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INTRODUCTION
Animals such as reptiles, amphibians, fish and cephalopods can
change their body colour for functions such as photoprotection,
thermoregulation, social signalling and predator avoidance
(reviewed in Sugimoto, 2002; Stuart-Fox and Moussalli, 2009;
Leclercq et al., 2010). One way in which animals can avoid predators
is by altering their colouration to become cryptic against the visual
background (Ruxton et al., 2004). Classic examples include the rapid
and dynamic background matching of octopuses (Hanlon et al.,
1999; Hanlon, 2007; Hanlon et al., 2009) and chameleons (Stuart-
Fox and Moussalli, 2009). Many fish darken their body colouration
in response to dark visual backgrounds (Sugimoto, 2002; Mills and
Patterson, 2009; Leclercq et al., 2010), which functions to facilitate
predator avoidance and reduce predation risk (Sumner, 1935a;
Sumner, 1935b; Whiteley et al., 2011), and is a plastic and reversible
change (Sugimoto, 2002; Leclercq et al., 2010).

Body colour darkening in fish is associated with reversible
responses of melanophores (Sugimoto, 2002; Mills and Patterson,
2009). Physiological colour change (controlled by the sympathetic
nervous system) (Burton, 2008) occurs over short time scales
(minutes to days) and involves two hormones: α-melanocyte
stimulating hormone (α-MSH) and melanin-concentrating
hormone (MCH). α-MSH causes melanosomes to disperse,
making the fish appear darker, while MCH causes melanosomes
to aggregate, lightening the appearance of the fish (Logan et al.,
2006; Mills and Patterson, 2009). Over longer periods (days to
weeks) the action of these hormones alters the morphology,
density and distribution of melanophores in the dermal cells
(Leclercq et al., 2010), known as morphological colour change
(Sugimoto, 2002). Here, we will use ‘colour change’ as a general
term encompassing either or both physiological and

morphological colour change, as we cannot distinguish between
the two mechanisms in our study.

The acquisition and expression of colour by animals is known
to carry a cost, as pigments must either be obtained through the diet
(e.g. carotenoids) (Leclercq et al., 2010) or synthesised by the animal
(e.g. melanin) (Mills and Patterson, 2009), and the expression of
melanin-based traits is known to be condition dependent in many
species [e.g. wasps (Tibbetts and Dale, 2004), butterflies (Talloen
et al., 2004) and birds (Piault et al., 2012)] (reviewed in Stoehr,
2006). A significant cost to melanic colour change in fish has yet
to be demonstrated (Stuart-Fox and Moussalli, 2009), although the
suggestion is that there may be non-trivial costs associated with it,
similar to those associated with other types of phenotypic plasticity
(e.g. Relyea, 2002; Stuart-Fox and Moussalli, 2009).

Behavioural background matching (Garcia and Sih, 2003) is
widespread in the animal kingdom, where prey animals select
microhabitats that enhance their crypsis to avoid predation. Brown
and green morphs of the Pacific tree frog Hyla regilla preferentially
select brown and green substrates, respectively (Wente and Phillips,
2003; Wente and Phillips, 2005), and pale and dark morphs of the
cichild fish Telmatochromis temporalis defend territories in open
(light) or shaded habitats, according to their body colour (Mboko
and Kohda, 1995). For shoaling fish, the visual background may
consist of other members of the shoal (Endler, 1978), and both
western rainbowfish Melanotaenia australis (Rodgers et al., 2010)
and the molly Poecilia latipinna (McRobert and Bradner, 1998)
preferentially group with similarly coloured group mates, increasing
their crypsis against the group and minimising the possibility of
being selected by a predator for being phenotypically distinct (the
oddity effect) (Landeau and Terborgh, 1986). By selecting habitats
or group mates against which they are already colour adapted, fish
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can simultaneously minimise both the energetic costs of colour
change and the risk of predation.

Here, we investigated the energetic costs of colour change and the
implications for subsequent behaviour decisions, using Trinidadian
guppies (Poecilia reticulata Peters 1859) as a model system. Firstly,
we document the ability of individual guppies to change colour in
response to dark or light visual backgrounds, and explore the time
scale on which this occurs. Secondly, we test the hypothesis that there
is an energetic cost associated with repeated adaptation to the
background, by assessing the food consumption of fish exposed to
constantly coloured and changing habitats. Thirdly, we explore
whether the energetic cost of repeated colour change has longer-term
implications for growth. Finally, we test the prediction that fish select
habitats and group mates that match their own colouration, reducing
predation risk through behavioural background matching and avoiding
the oddity effect, but potentially paying an opportunity cost through
restriction to particular habitats and group mates.

MATERIALS AND METHODS
Study species and housing

We used the descendants of wild-caught (2003–2006) guppies (P.
reticulata) that had been held in the aquarium facilities at the
Universities of Hull (experiments 1 and 2) and Leeds (experiments
3 and 4) since capture. Hull fish were held in mixed-sex breeding
groups in aquaria (200×340×390mm) containing artificial substrate
and plants. All aquaria were on a re-circulating aquarium system
at 23–25°C on a 12h:12h light:dark cycle and fed daily on a mix
of commercial flake and pellet food. Leeds fish were held in
individually filtered aquaria (550×200mm, filled to a depth of
140mm) containing gravel to a depth of 1cm and artificial plastic
plants, at a temperature of 25°C, on a 12h:12h light:dark cycle, and
were fed daily on commercial flake food. Where appropriate,
experimental aquaria (described below) were furnished with artificial
substrate (gravel) and/or artificial plants to mimic stock housing
conditions. Details of conditions in individual aquaria are below.

Experiment 1: quantification of colour change
Sixty-eight fish, in groups of four consisting of two males and two
females of differing body size were selected from the stock tanks.
We selected fish of differing body size to allow for individual
identification without marking (large female, 19–28.5mm; small
female, 15–22mm; large male, 17–23.5mm; small male, 15–20mm;
note that there is overlap between size classes but individuals of
the same sex were identifiable in each group). Each group was
photographed from above in a shallow dish of water (10mm depth)
using a digital camera (Canon Powershot G12), attached to a copy
stand, with the camera positioned 270mm above the dish. The dish
was placed on a background of 1mm graph paper (to allow for
accurate calibration of photographs) with a black and white colour
standard. The dish, copy stand and camera were positioned inside
a light cube (EZCube 51cm light tent) and illuminated with broad-
spectrum lighting (2×5000K 30W ‘Perfect Daylight’ bulbs). No
anaesthetic was used to photograph the fish as the procedure took
only a few seconds, and anaesthesia is known to affect colouration
in fish (Gray et al., 2011).

Following photography, each group of fish was housed in a tank
(192×197mm, filled to a depth of 141mm) allocated to either ‘black’
or ‘white’ treatments. Black treatment tanks had black side walls,
a black base and a black artificial plant. The rear wall of the tank
was blue in colour, and the front wall was left uncovered to allow
for observation of the fish. White treatment tanks had white side
walls, base and plant, and again had a blue rear wall and uncovered

front. Tanks were held on a re-circulating aquarium system at
23–25°C on a 12h:12h light:dark cycle. Fish were held in these
conditions for 24h (black, N=12 fish; white, N=12), 48h (black,
N=12; white, N=8) or 2weeks (black, N=12; white, N=12), and fed
daily on a mix of flake and pellet food. Each group was then placed
into a small plastic aquarium (197×125×120mm, filled to a depth
of 85mm) covered on four sides with black or white plastic film to
avoid any changes in colouration, and then photographed again
following the procedure above. Fish were then returned to the stock
tanks. There were no significant differences in body size in fish
allocated to the different colour and time treatments (linear model:
colour treatment effect, F1,63=1.913, P=0.172; time effect,
F1,63=2.198, P=0.143; interaction, F1,62=0.373, P=0.543).

All the digital images (saved as TIFF files) were analysed using
ImageJ version 1.45 (http://rsb.info.nih.gov/ij/index.html). Images
were scaled using the graph paper included in each photograph and
then the body length of each fish was measured in millimetres. The
proportion of melanin pigmentation present on the body of the fish
was assessed using an adaptation of previous methods (Rodgers et
al., 2010). Images were converted to greyscale, then each image
was standardised for white balance by selecting five areas in the
black and white colour standards included in the photographs, and
setting the average value of each of these as the minimum and
maximum pixel intensities, using the colour balance options in
ImageJ. The outline of each fish was traced to measure the overall
area of the visible dorsal surface (excluding the fins). We assessed
colouration by setting the pixel threshold intensity to 70, and counted
the number of pixels darker than this threshold to give an indication
of the overall level of pigmentation. All images of all fish (before
and after colour treatment) were analysed in this way. Fish could
be individually identified by sex and size to give repeated-measures
data. Over the course of the experiment, one fish died in each of
the 14day colour treatments, giving final sample sizes of N=11 fish
for these treatments.

To establish whether 24h was sufficient for colour change to
occur when fish were moved from black to white tanks (and vice
versa), we first placed mixed-sex groups of four to five fish into
either black or white tanks (as above) for 24h before photographing
them and then placing them in tanks of the opposite colour for a
further 24h and photographing them again. Images were taken and
analysed using the same methodology. One fish died in the white-
to-black treatment, leaving N=13 fish in the black-to-white treatment
and N=11 fish in the white-to-black treatment.

Experiment 2: food consumption
Seventy-four adult guppies (a mix of males and females; males,
14.5–21.5mm, females, 14–26mm) were removed from the stock
tanks and placed in groups of three to five in small (192×197mm,
filled to a depth of 141mm) aquaria as for experiment 1. Tanks
were allocated to black, white and colour change treatments (black,
N=25; white, N=24; colour change, N=25 fish). Black treatment
tanks had a constant black background and white treatment tanks
had a constant white background as in experiment 1. For the colour
change treatment, the colour of the side walls, base and plant was
changed from black to white (and vice versa) on a daily basis for
a period of 9–11days. To control for the disturbance caused by this
colour change treatment, the side walls, base and plant in black and
white treatment tanks were removed and replaced on a daily basis.
Fish were fed ad libitum daily on small pellet fish food (ZM Systems,
Winchester, Hants, UK) after the tanks colours were changed.

Fish were starved for 1day before feeding trials commenced,
to standardise their motivation to feed. Trials took place in a small
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(192×197×183mm) tank filled to a depth of 85mm. Fish were
placed individually into the tank and allowed 5min to acclimatise.
Ten individual food pellets (as above) were then added to the
tank and a timer was started. If all pellets were eaten, an
additional 10 pellets were added immediately following the
consumption of the last pellet. The time interval between the
consumption of one pellet and the consumption of the next was
monitored, and when there was a delay of greater than 1min, we
considered that the fish had reached satiation, and the trial was
terminated. The total number of food pellets consumed was then
recorded. The sex and body size (measured to the nearest mm
using callipers) of the fish was recorded, and individuals were
returned to the stock tanks. There was no difference in size
between fish allocated to the different treatments for either males
(F2,43=0.653, P=0.525) or females (F2,25=0.233, P=0.794), and
no fish died during the experiment.

Experiment 3: growth rate
Ninety newborn guppies (0–3days old) were haphazardly selected
from the stock tanks in groups of five. Groups were placed into a
shallow dish of water (10mm) and photographed from above using
a Nikon D90 digital camera with a 105mm Sigma DG macro lens
under standardised conditions with daylight spectrum lighting. A
scale was included in the image, and images were subsequently used
to measure body length. Fish were then introduced to one of three
colour treatment tanks in their groups (see below). There was no
difference in body length between the fish assigned to the three
treatments (linear model: F2,87=1.792, P=0.178).

Treatment tanks were small plastic aquaria (200×140mm, filled
to a depth of 80mm with aerated water) covered on all four sides
with a sleeve of either black or white plastic, which could easily be
removed and replaced without disturbing the water. Each tank
contained an airstone to aerate and circulate the water, and 20%
water changes were carried out on a fortnightly basis, to remove
any uneaten food. No artificial plants were used to provide cover
for the fish in this experiment, as the fish were very small, young
individuals, and there was a risk of harming individuals hiding in
the plants when we removed them. Three treatments were used:
constant black, constant white and a colour change treatment. Every
2days, the plastic sleeves were removed and replaced with a sleeve
of the same colour for the constant treatments and of the opposite
colour for the colour change treatment, thus controlling for
disturbance between treatments. Half the tanks in the colour change
treatment started with black and half started with white. Treatments
were assigned randomly to tanks arranged in a 10×2 array,
illuminated evenly from above by a daylight simulation strip light
on a 12h:12h light:dark cycle.

Fry were fed daily ad libitum on fry food (ZM Systems;
80–200μm particle size, 55% protein). Food was weighed to the
nearest 0.001g to ensure all tanks received the same amount of
food, and portion size was increased every 2weeks as the fish
grew to ensure ad libitum feeding. After 65days in the treatments,
fish were removed from the tanks, killed with an overdose of
MS-222 by a trained technician, weighed to the nearest mg, and
photographed to measure length. Death was confirmed by
destruction of the brain, according to Schedule 1 of the Animals
(Scientific Procedures) Act, again by a trained technician. Prior
to this, mortality over the course of the experiment was 6.7%
(6/90 fish died – two in the black treatment, one in the white
treatment and three in the colour change treatment). Because of
the age of the fish, we were not able to reliably determine sex at
the end of the experiment.
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Experiment 4: habitat and shoal choice
Sixty-five adult female guppies (19–21mm) were removed from
the stock tanks and housed in groups of five in small plastic aquaria
(200×140mm, filled to a depth of 80mm), assigned to either ‘black’
or ‘white’ treatments. For each treatment, the exterior walls were
covered with either black or white film (as appropriate) and the base
was covered with a 10mm layer of either black or white gravel.
Tanks were oxygenated via an airstone, and a full water change of
conditioned water was carried out once a week. Tanks were held
at 25°C and illuminated by daylight spectrum lighting on a 12h:12h
light:dark cycle. Guppies were housed in these tanks for 1–2weeks
before being assessed in the habitat choice experiments, and then
returned to the tanks for a further 2–3weeks before shoal choice
experiments were carried out. During this time, fish were fed ad
libitum on commercial flake food. There was no difference in body
size in fish allocated to the black and white treatments (t-test:
t=0.740, d.f.=63, P=0.462). Mortality was not explicitly recorded
during this experiment but was very low.

To assess preferences for differently coloured habitats, individual
guppies were placed into a habitat choice tank. The choice tank
(500×200mm, filled to a depth of 100mm with aerated water) was
divided into three sections (habitat zones): a black end section
(150×200mm), a white end section (150×200mm) and a neutral
(brown) central section (200×200mm). Fish could swim freely
between the three sections. Each section was coated on the outside
with coloured film (black, white or brown as appropriate), and the
side facing the observer was left uncovered to allow observations
to be made. The base of the tank was covered with a 10mm depth
of black, white or brown gravel. Gravel was contained within a
watertight transparent plastic bag to eliminate potentially
confounding effects of different chemical cues from the gravel within
each habitat (Ward et al., 2004; Ward et al., 2005). Two tanks were
used that were mirror images of each other, to remove any potentially
confounding effects of side bias.

A single test fish (from either the black or white treatment tanks)
was introduced to the test tank and allowed 2min to acclimatise
before observations began. Preliminary observations suggested that
this time was sufficient to allow the majority of fish to begin
swimming normally and exploring the tank. Any fish that remained
motionless or had not swum into all three habitat zones after the
2min period was excluded from the experiment (two fish were
excluded – one from each treatment – giving final sample sizes of
N=25 for black treatment fish and N=24 for white treatment fish).
Over a 10min observation period, we recorded the total time spent
in each of the three habitat zones. Observations were made from
behind a screen to minimise disturbance to the fish. After trials were
complete, fish were returned to the black and white treatment tanks
from which they had been taken.

Shoaling preferences were assessed using a standard binary
choice design (Morrell et al., 2007). The choice tank
(600×210mm, filled to a depth of 100mm with conditioned water)
was covered on three sides with brown cloth and placed on a
mid-brown base. The side facing the observer was left uncovered
to allow observations to be made. The tank was divided into three
sections by transparent, unperforated partitions to allow for
transmission of visual but not olfactory cues (which may be
associated with recent habitat) (Ward et al., 2004; Ward et al.,
2005). Each end (‘stimulus’) compartment measured
210×150mm, and contained a stimulus shoal of three black or
white treatment fish (i.e. black- or white-adapted fish). The 60mm
adjoining each stimulus compartment were defined as ‘shoaling
zones’, such that when the test fish entered the zone, it was
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considered to be shoaling with the stimulus shoal. For each trial,
one stimulus compartment contained a shoal of three black
treatment fish, and the other contained a shoal of three white
treatment fish. The side containing the black treatment fish was
randomised between trials to control for any effects of side bias.
Stimulus shoals were selected from different colour tanks to the
test fish to avoid any confounding effects of familiarity (Griffiths
and Magurran, 1997). Stimulus shoals were allowed 2min to settle
before the introduction of the test fish. Observations suggested
this was sufficient for the shoals to begin swimming normally.

A single test fish was then introduced to the central compartment,
and allowed 2min to acclimatise before a 10min observation period
began. During the acclimatisation period, all test fish (N=20 for black
treatment fish, N=17 for white treatment fish) began swimming and
entered both shoaling zones, and thus no fish were excluded on the
basis of inactivity. We recorded the cumulative time spent in each
shoaling zone, which was then expressed as a proportion of the total
shoaling time (i.e. the sum of the time spent in the two shoaling
zones). After the trial was completed, test fish were returned to their
colour tanks, and subsequently used as stimulus fish, but no fish
that had been used as a stimulus fish was subsequently used as a
test fish.

Statistical analysis
Statistical analysis was carried out using R version 2.13.0 (R
Development Core Team, 2011). Visual inspection of residual and
normal quantile–quantile plots was used to assess normality of data.
Appropriate transformations or non-parametric tests were used
where the assumption of normality was not supported.

Experiment 1
The proportion of black body colouration was arcsin transformed
prior to analysis to meet assumptions of normality. We assessed the
effect of stage (before or after exposure to the colour tanks) and
sex, and their interaction on the proportion of black colouration for
each time period (24h, 48h and 2weeks) and colour treatment
individually, using linear mixed effects models (Bates et al., 2011).
Fish ID was included in the model as a random effect to account
for the repeated-measures nature of the data. General linear models
were used to confirm that there was no difference in the starting
colour of fish allocated to the different colour or time treatments.
There was no significant interaction and no significant effect of sex
for any of the analyses, and so only the results of models including
stage (before or after exposure to the colour tanks) are reported here.

Experiment 2
We assessed the effect of colour treatment (black, white or changing)
and sex, and their interaction on the total number of food pellets
consumed using a linear mixed effects model with body size as a
random factor. The number of pellets consumed was log transformed
to meet the assumptions of a normal error structure.

Experiment 3
Length and mass data conformed to the assumptions of normality,
and so we used general linear mixed effects models to assess the
effect of colour treatment on the final body length and mass of the
fish, with tank ID as a random effect to control for potential non-
independence of fish housed within the same tank.

Experiment 4
To test for an effect of colour treatment on habitat preference, and to
account for the fact that the proportion of time spent in each colour

zone was not independent of the time in the other zones, we used a
series of one-sample Wilcoxon tests combined with a correction for
multiple testing [false discovery rate (FDR) control] (Benjamini and
Hochberg, 1995). Data were split on the basis of fish colour and the
proportion of time spent in each zone was tested against an expectation
based on the size of the zone (expected proportions: black, 0.3; white,
0.3; neutral, 0.4). FDR control was applied against the three tests for
each colour of fish. To test whether black treatment and white
treatment fish showed a significant preference for shoaling with the
colour-matched shoal over the unmatched shoal, we used non-
parametric one-sample Wilcoxon tests, as the data were non-normal
and could not be satisfactorily transformed to meet the assumptions
of normality. We compared the proportion of time spent shoaling
with the matched shoal against median value of 0.5, representing
random association patterns (i.e. no preference for either shoal
colour), for black and white treatment fish separately.

RESULTS
Experiment 1: quantification of colour change

Fish showed a significant darkening of body colouration after 48h
and 2weeks in black treatment tanks (Table1, Fig.1A) but this was
not evident after 24h (Table1). Fish in white treatment tanks showed
a significant lightening of body colouration after all time periods
(Table1, Fig.1A). When moved from a black to a white tank, fish
showed a significant lightening in colour (Table1, Fig.1B), while
fish moved from a white to a black tank showed a significant
darkening (Table1, Fig.1B).

Experiment 2: food consumption
There was no significant interaction between colour treatment and
sex (F2,51=2.319, P=0.108), so this was removed from the model
and only the main effects are presented here. There was a significant
effect of colour treatment and sex (but no interaction) on the number
of food pellets consumed (treatment, F2,53=13.288, P<0.0001; sex,
F1,53=10.767, P=0.0018; Fig.2). Fish in the colour change treatment
consumed more pellets than fish in the static black and white
treatments (Table2). Male fish also consumed more than female
fish across all treatments (Table2, Fig.2).

Experiment 3: growth rate
There was no significant effect of colour treatment (black, white or
colour change) on the final length (linear mixed effects model:
F=1.494, P=0.256, N=84 observations in 18 groups) or mass (linear
mixed effects model: F=1.031, P=0.381, N=84 observations in 18
groups) of fish.

Table1. Quantification of colour change

Time Colour d.f. t P

24h Black 11 0.432 0.674
White 11 –3.388 0.006

48h Black 7 2.565 0.026
White 7 –4.787 <0.001

2weeks Black 10 5.079 <0.001
White 10 –6.016 <0.001

24h Black to white 12 –5.676 <0.001
White to black 10 4.019 0.002

Results of linear mixed effects models assessing the effect of stage (before
or after colour treatment) on the proportion of black pigmentation for the
six combinations of time (24h, 48h and 2weeks) and colour treatment
(black and white), and for the follow-up black-to-white and white-to-black
experiments. Significant P-values are presented in bold.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2764

Experiment 4: habitat and shoal choice
Fish from the black treatment spent significantly more time in the
black zone (V=262, adjusted P=0.012) and significantly less time
in the white zone (V=7, adjusted P<0.001) than expected by chance
(Fig.3A). The proportion of time spent in the neutral zone did not
differ from random expectation (V=172, adjusted P=0.809). Fish
from the white treatment spent significantly more time in the neutral
zone (V=260, adjusted P=0.002), and significantly less time in the
black (V=69, P=0.031) and white (V=78, P=0.040) zones than
expected (Fig.3A). Both black and white treatment fish showed a
significant preference for the colour-matched shoal (Wilcoxon
signed rank test; black treatment fish: V=170, d.f.=19, P=0.016;
white treatment fish: V=131, d.f.=16, P=0.011; Fig.3B).

DISCUSSION
Here, we have demonstrated that there may be costs associated
with colour change in guppies. Fish exposed to a changing
environment changed their body colouration and increased their
food consumption relative to those exposed to a constantly
coloured environment. A cost to colour change in fish has been
predicted (Stuart-Fox and Moussalli, 2009) but not previously
demonstrated. However, we also found that when food was freely
available, fish were able to meet this potential cost, and did not
suffer negative consequences in terms of growth rate. It is well
known that poor conditions, particularly food availability, can
cause slower growth rates in fish (Metcalfe and Monaghan, 2001;
Lee et al., 2012), and that improved food availability can lead to
compensatory (or catch-up) growth (Ali et al., 2003; Hector and
Nakagawa, 2012). Thus, we would predict that if food supplies
were limited, the costs associated with colour change that we
identified in experiment 2 could lead to a reduction in growth rate,
but this is yet to be tested. Further work is needed to conclusively
demonstrate an energetic cost associated with colour change, which
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may be linked to the mechanisms of colour change (physiological
versus morphological).

In our experiments, fish were moved from the neutrally coloured
stock tanks into the treatment tanks, and so those fish exposed to
the constant black and white treatments would also have undergone
some colour change, becoming darker or paler. In contrast to the
fish in the colour change treatments, however, this change would
have slowed and stabilised over time (e.g. Péan, 2012), while fish
in the colour change treatment would have repeatedly undergone
the initial rapid colour change. The large increase in food intake by
fish in the colour change treatment strongly suggests that the initial
rapid colour change has large associated energetic costs.

Our finding that males had an elevated food intake relative to
females is unsurprising: sex differences in behaviour have been well
documented in guppies (Houde, 1997; Magurran and Garcia, 2000;
Magurran, 2005). Males are generally more active (Reader and
Laland, 2000) and less risk averse (Magurran and Seghers, 1994)
than females, and move between shoals more than females (Croft
et al., 2003), as males attempt to maximise mate encounters and
increase reproductive success. The increased activity levels of males
provide a simple explanation for the increased food intake we
observed.

It is possible that the increased food intake by fish from the colour
change treatment could have been due to their being less risk averse.
Juvenile cod (Gadus morhua) and guppies that experience
unpredictable environments during early life are known to become
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(open bars) guppies from the three colour treatments. Error bars represent
±1s.e.m.

Fig.1. (A)Change in the proportion of
black body colouration for fish exposed to
black (filled bars) and white (open bars)
treatments for 24h, 48h and 14days.
(B)Change in the proportion of black body
colouration for fish moved from black to
white treatments (and vice versa) for 24h.
Error bars represent ±1s.e.m. Asterisks
indicate a significant change in colouration
(see Table1).
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‘bolder’ (Braithwaite and Salvanes, 2005; Chapman et al., 2010),
leaving a refuge more quickly and being more explorative in a novel
area, and this may cause them to forage more rapidly once introduced
to the test tank. We did not specifically record latency to feed in
the behavioural trials, but all fish were swimming normally by the
time the first food pellet was added, and the majority of fish
immediately attacked the first pellet, suggesting that differences in
boldness due to recent experience may not have been important in
determining the likelihood of foraging. Female fish did appear to
take longer to settle during the 5min acclimatisation period than
males (N.W.G., personal observation), but we noted no differences
in acclimatisation behaviour between colour treatments, and all fish
experienced equal disturbance (changing of backgrounds) in a
predictable manner during the short experimental period.

We also demonstrated that fish preferred both habitats and shoals
that matched their own colouration: black-adapted fish showed a
significant preference for the black-adapted shoal over the white-
adapted one, and for darker habitats, and avoided white habitats.
White-adapted fish also preferred colour-matched shoals, and
neutrally coloured habitats, avoiding both black and white habitats.
White habitats may be unattractive to fish for a range of reasons.
The lighter background, and more reflected light, may mean that it
is easier for a predator to identify a moving or camouflaged prey
item (e.g. Strand et al., 2007). In guppies, the highest predation risk
generally occurs at maximum light levels (Endler, 1987), and in
salamanders (Ambystoma barbouri and A. texanum), the presence
of olfactory cues from predatory fish resulted in a preference for
dark substrates over light ones (Garcia and Sih, 2003). There is also
evidence that living in light-coloured habitats may have other costly
implications for fish: growth and survival in juvenile yellow
seahorses (Hippocampus kuda), for example, were significantly
reduced in light habitats compared with dark ones (Pawar et al.,
2011).

Many animals are known to select habitats that best match their
colouration (known as ‘behavioural background matching’) in order
to increase crypsis and reduce predation (Garcia and Sih, 2003;
Ruxton et al., 2004). Both black- and white-adapted fish avoided
habitats of the opposite colour, where they would be most
conspicuous, preferring instead those where they were more cryptic.
White-adapted fish were not white in colour, and may have been
more cryptic against the neutral background than against the white
background, explaining their preference for the neutral background.
The choice of neutral habitats by white-adapted fish also provides
evidence that the preferences we observed were not based only on

familiarity with the habitat (Stamps and Swaisgood, 2007). White-
adapted fish preferred neutral habitats to white ones, but a preference
for white would be predicted if familiarity with recent habitat drove
their decision making. Thus, we conclude that both black- and white-
adapted fish are selecting habitats that maximise crypsis. Similarly,
white morphs of black-and-white mollies (Poecilia latipinna) show
no preference for white habitats over black ones, in contrast to their
black counterparts, who prefer black backgrounds (Bradner and
McRobert, 2001), suggesting that white habitats are not preferred
even for those animals that would be most cryptic against them.
‘Matching habitat choice’ carries with it implications for gene flow
and can promote population differentiation and adaptation (Edelaar
et al., 2008), as individuals actively choose microhabitats that
maximise fitness (Karpestam et al., 2011).

Both black- and white-adapted fish preferentially associated with
colour-matched shoals. It is well established that fish assort into
shoals based on phenotype: there is evidence for assortment by
species (Keenleyside, 1955), body size (Krause et al., 1998; Ward
and Krause, 2001) and colour (McRobert and Bradner, 1998;
Rodgers et al., 2010). By shoaling with phenotypically matched fish
(those that are similar in appearance), individuals can benefit from
a reduced risk of predation via two interlinked mechanisms: the
confusion (Krakauer, 1995) and oddity (Ohguchi, 1978; Landeau
and Terborgh, 1986) effects. The oddity effect allows a predator to
overcome the confusion caused by a moving group of phenotypically
similar individuals (the confusion effect) by selecting one that is
distinct (‘odd’) as the target, and together these mechanisms should
lead to the evolution of phenotype-assorted groups.

The ability to associate with colour-matched fish and choose
habitats that maximise crypsis suggests that a fish is able to judge
its own body colouration. A fish may do this either through a self-
referent matching process or by assessing the colour of those with
whom it has recent experience and making decisions accordingly.
While many fish learn their phenotype when young (Engeszer et
al., 2004), there is evidence that recent experience can also contribute
to this assessment (Mateo, 2004; Witte, 2006; Gómez-Laplaza,
2009). In sticklebacks (Gasterosteus aculeatus), self-referent
phenotype matching is used in social decisions, and this, in common
with much social behaviour in fish, is mediated by chemical rather
than visual cues (Ward et al., 2005; Ward and Currie, 2013).
Familiarity (associating with individuals of shared recent experience)
is a key factor structuring fish shoals, supporting the notion that
fish benefit from association with those that have experienced a
similar recent environment (Ward and Hart, 2003).
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Fig.3. (A)The proportion of time spent
by black treatment and white treatment
fish in each of the three habitat zones:
black habitat (dark filled bars), neutral
habitat (light filled bars) and white
habitat (open bars). Asterisks indicate
significant deviation from random
expectation, indicated by the dashed
line. (B)Mean proportion of time spent
shoaling with the colour-matched shoal
by black (filled bars) and white (open
bars) treatment fish. The horizontal
dashed line indicates no preference;
asterisks denote a significant deviation
from this. Error bars are ±1s.e.m.
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By selecting habitats or shoals that match their current
colouration, fish reduce their risk of predation via crypsis against
the background (Ruxton et al., 2004) or shoal (Endler, 1978). Even
though colour adjustment could be made in a matter of minutes
in some species, it is never instant (Leclercq et al., 2010), and
will be associated with an increased risk of predation before
adaptation to the background is complete. Selecting matching
habitats and shoals removes the need to adjust body colouration
and pay the associated cost, but simultaneously may represent an
opportunity cost (Ruxton et al., 2004) as it may act to restrict
individuals to particular habitats or associates. Herbert and Emery
suggest that the high cost associated with melanin synthesis
restricts melanic morphs to areas of high UV radiation, for
example (Herbert and Emery, 1990). All prey animals at risk from
visual predators will face an opportunity cost while they remain
in microhabitats with backgrounds that maximise their camouflage
(Ruxton et al., 2004). This cost is reduced by the ability to change
colour to match different backgrounds, and is thus inversely
related to speed of colour change.

Colour change for background matching may have implications
for other behaviours. Colour is widely used as a signal (Endler, 1992;
Maynard Smith and Harper, 2003): melanin, for example, is linked
to social signalling, particularly in advertising social status [e.g.
house sparrows Passer domesticus (Møller, 1987), Atlantic salmon
Salmo salar (O’Connor et al., 1999) and arctic charr Salvelinus
alpinus (Höglund et al., 2002)]. Thus, there is a potential trade-off
between colour change for background adaptation and colour
change associated with other functions: colour change that is
beneficial in the context of background matching may be detrimental
in the context of social signalling, for example (Stuart-Fox and
Moussalli, 2009). Colour change for background matching could
also affect colour patterns used in sexual signals, masking the
intensity of colour patches, or minimising variation between males,
for example. The interaction between colour change for crypsis and
colour change for thermoregulation presents another potential
conflict for many species including reptiles and amphibians (Stuart-
Fox and Moussalli, 2009), though this is likely to be of little
importance to exclusively aquatic organisms.

Prey animals often have a repertoire of potential responses to
increased predation risk, ranging from immediate behavioural
responses to plastic morphological change to shifts in life history
strategies (Garcia and Sih, 2003). We show here that colour change
to match the visual background is complemented by behavioural
strategies that minimise the need to pay the cost associated with
colour change, but which may also represent an opportunity cost to
the individual. Together, these strategies should act to maximise
fitness in variable environments, but the extent to which these costs
and decisions impact on fitness in wild populations is yet to be
examined, and we know little about how colour change for crypsis
interacts with other functions of colour (Stuart-Fox and Moussalli,
2009).
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