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Abstract: The importance of electric vehicle charging stations (EVCS) is increasing as electric vehicles
(EV) become more widely used. EVCS with multiple low-carbon energy sources can promote
sustainable energy development. This paper presents an optimization methodology for direct energy
exchange between multi-geographic dispersed EVCSs in London, UK. The charging stations (CSs)
incorporate solar panels, hydrogen, battery energy storage systems, and grids to support their
operations. EVs are used to allow the energy exchange of charging stations. The objective function
of the solar-hydrogen-battery storage electric vehicle charging station (SHS-EVCS) includes the
minimization of both capital and operation and maintenance (O&M) costs, as well as the reduction in
greenhouse gas emissions. The system constraints encompass the power output limits of individual
components and the need to maintain a power balance between the SHS-EVCSs and the EV charging
demand. To evaluate and compare the proposed SHS-EVCSs, two multi-objective optimization
algorithms, namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-objective
Evolutionary Algorithm Based on Decomposition (MOEA/D), are employed. The findings indicate
that NSGA-II outperforms MOEA/D in terms of achieving higher-quality solutions. During the
optimization process, various factors are considered, including the sizing of solar panels and hydrogen
storage tanks, the capacity of electric vehicle chargers, and the volume of energy exchanged between
the two stations. The application of the optimized SHS-EVCSs results in substantial cost savings,
thereby emphasizing the practical benefits of the proposed approach.

Keywords: electric vehicle charging station; solar power; hydrogen storage; battery storage; NSGA-II;
MOEA/D; energy exchange

1. Introduction

Since the beginning of the 21st century, there has been an increasing recognition of the
imperative to solve greenhouse gas emissions and environmental pollution stemming from
the heavy reliance on fossil fuels [1]. Consequently, renewable energy sources have gained
significant prominence and are now widely acknowledged as primary energy alternatives
in numerous countries worldwide. It is noteworthy that the electricity generation and
transportation sectors are major contributors to carbon dioxide emissions, accounting for
approximately 64% of the total emissions [1]. This has sparked considerable public concern
regarding the irreversible environmental consequences associated with such emissions. As
emphasized in [2], the integration of renewable energies is indispensable for achieving the
necessary reduction targets in carbon dioxide (CO2) emissions in the domains of electricity
generation and transportation. Electric vehicles (EVs) have emerged as one of the viable
solutions for curbing CO2 emissions. Extensive reviews of existing studies on EVs [3,4]
have revealed that the adoption of these vehicles delivers evident societal benefits in
terms of environmental impact, as well as economic advantages for EV purchasers through
reduced operational expenses. However, the development of EV charging infrastructure has

Electronics 2023, 12, 4149. https://doi.org/10.3390/electronics12194149 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12194149
https://doi.org/10.3390/electronics12194149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0867-2365
https://orcid.org/0000-0002-4169-4438
https://doi.org/10.3390/electronics12194149
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12194149?type=check_update&version=2


Electronics 2023, 12, 4149 2 of 23

remained a significant hurdle in stimulating higher rates of EV adoption. Ref. [5] highlights
that the growth of charging stations (CSs) for EVs has been relatively sluggish, thereby
impacting the willingness of potential users to purchase EVs. Correspondingly, Ref. [6]
attributes the slow progress of EV charging infrastructure to the substantial investment
costs faced by infrastructure developers, compounded with the uncertainties surrounding
EV demand. Figure 1 and Table 1 show the evolution of these four categories of charging
stations (slow, fast, rapid and ultra-rapid) throughout the years. In the case of London,
projections indicate a need for over 500,000 charging points in the city and its environs by
2040, with nearly 50,000 charging points required in public locations [7].
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Table 1. Power rating of four types of charging stations [8].

Type Slow Fast Rapid Ultra-Rapid

Power Rating (kW) 3–6 7–22 25–99 100

The previous research identifies that in most residential CSs, slow charging ports are
mainly used [4]. Previously, government agencies have been the main developers of charg-
ing infrastructure. However, recent times have been marked by increased development of
infrastructure by commercial developers. For example, Tesla has over 14,000 superchargers
in 36 countries; EV go has over 750 chargers across 34 countries, while a firm such as Charge
Hub in Canada has over 7906 CSs [4,9]. In the UK, attribute growth in a number of CSs has
led to an elaborate strategy by the UK government to improve charging infrastructure [10].
As part of this strategy, the government has put in place national legislation to enhance the
quantity, spread, and reach of alternative fuel infrastructure. In addition, the government
has been involved in provision of grants for EV charging infrastructure including schemes
for installation of such infrastructure at workplaces and homes. While fast CSs can help
solve the problem of time used in recharging batteries relative to normal gasoline refuelling,
research indicates such stations will take considerable time before being deployed in stan-
dard residential settings [11]. This has been attributed to the special equipment required to
develop DC fast-charging infrastructure.

Furthermore, it has been indicated that electric vehicle charging stations (EVCSs)
during high-usage times have the potential to lead to a low voltage profile [12]. In detail,
EVCSs are likely to affect voltage stability due to sudden increases in loads often within
a short duration. This makes the grid unstable and thus necessitates effective scheduling
of EV charging. Lastly, an increase in EVCSs negatively affects transformer performance.
Precisely, ref [13] indicates that the mass development of EVs creates additional stress on
the distribution transformers. Consequently, the transformers could have their life cycle
shortened. This literature suggested that considerable measures must be investigated for
the planning and operation of EVCSs to ensure the power quality of the existing grid will
not be negatively affected.
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Turning to direct energy exchange, also known as point-to-point power transmission,
can offer several advantages over energy exchange through a distribution network. There
are two direct energy exchange methods, one is through the electricity wire from point to
point, while the other one is using EVs, which is also known as a Vehicular Energy Network,
to transfer the energy [14]. For the first method, direct energy exchange typically involves
high-voltage transmission lines, which have lower resistive losses compared to distribution
networks [15,16]. This means that more power can be transmitted over longer distances
with minimal losses. In contrast, distribution networks have numerous intermediate
transformers and distribution lines that introduce additional losses [15,17]. For the second
method, direct energy exchange using EVs allows for more flexibility in terms of routing. It
enables the transmission of electricity from a specific source to a specific destination without
relying on intermediate distribution systems [14]. This flexibility can be crucial for large-
scale power transactions, where buyers and sellers may be geographically distant from
each other. Energy exchange through a distribution network is subject to the vulnerabilities
of that network, including potential faults, outages, and capacity limitations [14,15,18,19].
While establishing a direct energy exchange infrastructure requires upfront investment, it
can be more cost-effective in the long run. By reducing transmission losses and improving
efficiency, direct energy exchange can result in overall cost savings compared to reliance
on distribution networks, which may require ongoing maintenance, upgrades, and losses
associated with their operation [15]. In this paper, the EVs’ method will be considered as
the only way for direct energy exchange.

It is essential to recognize that both direct energy exchange and energy exchange
through distribution networks offer unique advantages and can be employed in various
situations. The choice of the most suitable approach relies on several factors, such as
geographical constraints, the scale of energy exchange, existing infrastructure, and the
specific requirements of the power system. These considerations play a pivotal role in
the decision-making process when aiming to establish an efficient and dependable power
transmission method. However, for the purpose of this research, which is the multi-
objective functions, direct energy exchange was selected.

Table 2 shows the current discourse pertaining to EVCSs predominantly centred
around various dimensions, such as their charging status, application, and development
prospects. However, there exists a limited focus on the exploration of charging station
facilities that integrate multiple energy sources, such as solar-hydrogen storage systems.
Present investigations primarily revolve around microgrid technology, which synergis-
tically integrates renewable energy sources, energy storage systems, and EV charging
by means of internet-based system scheduling. The principal objectives of these studies
primarily revolve around enhancing charging methodologies for individual EVs, efficiently
allocating capacity among different components within the CS, and optimizing control
systems. The primary emphasis is placed on enhancing the economic aspects of system
operation. Research endeavours predominantly concentrate on augmenting the utilization
rate of renewable energy sources, particularly photovoltaics, and devising charging modes
for EVs based on the charging system dispatching within individual charging stations. In
the specific context of constructing a CS, a comprehensive analysis of EV charging demands
becomes imperative. While fulfilling these demands, it becomes crucial to meticulously
plan the energy flow inside the EVCSs, taking into consideration the operational status
of the charging station’s components, as well as the associated capital and operation and
maintenance (O&M) costs. Moreover, there is a noticeable paucity of studies exploring
energy scheduling strategies and optimal scheduling mechanisms encompassing charging
stations in their entirety.
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Table 2. Literature review and benchmark of relevant work.

Ref.
EV Charging
Station Energy
Sources

Objective Function Country
Energy
Exchange
Applied

Solving
Method Results

[20] PV, battery, grid

Maximize the
charging station
self-sufficiency and
decrease the number
of battery cycles.

Denmark Distribution
network

Monte Carlo
simulation

The enhanced
control reduces the
number of battery
cycles

[21] Battery storage,
PV

Minimize the
annualized total cost USA N/A

Robust-
optimization-
based mixed
integer linear
programming
model

MILP-based
optimization model
to obtain BESS and
PV system sizing
and optimal energy
management

[22]
Grid, PV,
energy storage
system

Minimize the total
cost of charging and
discharging EVs
during their stay in
the charging station

China Distribution
network

Charging and
discharging
power
scheduling
algorithm
solved with a
chance
constrained
programming
method

The proposed
contract capacity
optimization
algorithm yields a
range of
unanimous eligible
contract capacity
sizes

[23]
PV, battery
storage, wind,
grid

Maximize the net
present value (NPV)
of the investor’s
profit during the
useful life

Iran Distribution
network

Fuzzy-neural
network and
improved
particle swarm
optimization

Profitability
increased by 6% on
average

[24]
Diesel
generator, PV,
battery storage

Minimize the
annualized cost Qatar Distribution

network

Gaussian
probability
distribution
function

The proposed
model successfully
designs the
available energy
resources and the
objectives such as
minimizing cost

[25] PV, wind, fuel
cell, grid

Minimize the capital
and O&M cost;
optimal place and
size

India Distribution
network

Modified
teaching–
learning-based
optimization

The minimum
value of cost
obtained is USD
2.0250 × 106. The
CSs are optimally
placed at bus
numbers 2, 19, and
20 and 16, 43, and
107 on 33 and
123 test systems

[26] PV, fuel cell,
battery storage

The balance of the
terminal power of the
power components
under consideration
and the quick
regulation

India Distribution
network

Fuzzy sparrow
search
algorithm and
particle swarm
optimization

The hybrid
SSA-based
response is
effective and
efficient
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Table 2. Cont.

Ref.
EV Charging
Station Energy
Sources

Objective Function Country
Energy
Exchange
Applied

Solving
Method Results

[27] PV, wind,
battery

Minimize the total
net present cost and
minimize loss of
power supply
probability

Saudi Arabia Distribution
network

MOPSO,
NASG-II,
NSGA-III,
MOEA/D

NSGA-II achieved
the highest overall
performance
among the four
algorithms, with
the best scores for
convergence and
diversity. NSGA-III
had the highest
efficiency score,
while MOPSO
attained the highest
diversity score

[28] PV, energy
storage system

Minimize the capital
cost USA Distribution

network

A novel Monte
Carlo
simulation tool

A total annual cost
savings of 26.55%
at extreme fast
charging 4 and
27.01% at extreme
fast charging 8 due
to reduced
electricity
purchases from the
grid

[29]

PV, energy
storage system,
fossil-fuel-
based
generation
units

Maximize EVs’
penetration, reduce
the carbon dioxide
emitted, and
minimizing the
capital and O&M
costs

Saudi Arabia Distribution
network

Multi-objective
Gazelle
Optimization
Algorithm
(MGOA),
multi-objective
SALP swarm
algorithm
(MSSA),
multi-objective
particle swarm
optimization
(MPSO)

The MGOA was
superior in
comparison with
the MSSA and
MPSO. The MGOA
outperformed the
MSSA and MPSO
in terms of
robustness and
obtaining
high-quality
solutions when
applied to solve the
proposed problem

[30]

PV, battery
storage,
hydrogen
storage, grid

Minimize the capital
and O&M costs of
the stations

UK Direct energy
exchange GA

It is nearly 3 times
cheaper than
buying electricity
from grid

This
work

PV, grid,
hydrogen
storage, battery
storage, other
EV charging
station

Minimize the capital
and O&M cost;
minimize the
greenhouse gas
emission cost

UK Direct energy
exchange

NSGA-II and
MOEA/D

NSGA-II gives the
optimal solution

Drawing upon the extant literature, this paper delves into a specific inquiry encom-
passing the following focal points and makes the following contributions:

• The establishment of an intricate model pertaining to EVCSs forms the crux of this
study. A comparative assessment of simulation optimization techniques is conducted,
involving the rigorous evaluation and juxtaposition of two distinct algorithms, which
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are the Non-dominated Sorting Genetic Algorithm and the Multi-objective Evolution-
ary Algorithm Based on Decomposition. Through examination, the optimal outcome
is identified and selected based on predetermined criteria and performance metrics.

• Moreover, the investigation incorporates a notable consideration, namely the direct
exchange of electric energy between EVCSs without energy exchange through the
distribution network. By scrutinizing the intricacies and implications associated with
direct energy exchange, the study aims to shed light on the viability, benefits, and
challenges of this novel paradigm.

• An additional crucial facet of the optimization objective revolves around minimizing
not only the capital and O&M costs, but also greenhouse gas emission costs. By
integrating environmental sustainability as a pivotal criterion, the research endeav-
ours to explore the intricate nexus between economic efficiency and environmental
impact. The holistic optimization approach aims to strike an optimal balance between
minimizing costs and mitigating the ecological footprint associated with greenhouse
gas emissions.

In summary, this paper takes an academically rigorous stance by synthesizing the
existing body of literature and undertaking a focused investigation. It entails the establish-
ment of an intricate model for electric vehicle charging stations, comparative analysis of
simulation optimization algorithms, exploration of the direct exchange of electric energy,
and inclusion of greenhouse gas emission costs in the optimization objective.

2. Problem Formulation

The first objective function of SHS-EVCS design is minimizing the capital and O&M
costs of the system. This objective function comprises two primary components, that
is, the initial capital cost (C0) and the subsequent system O&M cost (C1). The initial
capital cost includes the construction and procurement of each distributed unit within
the SHS-EVCS system, and the size of the energy storage device also influences this cost.
The aim is to identify the optimal design size for the energy storage device through this
optimization objective. The later operating cost comprises the costs related to the operation
and maintenance of each component within the microgrid system, fuel cell expenses,
transaction costs between the system and the grid, as well as transaction costs between the
two electric vehicle charging stations. The system optimizes this cost component to enable
energy storage and other distributed equipment to function as controllable loads during
the scheduling period while adhering to operational constraints. The second objective
function is from an environmental protection standpoint within the SHS-EVCS context,
which focuses on the cost analysis of greenhouse gas emission for each unit. In order
to account for both environmental considerations and overall benefits, a comprehensive
benefit optimization model has been developed and implemented [30,31]. This model aims
to establish an objective function that optimizes capital and O&M costs while effectively
addressing the emission cost objectives of the SHS-EVCS.

Although, the SHS-EVCS is integrated with the grid, with an emphasis on ensuring
the self-sufficiency of the EVCS’s own power supply. Under this circumstance, the primary
objective is to rely on the internally generated energy of the EVCS to meet the daily load
requirements. However, in instances where the energy generation falls short of meeting
the demand, the consideration of purchasing electricity from the grid or another EVCS
is considered.

2.1. Objective Function

minF = min(C0 + ∑N
m=1 ∑T

t=1 C1[m, t]) (1)

minFGE = ∑T
t=1 ∑J

j=1 ζ j

(
∑N

i=1 δjPmt + γjQmt

)
(2)
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C0 = ∑N
m=1 C0

m ×
r× (r + 1)y

(r + 1)y − 1
(3)

C1[m, t] = COM[m, t] + CFuel [m, t] + Cgrid[m, t] +
(

Mbuy1 −Msell1

)
(4)

where N is the subsystem, which is 2; T is 24 h; C0
m is the initial capital cost in the m

subsystem; j is the greenhouse gases in class j (including CO2, SO2, and NOx); J is the
number of greenhouse gases, which is 3; ζ j is the disposal cost for class j greenhouse gases
(GBP/kW); δj and γj are the class j greenhouse gases’ coefficient number of the SHS system
and grid (GBP/kW); Pmt and Qmt are the SHS system and grid power (kW) output in time
t; COM[m, n], CFuel [m, n], and Cgrid[m, n] are the operating and maintained cost, fuel cell
cost, and selling and buying electricity price from grid cost, respectively; r is the discount
rate, which is 6%; and Mbuy1 and Msell1 are the buying and selling electricity to another EV
charging station cost and revenue, respectively.

COM[m, t] = COM(pvn)[m, t] + COM(hsn)[m, t] + COM(batn)[m, t] (5)

COM(pv)[m, t] = KOMpvPpv[m, t] (6)

COM(hs)[m, t] = KOMhsPt
H2,i[m, t] (7)

COM(es)[m, t] = KOMbatPBat,a,t[m, t] (8)

CFuel [m, t] = am fm (9)

Cgrid[m, t] = bPg,buy − cPg,sell (10)

Mbuy1 = dPEVCS,buy1 (11)

Msell1 = ePEVCS,sell1 (12)

where COM(pvn)[m, t], COM(hsn)[m, t], and COM(batn)[m, t] are the photovoltaic, hydrogen,
and battery storage O&M cost; KOMpv, KOMhs, and KOMbat are the operation and main-
tenance cost, which is 28.70 GBP/kW, 14.18 GBP/kW, and 4.75 GBP/kW, respectively;
Ppv[m, t], Pt

H2,i[m, t], and PBat,e,t[m, t] are the output power for PV, hydrogen, and battery
storage, respectively; am and fm are the price for the fuel cell and capacity for the fuel cell,
respectively; b and c are the buying and selling prices for the grid (these prices are change-
able depending on the time period, but in this paper, the selling price c is 0.33 GBP/kWh),
respectively; Pg, buy and Pg,sell are the buying and selling power from the grid, respectively;
and d and e are the buying and selling prices from another EV charging station (these prices
are changeable depending on the time period, respectively, but in this paper, the buying
price d is 0.24 GBP/kWh and buying prices e are 0.31 GBP/kWh). PEVCS,buy1 and PEVCS,sell1
are the buying and selling power from EVCS, respectively.

2.2. Components’ Model
2.2.1. Hydrogen System Model

Considering the unpredictable and often cloudy weather conditions in the UK, it
becomes apparent that relying solely on photovoltaic energy may not be sufficient to meet
the demands of EVCS. Additionally, while battery technology has made significant strides,
the cost of batteries still presents a significant challenge for widespread deployment and
scalability. Considering these factors, hydrogen emerges as a promising alternative among
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renewable energy options. Its versatility and ease of transport make it an attractive choice
for urban settings [32]. Hydrogen energy storage stands out due to its remarkable energy
storage density. The use of hydrogen energy storage not only enhances energy resilience
but also offers a means to balance the grid by providing a stable and on-demand energy
source when needed. This innovative solution represents a vital step towards reducing
greenhouse gas emissions, fostering cleaner transportation options, and building a more
sustainable energy infrastructure, for the future, into hydrogen through a process like
electrolysis and then stored for later use.

The equivalent electric power of hydrogen output in the t period of hydrogen produc-
tion with an electrolyser is as follows:

Pt
H2,i = Pt

E2HαE2H i ∈ NHSS (13)

The power generation of the hydrogen fuel cell is as follows:

Pt
H2P, i = Pt

H−FCβE2PηFC, i ∈ NHSS (14)

The equivalent SOC of the hydrogen storage capacity of the hydrogen storage tank in
the t period is as follows:

Et
H2,i = Et−1

H2,i −
(

Pt
H−FC, i + Pt

SH,i + Pt
H2,i

)
∆t, i ∈ NHSS (15)

where Pt
E2H and Pt

H−FC are the power consumption of electrolysis and the fuel cell, re-
spectively; αE2H and βE2P are the conversion efficiency of the electrolyser and fuel cell,
respectively; ηFC represents the FC efficiency; Et−1

H2,i, Pt
SH,i, and ∆t are the residual hydrogen

storage equivalent electricity in the t−1 period, and the equivalent power of the hydrogen
load and unit time period, respectively; and NHSS is the set of hydrogen system nodes.

2.2.2. Photovoltaic Power Model

A photovoltaic power generation model was adopted [33] as follows:

Ppv = PSTCGAC
[1 + k(Tc − Tr)]

GSTC
(16)

where Ppv is photovoltaic cell output power; GAC is light intensity; PSTC is the maximum
test power under standard test conditions (sunlight incident intensity of 1000 W/m2 and
ambient temperature of 25 ◦C); and GSTC is the illumination intensity under standard test
conditions, and its value is 1000 W/m. K is the power temperature coefficient; Tc is the
operating temperature of the panel; and Tr is the reference temperature.

2.2.3. Battery Storage Model

This paper used the battery as the energy storage component. A battery plays an
important role in balancing power fluctuation and improving power quality in an SHS-EV
charging station. The available capacity SBat,a,t of the battery is the following [34]:

PBat,e,t = PBat,e,t1(1− σBat,e) + (Pcha
Bat,e,t ∗ ηcha

Bat,e +
Pdis

Bat,e,t

ηdis
Bat,e

)∆t (17)

where PBat,e,t and PBat,e,t1 are the residual capacity of battery pack e in time t and t1,
respectively; σBat,e is the self discharge rate of battery group e; Pcha

Bat,a,t and Pdis
Bat,a,t are the

charging power and discharge power of battery pack e in time t, respectively, and the power
during discharge is negative; and ηcha

Bat,e and ηdis
Bat,e are the charging efficiency and discharge

efficiency of battery pack e in period t, respectively.
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2.3. Constraints’ Condition
2.3.1. Photovoltaic Power Output Constraints

Due to the randomness and volatility of solar energy, the photovoltaic power output
is coordinated according to the predicted power.

P f or
Pv,k,t, 0 ≤ PPv,k,t ≤ Pn

Pv,k (18)

where P f or
Pv,k,t and Pn

Pv,k are the predicted power and rated power of the k photovoltaic cells
at time t, respectively.

2.3.2. Battery Storage Output Constraints

A battery is an energy storage unit that does not generate electricity, so the battery
capacity remains unchanged throughout the coordination period.

SBat,e,T = SBat,e,0 (19)

where SBat,e,T and SBat,e,0 are the ending capacity and initial capacity of the battery pack e
in the coordination period, respectively.

2.3.3. Hydrogen Storage Output Constraints

Emin
H2,i ≤ Et

H2,i ≤ EH2,i,CAP, i ∈ NHSS (20)

where EH2,i,CAP and Emin
H2,i are the capacity and lower limit of the hydrogen storage tank,

respectively, and the lower limit is 20%.

2.3.4. The Power Output of each Energy Source
Pin, electrolyser

min ≤ Pin, electrolyser
t ≤ Pin, electrolyser

max
PFC

min ≤ PFC
t ≤ PFC

max
SOCmin ≤ SOC ≤ SOCmax

(21)

where Ppv
t is the power consumed of PV at time slot t; Pin, electrolyser

min and Pin, electrolyser
max are

the upper and lower limits of Pin, electrolyzer
t , respectively; and PFC

min and PFC
max are the upper

and lower limits of fuel cell generation, respectively.

2.3.5. Power Balance Constraint

∑T
t=1 Ppv(t) + Pt

H2,i(t) + PBat,e,t(t) + Pg(t) + PEVCS(t) = Pload(t) (22)

Pg and PEVCS are the grid and another EV charging station energy exchange (positive
means buying electricity and negative means selling electricity) at time t, respectively. Pload
is the load power at time t.

2.4. Algorithm

This paper compares NSGA-II (Non-dominated Sorting Genetic Algorithm) and
MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition); both are
multi-objective optimization algorithms that have been widely used in many fields includ-
ing renewable energy.

NSGA II is an optimization method based on populations, drawing inspiration from
natural selection, genetics, and evolution to seek the best possible solution for a given
problem [35]. NSGA-II sorts individuals based on their dominance relations and assigns
them to different fronts, with the individuals on the first front being non-dominated, i.e., no
other individual in the population has better objective function values. NSGA-II then
applies a crowding distance metric to maintain diversity in the population [35–38]. NSGA
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II is an optimization method based on populations, drawing inspiration from natural
selection, genetics, and evolution to seek the best possible solution for a given problem.
MOEA/D, on the other hand, is a decomposition-based algorithm that decomposes the
multi-objective optimization problem into several subproblems, each with a single objective.
MOEA/D solves these subproblems simultaneously and then aggregates the solutions to
obtain the Pareto optimal front. The algorithm iteratively updates the weights assigned
to each objective in the subproblems to improve the convergence and diversity of the
solutions [39].

Compared to NSGA-II, MOEA/D has a faster convergence rate and requires less com-
putational resources, such as scalarizing function and population management, making
it suitable for large-scale optimization problems. However, NSGA-II has been shown to
have better diversity preservation and is more robust in finding the global Pareto front in
complex problems [35]. In addition, NSGA-II has been applied to a wide range of problems
and has been widely accepted as a benchmark algorithm for multi-objective optimization.
In summary, both NSGA-II and MOEA/D are effective multi-objective optimization al-
gorithms that have been successfully applied to renewable energy problems. The choice
between the two depends on the specific problem and the trade-off between computational
efficiency and solution quality [40]. This paper will also select the optimal algorithm based
on the Pareto front and Pareto optimal solutions. MOEA-D and NSGA-II have different
characteristics and approaches to solving multi-objective optimization problems. MOEA-D
decomposes the problem into several subproblems and optimizes them separately, while
NSGA-II uses a non-dominated sorting approach to evolve a population of solutions. Com-
paring them could support understanding on how these different approaches impact their
performance on specific problem types. The key settings of the two algorithms are given
in Table 3.

Table 3. Key Settings in the Algorithms.

NSGA-II

Population Size 100
Stopping Criteria 200
Crossover Percentage 0.8
Number of Parents 80
Mutation Percentage 0.4
Number of Mutants 40
Mutation Rate 0.01

MOEA-D

Population Size 100
Stopping Criteria 200
Number of Neighbours 10
Crossover Percentage 0.5

2.4.1. NSGA-II

This section describes how the NSGA-II operated in the MATLAB, NSGA-II uses a
ranking-based approach to find non-dominated solutions, which represent the optimal
solutions in a multi-objective optimization problem. Figure 2 demonstrates the flowcharts
of 2 SHS-EVCS using NSGA-II optimization.

Data input: Topological matrix. n: generation number; minF; minFGE.
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Figure 2. The flowchart of SHS-EV charging station using NSGA-II optimization.

The algorithm for using NSGA-II in the SHS-EVCS optimization process can be
described as follows [20]:

Algorithm 1: Non-dominated Sorting Genetic Algorithm (NSGA-II)

1. Problem definition.
a. Define the objective function.
b. Define the constraints.

2. Initialization.
a. Generate a set of initial solutions.
b. Evaluate the solutions using the objective function and constraints.

3. Fast Non-dominated Sorting.
4. Create the offspring population.

a. Crossover and mutation.
b. Evaluate the offspring solutions using the objective function and constraints.

5. Merge the parent and offspring populations.
6. Environmental selection.

a. Select the next generation of solutions.
b. Lowest non-domination level and highest crowding distance are preferred.

7. Repeat from Step 3.
8. Return the best solution.



Electronics 2023, 12, 4149 12 of 23

2.4.2. MOEA/D

This section describes how the MOEA/D operated in the MATLAB, MOEA/D aims
to find a set of solutions, known as a Pareto front, which represents the trade-offs be-
tween these objectives [39]. Figure 3 demonstrates the flowcharts of 2 SHS-EVCS using
MOEA/D optimization.
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MOEA/D can be summarized as follows:

Algorithm 2: Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

1. Input: Maximum no. of iterations 200; population; size N; decision making; preference
information.

2. Set ItrCounter = 1.
3. Generate the initial population by uniform sampling method.
4. Evaluate the objective values of the population.
5. Determine the Pareto-based non-dominated rank by fast sorting operator.
6. Compute the preference degree of decision making.
7. Compute the weighted distance.
8. Rank individuals according to weighted distance.
9. Select the top N individuals as the new parent population.
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3. Case Study
Solar-Hydrogen-Storage-Integrated Electric Vehicle Charging Station

Figure 4 shows that the solar-hydrogen-storage-integrated electric vehicle charging
station (SHS-EVCS) is a type of electric vehicle charging station that uses solar energy,
hydrogen energy storage, and battery energy storage as the main power sources. This type
of charging station is designed to reduce carbon emissions and minimize capital and O&M
costs. The solar component of the charging station uses photovoltaic panels to convert
sunlight into electricity. The electricity can be used directly to charge electric vehicles or
stored in batteries for later use. The hydrogen energy storage system uses an electrolyser
to split water into hydrogen and oxygen. The hydrogen is then stored in a high-pressure
tank for later use. When needed, the hydrogen is combined with oxygen in a fuel cell
to produce electricity to charge electric vehicles. The battery energy storage system uses
lithium-ion batteries to store excess electricity generated using the solar panels or produced
using the fuel cell. The stored electricity can be used to charge electric vehicles during times
when solar energy and hydrogen are not available. The SHS-EVCS system is designed
to optimize the use of renewable energy sources and minimize the use of fossil fuels. By
using solar and hydrogen energy, the charging station can reduce carbon emissions and
help to mitigate the effects of climate change. Additionally, the use of battery storage helps
to ensure that electric vehicles can be charged even when renewable energy sources are
not available.
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SHS-EVCS can also interact with the grid through a process called energy exchange.
During periods of excess energy generation, such as during the daytime when solar energy
is abundant, the charging station can export excess energy to the grid. Conversely, during
periods of high energy demand, such as during peak hours when many electric vehicles are
being charged, the charging station can import energy from the grid to supplement its own
renewable energy sources. This energy exchange allows the SHS-EVCS to further optimize
its use of renewable energy sources and minimize the use of fossil fuels. By exporting
excess energy to the grid during periods of high renewable energy generation, the charging
station can help to balance the grid and increase the overall use of renewable energy. And
by importing energy from the grid during periods of high demand, the charging station
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can ensure that electric vehicles can be charged even when renewable energy sources are
not available.

The siting and sizing of EV charging stations require a comprehensive understanding
of local EV adoption patterns, infrastructure capabilities, and user preferences. It is crucial
to balance accessibility, convenience, and scalability to create a charging network that
supports the growing EV market effectively [41]. Figure 5 shows that when two SHS-
EVCSs are connected to the grid, they can also exchange power between each other. If
one charging station has excess energy while the other is in high demand, the charging
station with excess energy can supply power to the other station. This energy exchange also
helps to optimize the use of renewable energy sources and minimize the use of fossil fuels,
same as interacting with the grid. Figure 6 contributes with a visual representation of the
geographical layout of these two distinct locations. This visualization serves as a valuable
reference for understanding the spatial relationship between the two sites. The distance
between the two sites is about 8 km by car. To optimize the accessibility and convenience
of charging infrastructure, a strategic decision was made to establish a connection between
the two closest charging stations. By doing so, it aims to enhance the overall efficiency and
usability of these charging points.
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In the methodology section, two SHS-EVCSs were modelled. Tables 4 and 5 present the
key technical and economic parameters of each station. Table 6 outlines the greenhouse gas
emission coefficient and disposal cost; the objective function for environmental protection
operation considered these factors. For the case study, a 24-h scheduling period was
utilized, and an hourly energy dispatch solution was implemented on a summer reference
day. Table 7 shows some design variables for SHS-EVCS.

Table 4. Technical parameters of SHS-EVCS in two London boroughs [43,44].

Parameters Hammersmith and Fulham Richmond upon Thames

Charger capacity (kW) 360 360
Number of chargers per station 3 8
PV installed capacity (kW) 500 1000
Battery capacity (kWh) 500 800
Hydrogen tank capacity (m3) 1000 1500
Fuel cell generator capacity (kW) 800 1000
Battery initial state of charge (%) 40 40
Minimum battery state of charge
(%) 25 25

Maximum battery state of charge
(%) 100 100

Battery charge and discharge
efficiency (%) 85 85

Initial capacity of gas tank (%) 30 30
Tank storage efficiency (%) 95 95
Electric to gas efficiency (%) 75 75
Electricity-to-gas coefficient
(kWh/m3) 0.2 0.2

Gas-to-electric efficiency (%) 65 65
Gas-to-electricity coefficient
(m3/kWh) 0.295 0.295

Table 5. Economic parameters of SHS-EVCS in two London boroughs.

Parameters Hammersmith and Fulham Richmond upon Thames

PV capital cost (GBP/kW) 1112 1112
Battery capital cost
(GBP/kWh) 331.55 331.55

Hydrogen tank cost (GBP/m3) 27.63 27.63

Table 6. Greenhouse gas emission costs [33,45].

Type Fuel Cell Generator
Eco-Efficiency (kg/kWh)

Grid Eco-Efficiency
(kg/kWh)

Disposal Cost
(GBP/kg)

CO2 1.596 1.432 0.088
SO2 0.008 0.454 6.237
NOx 0.014 21.8 26.46
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Table 7. Design variables for SHS-EVCS.

Input Technical Specification

Replace time (y) (year) 10
PV O&M cost (KOMpv) (GBP/kW) 28.70 [31]
Hydrogen O&M cost (KOMhs) (GBP/kW) 14.18 [31]
Battery O&M cost (KOMbat) (GBP/kW) 4.75 [31]
PV output power (Ppv[m, t]) (kW) PSTCGAC

[1+k(Tc−Tr)]
GSTC

[32]
Hydrogen output power (Pt

H2,i[m, t]) (kW) Et−1
H2,i −

(
Pt

H−FC,i + Pt
SH,i + Pt

H2,i

)
∆t [32]

Battery output power (PBat,a,t[m, t]) (kW)
PBat,e,t1(1− σBat,e) +(

Pcha
Bat,e,t ∗ ηcha

Bat,e +
Pdis

Bat,e,t

ηdis
Bat,e

)
∆t [33]

Discount rate (r) (%) 6
Buying and selling prices from grid (b, c)
(GBP/kW) 0.33

Buying prices from another charging station (d)
(GBP/kW) 0.24

Selling prices from another charging station (e)
(GBP/kW) 0.31

4. Results and Discussion

Figure 7 presents the projected profile of EV charging demand, commonly referred to
as the load curve, within the SHS-EVCS across two specific boroughs in London. Each EV
charging load curve corresponds to a distinct SHS-EVCS. It is assumed that Hammersmith
and Fulham will have 5 SHS-EVCSs, while Richmond upon Thames will have 14, based on
the existing number of petrol stations within these respective boroughs [46]. Among these
stations, Richmond exhibits the highest EV charging load, reaching a peak value of 2.8 MW.
To accommodate this peak charging load, eight chargers are required within the charging
stations. This calculation is based on the assumption that a 360 kW charger is necessary to
charge an EV equipped with a 60 kWh battery. Consequently, by employing eight chargers,
the peak charging load in Richmond can be adequately managed. Conversely, the SHS-
EVCS in Hammersmith and Fulham experiences the lowest charging load, remaining below
1000 kW. Accordingly, three chargers with a capacity of 360 kW each are deemed sufficient.
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Figure 8 shows that solar energy plays a dominant role as the primary energy source
between 7 am and 7 pm, with a maximum capacity of 500 kW. This heavy dependence on
solar power emphasizes the importance of utilizing this renewable energy source to meet
the energy demands necessary for charging EVs at the SHS-EVCSs during this specific
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time frame. To ensure a reliable and consistent energy supply throughout these hours,
the charging station integrates both hydrogen energy storage and electric energy storage
systems, working in synergy to effectively meet the changing requirements throughout
the day.
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Figure 8. Hammersmith and Fulham optimal energy dispatch solution (with energy exchange).

Furthermore, during the period of 10:00 to 15:00, characterized by peak electricity
prices, the SHS-EVCS engages with the power grid to ensure a sufficient supply of elec-
tricity. While relying on the power grid during these hours may entail considerable costs,
it becomes imperative in order to meet the elevated energy demands for charging pur-
poses. Nonetheless, the charging station optimizes its operational expenditures through
the implementation of a time-of-use pricing strategy. By capitalizing on lower electricity
prices during off-peak hours, the station procures electricity and stores it for subsequent
utilization during peak hours. This strategic approach not only mitigates the financial
burden associated with high electricity prices but also facilitates cost savings for the charg-
ing station.

Figure 9 provides a depiction of the energy dispatch analysis conducted on a singular
SHS-EVCS without energy exchange in the Hammersmith and Fulham area. The com-
parison between the two images shows that there is not a big difference between the two
pictures but a reduction in grid electricity procurement is observed. Despite the absence of
price information, the capital and O&M costs, as well as reduced expenses associated with
greenhouses gas disposal, can be derived from the examination of the two graphs, which
align with the two objective functions.

Figure 10 shows the energy exchange dynamics between two SHS-EVCSs within
specified time intervals, wherein the power transfer is constrained with a maximum limit
of 50 kW. The analysis depicted in Figure 11 reveals that when autonomous energy genera-
tion systems are integrated into the EVCSs and interconnected with the grid, the energy
exchange between them becomes inconsequential. This finding implies that the impact
of energy exchange on the cost minimization objective of the SHS-EVCSs is negligible
somehow. By conducting a comprehensive analysis and optimizing the energy exchange
dynamics between the charging stations, it becomes feasible to minimize the overall operat-
ing costs while concurrently ensuring an optimal energy supply.
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Based on the energy storage depicted in Figures 11 and 12, we observe that hydrogen
and battery energy storage are mostly used in the case of energy exchange during specific
time periods. These time periods include 8:00 am to 10:00 am, 4:00 pm to 5:00 pm, and 9:00
pm to 10:00 pm. Additionally, during midnight hours, these two energy sources are mostly
used in the case of without energy exchange.

Figure 13 demonstrates point A is the Utopia point, and the B area is the Pareto
front with valid Pareto optimal solutions. The superior performance of NSGA-II over
MOEA/D is evident in this research paper. The effectiveness of NSGA-II is evident, as
it outperforms MOEA/D in terms of optimization objectives, particularly in achieving
better cost outcomes. The results indicate that NSGA-II offers a more efficient and effective
approach to optimization compared to MOEA/D, making it a favourable choice for the
given objectives.
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Table 8 provides essential insights into the economic aspects of two SHS-EVCSs,
focusing on capital and O&M costs. It is worth noting that when the SHS-EVCS is expected
to last 10 years and undergoes daily maintenance with component replacements every
decade, the daily cost amounts to a modest GBP 4761.13. A comparison with the data
in Table 9 clearly demonstrates that the daily cost for the two conventional charging
stations is three times higher than that of the SHS-EVCS. This comparison underscores
the significant advantage of employing energy conversion within SHS-EVCSs, resulting in
optimized energy utilization and reduced operational expenses. Considering the safety
concerns associated with hydrogen, an alternative design approach is to eliminate the
utilization of hydrogen energy in SHS-EVCS. In contrast to employing hydrogen energy,
the decision to forgo hydrogen in SHS-EVCS would lead to a minimum daily expenditure
increase of at least GBP 500. While this cost is relatively economical when contrasted with
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solely procuring electricity from the grid, it remains insufficient to meet the minimum cost
threshold. There are other factors such as supply chain costs, labour costs, energy prices,
taxation, etc., that will affect the installation and O&M costs, but this paper is focused on
the technical part. These questions will be considered in the future work.
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Table 8. SHS-EVCS minimum cost.

Cost (GBP) Hammersmith and Fulham Richmond upon Thames

Capital cost for initial years 1,478,720 2,128,410
Discounted capital cost 201,889.15 268,422.33

Grid electricity purchase per day 575.09 1994.36
Energy exchange per day 77.12 30.25

O&M cost per day 205.65 232.79
Minimum daily cost 1673.32 3087.81

Daily cost without hydrogen
storage 2152.26 3552.24

Table 9. EVCS cost only buying electricity from grid.

Cost (GBP) Hammersmith and Fulham Richmond upon Thames

Daily cost 4695.88 12,225.81

Nevertheless, it is imperative to carefully evaluate the necessary adaptations when
integrating these stations with the larger power grid. These adjustments inevitably incur
additional costs, necessitating thorough consideration. Striking a delicate balance between
these costs and the associated benefits assumes paramount importance, particularly in the
pursuit of promoting sustainable transportation practices.

5. Conclusions

This study introduces a novel multi-objective optimization model for EV charging
stations, which considers both economic and environmental factors. Specifically, NSGO-II
and MOEA/D algorithms are employed to optimize the rated power of distributed energy
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resources and the capacity of the energy storage system for SHS-EVCS. By comparing the
optimization results obtained from both algorithms, it becomes evident that the proposed
optimization method exhibits certain advantages. Notably, it offers a comprehensive
consideration of various influential factors, leading to the attainment of optimal trade-off
results. Through meticulous management of the energy flow among various sources, such
as solar power, hydrogen energy storage, electric energy storage, and the power grid, the
charging station ensures an energy supply that is cost-effective depending on the minimum
daily costs. This comprehensive approach to energy optimization enables the station
to meet the fluctuating energy demands for charging electric vehicles while minimizing
expenses and maximizing sustainability.
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