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Abstract  

Purpose – The purpose is to examine the empirical relationship between trades undertaken 
by informed agents (managers) and the proxies for informed trades computed by bid-ask 
spread decomposition models. 

Design/methodology/approach – An econometric application of spread decomposition 
models to data from the London Stock Exchange, with an examination of whether the model 
predictions are co-integrated with actual outcomes.  

Findings –   We find overwhelming evidence of non stationary behaviour between the actual 
and predicted informed trade prices. Our findings suggest that there is a clear need for an 
alternative to extant spread decomposition models perhaps incorporating findings from 
behavioural finance. 

Originality/value – Given the importance of stock market liquidity and the extensive use of 
spread decomposition models in predicting informed trades, we believe that the research 
conducted in our paper is an important contribution to the market microstructure literature.    

Keywords; Spread Decomposition Models, Information Asymmetry, Bid-Ask Spread, Time 
Series Modelling, Behavioural Finance. 

Paper type: Empirical paper. 
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Abstract  
 
In this paper we examine the empirical relationship between trades undertaken by informed 

agents (managers) and the proxies for informed trades computed by bid-ask spread 

decomposition models. Behavioural finance offers a rationale for examining the efficacy of 

existing approaches.  We find overwhelming evidence of non stationary behaviour between the 

actual and predicted informed trade prices. Our results are robust to non linear speed of 

adjustments of stock prices, trade sizes, trading time and calendar anomalies. Our findings 

suggest that there is a clear need for an alternative to extant spread decomposition models. As 

we present evidence that spread decomposition models do not serve to adequately address 

observed behaviour, we suggest avenues for further research.  Given the importance of stock 

market liquidity and the extensive use of spread decomposition models in predicting informed 

trades, we believe that the research conducted in our paper is an important contribution to the 

market microstructure literature.   

 

Keywords: Spread Decomposition Models, Information Asymmetry, Bid-Ask Spread, Time 

Series Modelling, Behavioural Finance.  
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1. Introduction  

One of the most important factors that investors look for in a financial market is liquidity. 

Liquidity is defined as the ability to trade stock rapidly with little price impact.  To maintain 

liquidity Stock Exchanges use market makers, who are individuals willing to provide a 

financial market whenever investors wish to trade. In return for providing the financial market, 

market makers are granted monopoly rights by the Exchanges to post different prices for stock 

purchases and sales. As a result, market makers buy shares at the bid price and sell the stock at 

the higher ask price. This ability to buy the stock low and sell high is the market makers’ 

compensation for providing the financial market. Their compensation is defined as the ask 

price minus the bid price, which in turn is denoted as the bid-ask spread. Competition between 

market makers should narrow the bid ask spread to an efficient level so that they are (just) 

compensated for their costs.  Models of the bid ask spread therefore seek to decompose the 

costs of market making in order to better understand the operation, efficiency and workings of 

the market.  Extent models assume consistent rationality amongst all market participants which 

is a strong assumption given the extensive literature on behavioral finance and we discuss the 

implications of this. The remainder of the paper is structured as follows.  We first discuss the 

literature on the decomposition of the bid ask spread before section 3 provides more detail on 

models.  Market inefficiency and spreads are discussed with reference to behavioural factors 

in section 4 with data and the econometric method presented in section 5.  Section 6 presents 

the results which are then followed by concluding remarks. 

 

2. Literature on decomposition of the bid ask spread. 
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 The market microstructure literature identifies the cost components that should be 

incorporated in the quoted bid-ask spread when analysing the supply price of market making 

services. Demsetz (1968) and Tinic (1972) argue that bid-ask spreads arise to compensate 

market makers for carrying and managing inventories to meet the requirements of investors. In 

more recent work, costs are referred to as order processing and inventory holding costs.  Order 

processing costs are, as the name suggests, those administrative and other costs that arise from 

managing orders from traders.  Inventory costs were characterised, in the earlier literature, as 

those arising from the price risk to which market makers are exposed as they hold inventory to 

facilitate their role.  However, a more recent and extensive theoretical literature (Huang and 

Stoll, 1997; Lin et al, 1995; Madhavan, et al, 1997; to name but a few) decomposes inventory 

costs into their non-information and information components. The latter is commonly known 

as the adverse selection costs of trading. This reflects the costs of transacting with an informed 

trader.  Its isolation and use in modelling market liquidity reveals the impact of asymmetric 

information on trading costs.  It should also be noted that, if prices are partly determined by 

behavioral factors, inventory costs will need to take account of this.  Extant models do not take 

account of behavioral factors.  

Empirical results follow the theoretical literature in their development. Serial covariance 

models see spread as a function of covariance between current and preceding price (changes).  

An example is the model of Roll (1984), who finds a direct theoretical relationship between 

spread and serial covariance, assuming that there are no informational inefficiencies in the 

market.  Here there are no adjustments of inventory as the spread only depends on the order 

processing costs.  A negative relationship is found between the spread and market size in the 

US.  This is extended in Choi et al (1988) to allow for serial dependence in the trade flow as 

market makers equalise their inventory by adjusting the bid ask spread.  Stoll (1989) further 

developed the approach by removing the assumption of independence of buy and sell orders, 
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by which means the components of the spread can be identified.  The relationship between 

spread and serial covariance as found by Roll (1984) is supported but in addition the use of 

both transaction and quoted prices allows a further decomposition of the spread.  Stoll (1989) 

finds that information asymmetry accounts for more than 40% of the spread. 

Huang and Stoll (1997) consider prices and the decomposition of spreads to be linked. The mid point 

of the bid-ask spread is a function of the fundamental value of the stock price and the inventory holdings 

of the market maker.  Where there are inventory holdings, the change in mid point is then a function of 

two elements, order processing and inventory costs.  For inventory costs there is a further split between 

the change in information conferred by the last trade (the information costs) and the change in the 

inventory holding costs.  Huang and Stoll (1997) use GMM as the price has a certain level discreetness 

and there are rounding errors in the residual term. They find that in terms of the two component model, 

order processing accounts for an average of 88.6% of the spread, although with some heterogeneity. 

The smaller part is attributable to inventory and adverse information costs.  The argument presented by 

the authors is that the stocks in the sample are large and therefore the chance of trading against an 

informed trader are low.  A model that further decomposes the spread finds that the adverse information 

component is relatively small.  The authors also decompose the spread based on buying and selling 

pressure. In this approach order processing still accounts for the largest component of the 

spread.  Inventory costs are the next largest with information asymmetry costs comprising less than 

10% on average.  There is some evidence that large trades are anticipated, the ‘upstairs market’ also 

being suggested as the reason that the adverse information costs are lower due to pre trade negation on 

the price of large transactions. 

Alzahani et al (2013) examine the price impact of block trades.  Price changes would respond only to 

new information in the case of an efficient market but in reality it is likely that trades themselves convey 

information about views as to the value of a stock.  This is a market inefficiency as the presence of 

information in a trade implies that there was an asymmetry to begin with.  The authors argue that large 

trades may have a greater influence as other market participants observe when large trades are initiated. 
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Where the effects of block trades are modelled under an information asymmetry framework the finding 

is that large trades are more likely to be based on inside information. 

Where one has volumes then the determinants of the spread can be estimated with the adverse selection 

and order processing / inventory costs being proxied by the quantity and change in quantity, after 

Glosten and Harris (88).  Something similar pertains for the model by Madhavan et al (1997) 

More recent empirical studies use a methodology for capturing information asymmetry known 

as the Probability of Information-based Trade (PIN). This is estimated by the market 

microstructure model of Easley et al. (1997a, b). In this approach market makers are 

characterised as forming beliefs regarding the likelihood of an information based trade from 

observing the price at which trades are executed.  A conclusion as to whether a trade is buy or 

sell being derived from observing the execution price relative to quoted prices. 

The motivation for the use of this approach is that it is more likely to capture short term factors 

associated with responses to dealers’ inventory order imbalance than long-term information 

asymmetry factors associated with bid-ask spread measures (Callahan et al., 1997; Madhavan 

et al., 1997). 

 We are the first study to evaluate the effectiveness of information asymmetry models in 

encapsulating informed trades. We do this by examining the empirical relationship between 

trades undertaken by informed agents (managers) and the proxies for informed trades computed 

by market microstructure models. We employ the three most commonly used information 

asymmetry models namely the Huang and Stoll (1997), Madhavan et al (1997) and the Easley 

et al (1997a, b) to provide estimates of informed trades.1  

                                                           
1 One possible limitation of the present study is that there are various other spread decomposition models that 
were not considered. However, as pointed out by Van Ness et al (2001) all spread decomposition models yield 
very similar results.   
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If spread decomposition models are associated with stock market efficiency, we would expect 

that deviations of predicted stock prices from the prices of actual informed trades should follow 

a stationary process. If this is not the case, the resulting excess volatility in predicted prices 

relative to the actual informed trade prices could generate an anomaly in the stock market. If 

this anomaly persists it could violate the efficient market hypothesis. Hence, finding that 

predicted price deviations from actual informed trades are non-stationary should be considered 

a puzzle, indicating that they should not be used to predict informed trades. This suggests that 

we require alternative models and that all previous literature which predicts informed trades 

through these models are inaccurate. Given the importance of stock market liquidity and the 

extensive use of spread decomposition models in predicting informed trades, we believe that 

the research conducted in our paper is an important contribution to the literature on stock 

market trading.   

As market makers are forming beliefs about informed trades, part of the motivation for 

undertaking this work is derived from the behavioural finance literature.  If beliefs are not 

formed rationally, or are formed in a way which is inconsistent with efficient markets, 

behavioural finance may offer some plausible explanations and a direction for further research. 

We are not aware of work that has explicitly discussed spreads from this perspective. 

 
The remainder of the paper is structured as follows. The next section describes the most 

commonly used spread decomposition models used in the market microstructure literature. 

Section 3 presents the data and econometric methodology. The results are reported in Section 

4. Finally, Section 5 concludes.  

 

3. Spread Decomposition Models  

 

3.1 Madhavan, Richardson and Roomans (1997) (MRR Model)  



 

Pa
ge

8 

 

The MRR propose the following model for equity price changes: 

( ) ( ) 1t t t tp Q Q uα φ θ φ ρθ −∆ = + + − + +       (1) 

Where, ∆  is the first difference operator and pt denotes the transaction price of security at time 

t. The model assumes a fixed order size, where Qt is a trade initiation indicator variable such 

that Qt = +1 implies buyer initiated trade; Qt = -1 implies seller initiated trade and Qt = 0 denotes 

pre-negotiated trades (crosses) which occur within the bid-ask spread. The constant, α , 

represents the drift in prices; and ut, a random error term, embeds the noises associated with 

price discreteness.  A change from a seller initiated trade to a buyer initiated trade therefore 

gives the greatest (expected) positive price movement, dependent upon the values of the 

parameters. Of these φ  measures market-makers’ direct cost of supplying liquidity per share 

(transaction costs component). Theta (θ ) is the information asymmetry parameter which 

measures the magnitude of the adverse selection cost, the more sensitive price (expectation) 

revisions are to the order flow the greater the perceived probability that a market maker is 

transacting with an informed trader. The rho ( ρ ) is the autocorrelation coefficient of order 

flow which can also be defined as 2 (1 )ρ γ β= − − ; where the parameters γ  and β  respectively 

denote the probabilities of trade flow continuation and mid-quote execution.2  Equation (1) 

expresses changes in security price as a function of order (buy and sell) flows, transaction costs, 

adverse selection costs and the noises associated with price discreteness. MRR suggest 

estimating the price formation equation by Generalized Method of Moments (GMM) under the 

following moment restrictions: 

                                                           
2  For a detailed exposition of this price evolution mechanism readers are referred to MRR (1997). 
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The first moment defines the autocorrelation in trade initiation of trades, the second moment 

is the crossing probability, the third moment defines the drift term,α , as the average pricing 

error. The last two moments are OLS normal equations. We estimate the parameters of 

Equation (1) by GMM estimator, subject to the moment restrictions given in (2), for each 

company of our sample. The MRR adverse selection component (ASMRR) is calculated as: 

( )MRRAS θ
φ θ

=
+



                   (3) 

The implied expected spread is given by 2( )φ θ+
 

 and the implied effective spread by

( )1 2( )λ φ θ− +
  

.  

3.2 Huang and Stoll (1997) (HS Model)  

The Huang and Stoll (1997) adverse selection component is computed by estimating the 

following regression by ordinary least squares: 

1 2 1 3 , 1it t t A t tp Q Q Q eβ β β− −∆ = + + +         (4) 

 
Where itp∆  represents the change in the transaction price prior to the quoted spread at time t; 

,i tQ  equals 1 (-1) if the trade is a sell (buy) at time t. In conjunction with previous market 

microstructure literature we use a “combined” buy/sell indicator, , 1A tQ − , which equals 1 (-1, 0) 

if the sum of , 1i tQ −  across all the trades is positive (negative, zero) to capture the market-wide 

pressure on the inventory cost component of the bid-ask spread. Assuming that the number of 

share purchases and sales are equal, the estimated information cost component of the bid-ask 

spread is equal to ( )2 12 .β β+  
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3.3 Easley et al (1997a) (PIN Model) 

The probability of an informed trade with private information has the following form: 

 

The numerator is the expected number of informed trades (that is, the product of the probability 

of a trading day with private information α  and the arrival rate of informed trading µ ).  The 

denominator is total trading activity, including both informed trading αμ and the arrival rate of 

un-informed buy orders bε  and sell orders sε . Under the sufficient independence conditions 

across trading days, the trading parameters ),,,,( bs εεµδαθ =  are estimated simultaneously by 

maximizing the likelihood function  

 

for each share for at least 40 days. The daily numbers of buyer- or seller-initiated orders 

),( ii SB are sufficient statistics to estimate the parameter vector θ  and calculate PIN. For each 

single trading day i , this likelihood L is a mixed distribution where the trade outcomes are 

weighted by the probability of it being a good news day, )1( δα − , a bad news day, )(αδ , and 

a no news day, )1( α− .  

The trade process for a single trading day is; being a good news day, )1( δα − , a bad news day, 

)(αδ , and a no news day, )1( α− . The trade process for a single trading day is: 
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Each trade is specified as buyer- or seller-initiated using the standard algorithm, which 

classifies any trade above (below) the midpoint of the current quoted spread as a buy (sell) 

because trades originating from buyers (sellers) are most likely to be executed at or near the 

ask (bid). For trades taking place at the midpoint, a tick test based on the most recent transaction 

price is used to classify the trade. Following Hasbrouck (1988), all trades occurring within 5 

seconds of each other are classified as a single trade.  

 The structure of informed trading is measured by the difference between the level of 

informed trading on positive and negative private information (DF). The level of informed 

trading on positive private information (PPIN) is measured by: 

 

For negative private information (NPIN) is measured by: 

 

Therefore the difference is measured:  

 

4. Market (in)efficiency and spreads 

The preceding outlines the means by which the extant literature has analysed the determinants 

of spread, predicated on an assumption of market efficiency.  However, there is an emerging 

debate regarding observed deviations from efficient markets.  Although little has been directed 

at the question of behavioural finance and the setting of spreads, this literature does inform a 

decision to address the question of whether models of spreads might be efficacious.  There is 

bεεαµ
µδα
++

−
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also some evidence to suggest that existing models of the spread may be incomplete, with 

potentially biased findings being the result. 

Market makers must set prices in reference to the trading behaviour and (presumed) 

information set of investors. Consequently, they may respond to, or seek to exploit patterns of, 

trading behaviours that are not rational, even though their own decisions are formed rationally. 

In addition, spreads themselves contain information or may be used to spread disinformation, 

analogous to ‘shaking the tree’ in the setting of low prices to trigger panic selling for example.   

The LSE has around 600,000 trades a day, suggesting that detailed manipulation of the market 

through spreads would be difficult for even a small proportion of aggregate trades. Counter to 

this, however, is that there are features of market making that mean behavioural anomalies are 

possible.  The LSE order book has 21 registered market makers (LSE, 2016), possibly 

conferring sufficient market power on each for some pricing anomalies to be maintained over 

the short term.  Although market makers typically automate the setting of spreads they revert 

to manual settings during periods of high volatility.  If spreads are set heuristically during such 

periods deviations may be observed from the predictions of models based on the assumption 

of rational decision making and also due to the potential biases of traders.  

Lee et al (2004) find that providers of liquidity are sensitive to changes in information 

asymmetry risk.  They find that both spreads and depth are used to manage the risk, an 

implication being that depth might be a missing element from many models of liquidity and 

that there is a dynamic relationship between spreads and depth.  Frijns et al (2008) find that 

improvements in the regulatory environment related to insider trading affected the importance 

of information asymmetry in the spread.  To note however is that the failure to account for the 

structural break biased the estimated parameters for the effect of information asymmetry.  A 

less direct relationship to the question of whether spread models are appropriate may be found 
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in the work of Attig et al (2006), who find that information asymmetry is greater where control 

is more divorced from the ownership of the company concerned.   

Behavioural models of the spread have seen little development, however more general findings 

on behaviour in the determination of asset prices may inform behavioural implications for the 

determination of spreads.  Gagnon and Power (2016), in an analysis of oil futures, find that the 

level of risk aversion changes depending on the context and in particular the levels of wealth.  

This might imply that market makers set spreads conditional on the prior performance of stock 

or expectations of future risks.  Abnormal investor sentiment is introduced by Jiang et al (2003) 

in an analysis of spreads, abnormal sentiment is found to have a positive effect on adverse 

selection costs for closed end funds. Reasons for the deviation of sentiment are discussed as 

arsing from misconceptions or undue optimism or pessimism.   Baker and Wurgler (2006) find 

that investor sentiment impacts on the cross section of stock returns, suggesting that the effect 

may be more pronounced where stock valuation is less certain. Although the setting is different 

from that of these works, evidence that abnormal investor sentiment impacts on spreads or 

prices suggests that market makers are aware and respond to behavioural factors.  Antoniou et 

al (2011) find evidence of positive feedback trading by noise traders in futures markets, a 

destabilising mechanism that challenges efficient market assumptions.  On asset pricing Bhar 

and Malliaris (2011) report that the equity risk premium changes across different economic 

regimes, complimenting the concept discussed by Baker and Wurgler (2006).  This might be 

expected to translate into the risks of market making and hence spreads, suggesting that models 

of the spread that implicitly assume constant risk premia may be biased.   

Experimental work suggests that investors deviate from fundamental value in determining asset 

prices.  Caginalp et al (2000) find that investors follow price trends as well as fundamental 

values in an experimental setting.  The observed momentum effect is presented as a possible 

explanation for bubbles (and subsequent crashes) in financial markets.  Irrational behaviour by 
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noise traders will, theoretically, have an effect on the price setting behaviour of market makers.  

In a review of the experimental literature Duxbury (2015a, 2015b) reports on papers that also 

find autocorrelation is greater the the longer the existing run.  

Evidence that investors under-react to news is discussed in Chan et al (1996), who find that 

investors over-weight past performance, allowing views on the value of a stock to persist for 

longer than is consistent with rational price setting.  This is offered as an explanation for the 

predictability of stock returns.  In Jegadeesh and Titman (1995) evidence for reversals in 

returns is discussed with the finding that this can be explained by market makers using spreads 

to adjust inventory.  They conclude that preceding findings on the topic may be consistent with 

efficient markets were their augmentation to be adopted.  Park and Irwin (2007) review the 

literature on technical analysis with ‘modern’ studies presenting evidence that returns can be 

predicted.  However they also suggest that further work on the methodology and data quality 

in studies would be of use in reinforcing these conclusions.  Behavioural aspects may serve to 

explain some of the observed profit making opportunities presented by technical analysis.  

Where noise traders hold irrational beliefs as to the true value of stock, positive feedback can 

lead to increases in aggregate demand.  If a substantial trend in stock prices is observed, the 

possibility of a significant market correction increases and hence the risk to market makers. 

We would expect this to lead to an increase in the spread.  Amini et al (2013) examine the 

literature on price reactions following large initial changes, a further part of the literature on 

prediction.  Behavioural explanations are found in investors giving too much weight to current 

information, over-reacting to large price movements or only slowly incorporating information 

so that there is an under-reaction.  The link to spreads is that significant new information may 

be more difficult for market participants to endogenise, resulting in an increase in risk and 

therefore spreads, this especially the case subsequent to large price falls.  Related to this is 

herding, with prices moved away from fundamental levels as investors follow the decisions of 
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others.  Spyrou (2013) finds some evidence in the literature of herding by institutional investors 

and analysts.  The behavioural explanation is that the investment professionals herd in order to 

protect reputations.  The literature is also reported as presenting investor irrationality as a 

reason for herding as well.  If stock prices are moved way from their fundamental values then 

this again presents as a challenge for market makers, who might be expected to price in the risk 

of a market correction. 

 Whether as a consequence of the ineffectual modelling of spreads in efficient markets or 

because spreads are influenced by behavioural factors, there is a literature that supports our 

questioning of whether spread decomposition models are appropriate.  

  

5. Data and Econometric Methodology  

5.1 Data 

We obtain data on all intraday trades that were executed on the London Stock Exchange in 

2013. We derive the predicted prices of all informed trades by computing the three spread 

decomposition models described in the previous section of the paper. A match is then made 

between the predicted prices with actual informed trades that have taken place. Informed trades 

are defined as transactions undertaken by managers of the firms. Our final sample consists of 

1896000 tick trades. 

5.2 Econometric Methodology 

5.21  Linear Unit Root Tests  
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The standard linear Augmented Dickey-Fuller (ADF) test uses the following regression 

model to test whether the deviations of predicted prices from the actual informed trade prices 

are stationary: 

* * *
0 1

1
1) ) (P )(P (P

n

t t i t i t i
i

t ttP P Pγγ γ ε− − −
=

−− − + ∆ −∆ = + +∑      (5) 

where tP  is the predicted stock price from the spread decomposition models at time period t,  

*
tP  is the actual informed trade stock price at time period t,  the ' sγ  are constants and tε  is a 

random disturbance term. The terms in *(P )t i t iP− −∆ −  are included to remove any serial 

correlation in tε . Rejecting the null of non-stationarity requires the estimates of γ  to be 

negative and significantly different from zero.  

5.22 Non-linear unit root tests  

  Possible explanations for the failure to reject non-stationarity are that linear unit root 

tests are not very powerful when the true adjustment process is non-linear. Hence, in this 

section we employ an Exponential Smooth Transition Autoregressive model (ESTAR), which 

assumes that the adjustment of predicted towards the actual informed trade prices is 

characterized by a symmetric non-linear process3: 

( ) ( ) ( )*
1

2
1* * *

1 11 1 1 ttP
t t t

P
t tt tP P PP P P e uα

δβ −−
− −

− −
− −

 
+ − 

 
= + − − +     (6) 

 

where tu  is the error term and the other variables are as previously defined. Under the null 

hypothesis of non stationarity, 1β =  and 0a = , predicted prices follows a random walk 

around *
tP . In the case of stationarity ( 0a > ), predicted prices reverse to *

tP . Computing a 

                                                           
3 See, among others, Granger and Terasvirta (1993) for other applications of the ESTAR model.  
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first-order Taylor series approximation to (6) under the null and allowing for serial correlation 

in tu , we obtain the following auxiliary regression model (Kapetanios et al., 2003): 

* * *
0 1 1

1

3) (P )(P (P )
n

t t t t i t i t i t
i

P P P vγγ γ − − − −
=

− + − ∆ − +∆ = +∑     (7) 

 

where tv  is the error term and the other variables are defined as previously. Equation (7) 

follows a non-standard distribution; therefore critical values of the t-statistic for the 

significance of  γ  are calculated from 1000 bootstrapped re-samples for each of our three 

spread decomposition models.  

 

6. Results   

The linear ADF results can be seen in columns two and three of Table 1. The evidence indicates 

that for all spread decomposition models, the null hypothesis of a unit root cannot be rejected 

in all cases. When, in addition to the constant, 0γ , we incorporate a linear trend the puzzling 

unit root evidence remains prevalent. Overall, the linear ADF tests provide strong evidence of 

unit root in the deviations of predicted stock prices from the actual informed trade prices. 

 

The non-linear unit root test results are presented in columns four and five of Table 1. The non-

linear ADF tests show that the deviations of predicted prices from the actual informed trade 

prices are non stationary at all significance levels. The decisive acceptance of the null-unit root 

appears to be the result of the non significant change in the magnitude of the estimated ADF 

coefficient, γ .  This finding holds across all spread decomposition models and is not affected 

by the inclusion of a linear trend in the regressions.   
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Hence, the puzzling unit root evidence of linear tests does not disappear when we allow 

for non-linear adjustment in predicted stock prices of informed trades. This suggests that 

predicted prices do not adjust back to equilibrium implying market inefficiency. This raises 

serious concerns when spread decomposition models are used to predict informed trades in the 

market microstructure literature. Given that they are used on an extensive basis, there is a clear 

need for an alternative spread decomposition model that is compliant with the efficient market 

hypothesis.  

[INSERT TABLE 1 HERE] 

As a further confirmation of the validity of the findings we conduct two robustness tests. First, 

we look at large (block) transactions consisting of trades of 10,000 shares or more per 

transaction.4 Block trades consist primarily of institutional transactions and account for over 

60% of total trades on the London Stock Exchange. The results of block trades can be seen in 

Table 2. We observe from Table 2 that the previous results remain intact, suggesting that 

predicted informed trade prices do not adapt back to the observed stock price of trades 

conducted by informed agents for large transactions. This implies that there could be a major 

liquidity problem for larger trades given that market makers cannot establish if their counter 

parties are informed or noise traders.  

[INSERT TABLE 2 HERE] 

Finally, given that Alzahrani, Gregoriou, and Hudson (2013) and Frino, Jarnecic, and Lepone 

(2007) report intraday effects for block trades for consistency, we introduce trading hour, day 

of week and month of year dummy variables in equations (5) and (7) in order to capture trading 

time/period effects. The results which can be seen in Table 3 are quantitatively similar to Tables 

                                                           
4 See Madhavan and Cheng (1997) and Gregoriou (2008) for more details on the definition of block trades. 
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1 and 2, indicating that the unit root results are not affected by these anomalies in the data. This 

further confirms the requirement for a more accurate information asymmetry model to establish 

if trades are undertaken by informed agents or noise traders.  

[INSERT TABLE 3 HERE] 

7. Conclusion 

Over the last 15 years researchers and practitioners have been estimating bid-ask spread 

decomposition models to encapsulate informed trades. However, whether based on 

assumptions of market efficiency or the existence of important behavioural factors, the 

literature suggests that the efficacy of spread decomposition models warrants further 

examination. In this study we inspect how accurate these models are in estimating informed 

trades, by examining the empirical relationship between trades undertaken by informed agents 

(managers) and the proxies for informed trades computed by market microstructure models. 

We find overwhelming evidence of non stationary patterns between the deviation of actual and 

predicted informed trade prices. Our results are robust to non linear speed of adjustments of 

stock prices, trade sizes, trading time and calendar anomalies. We conclude therefore that 

current approaches to identifying informed trades from spreads are inaccurate and that an 

alternative model is needed.  Given the importance of stock market liquidity and the extensive 

use of spread decomposition models in predicting informed trades, we believe that the research 

conducted in our paper is an important contribution to the literature on market microstructure 

and signposts a direction for future research.   
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Table 1: Unit root test results on all trades. 

 
Note: 
  
(a) ) The number of lagged difference terms in the regressions was chosen by the reduction criterion.  
(b) The reported t-statistics test the null hypothesis that price differentials contain a unit root.  **, * 
indicate rejection of the null-unit root hypothesis at 1, 5% level of significance. 
 
 
 

 
 

Model 

 
Linear ADF test statistic 

 
Non-Linear ADF test statistic 

Constant Constant and Trend Constant Constant and 
Trend 

Huang and Stoll 
(HS Model) 

(1997) 
-2.27 -2.96 -2.02  -2.65  

MRR (1997) -2.07 -1.73 -2.12  -1.95  

Easley et al 
(1997a) 

(PIN Model) 
 

-1.48 -2.06 -1.19  -1.64  

 

http://www.emeraldinsight.com/author/Spyrou%2C+Spyros
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Table 2: Unit root test results on block trades. 

 
Note: 
  
(a) ) The number of lagged difference terms in the regressions was chosen by the reduction criterion.  
(b) The reported t-statistics test the null hypothesis that price differentials contain a unit root.  **, * 
indicate rejection of the null-unit root hypothesis at 1, 5% level of significance. 
 
 
 

 
 

Model 

 
Linear ADF test statistic 

 
Non-Linear ADF test statistic 

Constant Constant and Trend Constant Constant and Trend 

Huang and Stoll 
 (1997) 

(HS Model) 
-2.00 -2.00 -1.92 -2.32  

MRR (1997) -1.92 -1.52 -2.12  -2.22  

Easley et al 
(1997a) 

(PIN Model) 
-1.88 -1.72 -1.19  -1.54 

 

 

Table 3: Unit root test results on block trades with time/ calender effects. 
 

Note: 
  
(a) ) The number of lagged difference terms in the regressions was chosen by the reduction criterion.  
(b) The reported t-statistics test the null hypothesis that price differentials contain a unit root.  **, * 
indicate rejection of the null-unit root hypothesis at 1, 5% level of significance. 
 
 
 

 
 

Model 

 
Linear ADF test statistic 

 
Non-Linear ADF test statistic 

Constant Constant and Trend Constant Constant and Trend 

Huang and Stoll 
(1997) 

(HS Model) 
-1.37 -1.87 -2.11 -2.27 

MRR (1997) -1.44 -1.59 -2.01  -1.90  

Easley et al 
(1997a) 

(PIN Model) 
-1.70 -1.92 -1.27  -1.39 

 

 

 


	Abstract
	1. Introduction
	3. Spread Decomposition Models
	3.1 Madhavan, Richardson and Roomans (1997) (MRR Model)
	3.2 Huang and Stoll (1997) (HS Model)
	3.3 Easley et al (1997a) (PIN Model)
	4. Market (in)efficiency and spreads
	The preceding outlines the means by which the extant literature has analysed the determinants of spread, predicated on an assumption of market efficiency.  However, there is an emerging debate regarding observed deviations from efficient markets.  Alt...
	Market makers must set prices in reference to the trading behaviour and (presumed) information set of investors. Consequently, they may respond to, or seek to exploit patterns of, trading behaviours that are not rational, even though their own decisio...
	The LSE has around 600,000 trades a day, suggesting that detailed manipulation of the market through spreads would be difficult for even a small proportion of aggregate trades. Counter to this, however, is that there are features of market making that...
	Lee et al (2004) find that providers of liquidity are sensitive to changes in information asymmetry risk.  They find that both spreads and depth are used to manage the risk, an implication being that depth might be a missing element from many models o...
	Behavioural models of the spread have seen little development, however more general findings on behaviour in the determination of asset prices may inform behavioural implications for the determination of spreads.  Gagnon and Power (2016), in an analys...
	Experimental work suggests that investors deviate from fundamental value in determining asset prices.  Caginalp et al (2000) find that investors follow price trends as well as fundamental values in an experimental setting.  The observed momentum effec...
	Evidence that investors under-react to news is discussed in Chan et al (1996), who find that investors over-weight past performance, allowing views on the value of a stock to persist for longer than is consistent with rational price setting.  This is ...
	Whether as a consequence of the ineffectual modelling of spreads in efficient markets or because spreads are influenced by behavioural factors, there is a literature that supports our questioning of whether spread decomposition models are appropriate.
	5. Data and Econometric Methodology
	5.1 Data
	5.2 Econometric Methodology
	5.21  Linear Unit Root Tests
	5.22 Non-linear unit root tests
	6. Results
	7. Conclusion
	References

