectroscopy (Wang et al., 2022), electrochemistry analysis 38 

(Zheng et al., 2023) and fluorescence spectroscopy (Liu et al., 2022b). Among these various 39 

methods, fluorescence based sensing methodologies have proven to be excellent 40 

candidates by virtue of their excellent selectivity and sensitivity, short response time, 41 

real-time monitoring, and operational simplicity (Harathi and Thenmozhi, 2022; Qu et al., 42 

2020). In this regard, fluorescent materials including conjugated polymers (Nguyen et al., 43 

2023), supramolecular ensembles (Hu et al., 2023), MOFs (Kaur et al., 2023), COFs (Zhu 44 

et al., 2022), AIEgens (Wang et al., 2020a), small organic molecules (Thippeswamy et al., 45 

2022), nanoparticles (Kayhomayun et al., 2022), nanoclusters (Bener et al., 2022), carbon 46 
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dots (Wang et al., 2019), and quantum dots (Mukherjee et al., 2022) have been developed 47 

for the detection of NACs. 48 

The click reaction has been extensively employed to synthesize a wide range of 1,2,3-49 

triazole-based fluorescent sensors that have been developed for the sensing of ionic species 50 

(Lau et al., 2011; Bryant and Bunz, 2013; Ahmed and Xiong, 2021). Nevertheless, these 51 

fluorescence systems have scarcely been specifically designed for the detection of NACs. The 52 

1,2,3-triazole ring possesses three nitrogen atoms and thus, their lone pair electrons can 53 

coordinate to metal ions, and can be hydrogen bond and/or proton acceptor(s). On the other 54 

hand, NACs commonly function as electron acceptors owing to the electron-withdrawing 55 

nature of the nitro group(s) (Gole et al., 2011). As a result, significant noncovalent 56 

interactions may be formed between 1,2,3-triazole and NACs. These factors inspired us to 57 

design an efficient fluorescent sensor for sensing NACs via the click reaction. 58 

In connection with our ongoing research on sensors for environmentally and biologically 59 

important guest species (Wu et al., 2023; Xie et al., 2020; Wu et al., 2018), herein, we report a 60 

novel hexahomotrioxacalix[3]arene-based sensor L with preorganized triazoles as recognition 61 

sites and has pendant pyrenes as the fluorophores for the fluorometric and colorimetric 62 

sensing of TNP. The sensing mechanism was systematically investigated by UV-63 

vis/fluorescence titrations, fluorescence lifetime measurements, 1H NMR spectroscopic 64 

titration analysis, and DFT caculations. Sensor L was successfully employed to detect TNP in 65 

actual water and soil samples with satisfactory results. As well, fluorescent test strips were 66 

also fabricated for the convenient and cost-effective real-time monitoring of TNP. The 67 

findings of this work present an appropriate strategy for the design and fabrication of 68 

fluorescent sensors for the rapid identification and quantification of the potentially TNP 69 

pollutant. 70 

2 Experimental 71 
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2.1 Materials 72 

All reagents were obtained from commercial suppliers and utilised without additional 73 

purification. NMR spectra were measured on a Bruker 400 MHz instrument. HRMS spectra 74 

were recorded using a mass spectrometer (Agilent 6540 Q-TOF). Fluorescence spectra were 75 

performed on a Shimadzu RF-5301PC spectrometer. Quantum yields were measured using 76 

absolute method using a Hamamatsu C11347-11 Quantaurus-QY Analyzer. Fluorescence 77 

lifetimes were determined on the Edinburgh FLS1000 steady-state transient fluorescence 78 

spectrometer. UV-vis spectra were taken on a Shimadzu UV-2600 UV-vis spectrometer. 79 

HPLC analysis was carried out on Agilent 1290 II-6460. 80 

2.2 Synthesis and Characterization 81 

The 1-azidomethylpyrene (Park et al., 2008) and precursors 1, 2 (Ni et al., 2012) were 82 

produced according to the reported procedures. A suspension of compound 2 (890 mg, 1.0 83 

mmol) and K2CO3 (1.24 g, 9.0 mmol) was heated at reflux for 1 h in dry acetone (80 mL), 84 

then propargyl bromide (480 mg, 4.0 mmol) was added, and the reaction mixture was 85 

refluxed for 24 h. After that, the reaction was cooled to room temperature, and the filtrate was 86 

concentrated. The residue was purified by column chromatography (dichloromethane as 87 

eluent) to afford the desired compound 3 (750 mg, 75 %). 1H NMR (400 MHz, CDCl3): δ = 88 

7.58 (s, 6H, ArHcalix), 4.87–4.91 (d, 6H, J = 13.2 Hz, ArCH2(eq)O), 4.86 (s, 6H, OCH2-89 

alkynyl), 4.66 (s, 6H, ArOCH2), 4.49–4.52 (d, 6H, J = 13.2 Hz, ArCH2(ax)O), 3.28–3.41 (dq, 90 

12H, NCH2CH3), 2.51 (s, 3H, C≡CH), 1.12–1.21 (dt, 18H, NCH2CH3). 
13C NMR (100 MHz, 91 

CDCl3) δ = 166.84, 164.72, 159.90, 132.03, 131.86, 125.08, 78.13, 74.72, 72.26, 68.93, 92 

52.19, 41.06, 40.11, 14.32, 12.98. HRMS (FAB+): calcd. for [C54H64N3O15 + H]+ 994.4337; 93 

found 994.4335. 94 

A well-stirred solution of Compound 3 (500 mg, 0.50 mmol), 1-azidomethylpyrene (425 95 

mg, 1.65 mmol), and CuI (30 mg) in 50 mL of THF/H2O (4:1) was refluxed for 24 h. The 96 

solvent was removed, and the resulting residue was subsequently purified via column 97 
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chromatography (ethyl acetate as eluent) to afford L  as white solid (600 mg, 68 %). 1H NMR 98 

(400 MHz, CDCl3): δ = 8.03–8.05 (d, 3H, J = 8.0 Hz, Py-H), 7.93–7.95 (d, 3H, J = 8.0 Hz, 99 

Py-H), 7.87–7.89 (d, 3H, J = 8.0 Hz, Py-H), 7.68–7.81 (m, 21H, Py-H (18H) and triazole-H 100 

(3H); overlapped), 7.12 (s, 6H, ArHcalix), 5.96 (s, 6H, triazole-CH2-Py), 5.18 (s, 6H, OCH2-101 

triazole), 4.58–4.60 (d, 6H, J = 12.8 Hz, ArCH2(eq)O), 4.45 (s, 6H, ArOCH2), 3.93–3.95 (d, 102 

6H, J = 12.8 Hz, ArCH2(ax)O), 3.18–3.34 (dq, 12H, NCH2CH3), 1.06–1.12 (q, 18H, 103 

NCH2CH3). 
13C NMR (100 MHz, CDCl3) δ = 166.81, 165.21, 159.96, 143.54, 131.77, 131.70, 104 

131.57, 130.72, 130.13, 128.51, 127.75, 127.40, 126.85, 126.79, 125.88, 125.42, 125.32, 105 

124.71, 124.61, 124.48, 124.36, 123.99, 121.76, 71.96, 68.68, 57.97, 51.94, 40.89, 39.96, 106 

14.21, 12.91. HRMS (FAB+): calcd. for [C105H96N12O15 + H]+ 1766.7230; found 1766.7228. 107 

2.3 UV-vis and fluorescence titrations 108 

Both the sensor L and the analytes were prepared as 1 mM stock solutions by dissolving 109 

them in acetonitrile. The stock solutions were diluted to the appropriate concentration with 110 

acetonitrile and buffer solutions. In titration experiments, a 3 mL solution of L was typically 111 

added to a quartz cuvette, followed by the addition of various stock solutions of analytes 112 

using a micro-syringe. Each titration was replicated three times in order to obtain consistent 113 

results. 114 

2.4 Fluorescence sensing of TNP in real samples 115 

Prior to usage, the crude water samples were filtered via a 0.22 μm membrane filter. The 116 

pH of the water samples was adjusted to 7.4 with HEPES buffer, and then different amounts 117 

of TNP were added. The obtained samples underwent further treatment using L and CH3CN, 118 

resulting in the formation of final mixtures containing 50% CH3CN. Subsequently, the 119 

fluorescence spectra of the mixes comprising L (with a final concentration of 1.0 μM) and 120 

TNP were recorded within 30 seconds. For the soil sample analysis, 1 g of soil samples were 121 

mixed with 1.0 mg and 2.0 mg of TNP, respectively, and subsequently dissolved in 100 mL 122 

deionized water. The soil samples were then filtered through a 0.22 μm membrane filter after 123 
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being ultrasonically treated for 15 minutes. Then, the fluorescence was measured after the 124 

stock solution of L (with a final concentration of 1.0 μM) was introduced. 125 

2.5 HPLC analysis 126 

For HPLC analysis, the C18 column (250×4.6 mm2 id, 5 µm) was used as a stationary 127 

phase and 357 nm was chosen as detection wavelength. The mobile phase consisted of a 128 

mixture of methanol and 0.2% acetic acid in a 50:50 ratio. The temperature of the column was 129 

kept at 40 °C.  130 

2.6 Fluorescent Test Strips 131 

Fluorescent test strips were fabricated through the immersion of filter paper into the 132 

dichloromethane solution of L, followed by subsequent air drying. The detection method 133 

involved immersing the test papers into an aqueous solution of TNP, followed by drying and 134 

then observation under a 365 nm UV light. 135 

3 Results and discussion 136 

3.1 Synthesis 137 

The synthetic pathway of sensor L is outlined in Scheme 1. The calixarene 138 

skeleton was fixed in the cone conformation by first introducing N,N-diethylamide by 139 

O-alkylation of the hydroxyl groups located at the lower-rim of the 140 

hexahomotrioxacalix[3]arene 1. Subsequent base hydrolysis of the upper-rim ester 141 

yielded the corresponding triacid derivative 2, and the intermediate 3 was successfully 142 

synthesized by employing propargyl bromide in the presence of K2CO3 as base. 143 

Submitting 1-azidomethylpyrene to a Cu(I)-catalyzed 1,3-dipolar cycloaddition 144 

reaction with compound 3 at click conditions resulted in a 68% yield of the sensor L. 145 

All chemicals synthesised in this study were completely characterised by 1H and 13C 146 

NMR spectroscopy, and HRMS (Fig.S1–S3). 147 

3.2 Luminescent properties and detection of TNP 148 
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In order to obtain the optimal conditions for analytical applications, the 149 

fluorescence characteristics of compound L were examined in various solvent 150 

mixtures. As shown in Fig.S4, L emitted much stronger fluorescence in the 151 

CH3CN/H2O mixed solvents. In addition, the emission spectra of L were recorded by 152 

introducing varying water fractions (fw) into the CH3CN solution. As can be seen from 153 

Fig.S5, the fluorescence intensity enhanced gradually when fw increases from 0% to 154 

60%. However, a significant fluorescence decrease can be observed when the water 155 

content exceeds 70%. Subsequently, an assessment was conducted to examine the 156 

impact of pH on the fluorescence signals of L. This was achieved by altering the pH 157 

values within the range of 2.0 to 12.0. Fluorescence signals exhibited little variation 158 

with alteration of pH throughout the range of 5.0 to 12.0 (Fig.S6). Based on the above 159 

experimental findings, the CH3CN/HEPES (v/v, 1:1, pH=7.4) system was applied in 160 

the experiments that followed. 161 

The photophysical properties of L were studied by the absorption and 162 

fluorescence spectra in a 1:1 CH3CN/HEPES pH=7.4 mixed solvent system (Fig.S7). 163 

The UV-vis absorption spectrum of L shows two absorption peaks characteristic of 164 

pyrene at 328 nm and 343 nm. The most intense absorption maximum (λabs) was 165 

observed at 343 nm, and the molar absorption coefficient (ɛ) was 8.58 × 104 L mol-1 166 

cm-1. Upon excitation at 343 nm, the emission spectra of L exhibits a prominent 167 

excimer emission at 484 nm arising from the intramolecular π-stacked pyrene units, 168 

with a quantum yield (φ) of 0.22. To evaluate the sensing ability of the designed 169 

receptor L in detecting NACs, we conducted preliminary fluorescence titration studies 170 

against TNP. The excimer emissions were efficiently quenched upon the incremental 171 

addition of TNP, and the shapes of the emission spectra did not significantly change 172 

(Fig.1). Meanwhile, the quenching in the fluorescence emission could be readily 173 

observed when illuminated with a UV lamp at 365 nm. To compare the sensing 174 
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selectivity of L toward TNP, fluorescence titration experiments using L were also performed 175 

with other NACs and potential interferents, including metal ions and anions. The results 176 

presented in Fig.2 and Fig.S8 demonstrate that the relative quenching efficiencies of different 177 

analytes towards sensor L are barely affected, implying that L may be potentially usable for 178 

TNP detection in actual samples. Among the tested analytes, it is worth noting that only TNP 179 

demonstrated a significant quenching efficiency, and the initial fluorescence intensity of L 180 

decreased by 93.2% when only 200 μM TNP was added. The calibration curve obtained for 181 

TNP exhibits clear linearity within the concentration range of 0 to 50 μM. Thus, the given 182 

TNP determination method achieved a detection limit of 9.17 × 10-7 M and a quantitation 183 

limit of 3.06 × 10-6 M, especially the precision (RSD%) was found to be 0.33% (Fig.S9). 184 

Significantly, the degree of emission quenching observed at the 10-second interval was nearly 185 

identical to that observed after a 24-hour period (Fig.S10), confirming the fast response and 186 

the stability of present system. This system therefore represents a fluorescent sensor that can 187 

be used to determine the concentration of TNP quantitatively.  188 

Subsequently, UV-vis absorption titration experiments were also investigated to assess 189 

whether L could serve as a colorimetric sensor for TNP. As depicted in Figure 3, a notable 190 

increase in the initial absorption intensity was observed when TNP was gradually introduced 191 

into the solution of L. In the meanwhile, it was observed that the solution underwent a distinct 192 

and readily observable alteration in hue, transitioning from a state of transparency to a reddish 193 

orange appearance (Fig.3, inset). A linear correlation was observed between the concentration 194 

of TNP and the absorption intensity over the range of 0 to 160 μM (Fig.S11). This means that 195 

in addition to its use as a fluorescence sensor, L can also be a reliable colorimetric sensor for 196 

the detection of TNP at low concentrations. Significantly, in terms of selectivity, sensitivity, 197 

and limit of detection, L acts as a more sensitive TNP sensor than many other sensors that 198 

have been described thus far (Table S1). 199 

3.3 The mechanism for the sensing of TNP with L 200 
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To better understand the quenching behavior exhibited by sensor L when exposed to 201 

TNP, the quenching mechanism needs to be well corroborated. Quenching can manifest 202 

through multiple mechanisms, typically categorised as static quenching and dynamic 203 

quenching. By using the Stern-Volmer equation (I0/I = 1 + KSV[Q]) to fit the observed data, 204 

we were able to get insight into the specifics of the quenching process in L. As depicted in 205 

Fig.S12, the Stern-Volmer plot exhibits a linear trend at low concentrations (up to 50 μM) and 206 

a non-linear upward curving at higher quencher concentrations. The linear regression analysis 207 

of the plot obtained at lower concentrations yielded a quenching constant of 2.44 × 104 M-1 208 

for TNP. This result suggests that sensor L has a considerable quenching effect on TNP. 209 

Generally, a linear Stern–Volmer plot represents a singular (static or dynamic) quenching 210 

mechanism, whereas a positive deviation from linearity suggests the existence of a combined 211 

quenching process involving both static and dynamic mechanisms (Sun et al., 2015). The 212 

nature of Stern–Volmer plot in the present system falls into the latter category, indicating that 213 

a combination of quenching processes contribute to the emission quenching. In order to 214 

clarify which factor is the dominant one, time-resolved fluorescence measurements were 215 

conducted in the absence and presence of TNP. The lifetime decay plot of L, as depicted in 216 

Fig.S13, demonstrated that the introduction of TNP in a sequential manner resulted in 217 

negligible changes to the fluorescence lifetime. The average lifetime value (τ) of L at 484 nm 218 

(λex = 343 nm) was found to be 141.45 ± 0.22 ns, further addition of 25 and 50 equivalents of 219 

TNP into the solution of L gave lifetime values of 140.89 ± 0.14 and 140.54 ± 0.18 ns, 220 

respectively. In the static mechanism, it can be observed that the fluorescence lifetime 221 

remains unaffected. This is due to the binding of the quencher with the sensor in its ground 222 

state, resulting in the formation of a non-fluorescent complex or "dark state" with the 223 

quencher. Consequently, the molecules that are not bound exhibit their inherent lifetimes. In 224 

contrast, the fluorescence lifespan of the dynamic mechanism is expected to decrease as a 225 

result of diffusive collisions occurring between the quencher and the excited sensor (Santra et 226 



10 
 

al., 2016). Therefore, the findings from the time-resolved fluorescence tests provide further 227 

evidence that the primary mechanism responsible for the quenching of fluorescence is static 228 

quenching, which occurs through the formation of a non-emissive ground state complex 229 

between sensor L and TNP. 230 

Furthermore, it is worth noting that UV-vis absorption investigations conducted on L 231 

with TNP revealed the emergence of a novel band at around 425 nm accompanied by a level-232 

off tail (Fig.3), further suggesting that charge transfer occurs between them (Gupta et al., 233 

2015). As a matter of fact, dynamic quenching exclusively impacts the excited states of the 234 

fluorophore, so it is expected that the absorption spectrum will not change. In contrast, the 235 

absorption spectrum of the fluorophore is frequently disrupted due to the formation of 236 

ground-state complex (Divya et al., 2022). As a result, the observed disruption in the UV-vis 237 

spectrum is fully consistent with the static type of quenching mechanism via charge-transfer 238 

complex formation. 239 

In order to further clarify the mechanism for TNP-induced fluorescence quenching, DFT 240 

calculations were also carried out. The most energetically-favoured optimized structure of L 241 

was first determined, and as can be seen in Fig.4, it’s frontier molecular orbital diagrams 242 

reveal that the majority of the electron density in the HOMO is concentrated within two 243 

pyrene molecules. The LUMO can be seen to be localized over the neighboring pyrene. Thus, 244 

the intense excimer fluorescence in sensor L is most likely driven by the HOMO-LUMO 245 

interactions between the ground state and excited state pyrenes (Py-Py*) (Choi et al., 2006). 246 

More importantly, the favorable charge-transfer from the sensor L to TNP is also 247 

understandable from a consideration of the energies of the LUMOs of L and the NACs. The 248 

LUMO of the electron-rich L is at a higher energy than the LUMOs of electron-deficient 249 

NACs, allowing transfer of the excited state electron from the LUMO of L to the LUMOs of 250 

NACs (Fig.5). The lower LUMO energy levels reflect the relative ease with which excited 251 

electrons can be transported from the higher-energy LUMO of L to the lower-energy LUMO 252 
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of NACs during the quenching process (Dinda et al., 2014). Particularly, the LUMO energy of 253 

TNP is the lowest of all the NACs studied, making it the most potent electron acceptor in its 254 

excited state. Thus, the maximum fluorescence quenching for TNP is due to more facile 255 

electron transfer from sensor L to TNP compared to other NACs. Nevertheless, there is a 256 

discrepancy between the observed order of quenching efficiency and the LUMO energies of 257 

the other NACs. This observation suggests that the charge transfer process alone is not the 258 

exclusive mechanism responsible for the remarkably selective fluorescence quenching 259 

observed towards TNP. Apart from the transfer of charge, the relocation of energy among 260 

fluorophore and NACs may lead to the quenching of fluorescence. Such transfer of energy are 261 

widely known as the inner filter effect (IFE) and resonance energy transfer (RET) (Gunture et 262 

al., 2022; Wang et al., 2020b). 263 

As depicted in Fig.6a, the absorption spectrum of TNP has a broad range spanning from 264 

280 to 480 nm. The observed spectrum demonstrates substantial overlap with the emission 265 

and excitation spectrum of sensor L, thereby establishing the necessary conditions for RET 266 

and IFE to occur. In general, IFE happens when there is a significant spectral overlap of 267 

absorption spectra of the quencher with excitation and/or emission spectra of the fluorophore. 268 

On the other hand, in the context of RET, the spectral overlap exclusively arises from the 269 

absorption spectra of the quencher and the emission spectra of the fluorophore (Tanwar et al., 270 

2018). In addition, the fluorescence lifetime of the fluorophore is constant during IFE, while 271 

the fluorescence lifetime reduces for RET. The aforementioned insignificant change in the 272 

fluorescence lifetime (Fig.S13) provides confirmation that the quenching seen is of a static 273 

nature, hence ruling out the occurrence of any RET which falls into the classification of 274 

dynamic quenching (Goswami et al., 2023; Cui et al., 2023). Therefore, IFE may serve as the 275 

primary mechanism accountable for the fluorescence quenching of sensor L induced by TNP. 276 

This can be explained by the ineffective overlap between the excitation/emission spectra of L 277 

and the absorption spectra of other NACs, which leads to low IFE efficiency (Fig.6b). The 278 
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efficiency of IFE is dependent on the spectral overlap extent, thus, the selectivity toward TNP 279 

could also be explained by the IEF mechanism. 280 

To corroborate the interaction between L and TNP, a 1H-NMR spectroscopic titration of 281 

L with TNP was conducted. As shown in Fig.7, the addition of 50 equivalents of TNP 282 

resulted in obvious downfield shifts for the peaks of L corresponding to the triazole, triazole–283 

CH2–pyrene and O–CH2–triazole protons by ∆δ = 0.14, 0.11 and 0.07 ppm, respectively 284 

(Table S2). The downfield shift of the triazole and the adjacent methylene protons after 285 

complexation is consistent with the loss of electron density of the triazole groups upon 286 

coordination with TNP. Furthermore, significant downfield shifts and extensive broadening 287 

are also observed for the peaks assigned to the TNP phenolic protons. To better understand 288 

how L interacts with TNP, DFT calculations were performed. The gas phase DFT 289 

calculations for L with TNP were simplified and sped up by focusing solely on a 1:1 complex 290 

which is also supported by a Job’s plot (Fig.S14). The most stable optimized structures of L 291 

and TNP were used to generate three possible 1:1 (L:TNP) complexes (Fig.S15). The most 292 

energetically-favoured optimized structure for the complex is one in which the TNP is 293 

“sandwiched” between two pyrene groups through π-π stacking, with the orientation of the 294 

hydroxyl and both ortho nitro groups strongly directed toward the interior of the host (Fig.8). 295 

It can also be seen that hydrogen bonding exists between the phenolic hydroxyl and the N2 296 

nitrogen of the middle triazole with an interatomic distance of 1.997 Å. The optimized 297 

structure of the putative complex had a computed interaction energy of -132.93 kJ mol-1 298 

which was energetically-favoured by greater than 24 kJ mol-1 over the next best optimized 1:1 299 

host:guest complex (Fig.S16). With increasing numbers of TNP molecules, molecular 300 

mechanics modeling suggests that the TNP molecules associate more strongly and closer to 301 

one another. This can explain the relatively much larger chemical shift changes seen for the 302 

hydroxyl groups (∆δ = 1.5 ppm) compared to the other shifts noted above in the 1H-NMR 303 

titration. On the other hand, protonation of the nitrogen atom(s) of the triazole(s) by the 304 
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strong-acid TNP results in making the triazole ring(s) cationic and electron-deficient and 305 

hence can also result in similar downfield shifts of the triazole protons as noted in the 1H-306 

NMR titration and as is also likely in the fluorescence quenching seen in the mixed 307 

acetonitrile-HEPES solvent. Particularly, an analogous protonation by TNP with a pyrazoline 308 

nanoparticle fluorescent sensor was proposed by Ahmed and co-workers (Ahmed et al., 309 

2017). It is noteworthy also that the chemical shifts of the axial protons in the Ar–CH2–O 310 

methylene bridges, which are related to the conformation of hexahomotrioxacalix[3]arene, 311 

were shifted to lower magnetic field (from 3.93 to 4.08 ppm) as also were the equatorial 312 

protons and the methylene protons of ArO–CH2 shifted downfield although less so. The 313 

pyrene aromatic protons also displayed different downfield or upfield shifts (Fig.S17). These 314 

findings provide additional evidence suggesting that the hexahomotrioxacalix[3]arene 315 

undergoes a conformational change when it coordinates with TNP. Previous reports have 316 

demonstrated that the flexible hexahomotrioxacalix[3]arene framework possesses the 317 

capability to modulate its conformation in order to effectively bind with a specific target 318 

(Carpentier et al., 2022; Miranda et al., 2022; Lambert et al., 2020; Teixeira et al., 2020).  319 

3.4 Practical application 320 

Based on the remarkable sensitivity and selectivity of sensor L for TNP detection, the 321 

standard spike/recovery method was employed to conduct spectrofluorimetric detection of 322 

TNP in real water and soil samples. As shown in Table 1, the recoveries of the samples varied 323 

from 97.14% to 103.20%, indicating that the proposed method has wonderful practicability. 324 

In addition, the RSD (relative standard deviation) of each sample was below 1.28%, revealing 325 

the high reproducibility and precision of this approach. To check the reliability of such a 326 

spectrofluorimetric approach, HPLC experiments were also conducted on the same samples. 327 

The results obtained from the HPLC analysis show a high level of concordance with the 328 

spectrofluorimetric approach that was provided. This indicates that the current method is 329 

accurate for determining TNP in real samples. 330 
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In order to conduct a more comprehensive examination of the potential uses of sensor L, 331 

the development of low-cost and portable fluorescent test strips was performed. These test 332 

strips were specifically designed for the purpose of detecting TNP in real-time at the location 333 

of interest. As depicted in Fig.9, the blank test strip exhibited a prominent blue fluorescence 334 

upon irradiation with a 365 nm UV lamp. When the test strips were immersed in an aqueous 335 

solution of TNP, a noticeable phenomena of fluorescence quenching was observed. An 336 

evident disparity in the extent of quenching appeared as the concentration of TNP increased. 337 

Additionally, the contact-mode response of the strips to TNP was examined by covering a test 338 

strip with TNP crystals for one minute; this produced black spots when illuminated with a UV 339 

lamp (Fig.10). In particular, the test strips were successfully used to identify TNP vapor as 340 

well as in real water samples. These results demonstrate that the sensor L has outstanding 341 

sensing performance toward TNP, which served as a convenient and efficient test kit for the 342 

instant visualization of TNP. 343 

4 Conclusions 344 

In conclusion, a C3-symmetrical pyrenyl-triazole functionalized 345 

hexahomotrioxacalix[3]arene L has been developed as a novel TNP-selective fluorometric 346 

and colorimetric sensor. The high sensitivity of sensor L toward TNP is achieved by the 347 

combination of ground-state charge-transfer complex formation and the inner filter effect. 1H-348 

NMR spectroscopic titrations confirmed that the preorganized 1,2,3-triazole played a crucial 349 

role as the hydrogen-bonding motif for bonding with TNP. Moreover, fluorescent test strips 350 

based on L were fabricated for practical applications in the detection of TNP in real samples. 351 

This work presented herein demonstrates the potential of a click-chemically derived triazole-352 

functionalized hexahomotrioxacalix[3]arene for the design of high-efficiency fluorescent 353 

sensors for the hazardous trinitrophenol pollutant. 354 
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Figure captions 

Scheme 1. The synthetic route of sensor L. 

Fig. 1. Emission spectra of sensor L (1.0 μM) with increasing concentrations of TNP. 

Fig. 2. Fluorescence quenching efficiencies (η = (I0–I)/I0 × 100%) of L (1.0 μM) 

towards various NACs and potential aromatic interferents. 

Fig. 3. Change in absorption spectra of sensor L (5.0 μM) with the addition of TNP. 

Fig. 4. Frontier-molecular orbital distributions and energy level diagrams for sensor L 

and TNP (calculated at the B3LYP/6-31G(d) level), and the proposed charge transfer 

mechanism leading to fluorescence quenching. 

Fig. 5. Relative energy levels HOMO and LUMO of sensor L and various NACs. 

Fig. 6. (a) Overlap between excitation/emission spectra of L and absorption spectrum 

of TNP. (b) Overlap between excitation/emission spectra of L and absorption spectra 

of various NACs. 

Fig. 7. Partial 1H NMR spectroscopic titration of L (3.0 mM) in the presence of 

increasing amounts of TNP in CDCl3. 

Fig. 8. Space-filling of the gas-phase DFT-optimized structures of left: sensor L 

showing the π-stacking of the pyrene groups and right: 1:1 complex of L plus TNP. 

Note: The backbone hydrogen atoms have been removed to ease visualization. 

Colours: carbon = grey; nitrogen = blue; oxygen= red. 

Fig. 9. Photographs (under 365 nm UV light) of the fluorescence response of L on test 

strips after contact with various concentrations of TNP solutions. 

Fig. 10. Responses of test strips before (A) and after (B and C) dipping into real water 

samples, and the responses for contact with TNP crystals (D) and vapour (E). 

 

 

Table captions 

Table 1. Spiked recoveries and RSD (%; n = 3) for detection of different 

concentration TNP in water and soil samples by sensor L and conventional HPLC. 

Table (Editable version) Click here to access/download;Table (Editable version);8.
Scheme and Figures.docx
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Scheme 1. The synthetic route of sensor L. 
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Fig. 1. Emission spectra of sensor L (1.0 μM) with increasing concentrations of TNP.   
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Fig. 2. Fluorescence quenching efficiencies (η = (I0–I)/I0 × 100%) of L (1.0 μM) 

towards various NACs and potential aromatic interferents. 

  



 5 

 

Fig. 3. Change in absorption spectra of sensor L (5.0 μM) with the addition of TNP. 
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Fig. 4. Frontier-molecular orbital distributions and energy level diagrams for sensor L 

and TNP (calculated at the B3LYP/6-31G(d) level), and the proposed charge transfer 

mechanism leading to fluorescence quenching. 
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Fig. 5. Relative energy levels HOMO and LUMO of sensor L and various NACs. 
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Fig. 6. (a) Overlap between excitation/emission spectra of L and absorption spectrum 

of TNP. (b) Overlap between excitation/emission spectra of L and absorption spectra 

of various NACs. 
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Fig. 7. Partial 1H NMR spectroscopic titration of L (3.0 mM) in the presence of 

increasing amounts of TNP in CDCl3. 
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Fig. 8. Space-filling of the gas-phase DFT-optimized structures of left: sensor L 

showing the π-stacking of the pyrene groups and right: 1:1 complex of L plus TNP. 

Note: The backbone hydrogen atoms have been removed to ease visualization. 

Colours: carbon = grey; nitrogen = blue; oxygen= red. 
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Fig. 9. Photographs (under 365 nm UV light) of the fluorescence response of L on test 

strips after contact with various concentrations of TNP solutions. 

 

 

 

Fig. 10. Responses of test strips before (A) and after (B and C) dipping into real water 

samples, and the responses for contact with TNP crystals (D) and vapour (E). 
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Table 1. Spiked recoveries and RSD (%; n = 3) for detection of different 

concentration TNP in water and soil samples by sensor L and conventional HPLC. 

Sample 
Spiked 

(μM) 

Sensor L HPLC Method 

Found 

(μM) 

Recovery±RSD 

(%) 

Found 

(μM) 

Recovery±RSD 

(%) 

Tap water 
5.00 4.93 98.60 ± 0.89 5.03 100.60 ± 0.54 

10.00 10.08 100.80 ± 0.74 9.94 99.40 ± 0.88 

Pond water 
5.00 5.16 103.20 ± 1.16 5.12 102.40 ± 1.14 

10.00 10.14 101.40 ± 1.12 9.91 99.10 ± 1.18 

Soil 
4.36 4.48 102.75 ± 0.83 4.30 98.62 ± 0.43 

8.73 8.48 97.14 ± 1.28 8.86 101.49 ± 0.82 
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