European Journal of Vascular & Endovascular Surgery

Supervised Exercise Therapy for Intermittent Claudication: A Propensity Score Matched Analysis of Retrospective Data on Long term Cardiovascular Outcomes --Manuscript Draft--

Manuscript Number:	EJVES19380R		
Article Type:	Original Article-Other		
Keywords:	Intermittent Claudication; outcome assessment; propensity score; ischemia; exercise therapy; resistance training		
Corresponding Author:	Bharadhwaj Ravindhran Hull York Medical School Hull, East Riding of Yorkshire UNITED KINGDOM		
First Author:	Bharadhwaj Ravindhran		
Order of Authors:	Bharadhwaj Ravindhran		
	Arthur JM Lim		
	Thomas Kurian		
	Josephine Walshaw		
	Louise Helen Hitchman		
	Ross Lathan		
	George Smith		
	Daniel Carradice		
	lan Chetter		
	Sean Pymer		
Abstract:	Objective: This study aimed to explore the long-term outcomes of patients with intermittent claudication (IC) who completed supervised exercise therapy (SET) versus those who declined or prematurely discontinued SET, focusing on the incidence of chronic limb-threatening ischemia (CLTI), revascularization, major adverse limb events (MALE), and major adverse cardiovascular events (MACE). Design: Retrospective registry analysis of consecutive patients with IC who were referred for SET between March 2015 and August 2016 and followed up for a minimum of five years. Methods:Serial univariable analysis and logistic regression was performed to identify the statistically significant clinical variables that were independent predictors of each outcome measure. The resulting statistically significant variables were used to guide 1:1 propensity score matching (PSM) using the nearest neighbour method with a calliper of .2.Cox proportional hazards regression was used to estimate the hazard ratio(HR) and 95% CI for the association between SET and the outcomes of interest. Results: Two hundred and sixty-six patients were referred to SET between March 2015 and August 2016. Of these, 64 patients completed SET and 202 patients did not. After PSM,49 patients were analysed in each cohort. The Cox proportional hazards analysis revealed a significant association between completion of SET and progression to CLTI(HR: 0.091, 95% CI 0.04 – 0.24; p <.001), completion of SET and MALE(HR: 0.28, 95% CI 0.13 – 0.65; p =.003). The Harrell's C-index for all of these models were greater than .75 indicating good predictive accuracy. Conclusion: Completion of SET is associated with better outcomes in patients who completed SET compared to patients who declined or discontinued SET with respect to clinically important cardiovascular outcomes over 7 years.		

Response to reviewers:

Reviewer 1:

Comment: My main concern cannot be completely adressed due to the nature of the data/design, but the authors did a good job nunancing the methods and results. A compelling finding is the high number of patients declining SET (70% of suitable patients) and the documented reason for doing so. This definitely helps to understand and solve the barriers to wide implementation and use of a SET first strategy in claudicants.

Response: Thank you very much for your kind comment. As you have rightly suggested, your concern is justified and has been acknowledged as a significant limitation throughout the manuscript with our careful choice of words.

Comment: Discussion line 240-241. Please delete '... a reduced risk of requiring revascularisation' as this endpoint was taken out of the analysis.

Response: Many thanks for your kind comment. This has been edited accordingly.

Comment: Discussion line 321-323. Idem ('... reduced intervention rates')

Response: Many thanks for your kind comment. This has been edited accordingly.

Comment: Table 2. Title, please modify: Number of cardiovascular events for patients who did and did not complete SET after median follow up of xx years. Please delete p value, as formal comparison is made by cox regression analysis in the text. One may consider to make a bar graph instead of a table to highlight the differences.

Response: Many thanks for your kind comment. This has been edited accordingly.

Reviewer 2:

Comment: I want to thank the authors for their revision, in which they have addressed previous reviewers' suggestions and comments, particularly facing the study's limitations. Currently, their manuscript presents their findings in a solid and balanced way, making it a potentially valuable addition to our upcoming EJVES issue.

Response: Many thanks for your kind comments and suggestions which have significantly improved the quality of the manuscript!

Reviewer 4:

Comment: In the current manuscript Ravindhran and colleagues retrospectively report the longterm outcomes of patients that completed SET for IC and compared these with a group of patients that did either not start of prematurely stopped SET. They use propensity score matching to try and correct for potential confounding. However, this does not completely correct for unmeasured confounding and especially since it is reasonable that not participating in SET could well be related to causes that are also related to worse outcomes, such as limited cardiovascular reserve and frailty. As the manuscript has already been scrutinized by some of my colleague experts in this field I mainly focused on methodology and also have some other general comments as well.

Response: Thank you for your kind comments and suggestions. We have made every effort to address all the comments to the best of our abilities, taking into account all the suggestions from the reviewers, despite encountering a few contradictory suggestions between them.

Title:

Comment: 1. I would recommend to include the study design in more detail in the title and not only that it includes a propensity score matching. The single center and retrospective design are important and also consider to include "long-term cardiovascular and limb related outcomes".

Response: Thank you for your kind comment. We greatly appreciate the suggestions provided by reviewers 1-3, which have influenced the changes made to the current title. We agree that these suggestions are important and have accordingly edited the title to "Supervised Exercise Therapy for Intermittent Claudication: A Propensity Score Matched Analysis of Retrospective Data on Long-term Cardiovascular Outcomes" to incorporate all reviewer comments.

What this paper adds

Comment: 2. This part is very limited now. It does not include the fact that a comparison was made with a "control group" using PSM.

Response: Thank you for your feedback! We greatly appreciate the suggestions made by reviewers 1-3, which led to the significant truncation of this section. However, we acknowledge the importance of these points raised by you and have made the necessary modifications accordingly.

Comment: 3. Would explicitly mention which outcomes were assessed.

Response: Many thanks for your kind comment ! This was previously removed as kindly suggested, but have been readded as per your kind suggestion.

Abstract:

Comment: 4. Include in the conclusion that completion of SET is "associated with better outcomes than ...". So include the description of the control group and not state "improvement" (this suggests that health status is better than at baseline), but better compared to a reference group.

Response: Many thanks for this kind comment. This has been edited accordingly

Introduction:

Comment: 5. Minor: CLTI is not spelled out at first time use.

Response: Many thanks for this kind comment and apologies for the oversight. This has been edited accordingly

Comment: 6. I would consider to rephrase the aim of the study: "Therefore, the aim of this study was to investigate whether completion of SET was associated with better cardiovascular outcomes compared to a group of patients with intermittent claudication that did not complete SET using PSM." Or something similar.

Response: Many thanks for this kind comment. This has been edited accordingly

Methods:

Comment: 7. I miss any statement on ethics.

Response: Thank you for your kind comment and for highlighting this important point. This project was registered as part of a service evaluation project within our institution. It involved a retrospective analysis of anonymised patient data. We've included this information in the submission declaration during the submission.

Comment: 8. Why did the authors only include the statistically significant variables in the PSM? Why not choose a more liberal approach? Could well be that you might miss relevant variables due to type II error. Although I believe that you performed a rigorous method to select variables. Please comment.

Response: Many thanks for raising this important point! Thank you for your insightful comments and questions. We appreciate your suggestion of adopting a more liberal approach in the selection of variables for PSM. In our study, we initially included statistically significant variables in the PSM to ensure that we were controlling for factors that had a proven association with the outcome. This approach was taken to minimize the risk of overfitting and to ensure the robustness of our findings. However, we acknowledge your concern about the potential for Type II errors and the possibility of missing relevant variables. We agree that a more liberal approach could potentially uncover additional variables of interest which we have now acknowledged as a significant limitation in the limitation section.

Comment: 9. The group of patients that completed SET is very small. Why did the authors not consider to use inverse probability weighting and hence retain a larger sample size. Can the authors provide such an analysis to underline the robustness of their findings?

Response: Thank you for your extremely insightful comment and for raising yet another important point. We acknowledge that the sample size of patients who completed SET is relatively small, which could potentially limit the generalizability of our findings. The use of inverse probability weighting (IPW) is indeed a valid approach that could allow us to retain a larger sample size and potentially enhance the robustness of our findings. However, we chose Propensity Score Matching for the following reasons specific to our study. Firstly, PSM allows us to closely mimic a randomized controlled trial by matching patients who completed SET with control patients on a range of observed characteristics. This approach helps to reduce bias due to confounding variables. Secondly, while IPW could potentially retain a larger sample size, it can also introduce its own set of challenges. IPW can be highly sensitive to the specification of the model used to estimate the weights. If the model is incorrectly specified, the weights can be biased, leading to biased estimates of the treatment effect. Furthermore, IPW can lead to unstable estimates if there are individuals with extreme weights. This is particularly a concern in our study given the small sample size of patients who completed SET (which is consistent with national reports). While we acknowledge the potential benefits of IPW, we believe that PSM is a more suitable method for our study given these considerations. However, we recognize the limitations of our approach, including the potential for bias due to unobserved confounding and the reduced sample size. We believe that these limitations are balanced by the strengths of PSM, including its ability to reduce bias due to observed confounding variables and its robustness to model specification. This has been acknowledged as yet another significant limitation.

Comment: 10. In the methods statements are missing on completeness of data. Were there missing, how many, how was dealt with missing variables in the analyses? Imputation?

Response: Many thanks for yet another important point. Given that we do not have a large sample size, patients were missing data were not included. This has now been added to the manuscript.

Results:

Comment: 11. It would be nice when a flow diagram could be provided to visualize the patient flow in the study.

Response: Thank you for your valuable suggestion. We understand the importance of including additional figures and tables to provide a comprehensive analysis. However, we are significantly limited by the total number of figures and tables allowed, which is set at 5 for this paper. We believe that all the figures and tables included in the manuscript are equally important for presenting our findings and supporting the conclusions. We appreciate your understanding and assure you that we have made every effort to include the most relevant and informative figures and tables.

Comment: 12. The lack of differences in Table 1b after PSM could well be the result of type II error, please discuss in limitations.

Response: Many thanks for raising yet another important point. We absolutely agree and will add this to the list of limitations.

Comment: 13. The values for haemoglobin in the text do differ from the ones in table 1b. Please check and correct. Considering a p of 0.08 I think the values in table 1b are correct.

Response: Many thanks for spotting this and sincere apologies for the oversight. This has been addressed as suggested.

Conclusion:

Comment: 14. The conclusion that SET leads to improvement of cardiovascular health and potentially mitigates adverse long-term outcomes in IC cannot be made. This study has too high risk of unmeasured confounding to draw conclusions on causal relationships, only draw conclusions on an association.

Response: Many thanks for this kind comment! This has been modified as suggested!

References:

Comment: 15. I think the amount of references is rather substantial, but if none of the reviewers and the editor consider this a problem I think it is acceptable.

Response: Thank you for your feedback. We have made efforts to limit the use of references in the content provided in order to maintain conciseness and readability. However, we understand the importance of providing sufficient elaboration to support the statements made.

Figures:

Comment: 16. Figure 3: Think about data maturity and truncation of the KM-curves at a certain number at risk. Extending the KM when the number at risk is 0 or 1 has no use.

Response: Many thanks for your kind comment! We absolutely agree and have edited this as suggested.

The Editorial team/Mr. Jonathan Boyle European Journal of Vascular and Endovascular Surgery (EJVES) Dear Mr Boyle,

We hope this letter finds you well. We are submitting the revised version of our manuscript titled " supervised exercise therapy for intermittent claudication: a propensity score matched analysis of retrospective data on long term cardiovascular outcomes " for your kind reconsideration for publication in the European Journal of Vascular and Endovascular Surgery.

We are grateful for the opportunity to address the concerns and suggestions raised by the reviewers during the initial review process. We have carefully incorporated all changes recommended by reviewers 1 and 2, as well as the valuable feedback provided by reviewer 4. These revisions have significantly improved the quality and clarity of our manuscript.

We would like to acknowledge the insightful comment raised by reviewer 4 regarding the small sample size of patients who completed SET, which could potentially limit the generalizability of our findings. While the use of inverse probability weighting is a valid approach to retain a larger sample size and enhance the robustness of our findings, we have chosen Propensity Score Matching for specific reasons in our study.

Firstly, PSM allows us to closely mimic a randomized controlled trial by matching patients who completed SET with control patients based on a range of observed characteristics, reducing bias due to confounding variables. Secondly, while IPW could retain a larger sample size, it can introduce challenges such as sensitivity to model specification and unstable estimates with extreme weights. Given the small sample size of patients who completed SET, we believe that PSM is a more suitable method for our study, considering these considerations. However, we acknowledge the limitations of our approach, including the potential for bias due to unobserved confounding and the reduced sample size. We have now acknowledged these limitations in the manuscript.

We appreciate their suggestion of adopting a more liberal approach in the selection of variables for PSM. In our study, we initially included statistically significant variables in the PSM to ensure that we were controlling for factors that had a proven association with the outcome. This approach was taken to minimize the risk of overfitting and to ensure the robustness of our findings. However, we acknowledge the potential for Type II errors and the possibility of missing relevant variables. We have now acknowledged this as a significant limitation in the manuscript.

We kindly request that you reconsider our submission for publication in EJVES, taking into account the significant improvements we have made in response to the reviewers' feedback. We believe that our revised manuscript now meets the high standards set by the journal and contributes valuable insights to the field of vascular and endovascular surgery.

Thank you for your time and consideration. We look forward to hearing from you soon.

Yours sincerely,

Bharadhwaj Ravindhran

Multiple choice questions:

According to the current guidelines, which of the following treatment approaches is considered the first line for intermittent claudication?

- a. Best medical therapy
- b. Best medical therapy, bed rest, and elevation
- c. Best medical therapy, supervised exercise program, smoking cessation
- d. Endovascular revascularization
- e. Surgical revascularization

Which of the following reasons is NOT a valid justification for considering percutaneous transluminal angioplasty as the first approach for intermittent claudication?

- a. Poor patient motivation
- b. Running costs
- c. Lack of availability/required time commitment
- d. Lack of qualified personnel

e. Percutaneous transluminal angioplasty is more efficacious than supervised exercise therapy (SET)

- 1 Title: Supervised Exercise Therapy for Intermittent Claudication: A Propensity Score Matched
- 2 Analysis of Retrospective Data on Long term Cardiovascular Outcomes: Supervised exercise therapy
- 3 for intermittent claudication: Propensity score matched analysis of long-term outcomes
- 4 Running title: Long-term outcomes following supervised exercise therapy in intermittent claudication
- 5 Authors: Bharadhwaj Ravindhran,
- 6 Arthur JM Lim
- 7 Thomas Kurian
- 8 Josephine Walshaw
- 9 Louise H Hitchman
- 10 Ross Lathan
- 11 George E Smith
- 12 Daniel Carradice
- 13 Ian C Chetter
- 14 Sean Pymer
- ¹ Academic Vascular Surgical Unit, 2nd Floor, Allam diabetes centre, Hull Royal Infirmary, HU32JZ
- 16 Corresponding author: Bharadhwaj Ravindhran
- 17 Academic Vascular Surgical Unit
- 18 2nd Floor, Allam diabetes centre
- 19 Hull Royal Infirmary
- 20 Hull HU32JZ
- 21 Bharadhwaj.Ravindhran@nhs.net
- 22 This paper was awarded the Norman Williams Prize for the best clinical research paper and is
- 23 shortlisted for the BJS Best Manuscript Prize at the Annual Meeting of the Surgical Research Society
- in 2023 at Nottingham, UK.
- 25
- 26 Word counts
- 27 Abstract: 285
- 28 What this paper adds: 37
- 29 The text body: 2932
- 30 Number of tables and figures: 3 tables and 3 figures

32	What this paper adds:
33	This study contributes to the current body of literature by conducting an initial assessment of long-
34	term outcomes in patients with intermittent claudication (IC) who underwent supervised exercise
35	therapy (SET), with a focus on cardiovascular morbidity and mortality The results indicate that
36	completing SET is associated with a decreased risk of major adverse limb events, major adverse
37	cardiovascular events, and progression to chronic limb-threatening ischemia based on this
38	retrospective propensity score matched analysis of patients who completed, discontinued or declined
39	<u>SET.</u>
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	

- 55
- 56
- 57

58 Abstract:

Objective: This study aimed to explore the long-term outcomes of patients with intermittent
claudication (IC) who completed supervised exercise therapy (SET) versus those who declined or
prematurely discontinued SET, focusing on the incidence of chronic limb-threatening ischemia
(CLTI), revascularization, major adverse limb events (MALE), and major adverse cardiovascular
events (MACE).

Design: Retrospective registry analysis of consecutive patients with IC who were referred for SET
between March 2015 and August 2016 and followed up for a minimum of five years.

Methods: Serial univariable analysis and logistic regression was performed to identify the statistically significant clinical variables that were independent predictors of each outcome measure. The resulting statistically significant variables were used to guide 1:1 propensity score matching (PSM) using the nearest neighbour method with a calliper of .2. A Cox proportional hazards regression was used to estimate the hazard ratio(HR) and 95% CI for the association between SET and the outcomes of interest.

Results: Two hundred and sixty-six patients were referred to SET between March 2015 and August
2016. Of these, 64 patients completed SET and 202 patients did not. After PSM, 49 patients were
analysed in each cohort. The Cox proportional hazards analysis revealed a significant association
between completion of SET and revascularisation requirement(HR: 0.46 95% CI 0.25 – 0.84; p
=.011), completion of SET and progression to CLTI(HR: 0.091, 95% CI 0.04 – 0.24; p <.001),
completion of SET and MACE(HR: 0.52; 95% CI 0.28 – 0.99; p =.05) and completion of SET and

- 78 MALE(HR: 0.28, 95% CI 0.13 0.65; p = .003). The Harrell's C-index for all of these models were
- 79 greater than .75 indicating good predictive accuracy.
- 80 Conclusion: Completion of SET is associated with significant improvements better outcomes in
- 81 patients who completed SET compared to patients who declined or discontinued SET with respect to
- 82 clinically important cardiovascular outcomes over 7 years.
- 83 Key words: Intermittent claudication, outcome assessment, propensity score, ischemia, exercise
- 84 therapy; resistance training

- 99
- 100
- 101

1()2	Introduction:
- '		11110000001011

Intermittent claudication (IC) is an ambulatory, ischaemic muscle pain relieved by rest, which reduces 103 physical function, walking capacity, balance, and quality of life and increases the risk of mortality 104 105 from cardiovascular causes¹⁻⁵. Patients with IC patients are at risk of disease progression to chronic limb threatening ischaemia(CLTI) and major adverse limb events (MALE) such as major lower limb 106 107 amputations (MLLA), acute limb ischemia (ALI), or loss of untreated patency^{6,7}. The goal of treatment 108 is therefore to improve symptoms, physical function, and quality of life (QoL), while also reducing 109 the risk of disease progression and limb loss, mortality and MACE.8 To achieve this, the National Institute for Health and Care Excellence (NICE) guideline 1479 and the 110 European society for vascular surgery (ESVS)¹⁰ recommend supervised exercise therapy (SET) for 2-111 hours per week over a 3-month period, as the first-line treatment. Evidence shows that SET is 112 significantly superior for improving walking performance, and therefore symptoms, when compared 113 114 to home-based exercise and walking advice¹¹. Further evidence also shows that SET is comparable to endovascular revascularisation for improving walking distance and importantly, QoL¹¹. Given the 115 positive effect that SET also has on cardiovascular risk factors,^{12,13} it would be reasonable to assume 116 that this leads to a potential benefit in morbidity, via a reduction in MACE and MALE, as well as a 117 118 benefit in mortality. However, the evidence considering the long-term effects of SET on morbidity and mortality is lacking, with just one study considering the association between SET completion and 119 mortality^{14,15}. 120

121 <u>Therefore, the aim of this study was to investigate whether completion of SET was associated with</u>
 122 <u>better cardiovascular outcomes compared to a group of patients with IC that did not complete SET</u>

using propensity score matching(PSM). Therefore, the aim of this study was to investigate the long term morbidity and mortality impact associated with successful completion of SET for the treatment
 of IC.

126 Methods:

127 This study was conducted at a tertiary care referral vascular centre. The clinical, intra-operative and
128 follow-up information were gathered, analysed and compared between patients who completed SET
129 and patients who either declined or discontinued SET.

130 Patient selection:

131 We retrospectively analysed the data of consecutive patients with IC who were referred for SET between March 2015 and August 2016 (18 months). Patients who were referred but had CLTI, had 132 133 undergone SET within the preceding 12 months, or had a recurrence of symptoms following previous revascularisation were excluded from this analysis. Patients who were referred for SET but were 134 135 deemed unsuitable due to contraindications or the presence of significant co morbidities or missing data were also excluded. The diagnosis of IC was made clinically, and was further supported by a 136 resting ankle brachial pressure index (ABPI) or toe -brachial pressure index, duplex ultrasound or 137 cross-sectional imaging if required. Patients who declined SET were either discharged back to their 138 general practitioner (GP), received regular follow-up or underwent a revascularisation procedure, 139 depending on individual need. 140

Patients referred to supervised exercise therapy (SET) were initially assessed by physicians to identify any obvious contraindications such as severe frailty, unstable gait, and existing pulmonary and cardiac disorders (e.g., aortic stenosis, dyspnoea at rest). These contraindications were determined based on clinical judgment. Furthermore, patients who did not have any obvious contraindications to SET were then screened by the exercise physiologist prior to starting SET. This screening process aimed to identify any additional contraindications or factors that may affect the safety or effectiveness of SET for individual patients. It is important to note that all patients in our study underwent routine screening

at two levels (physician assessment and exercise physiologist screening) to ensure that only those whowere suitable for SET were included.

150 Supervised exercise therapy:

Patients performed SET three times per week for 12 weeks comprising a total of 36 sessions. Missed 151 152 sessions were made up at the end of the 12-week programme¹⁶. The programme was overseen by an 153 exercise physiologist with support from undergraduate and postgraduate sports science students. SET sessions involved the completion of a circuit of six two-minute stations, separated by two-minute 154 walking intervals. These were preceded by a warm-up and followed by a cool-down. The stations 155 included step-ups, standing knee bends, sitting knee extensions, biceps curls, cycling, and heel raises 156 157 (Figure 1). As the patient's exercise tolerance improved, an additional station was added each week from the seventh week and by the end of week 12, they completed two full circuits. Session length 158 therefore began at 30, progressing up to 60 minutes. Patients were deemed to have successfully 159 completed SET after accumulating 36 sessions. This circuit-based training program was designed 160 161 based on previous recommendations that highlight the effectiveness of combining upper and lower limb ergometry, resistance exercise, and walking-based exercises to improve muscle strength and 162 cardiorespiratory fitness. These interventions have been shown to elicit a more significant 163 cardiorespiratory stimulus compared to walking alone.¹⁷⁻²⁰ 164

165 Outcome measures:

166 The study investigated the incidence and time-to CLTI, MALE, and MACE over a minimum of five

167 years and up to seven years. CLTI was defined as ischaemic rest pain lasting for two or more weeks,

168 non-healing wounds, or gangrene that was attributable to objectively proven arterial occlusive disease.

169 MACE was defined as non-fatal stroke, nonfatal myocardial infarction (MI), or cardiovascular death

170 (CVD)²¹. MALE was defined as ALI, untreated loss of patency, or MLLA.²²

171 Statistical analyses:

172 Continuous data was assessed for a normality using the Shapiro-Wilk test and are presented as mean \pm

173 standard deviation or median and range or interquartile range as appropriate. Categorical data are

174 expressed as numbers and/or percentages. Time to event data is presented using Kaplan-Meier 175 survival curves. Comparative hypothesis testing was performed using Chi-squared tests, t-tests or Mann Whitney U tests as appropriate, and log- rank tests. Statistical significance was set at p = < .05. 176 Serial univariable analysis and logistic regression was performed to identify the statistically 177 178 significant clinical variables that were independent predictors of each outcome measure. This was confirmed by performing an independent variable importance analysis using the multilayer perceptron 179 tool, which is a popular tool in machine learning and deep learning for pattern recognition.²³ The 180 181 resulting statistically significant variables were used to guide 1:1 propensity score matching (PSM) 182 using the nearest neighbour method with a calliper of .2. The differences between these two matched 183 groups were compared by using the Mann–Whitney U test, and categorical data were analysed using 184 the Pearson's Chi-square test, the Fisher's exact test, or continuity correction where appropriate. 185 Survival curves were obtained by the Kaplan-Meier method and a Cox proportional hazards 186 regression was used to estimate the hazard ratio(HR) and 95% CI for the association between SET 187 and the outcomes of interest. All statistical analyses were performed using Statistical Package for the 188 Social Sciences (IBM Corp. 2020; Windows Version 27.0) and Medcalc (MedCalc Statistical 189 Software version 19.2.6; MedCalc Software by, Ostend, Belgium;)

190

191 Results:

192 Two-hundred and eighty-two patients presented to the vascular outpatient clinic with IC between March 2015 and August 2016 and were referred for SET. Sixteen patients were deemed unsuitable for 193 194 SET due to advanced comorbidities, mobility problems and dementia. Two-hundred and sixty-six 195 patients were deemed suitable and were offered SET, of which 83 (31%) attended and 183 (69%) 196 declined. Of those that attended, 64 (77%) patients successfully completed SET, whilst 19 (23%) 197 prematurely discontinued. Baseline characteristics of those who completed and those who declined or prematurely discontinued SET are presented in table 1a. The primary reasons for the low adoption of 198 199 SET were related to location or travel (44.3%; n=81), individuals declining due to lack of interest/belief in the SET (39.3%; n=72), work/personal commitments resulting in a lack of time for 200

SET (12.6%; n=23), inability to participate due to musculoskeletal issues (2.2%; n=4), and patients
already enrolled in a community exercise program (1.6%; n=3). Considering that nearly all patients
who discontinued SET did so without attending at least 50% of the sessions, we deemed it appropriate
to combine both groups, i.e., those who discontinued and those who declined SET, for the purpose of
analysis.

206 Serial univariable and logistic regression analyses revealed that CLTI had the greatest number of 207 statistically significant predictor variables compared to the other outcomes, and therefore, these 208 significant predictors were used to guide PSM, which was performed to account for the independent 209 association between these variables and outcome measures. Haemoglobin, self-reported claudication distance, ABPI, presence of ischaemic heart disease (IHD), neutrophil-to-lymphocyte ratio, 210 compliance with smoking cessation and non-completion of supervised exercise therapy were found to 211 be statistically significant predictors of CLTI based on serial univariable analyses. Logistic regression 212 213 analysis performed using these variables indicated that haemoglobin, self-reported claudication distance, ABPI and the presence of IHD were significant predictors of CLTI. This was confirmed via 214 an independent variable importance analysis (Figure 2). The multilayer perceptron(MLP) algorithm is 215 employed to evaluate the relative contribution of independent variables in predicting CLTI. By 216 217 assigning weights to each input variable based on their importance, the MLP algorithm provides 218 valuable insights into the significant of each variable. This importance analysis helps identify the 219 variables with the greatest impact on CLTI occurrence.

After PSM based on these variables, 49 patients were analysed in each cohort. There was no

difference between groups with respect to haemoglobin (g/l) $(130.9 \pm 19.3132 \pm 19.3)$ vs $138.6 \pm$

222 <u>18.8130 ± 18.8</u>; p = .080), IHD (59.2% vs 63.3% p = .56), self-reported claudication distance (metres)

223 $(131 \pm 19.4 \text{ vs } 130 \pm 18.9; p = .81)$ and ABPI $(0.7 \pm 0.1 \text{ vs } 0.7 \pm 0.2; p = .29)$ (Table 1b). The Cox

224 proportional hazards analysis revealed a significant association between completion of SET and

progression to CLTI(HR: 0.091, 95% CI 0.04–0.24; p <.001), completion of SET and MACE(HR:

226 0.52; 95% CI 0.28 – 0.99; p =.05) and completion of SET and MALE(HR: 0.28, 95% CI 0.13 – 0.65;

227 p =.003). The Kaplan-Meier curves demonstrated a consistent and statistically significant difference in

outcomes amongst those who completed SET, compared to those who did not complete SET (Figure
3). The Harrell's C-index for all of these models were greater than .75 indicating good predictive
accuracy.

To assess the adequacy of sample size, a post-hoc power analysis was conducted, revealing that a total
of 48 events and a sample size of 36 patients in the SET completion cohort and 186 patients in the
non-completion cohort were required to detect a significant association between SET and outcomes.
This estimation followed the methodology outlined by Schoenfeld et al²⁴, assuming a significance
level of .05, 80% power, a 16% incidence of SET completion among referred patients²⁵, a relative
hazard of 3, a median survival of 12 years, and a planned follow-up of 7 years^{15,26,27}.

237 Discussion:

238 This study demonstrates that completion of SET is associated with a reduced risk of requiring revascularisation and experiencing MALE, MACE and progression to CLTI. To the best of our 239 240 knowledge, this study represents one of the first evaluations of long-term outcomes following SET 241 with a focus on cardiovascular morbidity and mortality in individuals with PAD. Whilst the data 242 suggest a positive effect of SET, it is important to acknowledge that the patients in this cohort may differ in ways that have not been accounted for, and their outcomes may have been influenced by 243 244 factors beyond SET. It is important to note that even with rigorous propensity score matching, 245 confounding by indication cannot be completely adjusted for, as there may be unmeasured covariates 246 that affect both the variable and outcome of interest. We also acknowledge that while this analysis provides important insights and suggests an association, the efficacy of SET for improving 247 cardiovascular outcomes cannot be established. Nevertheless, these findings provide a strong rationale 248 249 for increasing the delivery of SET and conducting further research to better understand its potential 250 long-term benefits. Moving forward, efforts should be directed towards reducing SET barriers (such 251 as the time commitment) to maximise patient engagement. By doing so, we may be able to optimise 252 the effectiveness of SET and improve outcomes for a broader range of patients.

253

254 Currently, high quality evidence shows that SET provides an important benefit with respect to 255 maximum walking distance (MWD), pain-free walking distance and QoL compared to home-based exercise therapy and walking advice^{14,28}. Better SET compliance, measured by attendance at exercise 256 sessions, is significantly associated with greater improvements in MWD and adherence to SET may 257 258 imply better adherence of several factors in life, such as to smoking cessation, healthy diet and medication, resulting in better outcomes.²⁹. However, even patients at the lowest tercile of exercise 259 attendance demonstrate a significant improvement in MWD^{,30}. Despite this evidence, and the 260 guidance provided by NICE and the ESVS,^{9,10} SET provision is not consistent in the UK, with less 261 than 50% of vascular centres offering it and less than 25% of these adhering to the recommended 262 exercise dose³¹. The low availability of SET in the UK can be attributed to various constraints faced in 263 264 a centralized hub and spoke model. These constraints include running costs and a lack of resources 265 and qualified personnel^{32–34}. When SET is offered, patients may not want to participate due to a lack of availability near their home or the required time commitment, which contributes to the poor uptake 266 rates seen.^{25,35} Further research is needed to explore ways to address or minimise the constraints felt 267 268 by patients and providers to improve the accessibility and acceptability of SET.

During the last two decades there has been a substantial increase in the number of studies comparing 269 270 primary interventional therapy to SET. The results of these studies suggest that SET is comparable to primary percutaneous transluminal angioplasty (PTA) for improving in walking distance and 271 QoL^{36,37,38}. This suggests that the current first-line treatment strategy of SET is advocated. However, 272 poor uptake and adherence to SET, poor patient fitness, and patient preference are cited as reasons for 273 using a "PTA first" strategy in patients with IC ³⁹⁻⁴¹. Based on the results of the current study, even if 274 275 a PTA first strategy is pursued due to these constraints, the integration of an exercise intervention may 276 yield additional improvements in long-term cardiovascular outcomes, which may not occur with PTA 277 alone.

Recent evidence has also demonstrated that SET produces a notable improvement in cardiovascular
risk factors, such as cholesterol levels and resting and exercising blood pressure^{12,13}. Interestingly, the
greater the improvement in cardiovascular health, the greater the improvement in walking

performance.¹² Despite this evidence for a reduction in cardiovascular risk factors, there is limited
data to support the reduction of long-term cardiovascular risk following SET.^{42,43} The reduction in
cardiovascular morbidity and mortality following SET demonstrated in this study could be
attributable to these beneficial effects on cardiovascular risk factors.

285 Determining the percentage of outcomes that are directly associated with the completion of SET is 286 difficult, given the presence of unmeasured confounding variables that may impact the findings, such 287 as patient motivation. Even amongst highly motivated patients, uptake and adherence to SET can be 288 difficult, underscoring the importance of offering alternative options to patients who wish to engage in SET but face barriers to compliance and uptake³⁴. High-intensity interval training (HIIT) or remotely 289 delivered supervised exercise interventions are alternatives that could offer promising benefits, 290 291 specially tailored to the unique needs and conditions of patients who were previously unable to enrol in SET due to time or travel constraints.^{44,45}. Currently, a time efficient HIIT programme is being 292 assessed as a potential alternative for SET, to reduce the time barrier faced by patients⁴⁶. Early 293 294 evidence has suggested that this HIIT programme appears to be feasible and well tolerated in patients with IC, which is to be confirmed via a proof-of-concept study⁴⁶. 295

296

Other alternative approaches to delivering SET have been explored, including remote monitoring, videos, support groups, mobile-applications and trackers and virtual reality.^{44,47,48}. A smartphoneenabled home-based exercise program is feasible and effective in patients with symptomatic PAD, as is a community-based walking programme with training, monitoring and coaching components.^{47,49} These alternative approaches to delivering SET have the potential to increase patient access and improve adherence. However, they are currently limited to small proof-of-concept studies. Further research is needed to explore their effectiveness in fully powered randomised controlled trials.

304 Limitations

Although this study provides useful insights, its retrospective nature encompasses several inherent
 limitations, including unmeasurable confounding factors, potential biases, and the lack of blinding or

307 randomisation that can affect the objectivity of our analysis. The limitations associated with the 308 retrospective nature of this study were addressed by enrolling consecutive patients over an eighteenmonth period and conducting a meticulous PSM method with a 0.2 calliper. While there are many 309 alternatives to 1:1 PSM such as mahalanobis distance matching, kernel matching and covariate 310 311 matching, propensity score matching is considered the best approach due to its ability to balance covariates, flexibility in handling different types of covariates, interpretability, and the opportunity for 312 sensitivity analysis.^{50–53} Despite using rigorous propensity score matching, it is impossible to fully 313 314 account for confounding by indication. This is because there might be unmeasured factors that impact both the variable being studied and the outcome of interest. In our study, we included statistically 315 316 significant variables in the PSM to ensure that we were controlling for factors that had a proven 317 association with the outcome. This approach was taken to minimize the risk of overfitting and to ensure the robustness of our findings. However, we acknowledge the potential for Type II errors and 318 the possibility of missing relevant variables. The lack of differences observed in Table 1b after 319 320 implementing PSM could potentially be attributed to a type II error. The use of inverse probability 321 weighting (IPW) is a valid approach that can enhance the robustness of findings by retaining a larger sample size. However, we chose PSM for our study due to specific reasons. PSM allows us to best 322 mimic a randomized controlled trial by matching patients who completed SET with control patients 323 based on observed characteristics, reducing bias from confounding variables. While IPW could retain 324 325 a larger sample size, it can introduce challenges such as sensitivity to model specification and 326 unstable estimates with extreme weights. We believe PSM is more suitable for our study, considering these factors, although we acknowledge limitations such as potential bias from unobserved 327 328 confounding and a reduced sample size. Additionally, it is important to acknowledge that although 329 this analysis offers valuable insights and indicates a potential connection, we cannot definitively 330 establish the effectiveness of SET in improving cardiovascular outcomes. 331 This study indicates an association between patients completing SET and better long-term clinical 332 outcomes, such as slower disease progression, and a lower likelihood of experiencing MALE or

333 MACE. However, due to the potential for unmeasured confounding, we cannot definitively conclude

334	that SET leads to an improvement in cardiovascular health or mitigates adverse long-term outcomes
335	in IC. Rather, our findings suggest a potential association that warrants further investigation. Overall,
336	these outcomes underscore the potential significance of SET in relation to cardiovascular health in IC
337	patients. This study suggests that patients completing SET have better long term clinical outcomes,
338	such as slower disease progression, reduced intervention rates, and a lower likelihood of experiencing
339	MALE or MACE. Overall, these outcomes highlight the critical significance of SET in improving
340	cardiovascular health and its potential to mitigate adverse long term outcomes in IC.
 341	Acknowledgements: The authors gratefully acknowledge the invaluable contribution of Dr. Dror
342	Rosentraub for his expertise and guidance in the application of statistical methods The authors would
343	also like to express their sincere gratitude to the academic vascular surgical unit for their invaluable
344	support and collaboration throughout the course of this study. Their expertise and guidance have
345	greatly contributed to the successful completion of this research.
346	
347	
348	
349	
350	
351	
352	
353	
354	
355	

356 357 References: 358 359 1. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res [Internet]. 2015 360 Apr 24 [cited 2023 May 1];116(9):1509–26. Available from: 361 https://pubmed.ncbi.nlm.nih.gov/25908725/ 362 2. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality 363 over a period of 10 years in patients with peripheral arterial disease. N Engl J Med [Internet]. 1992 Feb 6 [cited 2023 May 1];326(6):381–6. Available from: 364 365 https://pubmed.ncbi.nlm.nih.gov/1729621/ 366 3. Pell JP. Impact of intermittent claudication on quality of life. Eur J Vasc Endovasc Surg. 1995 367 May 1;9(4):469–72. 368 4. Gohil RA, Mockford KA, Mazari F, Khan J, Vanicek N, Chetter IC, et al. Balance impairment, physical ability, and its link with disease severity in patients with intermittent claudication. 369 370 Ann Vasc Surg [Internet]. 2013 Jan 1 [cited 2023 May 9];27(1):68–74. Available from: http://www.annalsofvascularsurgery.com/article/S0890509612003214/fulltext 371 372 5. Meru A V., Mittra S, Thyagarajan B, Chugh A. Intermittent claudication: an overview. 373 Atherosclerosis [Internet]. 2006 Aug [cited 2023 May 1];187(2):221–37. Available from: 374 https://pubmed.ncbi.nlm.nih.gov/16386260/ 375 6. Eid MA, Mehta K, Barnes JA, Wanken Z, Columbo JA, Stone DH, et al. The global burden of peripheral artery disease. J Vasc Surg [Internet]. 2023 Apr [cited 2023 Apr 3];77(4). Available 376 377 from: https://pubmed.ncbi.nlm.nih.gov/36565779/ 7. 378 McDermott KM, Bose S, Keegan A, Hicks CW. Disparities in limb preservation and

379		associated socioeconomic burden among patients with diabetes and/or peripheral artery disease
380		in the United States. Semin Vasc Surg [Internet]. 2023 Mar 1 [cited 2023 Apr 3];36(1).
381		Available from: https://pubmed.ncbi.nlm.nih.gov/36958896/
382	8.	Bevan GH, White Solaru KT. Evidence-Based Medical Management of Peripheral Artery
383		Disease. Arterioscler Thromb Vasc Biol. 2020 Mar 1;40(3):541–53.
384	9.	Overview Peripheral arterial disease: diagnosis and management Guidance NICE
385		[Internet]. [cited 2022 May 7]. Available from: https://www.nice.org.uk/guidance/cg147
386	10.	Aboyans V, Ricco JB, Bartelink MLEL, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC
387		Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration
388		with the European Society for Vascular Surgery (ESVS)Document covering atherosclerotic
389		disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity
390		arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the
391		Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of
392		Cardiology (ESC) and of the European Society for Vascul. Eur Heart J [Internet]. 2018 Mar 1
393		[cited 2023 Apr 8];39(9):763-816. Available from:
394		https://academic.oup.com/eurheartj/article/39/9/763/4095038
395	11.	Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.
396		Supervised exercise, stent revascularization, or medical therapy for claudication due to
397		aortoiliac peripheral artery disease: The CLEVER study. J Am Coll Cardiol. 2015 Mar
398		17;65(10):999–1009.
399	12.	Slysz JT, Tian L, Zhao L, Zhang D, McDermott MM. Effects of supervised exercise therapy
400		on blood pressure and heart rate during exercise, and associations with improved walking
401		performance in peripheral artery disease: Results of a randomized clinical trial. J Vasc Surg.
402		2021 Nov 1;74(5):1589-1600.e4.
403	13.	Jansen SCP, Hoorweg BBN, Hoeks SE, van den Houten MML, Scheltinga MRM, Teijink

404		JAW, et al. A systematic review and meta-analysis of the effects of supervised exercise
405		therapy on modifiable cardiovascular risk factors in intermittent claudication. J Vasc Surg
406		[Internet]. 2019 Apr 1 [cited 2023 May 16];69(4):1293-1308.e2. Available from:
407		https://pubmed.ncbi.nlm.nih.gov/30777692/
400	14	Hereite D. Felderer duud. Commentation INM and des Monte The World DAW
408	14.	Hageman D, Fokkenrood HJP, Gommans LNM, van den Houten MML, Teijink JAW.
409		Supervised exercise therapy versus home-based exercise therapy versus walking advice for
410		intermittent claudication. Cochrane database Syst Rev [Internet]. 2018 Apr 6 [cited 2023 Apr
411		3];4(4). Available from: https://pubmed.ncbi.nlm.nih.gov/29627967/
412	15.	Sakamoto S, Yokoyama N, Tamori Y, Akutsu K, Hashimoto H, Takeshita S. Patients with
413		peripheral artery disease who complete 12-week supervised exercise training program show
414		reduced cardiovascular mortality and morbidity. Circ J [Internet]. 2009 [cited 2023 Apr
415		3];73(1):167–73. Available from: https://pubmed.ncbi.nlm.nih.gov/19039192/
416	16.	Harwood AE, Totty JP, Pymer S, Huang C, Hitchman L, Carradice D, et al. Cardiovascular
417		and musculoskeletal response to supervised exercise in patients with intermittent claudication.
418		J Vasc Surg [Internet]. 2019 Jun 1 [cited 2023 May 16];69(6):1899-1908.e1. Available from:
419		https://pubmed.ncbi.nlm.nih.gov/30583899/
420	17.	Jansen SCP, Abaraogu UO, Lauret GJ, Fakhry F, Fokkenrood HJP, Teijink JAW. Modes of
	17.	
421		exercise training for intermittent claudication. Cochrane Database Syst Rev [Internet]. 2020
422		Aug 23 [cited 2023 Aug 13];2020(8). Available from:
423		https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009638.pub3/full
424	18.	Harwood AE, Pymer S, Ingle L, Doherty P, Chetter IC, Parmenter B, et al. Exercise training
425		for intermittent claudication: a narrative review and summary of guidelines for practitioners.
426		BMJ open Sport Exerc Med [Internet]. 2020 Nov 6 [cited 2023 Aug 13];6(1). Available from:
427		https://pubmed.ncbi.nlm.nih.gov/33262892/
		https://paomodificoninininingo//oblobe/l/
428	19.	Mockford KA, Gohil RA, Mazari F, Khan JA, Vanicek N, Coughlin PA, et al. Effect of

429 supervised exercise on physical function and balance in patients with intermittent claudication. Br J Surg. 2014 Mar;101(4):356-62. 430 431 20. The Sport and Exercise Scientist n Issue 57 n Autumn 2018 n www.bases.org.uk @basesuk @BASESUK bases_uk BASESUK. [cited 2023 Aug 13]; Available from: 432 433 www.nice.org.uk/guidance/cg147 434 21. Bianco M, Mottola FF, Cerrato E, Giordana F, Cinconze S, Baralis G, et al. Acute coronary syndrome in very elderly patients-a real-world experience. Heart Vessels [Internet]. 2023 Mar 435 28 [cited 2023 Apr 3]; Available from: https://pubmed.ncbi.nlm.nih.gov/36976424/ 436 22. Fashandi AZ, Mehaffey JH, Hawkins RB, Kron IL, Upchurch GR, Robinson WP. Major 437 Adverse Limb Events and Major Adverse Cardiac Events after Contemporary Lower 438 439 Extremity Bypass and Infrainguinal Endovascular Intervention in Patients with Claudication. J Vasc Surg [Internet]. 2018 Dec 1 [cited 2023 Apr 3];68(6):1817. Available from: 440 /pmc/articles/PMC6482457/ 441 442 23. Idrissi J, Amine M. Multilayer Perceptron: Architecture Optimization and Training. 24. Schoenfeld DA. Sample-Size Formula for the Proportional-Hazards Regression Model. 443 Biometrics. 1983 Jun;39(2):499. 444 445 25. Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A systematic review of the 446 uptake and adherence rates to supervised exercise programs in patients with intermittent 447 claudication. Ann Vasc Surg. 2016 Jul 1;34:280-9. 448 26. Voci D, Fedeli U, Valerio L, Schievano E, Righini M, Kucher N, et al. Mortality rate related to peripheral arterial disease: A retrospective analysis of epidemiological data (years 2008– 449 450 2019). Nutr Metab Cardiovasc Dis. 2023 Mar 1;33(3):516-22. 451 27. Klaphake S, Fakhry F, Rouwet E V., Van Der Laan L, Wever JJ, Teijink JA, et al. Long-term Follow-up of a Randomized Clinical Trial Comparing Endovascular Revascularization Plus 452

453		Supervised Exercise with Supervised Exercise only for Intermittent Claudication. Ann Surg
454		[Internet]. 2022 Dec 1 [cited 2023 May 1];276(6):E1035-43. Available from:
455		https://journals.lww.com/annalsofsurgery/Fulltext/2022/12000/Long_term_Follow_up_of_a_R
456		andomized_Clinical_Trial.71.aspx
457	28.	van den Houten MML, Hageman D, Gommans LNM, Kleijnen J, Scheltinga MRM, Teijink
458		JAW. The Effect of Supervised Exercise, Home Based Exercise and Endovascular
459		Revascularisation on Physical Activity in Patients With Intermittent Claudication: A Network
460		Meta-analysis. Eur J Vasc Endovasc Surg. 2019 Sep 1;58(3):383–92.
461	29.	Hammond MM, Tian L, Zhao L, Zhang D, McDermott MM. Attendance at Supervised
462		Exercise Sessions and Walking Outcomes in Peripheral Artery Disease: Results From 2
463		Randomized Clinical Trials. J Am Hear Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2022
464		Dec 12 [cited 2023 Apr 2];11(24):26136. Available from: /pmc/articles/PMC9798808/
465	30.	McDermott MMG, Criqui MH, Liu K, Guralnik JM, Greenland P, Martin GJ, et al. Lower
466		ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial
467		pressures, and association with leg functioning in peripheral arterial disease. J Vasc Surg.
468		2000;32(6):1164–71.
469	31.	Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A Systematic Review of the
470		Uptake and Adherence Rates to Supervised Exercise Programs in Patients with Intermittent
471		Claudication. Ann Vasc Surg [Internet]. 2016 Jul 1 [cited 2023 Jan 2];34:280-9. Available
472		from: https://pubmed.ncbi.nlm.nih.gov/27126713/
473	32.	Harwood AE, Smith GD, Broadbent E, Cayton TE, Carradice D, Chetter I. Access to
474		supervised exercise services for peripheral vascular disease patients. Bull R Coll Surg Engl
475		[Internet]. 2017 Jun [cited 2023 Apr 8];99(6):207-11. Available from:
476		https://doi.org/10.1308/rcsbull.2017.207
477	33.	Waddell A, Seed S, Broom DR, McGregor G, Birkett ST, Harwood AE. Safety of Home-based

478		Exercise for People with Intermittent Claudication: A Systematic Review. J Vasc Surg
479		[Internet]. 2022 Apr 1 [cited 2023 Apr 8];75(4):1490. Available from:
480		http://www.jvascsurg.org/article/S0741521422000362/fulltext
481	34.	Harwood AE, Pymer S, Ibeggazene S, Ingle L, Caldow E, Birkett ST. Provision of exercise
482		services in patients with peripheral artery disease in the United Kingdom. Vascular. 2022 Oct
483		1;30(5):874–81.
484	35.	Harwood AE, Hitchman LH, Ingle L, Doherty P, Chetter IC. Preferred exercise modalities in
485		patients with intermittent claudication. J Vasc Nurs [Internet]. 2018 Jun 1 [cited 2023 May
486		2];36(2):81–4. Available from: https://pubmed.ncbi.nlm.nih.gov/29747787/
487	36.	Mazari FAK, Gulati S, Rahman MNA, Lee HLD, Mehta TA, McCollum PT, et al. Early
488		outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and
489		combined therapy in intermittent claudication. Ann Vasc Surg [Internet]. 2010 Jan [cited 2023
490		Apr 9];24(1):69–79. Available from: https://pubmed.ncbi.nlm.nih.gov/19762206/
491	37.	Mazari FAK, Khan JA, Samuel N, Smith G, Carradice D, McCollum PC, et al. Long-term
492		outcomes of a randomized clinical trial of supervised exercise, percutaneous transluminal
493		angioplasty or combined treatment for patients with intermittent claudication due to
494		femoropopliteal disease. Br J Surg [Internet]. 2017 Jan 1 [cited 2023 Apr 9];104(1):76-83.
495		Available from: https://pubmed.ncbi.nlm.nih.gov/27763685/
496	38.	Thanigaimani S, Phie J, Sharma C, Wong S, Ibrahim M, Huynh P, et al. Network meta-
497		analysis comparing the outcomes of treatments for intermittent claudication tested in
498		randomized controlled trials. J Am Heart Assoc [Internet]. 2021 May 4 [cited 2023 Apr
499		3];10(9):19672. Available from:
500		https://www.ahajournals.org/doi/abs/10.1161/JAHA.120.019672
501	39.	Harwood AE, Broadbent E, Totty JP, Smith GE, Chetter IC. "Intermittent claudication a real
502		pain in the calf"-Patient experience of diagnosis and treatment with a supervised exercise

program. J Vasc Nurs. 2017 Sep 1;35(3):131–5.

- Vemulapalli S, Dolor RJ, Hasselblad V, Schmit K, Banks A, Heidenfelder B, et al. Supervised
 vs unsupervised exercise for intermittent claudication: A systematic review and meta-analysis.
 Am Heart J. 2015 Jun 1;169(6):924-937.e3.
- 507 41. Saratzis A, Paraskevopoulos I, Patel S, Donati T, Biasi L, Diamantopoulos A, et al. Supervised
 508 Exercise Therapy and Revascularization for Intermittent Claudication: Network Meta-Analysis
 509 of Randomized Controlled Trials. JACC Cardiovasc Interv [Internet]. 2019 Jun 24 [cited 2023
 510 Apr 3];12(12):1125–36. Available from: https://pubmed.ncbi.nlm.nih.gov/31153838/
- 511 42. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.
- 512Supervised exercise versus primary stenting for claudication resulting from aortoiliac513peripheral artery disease: Six-month outcomes from the claudication: Exercise versus
- endoluminal revascularization (CLEVER) study. Circulation. 2012 Jan 3;125(1):130–9.
- McDermott MM, Ferrucci L, Tian L, Guralnik JM, Lloyd-Jones D, Kibbe MR, et al. Effect of
 Granulocyte-Macrophage Colony-Stimulating Factor with or Without Supervised Exercise on
 Walking Performance in Patients with Peripheral Artery Disease: The PROPEL Randomized
 Clinical Trial. JAMA J Am Med Assoc. 2017 Dec 5;318(21):2089–98.
- 519 44. Sivagangan P, Harwood AE, Stather PW. Patient and Healthcare Professional Priorities for a
- 520 Mobile Phone Application for Patients With Peripheral Arterial Disease. Cureus [Internet].
- 521 2023 Jan 20 [cited 2023 Apr 3];15(1). Available from:
- 522 https://pubmed.ncbi.nlm.nih.gov/36824553/
- 45. Aalami OO, Lin J, Savage D, Ho V, Bertges D, Corriere M. Use of an app-based exercise
- 524 therapy program including cognitive-behavioral techniques for the management of intermittent
- 525 claudication. J Vasc Surg [Internet]. 2022 Dec 1 [cited 2023 Apr 3];76(6):1651-1656.e1.
- 526 Available from: https://pubmed.ncbi.nlm.nih.gov/35872328/

527	46.	Pymer S, Harwood A, Ibeggazene S, McGregor G, Huang C, Twiddy M, et al. High INtensity
528		Interval Training In pATiEnts with intermittent claudication (INITIATE): protocol for a
529		multicentre, proof-of-concept, prospective interventional study. BMJ Open. 2020 Jul
530		6;10(7):e038825.
531	47.	Harzand A, Vakili AA, Alrohaibani A, Abdelhamid SM, Gordon NF, Thiel J, et al. Rationale
532		and design of a smartphone-enabled, home-based exercise program in patients with
533		symptomatic peripheral arterial disease: The smart step randomized trial. Clin Cardiol
534		[Internet]. 2020 Jun 1 [cited 2023 Apr 8];43(6):537-45. Available from:
535		https://onlinelibrary.wiley.com/doi/full/10.1002/clc.23362
536	48.	Persson AB, Buschmann EE, Lindhorst R, Troidl K, Langhoff R, Schulte KL, et al.
537		Therapeutic arteriogenesis in peripheral arterial disease: combining intervention and passive
538		training. http://dx.doi.org/101024/0301-1526/a000092 [Internet]. 2013 Jan 7 [cited 2023 Apr
539		9];40(3):177-87. Available from: https://econtent.hogrefe.com/doi/10.1024/0301-
540		1526/a000092

49. Mays RJ, Hiatt WR, Casserly IP, Rogers RK, Main DS, Kohrt WM, et al. Community-based
walking exercise for peripheral artery disease: An exploratory pilot study. Vasc Med (United

543 Kingdom) [Internet]. 2015 Aug 10 [cited 2023 Apr 9];20(4):339–47. Available from:

544 https://journals.sagepub.com/doi/10.1177/1358863X15572725

545 50. Austin PC. A critical appraisal of propensity-score matching in the medical literature between
546 1996 and 2003. Stat Med Stat Med [Internet]. 2008 [cited 2023 Jul 2];27:2037–49. Available
547 from: www.interscience.wiley.com

548 51. Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci
549 [Internet]. 2010 Feb 2 [cited 2023 Jul 2];25(1):1. Available from: /pmc/articles/PMC2943670/

550 52. Caliendo M, Kopeinig S. Some Practical Guidance for the Implementation of Propensity Score

551 Matching. 2005;

- 552 53. Amusa L, North D, Zewotir T. A tailored use of the mahalanobis distance matching for causal
 effects estimation: A simulation study. Sci African. 2022 Jul 1;16:e01155.
- 554
- 555 Legends for figure:
- 556 Figure 1: Supervised Exercise Therapy Protocol: Outline of each session during weeks 1-6, with an
- additional station added each week from week 7 until the patient had completed two full circuits. The

figure illustrates the progression of the supervised exercise therapy protocol used in the study.

559 Figure 2: Independent variable importance analysis using Multilayer perceptron to identify the most

significant predictors of chronic limb threatening ischemia to guide propensity score matching along

- 561 with multivariable and logistic regression analyses.
- 562 Figure 3: Number of cardiovascular events for patients who did and did not complete SET after
- 563 <u>median follow up of 2164 days; IC: Intermittent Claudication; CLTI: Chronic limb threatening</u>
- 564 <u>ischemia; MALE: Major adverse limb events; MACE: Major adverse cardiovascular events ; SET:</u>

565 <u>Supervised exercise therapy</u>

- Figure <u>43</u>: Survival curves obtained by the Kaplan-Meier method demonstrating time to chronic limb
 threatening ischemia(a), time to first major adverse cardiovascular event(MACE)(b) and time to first
 major adverse limb event(MALE)(c)
- 569 Table 1a: Baseline characteristics of both cohorts

Attribute	Patients who did not start SET n = 183	Patients who prematurely discontinued SET N = 19	Patients who completed SET n = 64	<i>p</i> value
Age (years ; Mean ± SD)	67.95 ± 10.4	70.1 ± 7.3	69.5 ± 7.8	.40
Male	119(65.7%)	12(63.2%)	44(68.8%)	.87
Diabetes Mellitus	54(29.5%)	4(21.1%)	29(45.3%)	.076

Hypertension	131(71.6%)	10(52.6%)	45(70.3%)	.17
Hyperlipidemia	82(44.8%)	6(31.5%)	30(46.8%)	.24
Ischaemic heart disease	101(55.8%)	11(57.9%)	28(43.8%)	.23
Cerebrovascular disease	25(13.7%)	4(21%)	8(12.5%)	.12
Atrial fibrillation	38(20.7%)	2(10.5%)	8(12.5%)	.18
Albumin (g/l; Mean ± SD)	36.9 ± 4.28	37.1 ± 3.3	35.2 ± 3.7	.16
Haemoglobin(g/l) Mean ± SD	132.73 ± 20.6	138.3 ± 19.0	136.5 ± 22.7	.16
Compliance with smoking cessation	45(24.9%)	5(26.3%)	22(34.0%)	.34
ABPI at presentation				
Right	0.79 ± 0.18	0.74 ± 0.19	0.80 ± 0.15	.41
Left	0.81 ± 0.20	0.82 ± 0.29	0.84 ± 0.15	.58
(Mean ,SD)				
Self-reported claudication distance(metres) (Mean ,SD)	77.5 ± 6.75	79.1 ± 7.5	79.4 ± 6.0	.11
No iliac disease	37(20.2%)	3(15.7%)	29(45.3%)	
Unilateral iliac disease	63(34.4%)	6(31.5%)	8(12.5%)	<u>.010</u>
Bilateral iliac disease	83(45.4%)	10(52.6%)	26(40.6%)	
No femoral disease	11(6.0%)	1(5.2%)	5(7.8%)	
Unilateral femoral disease	76(41.5%)	9(47.3%)	8(12.5%)	<u>.030</u>
Bilateral femoral disease	96(52.5%)	9(47.3%)	50(78.1%)	
No crural disease	87(47.5%)	10(52.6%)	38(59.3%)	
Unilateral crural	56(30.6%)	7(36.8%)	13(20.3%)	.47
disease	40(21.9%)	2(10.5%)	13(12.5%)	

Attribute	Non Completion SET(n=49)	Completion SET (n=49)	P-value
Hacmoglobin (g/l) Mean/SD	130.9 ± 19.3	138.6 ± 18.8	.08
Ischaemie heart disease	59.2%	63.3%	<u>.56</u>
Claudication distance (m) Mean/SD	131.1 ± 19.4	130.2 ± 18.9	<u>.81</u>
Ankle-brachial pressure index Left Right	$\frac{0.81 \pm 0.16}{0.71 \pm 0.12}$	0.86 ± 0.15 0.64 ± 0.16	.11
Bilateral crural disease			

571 SD: Standard deviation; IQR: Interquartile range; SET: supervised exercise therapy ABPI: Ankle-

572 brachial pressure index;

576 Table 1b: Impact of propensity score matching on significant confounders

.....

<u>Attribute</u>	Non Completion <u>SET(n=49)</u>	<u>Completion SET</u> <u>(n=49)</u>	<u>P value</u>
<u>Haemoglobin</u> (g/l) Mean/SD	<u>130.9 ± 19.3</u>	<u>138.6 ± 18.8</u>	<u>.08</u>
Ischaemic heart disease	<u>59.2%</u>	<u>63.3%</u>	<u>.56</u>
<u>Claudication distance</u> (m) Mean/SD	<u>131.1 ± 19.4</u>	<u>130.2 ± 18.9</u>	<u>.81</u>
Ankle-brachial pressure index Left <u>Right</u>	$\frac{0.81 \pm 0.16}{0.71 \pm 0.12}$	$\frac{0.86 \pm 0.15}{0.64 \pm 0.16}$	<u>.11</u>

590 Table 2: Seven year follow up data that suggest an association between completion of SET and

591 clinically important cardiovascular outcomes

Outcome	Non Completion	Completion SET	p value
	SET(n=49)	(n=49)	
Progression to CLTI	31(63.3%)	5(10.2%)	p < .001
MALE	21(42.8%)	8(16.3%)	p = .004
MACE	26(53.1%)	15(30.6%)	p = .025

595 IC: Intermittent Claudication; CLTI: Chronic limb threatening ischemia; MALE: Major adverse limb

596 events; MACE: Major adverse cardiovascular events

1	Supervised Exercise Therapy for Intermittent Claudication: A Propensity Score Matched		Formatted: Font: Bold
2	Analysis of Retrospective Data on Long term <u>Term</u> Cardiovascular Outcomes		Formatted: Font: Bold
3 4	Running Short title: Long-Term Outcomes Following Supervised Exercise Therapy In-in Intermittent Claudication		
5	Bharadhwaj Ravindhran <u>*</u> , Arthur J. <u>M.</u> Lim, Thomas Kurian <u>,</u> Josephine Walshaw,		Formatted: Font: Bold
6	Louise H. Hitchman,		Formatted: Font: Bold
7	Ross Lathan <u>.</u>		
8	George E <u>.</u> Smith <u>.</u>		
9	Daniel Carradice <u>.</u>		
10	Ian C. Chetter,		
11	Sean Pymer		
12 13	⁴ -Academic Vascular Surgical Unit, 2 nd Floor, Allam diabetes <u>Diabetes centre</u> Centre, Hull Royal Infirmary, HU32JZ <u>Hull, UK</u>		
14	* Corresponding author: Bharadhwaj Ravindhran		
15	Academic Vascular Surgical Unit.	(Formatted: Indent: Left: 0"
16	2nd Floor, Allam diabetes centre.		Formatted: Not Superscript/ Subscript
17	Hull Royal Infirmary ₂		
18	Hull HU3_2JZ <mark>, UK.</mark>		
19	Bharadhwaj.Ravindhran@nhs.net (Bharadhwaj Ravindhran).		
20 21 22	★This paper was awarded the Norman Williams Prize for the best clinical research paper and is shortlisted for the BJS Best Manuscript Prize at the Annual Meeting of the Surgical Research Society in 2023 at Nottingham, UK.		
23	+	(Formatted: Line spacing: Multiple 1.08 li
24	Word counts		
25	Abstract: 285		
26	What this paper adds: 37		
27	The text body: 2932		
28	Number of tables and figures: 2 tables and 4 figures		
29			
30	WHAT THIS PAPER ADDS ;		
	1		

1	31	This study contributes to the current body of literature by conducting an initial assessment of long-
	32	term outcomes in patients with intermittent claudication (IC) who underwent supervised exercise
	33	therapy (SET), with a focus on cardiovascular morbidity and mortality The results indicate that
	34	completing SET is associated with a decreased risk of major adverse limb events, major adverse
1	35	cardiovascular events, and progression to chronic limb-threatening ischaemia based on this
	36	retrospective propensity score matched analysis of patients who completed, discontinued, or declined
	37	SET.
ĺ	38	
	39	
	40	
	41	

- 43 44
- 46 47

55		
56	Abstract:	
57	Objective: This study aimed to explore the long-term outcomes of patients with intermittent	Formatted: Font: Bold
58	claudication (IC) who completed supervised exercise therapy (SET) versus vs. those who declined or	Formatted: Font: Italic
59	prematurely discontinued SET, focusing on the incidence of chronic limb-threatening ischaemia	
60	(CLTI), revascularizationisation, major adverse limb events (MALE), and major adverse	
61	cardiovascular events (MACE).	
62	Methods: Design: Retrospective registry analysis of consecutive patients with IC who were referred	Formatted: Font: Bold
63	for SET between March 2015 and August 2016 and followed up for a minimum of five years.	
64	Methods: Serial univariable analysis and logistic regression was were performed to identify the	
65	statistically significant clinical variables that were independent predictors of each outcome measure.	
66	The resulting statistically significant variables were used to guide 1:1 propensity score matching	
67	(PSM) using the nearest neighbour method with a calliper of $\underline{0}.2$. A-Cox proportional hazards	
68	regression was used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for the	
69	association between SET and the outcomes of interest.	
70	Results: Two hundred and sixty-six patients were referred to SET between March 2015 and August	Formatted: Font: Bold
71	2016. Of these, 64 patients completed SET and 202 patients did not. After PSM, 49 patients were	
72	analysed in each cohort. The Cox proportional hazards analysis revealed a significant association	
73	between completion of SET and revascularisation requirement (HR:HR 0.46 95% CI 0.25 – 0.84; 2	Formatted: Font: Italic
74	<u>$p == .011$</u>), completion of SET and progression to CLTI <u>(HR:HR</u> 0.091, 95% CI 0.04 – 0.24; <u>p</u>	Formatted: Font: Italic
75	<u><i>p</i> < </u> €.001), completion of SET and MACE_(HR: <u>HR</u> 0.52; 95% CI 0.28 – 0.99; <u><i>p</i> = p =</u> .05) and	
76	completion of SET and MALE (HR: <u>HR</u> 0.28, 95% CI 0.13 – 0.65; $p = p = .003$). The Harrell's C-	
77	index for all of these models were greater than 0.75 , indicating good predictive accuracy.	

78	Conclusion: Completion of SET is associated with better outcomes in patients who completed SET	Formatted: Font: Bold
79	compared to patients who declined or discontinued SET with respect to clinically important	
80	cardiovascular outcomes over 7-seven years.	
81	Key-words: Exercise therapy, Intermittent claudication, Ischaemia, outcome assessment,	Formatted: Font: Bold
82	propensity Propensity score, ischemia, exercise therapy; resistance Resistance training	
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		

INTRODUCTION: 98

99

Formatted: Font: Bold

100 physical function, walking capacity, balance, and quality of life and increases the risk of mortality 101 from cardiovascular causes.1-5- Patients with IC patients are at risk of disease progression to chronic 102 limb threatening ischaemia_(CLTI) and major adverse limb events (MALE) such as major lower limb 103 amputations (MLLA), acute limb ischemischaemia (ALI), or loss of untreated patency.6.7- The goal of 104 treatment is therefore to improve symptoms, physical function, and quality of life (QoL), while also 105 reducing the risk of disease progression and limb loss, mortality and MACE.8 106 To achieve this, the National Institute for Health and Care Excellence (NICE) guideline 1479 < Formatted: Indent: First line: 0.5" and the European society Society for vascular Vascular surgery Surgery (ESVS)10 recommend 107 108 supervised exercise therapy (SET) for 2-two hours per week over a three 3-month period, as the first-109 line treatment. Evidence shows that SET is significantly superior for improving walking performance, 110 and therefore symptoms, when compared to-with home-based exercise and walking advice.¹¹- Further 111 evidence also shows that SET is comparable similar to endovascular revascularisation for improving walking distance and, importantly, QoL.¹¹- Given the positive effect that SET also has on 112 113 cardiovascular risk factors,^{12,13} it would be reasonable to assume that this leads to a potential benefit in 114 morbidity, via a reduction in MACE and MALE, as well as a benefit in mortality. However, the 115 evidence considering the long-term effects of SET on morbidity and mortality is lacking, with just 116 one study considering the association between SET completion and mortality.14,15-117 Therefore, the aim of this study was to investigate whether completion of SET was associated 118 with better cardiovascular outcomes compared to-with a group of patients with IC -that who did not complete SET using propensity score matching_(PSM). 119 MATERIALS AND METHODS: 120

Intermittent claudication (IC) is an ambulatory, ischaemic muscle pain relieved by rest, which reduces

- 121 This study was conducted at a tertiary care referral vascular centre. The clinical, intra-operative and
- 122 follow-up information were gathered, analysed, and compared between patients who completed SET
- 123 and patients who either declined or discontinued SET.

Formatted: Font: Bold

124	Patient selection:	Formatted: Font: Bold, Italic
125	We retrospectively analysed the The data of consecutive patients with IC who were referred for SET	
126	between March 2015 and August 2016 (18 months) were retrospectively analysed. Patients who were	
127	referred but had CLTI, had undergone SET within the preceding 12 months, or had a recurrence of	
128	symptoms following previous revascularisation were excluded from this analysisPatients who were	
129	referred for SET but were deemed unsuitable due to contraindications or the presence of significant co	
130	morbidities or missing data were also excluded. The diagnosis of IC was made clinically, and was	
131	further supported by a resting ankle-ankle-brachial pressure index (ABPI) or toebrachial pressure	
132	index, duplex ultrasound, or cross-sectional imaging if required. Patients who declined SET were	
133	either discharged back to their general practitioner-(GP), received regular followup or underwent a	
134	revascularisation procedure, depending on individual need.	
135	Patients referred to supervised exercise therapy (SET) were initially assessed by physicians to -	Frank delates Frankiss Off
		Formatted: Indent: First line: 0.5"
136	identify any obvious contraindications such as severe frailty, unstable gait, and existing pulmonary	
137	and cardiac disorders (e.g., aortic stenosis, dyspnoea at rest). These contraindications were determined	
138	based on clinical judgement. Furthermore, patients who did not have any obvious contraindications to	
139	SET were then screened by the exercise physiologist prior to starting SET. This screening process	
140	aimed to identify any additional contraindications or factors that may affect the safety or effectiveness	
141	of SET for individual patients. It is important to note that all patients in our the study underwent	
142	routine screening at two levels (physician assessment and exercise physiologist screening) to ensure	
143	that only those who were suitable for SET were included.	
144	Supervised exercise therapy:	Farmattadi Fasti Bald Halia
144	pupervised exercise incrupy.	Formatted: Font: Bold, Italic
145	Patients performed SET three times per week for 12 weeks comprising a total of 36 sessions. Missed	
146	sessions were made up at the end of the 12week programme_16. The programme was overseen by an	
147	exercise physiologist with support from undergraduate and postgraduate sports science students. SET	
148	sessions involved the completion of a circuit of six twominute stations, separated by twominute	
149	walking intervals. These were preceded by a warmup and followed by a cooldown. The stations	
Ι		

1		
150	included stepups, standing knee bends, sitting knee extensions, biceps curls, cycling, and heel raises	
151	(Figure-Fig. 1). As the patient's patient's exercise tolerance improved, an additional station was added	 Formatted: Highlight
152	each week from the seventh week and by the end of week 12, they completed two full circuits.	
153	Session length therefore began at 30, progressing up to 60 minutes. Patients were deemed to have	
154	successfully completed SET after accumulating 36 sessionsThis circuit-based training programme	
155	was designed based on previous recommendations that highlight the effectiveness of combining upper	
156	and lower limb ergometry, resistance exercise, and walking-based exercises to improve muscle	
157	strength and cardiorespiratory fitness. These interventions have been shown to elicit a more	
158	significant cardiorespiratory stimulus compared tothan walking alone. ¹⁷⁻²⁰	
159	Qutcome measures:	 Formatted: Font: Bold, Italic
160	The study investigated the incidence and time-to CLTI, MALE, and MACE over a minimum of five	
161	years and up to seven yearsCLTI was defined as ischaemic rest pain lasting for two or more weeks,	
162	non-healing wounds, or gangrene that was attributable to objectively proven arterial occlusive disease.	
163	MACE was defined as non-fatal stroke, non-fatal myocardial infarction-(MI), or cardiovascular death	
164	(CVD). ²¹ . MALE was defined as ALI, untreated loss of patency, or MLLA. ²²	
165	Statistical analyses:-	 Formatted: Font: Bold, Italic
166	Continuous data was were assessed for a normality using the Shapiro-Wilk test and are presented as	
167	mean \pm standard deviation or median and range or interquartile range as appropriate. Categorical data	
168	are expressed as numbers and/or percentages. Time to event data is presented using KaplanMeier	
169	survival curves. Comparative hypothesis testing was performed using Chichi-squared tests, t-tests or	
170	Mann-Mann–Whitney U tests as appropriate, and log- rank tests. Statistical significance was set at pp	 Formatted: Font color: Text 1
171	=<05. Serial univariable analysis and logistic regression was performed to identify the statistically	
172	significant clinical variables that were independent predictors of each outcome measure. This was	
173	confirmed by performing an independent variable importance analysis using the multilayer perceptron	
174	tool, which is a popular tool in machine learning and deep learning for pattern recognition. ²³ The	
175	resulting statistically significant variables were used to guide 1:1 PSMusing the nearest neighbour	

176	method with a calliper of $\underline{0}.2$ The differences between these two matched groups were compared by
177	using the Mann-Whitney U test, and categorical data were analysed using the Pearson's Chichi-
178	square test, the Fisher's exact test, or continuity correction where appropriate. Survival curves were
179	obtained by the KaplanMeier method and a Cox proportional hazards regression was used to
180	estimate the hazard ratio_(HR) and 95% confidence interval (CI) for the association between SET and
181	the outcomes of interest. All statistical analyses were performed using Statistical Package for the
182	Social Sciences (IBM Corp. 2020; Windows Version 27.0) and Medcalc (MedCalc Statistical
183	Software version 19.2.6; MedCalc Software bv, Ostend, Belgium;)

•			
	1	0	Λ
		ň	4

185 **RESULTS**

186 Two-hundred and eighty-two patients presented to the vascular outpatient clinic with IC between

187 March 2015 and August 2016 and were referred for SET. Sixteen patients were deemed unsuitable for

188 SET due to advanced comorbidities, mobility problems₁ and dementia. Two-Inundred and sixty-six

189 patients were deemed suitable and were offered SET, of which 83 (31%) attended and 183 (69%)

declined. Of those that attended, 64 (77%) patients successfully completed SET, whilst while 19

191 (23%) prematurely discontinued. Baseline characteristics of those who completed and those who

192 declined or prematurely discontinued SET are presented in <u>table Table 1a</u>. The primary reasons for

193 the low adoption of SET were related to location or travel (44.3%; $\underline{n}=81$), individuals declining due

194 to lack of interest/belief in the SET (39.3%; n = n=72), work/personal commitments resulting in a lack

195 of time for SET (12.6%; n = n=23), inability to participate due to musculoskeletal issues (2.2%;

196 <u>n = n=4</u>), and patients already enrolled in a community exercise program<u>me</u> (1.6%; <u>n = n=3</u>).

197 Considering that nearly all patients who discontinued SET did so without attending at least 50% of the

- 198 sessions, we deemed it was deemed appropriate to combine both groups, i.e., those who discontinued
- and those who declined SET, for the purpose of analysis.

Serial univariable and logistic regression analyses revealed that CLTI had the greatest number
 of statistically significant predictor variables compared tothan the other outcomes, and, therefore,

Formatted: Font: Bold

Formatted: Font color: Text 1, Highlight Formatted: Font color: Text 1 Formatted: Font: Italic

Formatted: Indent: First line: 0.5"

202	these significant predictors were used to guide PSM, which was performed to account for the	
203	independent association between these variables and outcome measures. Haemoglobin, self-reported	
204	claudication distance, ABPI, presence of ischaemic heart disease (IHD), neutrophiltolymphocyte	
205	ratio, compliance with smoking cessation and non-completion of supervised exercise therapySET	
206	were found to be statistically significant predictors of CLTI based on serial univariable analyses.	
207	Logistic regression analysis performed using these variables indicated that haemoglobin, self-	
208	reported claudication distance, ABPI and the presence of IHD were significant predictors of CLTI.	
209	This was confirmed via an independent variable importance analysis (Figure Fig. 2). The multilayer	Formatted: Highlight
210	perceptron_(MLP) algorithm is employed to evaluate the relative contribution of independent	
211	variables in predicting CLTI. By assigning weights to each input variable based on their importance,	
212	the MLP algorithm provides valuable insights into the significant of each variable. This importance	
213	analysis helps identify the variables with the greatest impact on CLTI occurrence.	
214	After PSM based on these variables, 49 patients were analysed in each cohort. There was no	
215	difference between groups with respect to haemoglobin (g/4L) (130.9 ± 19.3 ys. 138.6 ± 18.8; $p = p = p$	Formatted: Font: Italic
216	.080), IHD (59.2% $\frac{1}{3}$ 63.3% $p = p = .56$), self-reported claudication distance (metres) (131 ± 19.4	
217	$\frac{1}{1}$ $\frac{1}$	Formatted: Highlight
218	proportional hazards analysis revealed a significant association between completion of SET and	
219	progression to CLTI (HR:HR 0.091, 95% CI 0.04 – 0.24; $p), completion of SET and$	
220	MACE (HR:HR 0.52; 95% CI 0.28 – 0.99; $p = p=.050$) and completion of SET and MALE (HR:HR	
221	0.28, 95% CI 0.13 – 0.65; $p = p = 0.03$). The Kaplan—Meier curves demonstrated a consistent and	
222	statistically significant difference in outcomes amongst those who completed SET, compared to with	
223	those who did not complete SET (Figure-Fig. 3) The Harrell's C-index for all of these models were	Formatted: Highlight
224	greater than $\underline{0}$.75 indicating good predictive accuracy.	
225		
225	To assess the adequacy of sample size, a <i>post-hoc</i> power analysis was conducted, revealing	Formatted: Font: Italic
226	that a total of 48 events and a sample size of 36 patients in the SET completion cohort and 186	
227	patients in the non-completion cohort were required to detect a significant association between SET	
228	and outcomes. This estimation followed the methodology outlined by Schoenfeld <i>et al.</i> ²⁴ , assuming a	Formatted: Font: Italic

significance level of .05, 80% power, a 16% incidence of SET completion among referred patients²⁵,

a relative hazard of 3, a median survival of 12 years, and a planned follow-up of 7-seven years (Fig.

231	4). ^{15,26,27} .
-----	---------------------------

232 DISCUSSION:

233 This study demonstrates that completion of SET is associated with a reduced risk of experiencing 234 MALE, MACE, and progression to CLTI. To the best of our knowledge, tThis study is thought to 235 represents one of the first evaluations of long-term outcomes following SET with a focus on 236 cardiovascular morbidity and mortality in individuals with PADperipheral arterial disease. Whilst 237 While the data suggest a positive effect of SET, it is important to acknowledge that the patients in this 238 cohort may differ in ways that have not been accounted for, and their outcomes may have been 239 influenced by factors beyond SET. It is important to note that even with rigorous propensity score 240 matchingPSM, confounding by indication cannot be completely adjusted for, as there may be 241 unmeasured covariates that affect both the variable and outcome of interest. We also acknowledge 242 that while tAlthough this analysis provides important insights and suggests an association, the 243 efficacy of SET for improving cardiovascular outcomes cannot be established. Nevertheless, these 244 findings provide a strong rationale for increasing the delivery of SET and conducting further research 245 to better understand its potential long-term benefits. Moving forward, efforts should be directed 246 towards reducing SET barriers (such as the time commitment) to maximise patient engagement. By 247 doing so, weit may be able to optimise the effectiveness of SET and improve outcomes for a broader 248 range of patients. 249

Currently, high quality evidence shows that SET provides an important benefit with respect to maximum walking distance (MWD), pain-_free walking distance-_and QoL compared to home-based exercise therapy and walking advice_^{14,28}. Better SET compliance, measured by attendance at exercise sessions, is significantly associated with greater improvements in MWD and adherence to SET may imply better adherence of several factors in life, such as to smoking cessation, healthy diet and Commented [ACG1]: AQ: please check the citation inserted for Figure 4

Formatted: Highlight

Formatted: Font: Bold

Formatted: Indent: First line: 0.5"

255 medication, resulting in better outcomes.-29- However, even patients at the lowest tercile of exercise 256 attendance demonstrate a significant improvement in MWD.³⁰. Despite this evidence, and the guidance provided by NICE and the ESVS,9,10 SET provision is not consistent in the UK, with less 257 than 50% of vascular centres offering it and less than 25% of these adhering to the recommended 258 exercise dose.³¹- The low availability of SET in the UK can be attributed to various constraints faced 259 260 in a centralizedised hub and spoke model. These constraints include running costs and a lack of 261 resources and qualified personnel.³²⁻³⁴. When SET is offered, patients may not want to participate due 262 to a lack of availability near their home or the required time commitment, which contributes to the poor uptake rates seen.^{25,35} Further research is needed to explore ways to address or minimise the 263 constraints felt by patients and providers to improve the accessibility and acceptability of SET. 264

265 During the last two decades there has been a substantial increase in the number of studies 266 comparing primary interventional therapy to SET. The results of these studies suggest that SET is 267 comparable to primary percutaneous transluminal angioplasty (PTA) for improving in walking distance and QoL_{36,37,38}. This suggests that the current first-line treatment strategy of SET is 268 269 advocated. However, poor uptake and adherence to SET, poor patient fitness, and patient preference 270 are cited as reasons for using a "PTA first" strategy in patients with IC-IC.³⁹⁻⁴¹. Based on the results of 271 the current study, even if a PTA first strategy is pursued due to these constraints, the integration of an 272 exercise intervention may yield additional improvements in long-term cardiovascular outcomes, 273 which may not occur with PTA alone.

Recent evidence has also demonstrated that SET produces a notable improvement in
cardiovascular risk factors, such as cholesterol levels and resting and exercising blood pressure.^{12,13}Interestingly, the greater the improvement in cardiovascular health, the greater the improvement in
walking performance.¹² Despite this evidence for a reduction in cardiovascular risk factors, there is
limited data to support the reduction of long-_term cardiovascular risk following SET.^{42,43} The
reduction in cardiovascular morbidity and mortality following SET demonstrated in this study could
be attributable to these beneficial effects on cardiovascular risk factors.

281	Determining the percentage of outcomes that are directly associated with the completion of	
282	SET is difficult, given the presence of unmeasured confounding variables that may impact the	
283	findings, such as patient motivation. Even amongst highly motivated patients, uptake and adherence	
284	to SET can be difficult, underscoring the importance of offering alternative options to patients who	
285	wish to engage in SET but face barriers to compliance and uptake.34- High-intensity interval training	
286	(HIIT) or remotely delivered supervised exercise interventions are alternatives that could offer	
287	promising benefits, specially tailored to the unique needs and conditions of patients who were	
288	previously unable to enrol in SET due to time or travel constraints. ^{44,45} , Currently, a time efficient	
289	HIIT programme is being assessed as a potential alternative for SET, to reduce the time barrier faced	
290	by patients. ⁴⁶ - Early evidence has suggested that this HIIT programme appears to be feasible and well	
291	tolerated in patients with IC, which is to be confirmed via a proofofconcept study. ⁴⁶ .	
292		
293	Other alternative approaches to delivering SET have been explored, including remote	
294	monitoring, videos, support groups, mobileapplications and trackers and virtual reality.44,47,48- A	
295	smartphoneenabled homebased exercise programme is feasible and effective in patients with	
296	symptomatic peripheral arterial diseasePAD, as is a community-based walking programme with	
297	training, monitoring, and coaching components. ^{47,49} These alternative approaches to delivering SET	
298	have the potential to increase patient access and improve adherence. However, they are currently	
299	limited to small proofofconcept studies. Further research is needed to explore their effectiveness in	
300	fully powered randomised controlled trials.	
301	Limitations	Formatted: Font: Italic
302	Although this study provides useful insights, its retrospective nature encompasses several inherent	
303	limitations, including unmeasurable confounding factors, potential biases, and the lack of blinding or	
304	randomisation that can affect the objectivity of our the analysis. The limitations associated with the	
305	retrospective nature of this study were addressed by enrolling consecutive patients over an	
306	eighteen18month period and conducting a meticulous PSM method with a 0.2 calliperWhile there	
1		

307	are many alternatives to 1:1 PSM such as mahalanobis distance matching, kernel matching, and	
308	covariate matching, propensity score matching PSM is considered the best approach due to its ability	
309	to balance covariates, flexibility in handling different types of covariates, interpretability, and the	
310	opportunity for sensitivity analysis. ^{50–53} Despite using rigorous propensity score matchingPSM, it is	
311	impossible to fully account for confounding by indication. This is because there might be unmeasured	
312	factors that impact both the variable being studied and the outcome of interest. In our-the current	
313	study, we included statistically significant variables were included in the PSM to ensure that we were	
314	controlling for factors that had a proven association with the outcome were controlled for. This	
315	approach was taken to minimize minimise the risk of overfitting and to ensure the robustness of our	
316	the findings. However, we acknowledge there is potential for Type type II errors and the possibility of	
317	missing relevant variables. The lack of differences observed in Table 1b after implementing PSM	
318	could potentially be attributed to a type II errorThe use of inverse probability weighting (IPW)-is a	
319	valid approach that can enhance the robustness of findings by retaining a larger sample size. However,	
320	we chose PSM was chosen for our-the study due to specific reasons. PSM allows us one to best	
321	mimic a randomizedised controlled trial by matching patients who completed SET with control	
322	patients based on observed characteristics, reducing bias from confounding variables. While inverse	
323	probability weighting IPW could retain a larger sample size, it can introduce challenges such as	
324	sensitivity to model specification and unstable estimates with extreme weights. We believe PSM is	
325	believed to be more suitable for our this study, considering these factors, although we	
326	acknowledgethere are limitations, such as potential bias from unobserved confounding and a reduced	
327	sample size. Additionally, it is important to acknowledge that although this analysis offers valuable	
328	insights and indicates a potential connection, we cannot definitively establish the effectiveness of SET	
329	in improving cardiovascular outcomes cannot be definitively established.	
330	This study indicates an association between patients completing SET and better long-term	
331	clinical outcomes, such as slower disease progression, and a lower likelihood of experiencing MALE	
332	or MACE. However, due to the potential for unmeasured confounding, we cannot definitively	
333	conclude that SET leads to an improvement in cardiovascular health or mitigates adverse long-term	

Formatted: Font color: Text 1

334	outcomes in IC cannot be definitively concluded. Rather, our the findings suggest a potential	
335	association that warrants further investigation. Overall, these outcomes underscore the potential	
336	significance of SET in relation to cardiovascular health in patients with IC-patients.	
337	CONFLICT OF INTEREST	Formatted: Font: Bold
338	None.	
339	FUNDING	
340	None.	
341	ACKNOWLEDGEMENTS	
342	÷The authors gratefully acknowledge the invaluable contribution of Dr- Dror Rosentraub for his	
343	expertise and guidance in the application of statistical methods. The authors would also like to express	
344	their sincere gratitude to the academic vascular surgical unit for their invaluable support and	
345	collaboration throughout the course of this study. Their expertise and guidance have greatly	
346	contributed to the successful completion of this research.	
347		
348	REFERENCES:	Formatted: Font: Bold
349	1. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. <i>Circ Res</i> [Internet]. 2015	Formatted: Font: Italic
350	Apr 24 [cited 2023 May 1]; 116 (9):1509–26. Available from:	Formatted: Font: Bold
351	https://pubmed.ncbi.nlm.nih.gov/25908725/	
352	2. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality	
353	over a period of 10 years in patients with peripheral arterial disease. <u>N Engl J Med [Internet].</u>	Formatted: Font: Italic
354	1992 <u>; Feb 6 [cited 2023 May 1];</u> 326(6):381–6. Available from:	Formatted: Font: Bold
355	https://pubmed.ncbi.nlm.nih.gov/1729621/	

356	3.	Pell JP. Impact of intermittent claudication on quality of life. Eur J Vasc Endovasc Surg- 1995	Formatted: Font: Italic
357		May 1;9(4):469–72.	Formatted: Font: Bold
358 359	4.	Gohil RA, Mockford KA, Mazari F, Khan J, Vanicek N, Chetter IC, et al. Balance impairment, physical ability, and its link with disease severity in patients with intermittent claudication.	
360		Ann Vasc Surg [Internet]. 2013-Jan 1 [cited 2023 May 9];27(1):68-74. Available from:	Formatted: Font: Italic
361		http://www.annalsofvascularsurgery.com/article/S0890509612003214/fulltext	Formatted: Font: Bold
362	5.	Meru A-V-, Mittra S, Thyagarajan B, Chugh A. Intermittent claudication: an overview.	
363		Atherosclerosis-[Internet]. 2006-Aug [cited 2023 May 1];187(2):221-37. Available from:	Formatted: Font: Italic
364		https://pubmed.ncbi.nlm.nih.gov/16386260/	Formatted: Font: Bold
365	6.	Eid MA, Mehta K, Barnes JA, Wanken Z, Columbo JA, Stone DH, et al. The global burden of	
366		peripheral artery disease. J Vasc Surg [Internet]. 2023-Apr [cited 2023 Apr 3];77(4):1119-26.	Formatted: Font: Italic
367		Available from: https://pubmed.ncbi.nlm.nih.gov/36565779/	Formatted: Font: Bold
368 369	7.	McDermott KM, Bose S, Keegan A, Hicks CW. Disparities in limb preservation and associated socioeconomic burden among patients with diabetes and/or peripheral artery disease	
370		in the United States. Semin Vasc Surg [Internet]. 2023-Mar 1 [cited 2023 Apr 3];36(1):39-48.	Formatted: Font: Italic
371		Available from: https://pubmed.ncbi.nlm.nih.gov/36958896/	
372	8.	Bevan GH, White Solaru KT. Evidence-based medical management of peripheral artery	
373		disease. Arterioscler Thromb Vasc Biol: 2020 Mar 1;40(3):541–53.	Formatted: Font: Italic
374	9.	NICE. Overview-1. Peripheral arterial disease: diagnosis and management. + Guidance-1 NICE	Formatted: Font: Bold
375		[Internet]. [cited 2022 May 7]. Available fromat: https://www.nice.org.uk/guidance/cg147	
376		[Accessed 22 November 2023].	
377 378	10.	Aboyans V, Ricco JB, Bartelink MLEL, Björck M, Brodmann M, Cohnert T, et al. <u>Editor's</u> <u>Choice –</u> 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in	Commented [ACG2]: AQ: Ref. 10 has been updated to the EJVES version of the joint guideline Formatted: Font color: Text 1
379		collaboration with the European Society for Vascular Surgery (ESVS). Document covering	Formatted: Font color: Text 1

380		atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower		
381		extremity arteriesEndorsed by: the European Stroke Organization (ESO) The Task Force for		
382		the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of		
383		Cardiology (ESC) and of the European Society for Vaseul. <i>Eur Heart JEur J Vasc Endovasc</i>		Formatted: Font: Italic, Font color: Text 1
384		Surg [Internet]. 2018 Mar 1 [cited 2023 Apr 8]; 39 (9): 763 816305-68. Available from:		Formatted: Font color: Text 1
			$\overline{}$	Formatted: Font: Bold, Font color: Text 1
385		https://academic.oup.com/eurheartj/article/39/9/763/4095038		Formatted: Font color: Text 1
386	11.	Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.		
387		Supervised exercise, stent revascularization, or medical therapy for claudication due to		
388		aortoiliac peripheral artery disease: The the CLEVER study. J Am Coll Cardiol: 2015-Mar		Formatted: Font: Italic
200		17 (5(10) 000, 1000		
389		17 ; 65 (10) :999–1009.		Formatted: Font: Bold
390	12.	Slysz JT, Tian L, Zhao L, Zhang D, McDermott MM. Effects of supervised exercise therapy		
391		on blood pressure and heart rate during exercise, and associations with improved walking		
392		performance in peripheral artery disease: Results results of a randomized clinical trial. <i>J Vasc</i>		Formatted: Font: Italic
393		<i>Surg</i> - 2021-Nov 1;74(5):15891600.e4.		Formatted: Font: Bold
		·		
394	13.	Jansen SCP, Hoorweg BBN, Hoeks SE, van den Houten MML, Scheltinga MRM, Teijink		
395		JAW, et al. A systematic review and meta-analysis of the effects of supervised exercise		
396		therapy on modifiable cardiovascular risk factors in intermittent claudication. <u>J Vasc Surg</u>		Formatted: Font: Italic
397		[Internet]. 2019 Apr 1 [cited 2023 May 16]; 69(4):12931308.e2. Available from:		Formatted: Font: Bold
398		https://pubmed.ncbi.nlm.nih.gov/30777692/		
399	14.	Hageman D, Fokkenrood HJP, Gommans LNM, van den Houten MML, Teijink JAW.		
400		Supervised exercise therapy versus home-based exercise therapy versus walking advice for		
401		intermittent claudication. Cochrane database-Database_Syst Rev [Internet]. 2018-Apr 6 [cited		Formatted: Font: Italic
402		2023 Apr 3];4:CD005263(4). Available from: https://pubmed.ncbi.nlm.nih.gov/29627967/		Formatted: Font: Bold
				Formatted: Font: (Default) Times New Roman, Font color: Auto, Pattern: Clear
403	15.	Sakamoto S, Yokoyama N, Tamori Y, Akutsu K, Hashimoto H, Takeshita S. Patients with		
404		peripheral artery disease who complete 12-week supervised exercise training program show		

405		reduced cardiovascular mortality and morbidity. Circ J [Internet]. 2009 [cited 2023 Apr		Formatted: Font: Italic
406		3];73(1):167-73. Available from: https://pubmed.ncbi.nlm.nih.gov/19039192/		Formatted: Font: Bold
407	16.	Harwood AE, Totty JP, Pymer S, Huang C, Hitchman L, Carradice D, et al. Cardiovascular		
408		and musculoskeletal response to supervised exercise in patients with intermittent claudication.		
409		J Vasc Surg_[Internet]. 2019 Jun 1 [cited 2023 May 16];69(6):18991908.e1. Available from:		Formatted: Font: Italic
410		https://pubmed.ncbi.nlm.nih.gov/30583899/		Formatted: Font: Bold
411	17.	Jansen SCP, Abaraogu UO, Lauret GJ, Fakhry F, Fokkenrood HJP, Teijink JAW. Modes of		
412		exercise training for intermittent claudication. Cochrane Database Syst Rev [Internet]. 2020		Formatted: Font: Italic
413		Aug 23 [cited 2023 Aug 13];2020(8;CD009638). Available from:		
413		Hug 25 [encu 2025 Hug 15] 2020(0 (CD005050). HVanable Hom.	\leq	Formatted: Font: Bold
414		https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009638.pub3/full		Formatted: Font: (Default) Times New Roman, Font color: Auto, Pattern: Clear
415	18.	Harwood AE, Pymer S, Ingle L, Doherty P, Chetter IC, Parmenter B, et al. Exercise training		
416		for intermittent claudication: a narrative review and summary of guidelines for practitioners.		
417		BMJ open Sport Exerc Med [Internet]-2020-Nov 6 [cited 2023 Aug 13];6(1). Available		Formatted: Font: Italic
418		from 1000207 https://auhmad.ashi.alm.aih.asu/222622002/		Formatted: Font: Bold
410		from: <u>e000897.</u> https://pubmed.ncbi.nlm.nih.gov/33262892/		Formatted: Font: (Default) Times New Roman, Font color: Auto, Pattern: Clear
419	19.	Mockford KA, Gohil RA, Mazari F, Khan JA, Vanicek N, Coughlin PA, et al. Effect of		
420		supervised exercise on physical function and balance in patients with intermittent claudication.		
421		<i>Br J Surg</i> - 2014 Mar ;101(4):356–62.		Formatted: Font: Italic
				Formatted: Font: Bold
422	20.	British Association of Sport and Exercise Sciences. The BASES Expert Statement on		Formatted: Normal (Web), Indent: Left: 0", First line: 0", Space Before: 0 pt, After: 0 pt, Widow/Orphan control, Adjust space between Latin and Asian text,
423	Exerc	rise Training for People with Intermittent Claudication due to Peripheral Arterial Disease, The	\mathbb{N}	Adjust space between Asian text and numbers
424	Sport	and Exercise Scientist n Issue 57 n Autumn 2018 n www.bases.org.uk @basesuk @BASESUK	$\langle \rangle \rangle$	Formatted: Font: (Default) Times New Roman, 11 pt
425	1	<u>uk BASESUK. [cited 2023 Aug 13];</u> Available fromat:		Formatted: Font: (Default) Times New Roman, 11 pt, Font color: Auto
			Ì	Formatted: Font: 11 pt
426	https:	://www.bases.org.uk/imgs/autumn 2018 7601 bas expert statement v2 569.pdf	< 1	Formatted: Font: 11 pt
427	[Acce	essed 23 November 2023].www.nice.org.uk/guidanee/eg147		Formatted: Font: 11 pt, Font color: Auto
				Commented [ACG3]: AQ: Please ref. 20: I've updated it according to the new link you sent
428	21.	Bianco M, Mottola FF, Cerrato E, Giordana F, Cinconze S, Baralis G, et al. Acute coronary		Formatted: Font: 11 pt, Font color: Auto

Formatted: Font: 11 pt

429		syndrome in very elderly patients-a real-world experience. <i>Heart Vessels</i> [Internet].		Formatted: Font: Italic
430		2023; <u>38:1019–27</u> -Mar 28 [cited 2023 Apr 3]; Available from:		Formatted: Font: Bold
431		https://pubmed.ncbi.nlm.nih.gov/36976424/		
432	22.	Fashandi AZ, Mehaffey JH, Hawkins RB, Kron IL, Upchurch GR, Robinson WP. Major		
433		adverse limb events and major adverse cardiac events after contemporary lower extremity		
434		bypass and infrainguinal endovascular intervention in patients with claudication. J Vasc Surg		Formatted: Font: Italic
435		[Internet]. 2018 Dec 1 [cited 2023 Apr 3];68(6):1817. Available from:		Formatted: Font: Bold
436		/pmc/articles/PMC6482457/		
437	23.	Idrissi J, Amine M. Multilayer perceptron: architecture optimization and training.		
438	24.	schoenfeld-Schoenfeld_DA. sampleSample-size formula for the proportional-hazards		
439		regression model. <i>Biometrics</i> . 1983-Jun; 39 (2):499.	_	Formatted: Font: Italic
				Formatted: Font: Bold
440	25.	Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A systematic review of the		
441		uptake and adherence rates to supervised exercise programs in patients with intermittent		
442		claudication. Ann Vasc Surg- 2016-Jul 1;34:280-9.	<	Formatted: Font: Italic
443	26.	Voci D, Fedeli U, Valerio L, Schievano E, Righini M, Kucher N, et al. Mortality rate related to		Formatted: Font: Bold
444		peripheral arterial disease: A-a retrospective analysis of epidemiological data (years 2008-		
445		2019). Nutr Metab Cardiovasc Dis- 2023-Mar 1;33(3):516-22.		Formatted: Font: Italic
				Formatted: Font: Bold
446	27.	Klaphake S, Fakhry F, Rouwet E V., Van Der Laan L, Wever JJ, Teijink JA, et al. Long-term		
447		follow-up of a randomized clinical trial comparing endovascular revascularization plus		
448		supervised exercise with supervised exercise only for intermittent claudication. Ann Surg		Formatted: Font: Italic
449		[Internet]. 2022-Dec 1 [cited 2023 May 1];276(6):E1035-43. Available from:		Formatted: Font: Bold
450		https://journals.lww.com/annalsofsurgery/Fulltext/2022/12000/Long_term_Follow_up_of_a_R		
451		andomized_Clinical_Trial.71.aspx		

452 28. van den Houten MML, Hageman D, Gommans LNM, Kleijnen J, Scheltinga MRM, Teijink

453		JAW. The effect of supervised exercise, home based exercise and endovascular		
454		revascularisation on physical activity in patients with intermittent claudication: a network		
455		meta-analysis. <i>Eur J Vasc Endovasc Surg</i> . 2019 Sep 1; 58 (3):383–92.		Formatted: Font: Italic
				Formatted: Font: Bold
456	29.	Hammond MM, Tian L, Zhao L, Zhang D, McDermott MM. Attendance at supervised		
457		exercise sessions and walking outcomes in peripheral artery disease: results from 2		
458		randomized clinical trials. J Am Hear Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2022-Dec		Formatted: Font: Italic
459		12 [cited 2023 Apr 2];11(24):26136. Available from: /pmc/articles/PMC9798808/		Formatted: Font: Bold
	20			
460	30.	McDermott MMG, Criqui MH, Liu K, Guralnik JM, Greenland P, Martin GJ, et al. Lower		
461		ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial		
462		pressures, and association with leg functioning in peripheral arterial disease. <u>J Vasc Surg-</u>		Formatted: Font: Italic
463		2000; 32(6):1164–71.		Formatted: Font: Bold
464	31.	Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A Systematic review of the		
465		uptake and adherence rates to supervised exercise programs in patients with intermittent		
466		claudication. Ann Vasc Surg-[Internet]. 2016-Jul 1-[eited 2023 Jan 2];34:280–9. Available	<	Formatted: Font: Italic
467		from: https://pubmed.ncbi.nlm.nih.gov/27126713/		Formatted: Font: Bold
468	32.	Harwood AE, Smith GD, Broadbent E, Cayton TE, Carradice D, Chetter I. Access to		
469		supervised exercise services for peripheral vascular disease patients. Bull R Coll Surg Engl		Formatted: Font: Italic
470		[Internet]. 2017-Jun [cited 2023 Apr 8]; 99 (6):207–11. Available from:		Formatted: Font: Bold
471		https://doi.org/10.1308/rcsbull.2017.207		
472	33.	Waddell A, Seed S, Broom DR, McGregor G, Birkett ST, Harwood AE. Safety of home-based		
473		exercise for people with intermittent claudication: a systematic review. J Vasc Surg [Internet].		Formatted: Font: Italic
474		2022-Apr-1-[cited 2023 Apr 8];75(4):1490. Available from:		Formatted: Font: Bold
475		http://www.jvasesurg.org/article/S0741521422000362/fulltext		
476	34.	Harwood AE, Pymer S, Ibeggazene S, Ingle L, Caldow E, Birkett ST. Provision of exercise		
477		services in patients with peripheral artery disease in the United Kingdom. Vascular: 2022-Oet		Formatted: Font: Italic

478		∔;30(5):874–81.	Formatted: Font: Bold
479	35.	Harwood AE, Hitchman LH, Ingle L, Doherty P, Chetter IC. Preferred exercise modalities in	
480		patients with intermittent claudication. <i>J Vasc Nurs</i> [Internet]. 2018 Jun 1 [cited 2023 May	Formatted: Font: Italic
481		2];36(2):81-4. Available from: https://pubmed.nebi.nlm.nih.gov/29747787/	Formatted: Font: Bold
482	36.	Mazari FAK, Gulati S, Rahman MNA, Lee HLD, Mehta TA, McCollum PT, et al. Early	
483		outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and	
484		combined therapy in intermittent claudication. Ann Vasc Surg [Internet]. 2010-Jan [cited 2023	Formatted: Font: Italic
485		Apr 9];24(1):69–79. Available from: https://pubmed.ncbi.nlm.nih.gov/19762206/	Formatted: Font: Bold
486	37.	Mazari FAK, Khan JA, Samuel N, Smith G, Carradice D, McCollum PC, et al. Long-term	
487		outcomes of a randomized clinical trial of supervised exercise, percutaneous transluminal	
488		angioplasty or combined treatment for patients with intermittent claudication due to	
489		femoropopliteal disease. Br J Surg [Internet]. 2017-Jan 1 [cited 2023 Apr 9];104(1):76-83.	Formatted: Font: Italic
490		Available from: https://pubmed.nebi.nlm.nih.gov/27763685/	Formatted: Font: Bold
491 492	38.	Thanigaimani S, Phie J, Sharma C, Wong S, Ibrahim M, Huynh P, et al. Network meta- analysis comparing the outcomes of treatments for intermittent claudication tested in	
493		randomized controlled trials. J Am Heart Assoc [Internet]2021-May 4 [cited 2023 Apr	Formatted: Font: Italic
494		3];10(9) :19672. Available from:	Formatted: Font: Bold
495		https://www.ahajournals.org/doi/abs/10.1161/JAHA.120.019672	
496	39.	Harwood AE, Broadbent E, Totty JP, Smith GE, Chetter IC. "Intermittent claudication a real	
497		pain in the calf'-Patient experience of diagnosis and treatment with a supervised exercise	
498		program. J Vasc Nurs , 2017 Sep 1;35(3):131-5.	Formatted: Font: Italic
400	40.	Vemulapalli S, Dolor RJ, Hasselblad V, Schmit K, Banks A, Heidenfelder B, et al. Supervised	Formatted: Font: Bold
499	40.		
500		vs unsupervised exercise for intermittent claudication: $A-s$ systematic review and meta-	
501		analysis. <i>Am Heart J</i> - 2015 Jun 1;169(6):924–_937. e3 .	Formatted: Font: Italic
			Formatted: Font: Bold

502	41.	Saratzis A, Paraskevopoulos I, Patel S, Donati T, Biasi L, Diamantopoulos A, et al. Supervised		
503		exercise therapy and revascularization for intermittent claudication: network meta-analysis of		
504		randomized controlled trials. JACC Cardiovasc Interv [Internet]. 2019-Jun 24 [cited 2023 Apr		Formatted: Font: Italic
505		3];12(12):1125-36. Available from: https://pubmed.nebi.nlm.nih.gov/31153838/		Formatted: Font: Bold
506	42.	Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.		
507		Supervised exercise versus primary stenting for claudication resulting from aortoiliac		
508		peripheral artery disease: Six-month outcomes from the claudication: Exercise versus		
509		endoluminal revascularization (CLEVER) study. <i>Circulation</i> : 2012-Jan 3;125(1):130-9.		Formatted: Font: Italic
				Formatted: Font: Bold
510	43.	McDermott MM, Ferrucci L, Tian L, Guralnik JM, Lloyd-Jones D, Kibbe MR, et al. Effect of		
511		granulocyte-macrophage colony-stimulating factor with or without supervised exercise on		
512		walking performance in patients with peripheral artery disease: The the PROPEL randomized		
513		clinical trial. JAMA – J Am Med Assoc. 2017-Dec 5;318(21):2089–98.	_	Formatted: Font: Italic
				Formatted: Font: Bold
514	44.	Sivagangan P, Harwood AE, Stather PW. Patient and healthcare professional priorities for a		
515		mobile phone application for patients with peripheral arterial Diseasedisease. Cureus		Formatted: Font: Italic
516		[Internet]. 2023 Jan 20 [cited 2023 Apr 3];15(1);c33993. Available from:		Formatted: Font: Bold
517		https://pubmed.ncbi.nlm.nih.gov/36824553/		Formatted: Font: (Default) Times New Roman, Font color: Auto, Pattern: Clear
518	45.	Aalami OO, Lin J, Savage D, Ho V, Bertges D, Corriere M. Use of an app-based exercise		
519		therapy program including cognitive-behavioral techniques for the management of intermittent		
520		claudication. J Vasc Surg [Internet]. 2022-Dec 1 [cited 2023 Apr 3];76(6):16511656.e1.		Formatted: Font: Italic
521		Available from: https://pubmed.nebi.nlm.nih.gov/35872328/		Formatted: Font: Bold
522	46.	Pymer S, Harwood A, Ibeggazene S, McGregor G, Huang C, Twiddy M, et al. High INtensity		
523		Interval Training In pATiEnts with intermittent claudication (INITIATE): protocol for a		
524		multicentre, proof-of-concept, prospective interventional study. BMJ Open- 2020-Jul		Formatted: Font: Italic
525		6;10(7):e038825.		Formatted: Font: Bold
526	47	Harzand A. Vakili A.A. Alrohaibani A. Abdelhamid SM. Gordon NF. Thiel I. et al. Rationale		

527		and design of a smartphone-enabled, home-based exercise program in patients with	
528		symptomatic peripheral arterial disease: The smart step randomized trial. Clin Cardiol	 Formatted: Font: Italic
529		[Internet]. 2020 Jun 1 [cited 2023 Apr 8];43(6):537–45. Available from:	
530		https://onlinelibrary.wiley.com/doi/full/10.1002/clc.23362	
531	48.	Persson AB, Buschmann EE, Lindhorst R, Troidl K, Langhoff R, Schulte KL, et al.	
532		Therapeutic arteriogenesis in peripheral arterial disease: combining intervention and passive	
533		training. <u>http://dx.doi.org/101024/0301-1526/a000092 [Internet]. 2013 Jan 7 [cited 2023 Apr</u>	 Formatted: Font: Italic
534		9]; Vasa 2011; 40(3): 177-87. Available from: https://econtent.hogrefe.com/doi/10.1024/0301-	 Formatted: Font: Bold
535		1526/a000092	
536	49.	Mays RJ, Hiatt WR, Casserly IP, Rogers RK, Main DS, Kohrt WM, et al. Community-based	
537		walking exercise for peripheral artery disease: <u>An-an</u> exploratory pilot study. <u>Vasc Med</u>	 Formatted: Font: Italic
538		(United Kingdom) [Internet]. 2015-Aug 10 [cited 2023 Apr 9]; 20 (4):339-47. Available from:	 Formatted: Font: Bold
539		https://journals.sagepub.com/doi/10.1177/1358863X15572725	
540	50.	Austin PC. A critical appraisal of propensity-score matching in the medical literature between	
541		1996 and 2003. Stat Med Stat Med [Internet]. 2008 [cited 2023 Jul 2];27:2037-49. Available	Formatted: Font: Italic
542		from: www.interscience.wiley.com	Formatted: Font: Bold
543	51.	Stuart EA. Matching methods for causal inference: <u>A-a</u> review and a look forward. <i>Stat Sci</i>	 Formatted: Font: Italic
544		[Internet]. 2010 Feb 2 [cited 2023 Jul 2]; 25 (1):1–21. Available from:	 Formatted: Font: Bold
545		/pmc/articles/PMC2943670/	
546	52.	Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score	
547		matching, <u>J Econ Surv</u> 2008;22:31-722005;	 Formatted: Font: (Default) Times New Roman, Font
			color: Auto, Pattern: Clear
548	53.	Amusa L, North D, Zewotir T. A tailored use of the mahalanobis distance matching for causal	
549		effects estimation: A simulation study. <i>Sci African</i> . 2022-Jul 1;16:e01155.	 Formatted: Font: Italic
			Formatted: Font: Bold
550	A		 Formatted: Font: Bold

551 Legends for figure:

- **Figure 1;** Supervised exercise therapy protocol**;** Outline of each session during weeks 1–6, with an
- station added each week from week 7 until the patient had completed two full circuits. The
- figure illustrates the progression of the supervised exercise therapy protocol used in the study.
- 555 **Figure 2+.** Independent variable importance analysis using Multilayer multilayer perceptron to
- identify the most significant predictors of chronic limb threatening ischaemia to guide propensity
- score matching along with multivariable and logistic regression analyses. <u>SET = supervised exercise</u>
- 558 <u>therapy</u>
- 559 **Figure 3**:-. Number of cardiovascular events for patients who did and did not complete supervised
- 560 <u>exercise therapy (SET)</u> SET-after median follow up of 2_164 days; <u>IC: Intermittent Claudication;</u>
- 561 $CLTI \div = \frac{Chronic}{chronic}$ limb threatening ischemia; MALE $\div = \frac{Major}{major}$ adverse limb events;
- 562 MACE: <u>— Major major</u> adverse cardiovascular events ; SET: Supervised exercise therapy.
- 563 **Figure 4:-,**<u>Cumulative Kaplan–Meier estimate of</u><u>Survival curves obtained by the Kaplan-Meier</u>
- 564 method demonstrating (A) time to chronic limb threatening ischaemia(a), (B) -time to first major
- adverse cardiovascular event $(MACE)_{(b)}$ and (C) time to first major adverse limb event (MALE)(c)

566 Table 1a: Baseline characteristics of both cohorts

Table 1. Baseline characteristics of both cohorts.

Attribute	Patients who did not start SET	Patients who prematurely discontinued SET	Patients who completed SET	<i>p</i> value	
	-(n = 183)		(n = 64)		
	AA	<u>(N-n = 19)</u>			
Age <u>– (</u> y ears ; Mean ± SD)	67.95 ± 10.4	70.1 ± 7.3	69.5 ± 7.8	.40	
Male	119_(65.7 %)	12_(63.2 %)	44_(68.8 %)	.87	
Diabetes Mellitusmellitus	54 <u>(</u> 29.5 %)	4 <u>(21.1</u> %)	29 <u>(</u> 45.3 %)	.076	

Formatted: Font: Bold

Formatted: Font color: Text 1

Formatted: Font color: Red

Formatted: Font: Bold

Formatted: Font: Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: (Default) Times New Roman
Formatted: Font color: Text 1

Formatted: Line spacing: Double

1	Formatted: Font: Bold
	Formatted Table
ſ	
l	Formatted: Font: Bold
~	
l	Formatted: Font: Bold, Italic
1	Formatted: Font: Bold
	Formatted: Font: Bold, Italic
	Formatted: Font: Bold
)(Formatted: Font: Bold, Italic
C	Formatted: Font: Bold

Hypertension	131_(71.6 %)	10_(52.6 %)	45_(70.3%)	.17		
Hyperlipid <u>a</u> emia	82_(44.8 %)	6 <u>(</u> 31.5 %)	30 <u>(</u> 46.8 %)	.24		
Ischaemic heart disease	101_(55.8 %)	11_(57.9 %)	28_(43.8 %)	.23		
Cerebrovascular disease	25_(13.7 %)	4 <u>(</u> 21 %)	8_(12.5 %)	.12		
Atrial fibrillation	38_(20.7 %)	2_(10.5 %)	8_(12.5 %)	.18		
Albumin (_ g/ 1<u>L; Mean ±</u> SD)	36.9 ± 4.28	37.1 ± 3.3	35.2 ± 3.7	.16		
Haemoglobin <u>(</u> g/ <u>lL) Mean</u> ± SD	132.73 ± 20.6	138.3 ± 19.0	136.5 ± 22.7	.16		
Compliance with smoking cessation	45_(24.9 %)	5_(26.3 %)	22_(34.0 %)	.34		
ABPI at presentation,						Formatted: Font: Italic
						Formatted: Font: Not Bold, Italic
Right	$\underline{0.79\pm0.18}$	0.74 ± 0.19	0.80 ± 0.15	.41		Formatted: Font color: Auto
					\sim	Formatted: Font color: Auto
_ABPI at presentation						Formatted: Font color: Auto
Right	0.79 ± 0.18	0.74 ± 0.19	0.80 ± 0.15	.41		
Left	0.81 ± 0.20	0.82 ± 0.29	0.84 ± 0.15	.58		
(Mean ,SD)						
Selfreported claudication distance_(metres)m (Mean_,SD)	77.5 ± 6.75	79.1 ± 7.5	79.4– <u>+</u> 6.0	.11		
No iliac disease	<u>37 (20.2)</u>	<u>3 (15.7)</u>	<u>29 (45.3)</u>			Formatted: Font: Not Bold, Font color: Auto
					\backslash	Formatted: Font color: Auto
						Formatted: Font color: Auto
						Formatted: Font color: Auto
No iliac disease	37(20.2%)	3(15.7%)	29(45.3%)	010	•	Formatted Table
Unilateral iliac disease	63_(34.4 %)	6_(31.5 %)	8_(12.5 <mark>%))</mark>	.010		Formatted: No underline
Bilateral iliac disease	83(45.4%)	10(52.6%)	26(40.6%)			
		-()	==(,0,0)			

Bilateral iliac disease	<u>83 (45.4)</u>	<u>10 (52.6)</u>	<u>26 (40.6)</u>			
No femoral disease	<u>11 (6.0)</u>	<u>1 (5.2)</u>	5 (7.8)			ont: Not Bold, Font color: Auto ont color: Auto
						ont color: Auto
					Formatted: Fo	ont color: Auto
No femoral disease	11(6.0%)	1(5.2%)	5(7.8%)	•	Formatted Ta	able
Unilateralfemoral disease	76 <u>(</u> 41.5 %)	9_(47.3 %)	8_(12.5 %)	.030	Formatted: N	lo underline
Bilateral femoral disease	96(52.5%)	9(47.3%)	50(78.1%)		Formatted: F	ont: Bold, No underline
Bilateral femoral disease	<u>96 (52.5)</u>	<u>9 (47.3)</u>	<u>50 (78.1)</u>			
No crural disease	87 (47.5)	10 (52.6)	38 (59.3)			ont: Not Bold, Font color: Auto
						ont color: Auto
						ont color: Auto
TT the set of all disease	56 (20.6)	7 (26.9)	12 (20.2)			
Unilateral crural disease	56 (30.6)	7 (36.8)	13 (20.3)			ont: Not Bold, Font color: Auto
						ont color: Auto
						ont color: Auto
	05(17,5%)		22(52,28())			ont color: Auto
No crural disease	87(47.5%)	10(52.6%)	38(59.3%)	.47	Formatted Ta	ıble
Unilateral crural disease	56(30.6%)	7(36.8%)	13(20.3%)			
Bilateral crural disease	-40_(21.9 %)	-2_(10.5 %)	13_(12.5 %)			
Data are presented as mean ±	SD or <i>n</i> (%).	_			Formatted: Fo	ont: Italic

573 Table 1b: Impact of propensity score matching on significant confounders

Attribute	<u>Non-Non-Completion</u> <u>completion</u> SET (<u>n = n=49)</u>	Completion SET	<u>P-p</u> valu
Haemoglobin (g/4 <u>L) Mean/SD</u>	130.9 ± 19.3	138.6 ± 18.8	.08 <u>0</u>
Ischaemic heart disease	59.2 %	63.3 %	.56
Claudication distance	131.1 ± 19.4	130.2 ± 18.9	.81
Ankle–brachial pressure index			
Left	<u>0.81 ± 0.16</u>	0.86 ± 0.15	
Ankle-brachial pressure index Left 	0.81 ± 0.16 0.71 ± 0.12	$\frac{0.86 \pm 0.15}{0.64 \pm 0.16}$	<u>,11</u>
Data are presented as mean ± SD	0 or <i>n</i> (%).		

Ì		
	Formatted	
//	Formatted	
	Formatted Table	
Ά	Formatted	
Ń	Formatted	
/	Formatted	
Â	Formatted	
	Formatted	
N	Formatted	
$\langle \rangle$	Formatted	<u> </u>
W	Formatted	<u></u>
$\langle \rangle \rangle$	Formatted	<u> </u>
$\langle \rangle \rangle$	Formatted	<u> </u>
		<u> </u>
	Formatted	<u> </u>
$\langle \rangle \rangle$	Formatted	<u> </u>
	Formatted	
	Formatted	
///	Formatted	
19 11 1	Formatted	
	Formatted	
	Formatted	
	Formatted Formatted	
	Formatted Formatted Formatted	
	Formatted Formatted Formatted Formatted	
	Formatted Formatted Formatted Formatted Formatted	
	Formatted Formatted Formatted Formatted Formatted Formatted Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	

Formatted: Space Before: 12 pt, After: 12 pt, Line spacing: Double

- 1 Title: Supervised Exercise Therapy for Intermittent Claudication: A Propensity Score Matched
- 2 Analysis of Retrospective Data on Long term Cardiovascular Outcomes
- 3 Running title: Long-term outcomes following supervised exercise therapy in intermittent claudication
- 4 Authors: Bharadhwaj Ravindhran,
- 5 Arthur JM Lim
- 6 Thomas Kurian
- 7 Josephine Walshaw
- 8 Louise H Hitchman
- 9 Ross Lathan
- 10 George E Smith
- 11 Daniel Carradice
- 12 Ian C Chetter
- 13 Sean Pymer
- 14 ¹ Academic Vascular Surgical Unit, 2nd Floor, Allam diabetes centre, Hull Royal Infirmary, HU32JZ
- 15 Corresponding author: Bharadhwaj Ravindhran
- 16 Academic Vascular Surgical Unit
- 172nd Floor, Allam diabetes centre
- 18 Hull Royal Infirmary
- 19 Hull HU32JZ
- 20 Bharadhwaj.Ravindhran@nhs.net
- 21 This paper was awarded the Norman Williams Prize for the best clinical research paper and is
- shortlisted for the BJS Best Manuscript Prize at the Annual Meeting of the Surgical Research Society
- in 2023 at Nottingham, UK.
- 24
- 25 Word counts
- 26 Abstract: 285
- 27 What this paper adds: 37
- **28** The text body: 2932
- 29 Number of tables and figures: 2 tables and 4 figures
- 30

31 What this paper adds:

32	This study contributes to the current body of literature by conducting an initial assessment of long-
33	term outcomes in patients with intermittent claudication (IC) who underwent supervised exercise
34	therapy (SET), with a focus on cardiovascular morbidity and mortality The results indicate that
35	completing SET is associated with a decreased risk of major adverse limb events, major adverse
36	cardiovascular events, and progression to chronic limb-threatening ischemia based on this
37	retrospective propensity score matched analysis of patients who completed, discontinued or declined
38	SET.
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	

- 55
- 56

57 Abstract:

Objective: This study aimed to explore the long-term outcomes of patients with intermittent
claudication (IC) who completed supervised exercise therapy (SET) versus those who declined or
prematurely discontinued SET, focusing on the incidence of chronic limb-threatening ischemia
(CLTI), revascularization, major adverse limb events (MALE), and major adverse cardiovascular
events (MACE).

Design: Retrospective registry analysis of consecutive patients with IC who were referred for SET
between March 2015 and August 2016 and followed up for a minimum of five years.

Methods: Serial univariable analysis and logistic regression was performed to identify the statistically significant clinical variables that were independent predictors of each outcome measure. The resulting statistically significant variables were used to guide 1:1 propensity score matching (PSM) using the nearest neighbour method with a calliper of .2. A Cox proportional hazards regression was used to estimate the hazard ratio(HR) and 95% CI for the association between SET and the outcomes of interest.

71 Results: Two hundred and sixty-six patients were referred to SET between March 2015 and August 72 2016. Of these, 64 patients completed SET and 202 patients did not. After PSM, 49 patients were analysed in each cohort. The Cox proportional hazards analysis revealed a significant association 73 between completion of SET and revascularisation requirement(HR: 0.4695% CI 0.25 - 0.84; p 74 =.011), completion of SET and progression to CLTI(HR: 0.091, 95% CI 0.04 – 0.24; p <.001), 75 76 completion of SET and MACE(HR: 0.52; 95% CI 0.28 - 0.99; p = .05) and completion of SET and MALE(HR: 0.28, 95% CI 0.13 – 0.65; p = .003). The Harrell's C-index for all of these models were 77 78 greater than .75 indicating good predictive accuracy.

79	Conclusion: Completion of SET is associated with better outcomes in patients who completed SET
80	compared to patients who declined or discontinued SET with respect to clinically important
81	cardiovascular outcomes over 7 years.
82	Key words: Intermittent claudication, outcome assessment, propensity score, ischemia, exercise
83	therapy; resistance training
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	

99 Introduction:

100 Intermittent claudication (IC) is an ambulatory, ischaemic muscle pain relieved by rest, which reduces 101 physical function, walking capacity, balance, and quality of life and increases the risk of mortality from cardiovascular causes¹⁻⁵. Patients with IC patients are at risk of disease progression to chronic 102 103 limb threatening ischaemia(CLTI) and major adverse limb events (MALE) such as major lower limb amputations (MLLA), acute limb ischemia (ALI), or loss of untreated patency^{6,7}. The goal of treatment 104 is therefore to improve symptoms, physical function, and quality of life (QoL), while also reducing 105 106 the risk of disease progression and limb loss, mortality and MACE.8 107 To achieve this, the National Institute for Health and Care Excellence (NICE) guideline 147⁹ and the European society for vascular surgery (ESVS)¹⁰ recommend supervised exercise therapy (SET) for 2-108 hours per week over a 3-month period, as the first-line treatment. Evidence shows that SET is 109 significantly superior for improving walking performance, and therefore symptoms, when compared 110 to home-based exercise and walking advice¹¹. Further evidence also shows that SET is comparable to 111 endovascular revascularisation for improving walking distance and importantly, QoL¹¹. Given the 112 positive effect that SET also has on cardiovascular risk factors,^{12,13} it would be reasonable to assume 113 that this leads to a potential benefit in morbidity, via a reduction in MACE and MALE, as well as a 114 benefit in mortality. However, the evidence considering the long-term effects of SET on morbidity 115 116 and mortality is lacking, with just one study considering the association between SET completion and mortality^{14,15}. 117

118 Therefore, the aim of this study was to investigate whether completion of SET was associated with 119 better cardiovascular outcomes compared to a group of patients with IC that did not complete SET 120 using propensity score matching(PSM).Methods:

This study was conducted at a tertiary care referral vascular centre. The clinical, intra-operative and
follow-up information were gathered, analysed and compared between patients who completed SET
and patients who either declined or discontinued SET.

124 Patient selection:

125 We retrospectively analysed the data of consecutive patients with IC who were referred for SET 126 between March 2015 and August 2016 (18 months). Patients who were referred but had CLTI, had undergone SET within the preceding 12 months, or had a recurrence of symptoms following previous 127 revascularisation were excluded from this analysis. Patients who were referred for SET but were 128 129 deemed unsuitable due to contraindications or the presence of significant co morbidities or missing data were also excluded. The diagnosis of IC was made clinically, and was further supported by a 130 resting ankle brachial pressure index (ABPI) or toe -brachial pressure index, duplex ultrasound or 131 132 cross-sectional imaging if required. Patients who declined SET were either discharged back to their general practitioner (GP), received regular follow-up or underwent a revascularisation procedure, 133 134 depending on individual need.

Patients referred to supervised exercise therapy (SET) were initially assessed by physicians to identify 135 any obvious contraindications such as severe frailty, unstable gait, and existing pulmonary and cardiac 136 137 disorders (e.g., aortic stenosis, dyspnoea at rest). These contraindications were determined based on clinical judgment. Furthermore, patients who did not have any obvious contraindications to SET were 138 then screened by the exercise physiologist prior to starting SET. This screening process aimed to 139 identify any additional contraindications or factors that may affect the safety or effectiveness of SET 140 141 for individual patients. It is important to note that all patients in our study underwent routine screening at two levels (physician assessment and exercise physiologist screening) to ensure that only those who 142 143 were suitable for SET were included.

144 Supervised exercise therapy:

Patients performed SET three times per week for 12 weeks comprising a total of 36 sessions. Missed sessions were made up at the end of the 12-week programme¹⁶. The programme was overseen by an exercise physiologist with support from undergraduate and postgraduate sports science students. SET sessions involved the completion of a circuit of six two-minute stations, separated by two-minute walking intervals. These were preceded by a warm-up and followed by a cool-down. The stations included step-ups, standing knee bends, sitting knee extensions, biceps curls, cycling, and heel raises (Figure 1). As the patient's exercise tolerance improved, an additional station was added each week from the seventh week and by the end of week 12, they completed two full circuits. Session length therefore began at 30, progressing up to 60 minutes. Patients were deemed to have successfully completed SET after accumulating 36 sessions. This circuit-based training program was designed based on previous recommendations that highlight the effectiveness of combining upper and lower limb ergometry, resistance exercise, and walking-based exercises to improve muscle strength and cardiorespiratory fitness. These interventions have been shown to elicit a more significant cardiorespiratory stimulus compared to walking alone.^{17–20}

159 Outcome measures:

The study investigated the incidence and time-to CLTI, MALE, and MACE over a minimum of five
years and up to seven years. CLTI was defined as ischaemic rest pain lasting for two or more weeks,
non-healing wounds, or gangrene that was attributable to objectively proven arterial occlusive disease.
MACE was defined as non-fatal stroke, nonfatal myocardial infarction (MI), or cardiovascular death
(CVD)²¹. MALE was defined as ALI, untreated loss of patency, or MLLA.²²

165 Statistical analyses:

Continuous data was assessed for a normality using the Shapiro-Wilk test and are presented as mean \pm 166 standard deviation or median and range or interquartile range as appropriate. Categorical data are 167 expressed as numbers and/or percentages. Time to event data is presented using Kaplan-Meier 168 169 survival curves. Comparative hypothesis testing was performed using Chi-squared tests, t-tests or Mann Whitney U tests as appropriate, and log- rank tests. Statistical significance was set at p = <.05. 170 Serial univariable analysis and logistic regression was performed to identify the statistically 171 172 significant clinical variables that were independent predictors of each outcome measure. This was confirmed by performing an independent variable importance analysis using the multilayer perceptron 173 tool, which is a popular tool in machine learning and deep learning for pattern recognition.²³ The 174 resulting statistically significant variables were used to guide 1:1 PSMusing the nearest neighbour 175 method with a calliper of .2. The differences between these two matched groups were compared by 176 177 using the Mann–Whitney U test, and categorical data were analysed using the Pearson's Chi-square

test, the Fisher's exact test, or continuity correction where appropriate. Survival curves were obtained
by the Kaplan-Meier method and a Cox proportional hazards regression was used to estimate the
hazard ratio(HR) and 95% CI for the association between SET and the outcomes of interest. All
statistical analyses were performed using Statistical Package for the Social Sciences (IBM Corp.
2020; Windows Version 27.0) and Medcalc (MedCalc Statistical Software version 19.2.6; MedCalc
Software by, Ostend, Belgium;)

184

185 Results:

186 Two-hundred and eighty-two patients presented to the vascular outpatient clinic with IC between 187 March 2015 and August 2016 and were referred for SET. Sixteen patients were deemed unsuitable for 188 SET due to advanced comorbidities, mobility problems and dementia. Two-hundred and sixty-six patients were deemed suitable and were offered SET, of which 83 (31%) attended and 183 (69%) 189 190 declined. Of those that attended, 64 (77%) patients successfully completed SET, whilst 19 (23%) 191 prematurely discontinued. Baseline characteristics of those who completed and those who declined or 192 prematurely discontinued SET are presented in table 1a. The primary reasons for the low adoption of 193 SET were related to location or travel (44.3%; n=81), individuals declining due to lack of 194 interest/belief in the SET (39.3%; n=72), work/personal commitments resulting in a lack of time for 195 SET (12.6%; n=23), inability to participate due to musculoskeletal issues (2.2%; n=4), and patients already enrolled in a community exercise program (1.6%; n=3). Considering that nearly all patients 196 who discontinued SET did so without attending at least 50% of the sessions, we deemed it appropriate 197 198 to combine both groups, i.e., those who discontinued and those who declined SET, for the purpose of 199 analysis.

Serial univariable and logistic regression analyses revealed that CLTI had the greatest number of
 statistically significant predictor variables compared to the other outcomes, and therefore, these
 significant predictors were used to guide PSM, which was performed to account for the independent
 association between these variables and outcome measures. Haemoglobin, self-reported claudication

distance, ABPI, presence of ischaemic heart disease (IHD), neutrophil-to-lymphocyte ratio,

205 compliance with smoking cessation and non-completion of supervised exercise therapy were found to be statistically significant predictors of CLTI based on serial univariable analyses. Logistic regression 206 analysis performed using these variables indicated that haemoglobin, self-reported claudication 207 208 distance, ABPI and the presence of IHD were significant predictors of CLTI. This was confirmed via an independent variable importance analysis (Figure 2). The multilayer perceptron(MLP) algorithm is 209 employed to evaluate the relative contribution of independent variables in predicting CLTI. By 210 assigning weights to each input variable based on their importance, the MLP algorithm provides 211 valuable insights into the significant of each variable. This importance analysis helps identify the 212

213 variables with the greatest impact on CLTI occurrence.

After PSM based on these variables, 49 patients were analysed in each cohort. There was no

difference between groups with respect to haemoglobin (g/l) (130.9 ± 19.3 vs 138.6 ± 18.8 ; p = .080),

216 IHD (59.2% vs 63.3% p = .56), self-reported claudication distance (metres) (131 ± 19.4 vs 130 ± 18.9;

217 p = .81) and ABPI (0.7 ± 0.1 vs 0.7 ± 0.2 ; p = .29)(Table 1b). The Cox proportional hazards analysis

revealed a significant association between completion of SET and progression to CLTI(HR: 0.091,

219 95% CI 0.04– 0.24; p <.001), completion of SET and MACE(HR: 0.52; 95% CI 0.28 – 0.99; p =.05)

and completion of SET and MALE(HR: 0.28, 95% CI 0.13 - 0.65; p = .003). The Kaplan-Meier

221 curves demonstrated a consistent and statistically significant difference in outcomes amongst those

who completed SET, compared to those who did not complete SET (Figure 3). The Harrell's C-index

for all of these models were greater than .75 indicating good predictive accuracy.

To assess the adequacy of sample size, a post-hoc power analysis was conducted, revealing that a total of 48 events and a sample size of 36 patients in the SET completion cohort and 186 patients in the non-completion cohort were required to detect a significant association between SET and outcomes. This estimation followed the methodology outlined by Schoenfeld et al²⁴, assuming a significance

level of .05, 80% power, a 16% incidence of SET completion among referred patients²⁵, a relative

hazard of 3, a median survival of 12 years, and a planned follow-up of 7 years^{15,26,27}.

230 Discussion:

231 This study demonstrates that completion of SET is associated with a reduced risk of experiencing 232 MALE, MACE and progression to CLTI. To the best of our knowledge, this study represents one of the first evaluations of long-term outcomes following SET with a focus on cardiovascular morbidity 233 and mortality in individuals with PAD. Whilst the data suggest a positive effect of SET, it is important 234 235 to acknowledge that the patients in this cohort may differ in ways that have not been accounted for, and their outcomes may have been influenced by factors beyond SET. It is important to note that even 236 with rigorous propensity score matching, confounding by indication cannot be completely adjusted 237 for, as there may be unmeasured covariates that affect both the variable and outcome of interest. We 238 also acknowledge that while this analysis provides important insights and suggests an association, the 239 240 efficacy of SET for improving cardiovascular outcomes cannot be established. Nevertheless, these 241 findings provide a strong rationale for increasing the delivery of SET and conducting further research to better understand its potential long-term benefits. Moving forward, efforts should be directed 242 243 towards reducing SET barriers (such as the time commitment) to maximise patient engagement. By 244 doing so, we may be able to optimise the effectiveness of SET and improve outcomes for a broader 245 range of patients.

246

247 Currently, high quality evidence shows that SET provides an important benefit with respect to 248 maximum walking distance (MWD), pain-free walking distance and QoL compared to home-based exercise therapy and walking advice^{14,28}. Better SET compliance, measured by attendance at exercise 249 250 sessions, is significantly associated with greater improvements in MWD and adherence to SET may 251 imply better adherence of several factors in life, such as to smoking cessation, healthy diet and medication, resulting in better outcomes.²⁹. However, even patients at the lowest tercile of exercise 252 attendance demonstrate a significant improvement in MWD.³⁰. Despite this evidence, and the 253 guidance provided by NICE and the ESVS,^{9,10} SET provision is not consistent in the UK, with less 254 than 50% of vascular centres offering it and less than 25% of these adhering to the recommended 255 exercise dose³¹. The low availability of SET in the UK can be attributed to various constraints faced in 256 257 a centralized hub and spoke model. These constraints include running costs and a lack of resources

and qualified personnel^{32–34}. When SET is offered, patients may not want to participate due to a lack
of availability near their home or the required time commitment, which contributes to the poor uptake
rates seen.^{25,35} Further research is needed to explore ways to address or minimise the constraints felt
by patients and providers to improve the accessibility and acceptability of SET.

262 During the last two decades there has been a substantial increase in the number of studies comparing primary interventional therapy to SET. The results of these studies suggest that SET is comparable to 263 264 primary percutaneous transluminal angioplasty (PTA) for improving in walking distance and QoL^{36,37,38}. This suggests that the current first-line treatment strategy of SET is advocated. However, 265 266 poor uptake and adherence to SET, poor patient fitness, and patient preference are cited as reasons for using a "PTA first" strategy in patients with IC ³⁹⁻⁴¹. Based on the results of the current study, even if 267 a PTA first strategy is pursued due to these constraints, the integration of an exercise intervention may 268 yield additional improvements in long-term cardiovascular outcomes, which may not occur with PTA 269 270 alone.

271 Recent evidence has also demonstrated that SET produces a notable improvement in cardiovascular 272 risk factors, such as cholesterol levels and resting and exercising blood pressure^{12,13}. Interestingly, the 273 greater the improvement in cardiovascular health, the greater the improvement in walking 274 performance.¹² Despite this evidence for a reduction in cardiovascular risk factors, there is limited 275 data to support the reduction of long-term cardiovascular risk following SET.^{42,43} The reduction in 276 cardiovascular morbidity and mortality following SET demonstrated in this study could be 277 attributable to these beneficial effects on cardiovascular risk factors.

Determining the percentage of outcomes that are directly associated with the completion of SET is difficult, given the presence of unmeasured confounding variables that may impact the findings, such as patient motivation. Even amongst highly motivated patients, uptake and adherence to SET can be difficult, underscoring the importance of offering alternative options to patients who wish to engage in SET but face barriers to compliance and uptake³⁴. High-intensity interval training (HIIT) or remotely delivered supervised exercise interventions are alternatives that could offer promising benefits, specially tailored to the unique needs and conditions of patients who were previously unable to enrol

in SET due to time or travel constraints.^{44,45}. Currently, a time efficient HIIT programme is being
assessed as a potential alternative for SET, to reduce the time barrier faced by patients⁴⁶. Early
evidence has suggested that this HIIT programme appears to be feasible and well tolerated in patients
with IC, which is to be confirmed via a proof-of-concept study⁴⁶.

289

Other alternative approaches to delivering SET have been explored, including remote monitoring, videos, support groups, mobile-applications and trackers and virtual reality.^{44,47,48}. A smartphoneenabled home-based exercise program is feasible and effective in patients with symptomatic PAD, as is a community-based walking programme with training, monitoring and coaching components.^{47,49} These alternative approaches to delivering SET have the potential to increase patient access and improve adherence. However, they are currently limited to small proof-of-concept studies. Further research is needed to explore their effectiveness in fully powered randomised controlled trials.

297 Limitations

298 Although this study provides useful insights, its retrospective nature encompasses several inherent 299 limitations, including unmeasurable confounding factors, potential biases, and the lack of blinding or randomisation that can affect the objectivity of our analysis. The limitations associated with the 300 retrospective nature of this study were addressed by enrolling consecutive patients over an eighteen-301 302 month period and conducting a meticulous PSM method with a 0.2 calliper. While there are many 303 alternatives to 1:1 PSM such as mahalanobis distance matching, kernel matching and covariate 304 matching, propensity score matching is considered the best approach due to its ability to balance 305 covariates, flexibility in handling different types of covariates, interpretability, and the opportunity for sensitivity analysis.^{50–53} Despite using rigorous propensity score matching, it is impossible to fully 306 account for confounding by indication. This is because there might be unmeasured factors that impact 307 308 both the variable being studied and the outcome of interest. In our study, we included statistically 309 significant variables in the PSM to ensure that we were controlling for factors that had a proven 310 association with the outcome. This approach was taken to minimize the risk of overfitting and to

311 ensure the robustness of our findings. However, we acknowledge the potential for Type II errors and 312 the possibility of missing relevant variables. The lack of differences observed in Table 1b after implementing PSM could potentially be attributed to a type II error. The use of inverse probability 313 weighting (IPW) is a valid approach that can enhance the robustness of findings by retaining a larger 314 315 sample size. However, we chose PSM for our study due to specific reasons. PSM allows us to best mimic a randomized controlled trial by matching patients who completed SET with control patients 316 317 based on observed characteristics, reducing bias from confounding variables. While IPW could retain a larger sample size, it can introduce challenges such as sensitivity to model specification and 318 319 unstable estimates with extreme weights. We believe PSM is more suitable for our study, considering these factors, although we acknowledge limitations such as potential bias from unobserved 320 321 confounding and a reduced sample size. Additionally, it is important to acknowledge that although 322 this analysis offers valuable insights and indicates a potential connection, we cannot definitively 323 establish the effectiveness of SET in improving cardiovascular outcomes.

This study indicates an association between patients completing SET and better long-term clinical outcomes, such as slower disease progression, and a lower likelihood of experiencing MALE or MACE. However, due to the potential for unmeasured confounding, we cannot definitively conclude that SET leads to an improvement in cardiovascular health or mitigates adverse long-term outcomes in IC. Rather, our findings suggest a potential association that warrants further investigation. Overall, these outcomes underscore the potential significance of SET in relation to cardiovascular health in IC patients.

331 Acknowledgements: The authors gratefully acknowledge the invaluable contribution of Dr. Dror332 Rosentraub for his expertise and guidance in the application of statistical methods The authors would333 also like to express their sincere gratitude to the academic vascular surgical unit for their invaluable334 support and collaboration throughout the course of this study. Their expertise and guidance have335 greatly contributed to the successful completion of this research.

337 References:

- Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res [Internet]. 2015
 Apr 24 [cited 2023 May 1];116(9):1509–26. Available from:
- 340 https://pubmed.ncbi.nlm.nih.gov/25908725/
- 2. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality
- 342 over a period of 10 years in patients with peripheral arterial disease. N Engl J Med [Internet].
- 343 1992 Feb 6 [cited 2023 May 1];326(6):381–6. Available from:
- 344 https://pubmed.ncbi.nlm.nih.gov/1729621/
- Pell JP. Impact of intermittent claudication on quality of life. Eur J Vasc Endovasc Surg. 1995
 May 1;9(4):469–72.
- Gohil RA, Mockford KA, Mazari F, Khan J, Vanicek N, Chetter IC, et al. Balance impairment,
 physical ability, and its link with disease severity in patients with intermittent claudication.
- Ann Vasc Surg [Internet]. 2013 Jan 1 [cited 2023 May 9];27(1):68–74. Available from:

350 http://www.annalsofvascularsurgery.com/article/S0890509612003214/fulltext

- 351 5. Meru A V., Mittra S, Thyagarajan B, Chugh A. Intermittent claudication: an overview.
- 352Atherosclerosis [Internet]. 2006 Aug [cited 2023 May 1];187(2):221–37. Available from:
- 353 https://pubmed.ncbi.nlm.nih.gov/16386260/
- Eid MA, Mehta K, Barnes JA, Wanken Z, Columbo JA, Stone DH, et al. The global burden of
 peripheral artery disease. J Vasc Surg [Internet]. 2023 Apr [cited 2023 Apr 3];77(4). Available
 from: https://pubmed.ncbi.nlm.nih.gov/36565779/
- 357 7. McDermott KM, Bose S, Keegan A, Hicks CW. Disparities in limb preservation and
- 358 associated socioeconomic burden among patients with diabetes and/or peripheral artery disease
- in the United States. Semin Vasc Surg [Internet]. 2023 Mar 1 [cited 2023 Apr 3];36(1).
- 360 Available from: https://pubmed.ncbi.nlm.nih.gov/36958896/

361	8.	Bevan GH, White Solaru KT. Evidence-Based Medical Management of Peripheral Artery
362		Disease. Arterioscler Thromb Vasc Biol. 2020 Mar 1;40(3):541–53.
363	9.	Overview Peripheral arterial disease: diagnosis and management Guidance NICE
364		[Internet]. [cited 2022 May 7]. Available from: https://www.nice.org.uk/guidance/cg147
365	10.	Aboyans V, Ricco JB, Bartelink MLEL, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC
366		Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration
367		with the European Society for Vascular Surgery (ESVS)Document covering atherosclerotic
368		disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity
369		arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the
370		Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of
371		Cardiology (ESC) and of the European Society for Vascul. Eur Heart J [Internet]. 2018 Mar 1
372		[cited 2023 Apr 8];39(9):763-816. Available from:
373		https://academic.oup.com/eurheartj/article/39/9/763/4095038
374	11.	Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.
375		Supervised exercise, stent revascularization, or medical therapy for claudication due to
376		aortoiliac peripheral artery disease: The CLEVER study. J Am Coll Cardiol. 2015 Mar
377		17;65(10):999–1009.
378	12.	Slysz JT, Tian L, Zhao L, Zhang D, McDermott MM. Effects of supervised exercise therapy
379		on blood pressure and heart rate during exercise, and associations with improved walking
380		performance in peripheral artery disease: Results of a randomized clinical trial. J Vasc Surg.
381		2021 Nov 1;74(5):1589-1600.e4.
382	13.	Jansen SCP, Hoorweg BBN, Hoeks SE, van den Houten MML, Scheltinga MRM, Teijink
383		JAW, et al. A systematic review and meta-analysis of the effects of supervised exercise
384		therapy on modifiable cardiovascular risk factors in intermittent claudication. J Vasc Surg
385		[Internet]. 2019 Apr 1 [cited 2023 May 16];69(4):1293-1308.e2. Available from:

https://pubmed.ncbi.nlm.nih.gov/30777692/

- Hageman D, Fokkenrood HJP, Gommans LNM, van den Houten MML, Teijink JAW.
 Supervised exercise therapy versus home-based exercise therapy versus walking advice for
 intermittent claudication. Cochrane database Syst Rev [Internet]. 2018 Apr 6 [cited 2023 Apr
- 390 3];4(4). Available from: https://pubmed.ncbi.nlm.nih.gov/29627967/
- Sakamoto S, Yokoyama N, Tamori Y, Akutsu K, Hashimoto H, Takeshita S. Patients with
 peripheral artery disease who complete 12-week supervised exercise training program show
 reduced cardiovascular mortality and morbidity. Circ J [Internet]. 2009 [cited 2023 Apr
 3];73(1):167–73. Available from: https://pubmed.ncbi.nlm.nih.gov/19039192/
- Harwood AE, Totty JP, Pymer S, Huang C, Hitchman L, Carradice D, et al. Cardiovascular
 and musculoskeletal response to supervised exercise in patients with intermittent claudication.
 J Vasc Surg [Internet]. 2019 Jun 1 [cited 2023 May 16];69(6):1899-1908.e1. Available from:
 https://pubmed.ncbi.nlm.nih.gov/30583899/
- Jansen SCP, Abaraogu UO, Lauret GJ, Fakhry F, Fokkenrood HJP, Teijink JAW. Modes of
 exercise training for intermittent claudication. Cochrane Database Syst Rev [Internet]. 2020
- 401 Aug 23 [cited 2023 Aug 13];2020(8). Available from:
- 402 https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009638.pub3/full
- 403 18. Harwood AE, Pymer S, Ingle L, Doherty P, Chetter IC, Parmenter B, et al. Exercise training
- 404 for intermittent claudication: a narrative review and summary of guidelines for practitioners.
- BMJ open Sport Exerc Med [Internet]. 2020 Nov 6 [cited 2023 Aug 13];6(1). Available from:
 https://pubmed.ncbi.nlm.nih.gov/33262892/
- 407 19. Mockford KA, Gohil RA, Mazari F, Khan JA, Vanicek N, Coughlin PA, et al. Effect of
 408 supervised exercise on physical function and balance in patients with intermittent claudication.
- 409 Br J Surg. 2014 Mar;101(4):356–62.

410	20.	The Sport and Exercise Scientist n Issue 57 n Autumn 2018 n www.bases.org.uk @basesuk
411		@BASESUK bases_uk BASESUK. [cited 2023 Aug 13]; Available from:
412		www.nice.org.uk/guidance/cg147
413	21.	Bianco M, Mottola FF, Cerrato E, Giordana F, Cinconze S, Baralis G, et al. Acute coronary
414		syndrome in very elderly patients-a real-world experience. Heart Vessels [Internet]. 2023 Mar
415		28 [cited 2023 Apr 3]; Available from: https://pubmed.ncbi.nlm.nih.gov/36976424/
416	22.	Fashandi AZ, Mehaffey JH, Hawkins RB, Kron IL, Upchurch GR, Robinson WP. Major
417		Adverse Limb Events and Major Adverse Cardiac Events after Contemporary Lower
418		Extremity Bypass and Infrainguinal Endovascular Intervention in Patients with Claudication. J
419		Vasc Surg [Internet]. 2018 Dec 1 [cited 2023 Apr 3];68(6):1817. Available from:
420		/pmc/articles/PMC6482457/
421	23.	Idrissi J, Amine M. Multilayer Perceptron: Architecture Optimization and Training.
422	24.	Schoenfeld DA. Sample-Size Formula for the Proportional-Hazards Regression Model.
423		Biometrics. 1983 Jun;39(2):499.
424	25.	Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A systematic review of the
425		uptake and adherence rates to supervised exercise programs in patients with intermittent
426		claudication. Ann Vasc Surg. 2016 Jul 1;34:280-9.
427	26.	Voci D, Fedeli U, Valerio L, Schievano E, Righini M, Kucher N, et al. Mortality rate related to
428		peripheral arterial disease: A retrospective analysis of epidemiological data (years 2008–
428 429		
	27.	peripheral arterial disease: A retrospective analysis of epidemiological data (years 2008–
429		peripheral arterial disease: A retrospective analysis of epidemiological data (years 2008–2019). Nutr Metab Cardiovasc Dis. 2023 Mar 1;33(3):516–22.
429 430		peripheral arterial disease: A retrospective analysis of epidemiological data (years 2008– 2019). Nutr Metab Cardiovasc Dis. 2023 Mar 1;33(3):516–22. Klaphake S, Fakhry F, Rouwet E V., Van Der Laan L, Wever JJ, Teijink JA, et al. Long-term

- 434 https://journals.lww.com/annalsofsurgery/Fulltext/2022/12000/Long_term_Follow_up_of_a_R
 435 andomized_Clinical_Trial.71.aspx
- 436 28. van den Houten MML, Hageman D, Gommans LNM, Kleijnen J, Scheltinga MRM, Teijink
- 437 JAW. The Effect of Supervised Exercise, Home Based Exercise and Endovascular
- 438 Revascularisation on Physical Activity in Patients With Intermittent Claudication: A Network
- 439 Meta-analysis. Eur J Vasc Endovasc Surg. 2019 Sep 1;58(3):383–92.
- 440 29. Hammond MM, Tian L, Zhao L, Zhang D, McDermott MM. Attendance at Supervised
- 441 Exercise Sessions and Walking Outcomes in Peripheral Artery Disease: Results From 2
- 442 Randomized Clinical Trials. J Am Hear Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2022
- 443 Dec 12 [cited 2023 Apr 2];11(24):26136. Available from: /pmc/articles/PMC9798808/
- McDermott MMG, Criqui MH, Liu K, Guralnik JM, Greenland P, Martin GJ, et al. Lower
 ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial
 pressures, and association with leg functioning in peripheral arterial disease. J Vasc Surg.
 2000;32(6):1164–71.
- Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A Systematic Review of the
 Uptake and Adherence Rates to Supervised Exercise Programs in Patients with Intermittent
 Claudication. Ann Vasc Surg [Internet]. 2016 Jul 1 [cited 2023 Jan 2];34:280–9. Available
 from: https://pubmed.ncbi.nlm.nih.gov/27126713/
- 452 32. Harwood AE, Smith GD, Broadbent E, Cayton TE, Carradice D, Chetter I. Access to
- 453 supervised exercise services for peripheral vascular disease patients. Bull R Coll Surg Engl
- 454 [Internet]. 2017 Jun [cited 2023 Apr 8];99(6):207–11. Available from:
- 455 https://doi.org/10.1308/rcsbull.2017.207
- 456 33. Waddell A, Seed S, Broom DR, McGregor G, Birkett ST, Harwood AE. Safety of Home-based
- 457 Exercise for People with Intermittent Claudication: A Systematic Review. J Vasc Surg
- 458 [Internet]. 2022 Apr 1 [cited 2023 Apr 8];75(4):1490. Available from:

http://www.jvascsurg.org/article/S0741521422000362/fulltext

- 460 34. Harwood AE, Pymer S, Ibeggazene S, Ingle L, Caldow E, Birkett ST. Provision of exercise
 461 services in patients with peripheral artery disease in the United Kingdom. Vascular. 2022 Oct
 462 1;30(5):874–81.
- 463 35. Harwood AE, Hitchman LH, Ingle L, Doherty P, Chetter IC. Preferred exercise modalities in
 464 patients with intermittent claudication. J Vasc Nurs [Internet]. 2018 Jun 1 [cited 2023 May
 465 2];36(2):81–4. Available from: https://pubmed.ncbi.nlm.nih.gov/29747787/
- 466 36. Mazari FAK, Gulati S, Rahman MNA, Lee HLD, Mehta TA, McCollum PT, et al. Early
- 467 outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and
- 468 combined therapy in intermittent claudication. Ann Vasc Surg [Internet]. 2010 Jan [cited 2023

469 Apr 9];24(1):69–79. Available from: https://pubmed.ncbi.nlm.nih.gov/19762206/

470 37. Mazari FAK, Khan JA, Samuel N, Smith G, Carradice D, McCollum PC, et al. Long-term

471 outcomes of a randomized clinical trial of supervised exercise, percutaneous transluminal

angioplasty or combined treatment for patients with intermittent claudication due to

- 473 femoropopliteal disease. Br J Surg [Internet]. 2017 Jan 1 [cited 2023 Apr 9];104(1):76–83.
- 474 Available from: https://pubmed.ncbi.nlm.nih.gov/27763685/
- 475 38. Thanigaimani S, Phie J, Sharma C, Wong S, Ibrahim M, Huynh P, et al. Network meta-
- 476 analysis comparing the outcomes of treatments for intermittent claudication tested in
- 477 randomized controlled trials. J Am Heart Assoc [Internet]. 2021 May 4 [cited 2023 Apr
- 478 3];10(9):19672. Available from:
- 479 https://www.ahajournals.org/doi/abs/10.1161/JAHA.120.019672
- 480 39. Harwood AE, Broadbent E, Totty JP, Smith GE, Chetter IC. "Intermittent claudication a real
 481 pain in the calf"—Patient experience of diagnosis and treatment with a supervised exercise
 482 program. J Vasc Nurs. 2017 Sep 1;35(3):131–5.

- 483 40. Vemulapalli S, Dolor RJ, Hasselblad V, Schmit K, Banks A, Heidenfelder B, et al. Supervised
 484 vs unsupervised exercise for intermittent claudication: A systematic review and meta-analysis.
 485 Am Heart J. 2015 Jun 1;169(6):924-937.e3.
- 486 41. Saratzis A, Paraskevopoulos I, Patel S, Donati T, Biasi L, Diamantopoulos A, et al. Supervised
 487 Exercise Therapy and Revascularization for Intermittent Claudication: Network Meta-Analysis
 488 of Randomized Controlled Trials. JACC Cardiovasc Interv [Internet]. 2019 Jun 24 [cited 2023
 489 Apr 3];12(12):1125–36. Available from: https://pubmed.ncbi.nlm.nih.gov/31153838/
- 490 42. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.
- 491 Supervised exercise versus primary stenting for claudication resulting from aortoiliac
- 492 peripheral artery disease: Six-month outcomes from the claudication: Exercise versus
- 493 endoluminal revascularization (CLEVER) study. Circulation. 2012 Jan 3;125(1):130–9.
- 494 43. McDermott MM, Ferrucci L, Tian L, Guralnik JM, Lloyd-Jones D, Kibbe MR, et al. Effect of
 495 Granulocyte-Macrophage Colony-Stimulating Factor with or Without Supervised Exercise on
 496 Walking Performance in Patients with Peripheral Artery Disease: The PROPEL Randomized
 497 Clinical Trial. JAMA J Am Med Assoc. 2017 Dec 5;318(21):2089–98.
- 498 44. Sivagangan P, Harwood AE, Stather PW. Patient and Healthcare Professional Priorities for a
- 499 Mobile Phone Application for Patients With Peripheral Arterial Disease. Cureus [Internet].
- 500 2023 Jan 20 [cited 2023 Apr 3];15(1). Available from:
- 501 https://pubmed.ncbi.nlm.nih.gov/36824553/
- 45. Aalami OO, Lin J, Savage D, Ho V, Bertges D, Corriere M. Use of an app-based exercise
- therapy program including cognitive-behavioral techniques for the management of intermittent
- 504 claudication. J Vasc Surg [Internet]. 2022 Dec 1 [cited 2023 Apr 3];76(6):1651-1656.e1.
- 505 Available from: https://pubmed.ncbi.nlm.nih.gov/35872328/
- 506 46. Pymer S, Harwood A, Ibeggazene S, McGregor G, Huang C, Twiddy M, et al. High INtensity
- 507 Interval Training In pATiEnts with intermittent claudication (INITIATE): protocol for a

508	multicentre, proof-of-concept, prospective interventional study. BMJ Open. 2020 Jul
509	6;10(7):e038825.

- 47. Harzand A, Vakili AA, Alrohaibani A, Abdelhamid SM, Gordon NF, Thiel J, et al. Rationaleand design of a smartphone-enabled, home-based exercise program in patients with
- 512 symptomatic peripheral arterial disease: The smart step randomized trial. Clin Cardiol
- 513 [Internet]. 2020 Jun 1 [cited 2023 Apr 8];43(6):537–45. Available from:
- 514 https://onlinelibrary.wiley.com/doi/full/10.1002/clc.23362
- 515 48. Persson AB, Buschmann EE, Lindhorst R, Troidl K, Langhoff R, Schulte KL, et al.
- 516 Therapeutic arteriogenesis in peripheral arterial disease: combining intervention and passive
- 517 training. http://dx.doi.org/101024/0301-1526/a000092 [Internet]. 2013 Jan 7 [cited 2023 Apr

518 9];40(3):177–87. Available from: https://econtent.hogrefe.com/doi/10.1024/0301-

- 519 1526/a000092
- 49. Mays RJ, Hiatt WR, Casserly IP, Rogers RK, Main DS, Kohrt WM, et al. Community-based
- 521 walking exercise for peripheral artery disease: An exploratory pilot study. Vasc Med (United
- 522 Kingdom) [Internet]. 2015 Aug 10 [cited 2023 Apr 9];20(4):339–47. Available from:
- 523 https://journals.sagepub.com/doi/10.1177/1358863X15572725
- 524 50. Austin PC. A critical appraisal of propensity-score matching in the medical literature between
 525 1996 and 2003. Stat Med Stat Med [Internet]. 2008 [cited 2023 Jul 2];27:2037–49. Available
 526 from: www.interscience.wiley.com
- 527 51. Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci
- 528 [Internet]. 2010 Feb 2 [cited 2023 Jul 2];25(1):1. Available from: /pmc/articles/PMC2943670/
- 529 52. Caliendo M, Kopeinig S. Some Practical Guidance for the Implementation of Propensity Score
 530 Matching. 2005;
- 531 53. Amusa L, North D, Zewotir T. A tailored use of the mahalanobis distance matching for causal

effects estimation: A simulation study. Sci African. 2022 Jul 1;16:e01155.

- 534 Legends for figure:
- 535 Figure 1: Supervised Exercise Therapy Protocol: Outline of each session during weeks 1-6, with an
- additional station added each week from week 7 until the patient had completed two full circuits. The
- 537 figure illustrates the progression of the supervised exercise therapy protocol used in the study.
- 538 Figure 2: Independent variable importance analysis using Multilayer perceptron to identify the most
- significant predictors of chronic limb threatening ischemia to guide propensity score matching along
- 540 with multivariable and logistic regression analyses.
- 541 Figure 3: Number of cardiovascular events for patients who did and did not complete SET after
- 542 median follow up of 2164 days; IC: Intermittent Claudication; CLTI: Chronic limb threatening
- 543 ischemia; MALE: Major adverse limb events; MACE: Major adverse cardiovascular events ; SET:
- 544 Supervised exercise therapy
- Figure 4: Survival curves obtained by the Kaplan-Meier method demonstrating time to chronic limb
 threatening ischemia(a), time to first major adverse cardiovascular event(MACE)(b) and time to first
 major adverse limb event(MALE)(c)
- 548 Table 1a: Baseline characteristics of both cohorts

Attribute	Patients who did not start SET n = 183	Patients who prematurely discontinued SET N = 19	Patients who completed SET n = 64	<i>p</i> value
Age (years ; Mean ± SD)	67.95 ± 10.4	70.1 ± 7.3	69.5 ± 7.8	.40
Male	119(65.7%)	12(63.2%)	44(68.8%)	.87
Diabetes Mellitus	54(29.5%)	4(21.1%)	29(45.3%)	.076
Hypertension	131(71.6%)	10(52.6%)	45(70.3%)	.17

Hyperlipidemia	82(44.8%)	6(31.5%)	30(46.8%)	.24
Ischaemic heart disease	101(55.8%)	11(57.9%)	28(43.8%)	.23
Cerebrovascular disease	25(13.7%)	4(21%)	8(12.5%)	.12
Atrial fibrillation	38(20.7%)	2(10.5%)	8(12.5%)	.18
Albumin (g/l; Mean ± SD)	36.9 ± 4.28	37.1 ± 3.3	35.2 ± 3.7	.16
Haemoglobin(g/l) Mean ± SD	132.73 ± 20.6	138.3 ± 19.0	136.5 ± 22.7	.16
Compliance with smoking cessation	45(24.9%)	5(26.3%)	22(34.0%)	.34
ABPI at presentation				
Right	0.79 ± 0.18	0.74 ± 0.19	0.80 ± 0.15	.41
Left	0.81 ± 0.20	0.82 ± 0.29	0.84 ± 0.15	.58
(Mean ,SD)				
Self-reported claudication distance(metres)	77.5 ± 6.75	79.1 ± 7.5	79.4 ± 6.0	.11
(Mean ,SD)				
No iliac disease	37(20.2%)	3(15.7%)	29(45.3%)	010
Unilateral iliac disease	63(34.4%)	6(31.5%)	8(12.5%)	<u>.010</u>
Bilateral iliac disease	83(45.4%)	10(52.6%)	26(40.6%)	
No femoral disease	11(6.0%)	1(5.2%)	5(7.8%)	
Unilateral femoral	76(41.5%)	9(47.3%)	8(12.5%)	<u>.030</u>
disease Bilateral femoral disease	96(52.5%)	9(47.3%)	50(78.1%)	
No crural disease	87(47.5%)	10(52.6%)	38(59.3%)	
Unilateral crural disease	56(30.6%)	7(36.8%)	13(20.3%)	.47
Bilateral crural disease	40(21.9%)	2(10.5%)	13(12.5%)	

550 SD: Standard deviation; IQR: Interquartile range; SET: supervised exercise therapy ABPI: Ankle-551 brachial pressure index;

- 555 Table 1b: Impact of propensity score matching on significant confounders

Attribute	Non Completion SET(n=49)	Completion SET (n=49)	P value
Haemoglobin (g/l) Mean/SD	130.9 ± 19.3	138.6 ± 18.8	<u>.08</u>
Ischaemic heart disease	59.2%	63.3%	<u>.56</u>
Claudication distance (m) Mean/SD	131.1 ± 19.4	130.2 ± 18.9	<u>.81</u>
Ankle-brachial pressure index Left Right	$\begin{array}{c} 0.81 \pm 0.16 \\ 0.71 \pm 0.12 \end{array}$	$\begin{array}{c} 0.86 \pm 0.15 \\ 0.64 \pm 0.16 \end{array}$	<u>.11</u>

Manuscript (Please include all author details)

Click here to view linked References

- Supervised Exercise Therapy for Intermittent Claudication: A Propensity Score Matched
 Analysis of Retrospective Data on Long Term Cardiovascular Outcomes★
- 3 Short title: Long Term Outcomes Following Supervised Exercise Therapy in Intermittent Claudication
- Bharadhwaj Ravindhran *, Arthur J.M. Lim, Thomas Kurian, Josephine Walshaw, Louise H.
 Hitchman, Ross Lathan, George E. Smith, Daniel Carradice, Ian C. Chetter, Sean Pymer
- 6 Academic Vascular Surgical Unit, Allam Diabetes Centre, Hull Royal Infirmary, Hull, UK
- * Corresponding author. Academic Vascular Surgical Unit, 2nd Floor, Allam diabetes centre, Hull
 Royal Infirmary, Hull HU3 2JZ, UK.
- 9 Bharadhwaj.Ravindhran@nhs.net (Bharadhwaj Ravindhran).
- 10 \star This paper was awarded the Norman Williams Prize for the best clinical research paper and is
- shortlisted for the BJS Best Manuscript Prize at the Annual Meeting of the Surgical Research Society
 in 2023 at Nottingham, UK.

13 WHAT THIS PAPER ADDS

- 14 This study contributes to the current body of literature by conducting an initial assessment of long
- 15 term outcomes in patients with intermittent claudication who underwent supervised exercise therapy
- 16 (SET), with a focus on cardiovascular morbidity and mortality. The results indicate that completing
- 17 SET is associated with a decreased risk of major adverse limb events, major adverse cardiovascular
- 18 events, and progression to chronic limb threatening ischaemia based on this retrospective propensity
- 19 score matched analysis of patients who completed, discontinued, or declined SET.
- 20 **Objective:** This study aimed to explore the long term outcomes of patients with intermittent
- 21 claudication (IC) who completed supervised exercise therapy (SET) vs. those who declined or
- 22 prematurely discontinued SET, focusing on the incidence of chronic limb threatening ischaemia
- 23 (CLTI), revascularisation, major adverse limb events (MALE), and major adverse cardiovascular
- events (MACE).
- 25 Methods: Retrospective registry analysis of consecutive patients with IC who were referred for SET
- 26 between March 2015 and August 2016 and followed up for a minimum of five years. Serial
- 27 univariable analysis and logistic regression were performed to identify the statistically significant
- 28 clinical variables that were independent predictors of each outcome measure. The resulting
- statistically significant variables were used to guide 1:1 propensity score matching (PSM) using the
- 30 nearest neighbour method with a calliper of 0.2. Cox proportional hazards regression was used to

stimate the hazard ratio (HR) and 95% confidence interval (CI) for the association between SET and

32 the outcomes of interest.

- **Results:** Two hundred and sixty-six patients were referred to SET between March 2015 and August
- 34 2016. Of these, 64 patients completed SET and 202 patients did not. After PSM, 49 patients were
- analysed in each cohort. The Cox proportional hazards analysis revealed a significant association
- 36 between completion of SET and revascularisation requirement (HR 0.46 95% CI 0.25 0.84;
- 37 p = .011), completion of SET and progression to CLTI (HR 0.091, 95% CI 0.04 0.24; p < .001),
- 38 completion of SET and MACE (HR 0.52; 95% CI 0.28 0.99; p = .05) and completion of SET and
- 39 MALE (HR 0.28, 95% CI 0.13 0.65; p = .003). The Harrell's C index for all of these models were
- 40 greater than 0.75, indicating good predictive accuracy.
- 41 Conclusion: Completion of SET is associated with better outcomes in patients who completed SET
- 42 compared to patients who declined or discontinued SET with respect to clinically important
- 43 cardiovascular outcomes over seven years.
- 44 Keywords: Exercise therapy, Intermittent claudication, Ischaemia, Outcome assessment, Propensity
- 45 score, Resistance training

46 INTRODUCTION

- 47 Intermittent claudication (IC) is an ambulatory, ischaemic muscle pain relieved by rest, which reduces
- 48 physical function, walking capacity, balance, and quality of life and increases the risk of mortality
- 49 from cardiovascular causes.¹⁻⁵ Patients with IC are at risk of disease progression to chronic limb
- 50 threatening ischaemia (CLTI) and major adverse limb events (MALE) such as major lower limb
- 51 amputation (MLLA), acute limb ischaemia (ALI), or loss of untreated patency.^{6,7} The goal of
- 52 treatment is therefore to improve symptoms, physical function, and quality of life (QoL), while also
- 53 reducing the risk of disease progression and limb loss, mortality and MACE.⁸
- 54 To achieve this, the National Institute for Health and Care Excellence (NICE) guideline 1479
- and the European Society for Vascular Surgery (ESVS)¹⁰ recommend supervised exercise therapy

56	(SET) for two hours per week over a three month period as the first line treatment. Evidence shows
57	that SET is significantly superior for improving walking performance, and therefore symptoms, when
58	compared with home based exercise and walking advice. ¹¹ Further evidence also shows that SET is
59	similar to endovascular revascularisation for improving walking distance and, importantly, QoL.11
60	Given the positive effect that SET also has on cardiovascular risk factors, ^{12,13} it would be reasonable
61	to assume that this leads to a potential benefit in morbidity, via a reduction in MACE and MALE, as
62	well as a benefit in mortality. However, the evidence considering the long term effects of SET on
63	morbidity and mortality is lacking, with just one study considering the association between SET
64	completion and mortality. ^{14,15}
65	Therefore, the aim of this study was to investigate whether completion of SET was associated
66	with better cardiovascular outcomes compared with a group of patients with IC who did not complete

67 SET using propensity score matching (PSM).

68 MATERIALS AND METHODS

69 This study was conducted at a tertiary care referral vascular centre. The clinical, intra-operative and70 follow up information were gathered, analysed, and compared between patients who completed SET

71 and patients who either declined or discontinued SET.

72 Patient selection

73 The data of consecutive patients with IC who were referred for SET between March 2015 and August 74 2016 (18 months) were retrospectively analysed. Patients who were referred but had CLTI, had 75 undergone SET within the preceding 12 months, or had a recurrence of symptoms following previous revascularisation were excluded from this analysis. Patients who were referred for SET but were 76 77 deemed unsuitable due to contraindications or the presence of significant comorbidities or missing 78 data were also excluded. The diagnosis of IC was made clinically, and was further supported by a 79 resting ankle-brachial pressure index (ABPI) or toe-brachial pressure index, duplex ultrasound, or cross-sectional imaging if required. Patients who declined SET were either discharged back to their 80

81 general practitioner, received regular follow up or underwent a revascularisation procedure,

82 depending on individual need.

83	Patients referred to SET were initially assessed by physicians to identify any obvious
84	contraindications such as severe frailty, unstable gait, and existing pulmonary and cardiac disorders
85	(e.g., aortic stenosis, dyspnoea at rest). These contraindications were determined based on clinical
86	judgement. Furthermore, patients who did not have any obvious contraindications to SET were then
87	screened by the exercise physiologist prior to starting SET. This screening process aimed to identify
88	any additional contraindications or factors that may affect the safety or effectiveness of SET for
89	individual patients. It is important to note that all patients in the study underwent routine screening at
90	two levels (physician assessment and exercise physiologist screening) to ensure that only those who
91	were suitable for SET were included.

92 Supervised exercise therapy

93 Patients performed SET three times per week for 12 weeks comprising a total of 36 sessions. Missed sessions were made up at the end of the 12 week programme.¹⁶ The programme was overseen by an 94 95 exercise physiologist with support from undergraduate and postgraduate sports science students. SET 96 sessions involved the completion of a circuit of six two minute stations, separated by two minute 97 walking intervals. These were preceded by a warm up and followed by a cool down. The stations 98 included step ups, standing knee bends, sitting knee extensions, biceps curls, cycling, and heel raises 99 (Fig. 1). As the patient's exercise tolerance improved, an additional station was added each week from 100 the seventh week and by the end of week 12, they completed two full circuits. Session length 101 therefore began at 30, progressing up to 60 minutes. Patients were deemed to have successfully 102 completed SET after accumulating 36 sessions. This circuit based training programme was designed 103 based on previous recommendations that highlight the effectiveness of combining upper and lower 104 limb ergometry, resistance exercise, and walking based exercises to improve muscle strength and 105 cardiorespiratory fitness. These interventions have been shown to elicit a more significant cardiorespiratory stimulus than walking alone.17-20 106

107 Outcome measures

108	The study investigated the incidence and time to CLTI, MALE, and MACE over a minimum of five
109	years and up to seven years. CLTI was defined as ischaemic rest pain lasting for two or more weeks,
110	non-healing wounds, or gangrene that was attributable to objectively proven arterial occlusive disease.
111	MACE was defined as non-fatal stroke, non-fatal myocardial infarction, or cardiovascular death. ²¹
112	MALE was defined as ALI, untreated loss of patency, or MLLA. ²²
113	Statistical analyses
114	Continuous data were assessed for a normality using the Shapiro-Wilk test and are presented as mean
115	\pm standard deviation or median and range or interquartile range as appropriate. Categorical data are
116	expressed as numbers and/or percentages. Time to event data is presented using Kaplan-Meier
117	survival curves. Comparative hypothesis testing was performed using chi-squared tests, t-tests or
118	Mann–Whitney U tests as appropriate, and log rank tests. Statistical significance was set at $p < .05$.
119	Serial univariable analysis and logistic regression was performed to identify the statistically
120	significant clinical variables that were independent predictors of each outcome measure. This was
121	confirmed by performing an independent variable importance analysis using the multilayer perceptron
122	tool, which is a popular tool in machine learning and deep learning for pattern recognition. ²³ The
123	resulting statistically significant variables were used to guide 1:1 PSMusing the nearest neighbour
124	method with a calliper of 0.2. The differences between these two matched groups were compared by
125	using the Mann–Whitney U test, and categorical data were analysed using the Pearson's chi square
126	test, Fisher's exact test, or continuity correction where appropriate. Survival curves were obtained by
127	the Kaplan-Meier method and a Cox proportional hazards regression was used to estimate the hazard
128	ratio (HR) and 95% confidence interval (CI) for the association between SET and the outcomes of
129	interest. All statistical analyses were performed using Statistical Package for the Social Sciences
130	(IBM Corp. 2020; Windows Version 27.0) and Medcalc (MedCalc Statistical Software version 19.2.6;
131	MedCalc Software bv, Ostend, Belgium)

RESULTS

133	Two hundred and eighty-two patients presented to the vascular outpatient clinic with IC between
134	March 2015 and August 2016 and were referred for SET. Sixteen patients were deemed unsuitable for
135	SET due to advanced comorbidities, mobility problems, and dementia. Two hundred and sixty-six
136	patients were deemed suitable and were offered SET, of which 83 (31%) attended and 183 (69%)
137	declined. Of those that attended, 64 (77%) patients successfully completed SET, while 19 (23%)
138	prematurely discontinued. Baseline characteristics of those who completed and those who declined or
139	prematurely discontinued SET are presented in Table 1. The primary reasons for the low adoption of
140	SET were related to location or travel (44.3%; $n = 81$), individuals declining due to lack of
141	interest/belief in the SET (39.3%; $n = 72$), work/personal commitments resulting in a lack of time for
142	SET (12.6%; $n = 23$), inability to participate due to musculoskeletal issues (2.2%; $n = 4$), and patients
143	already enrolled in a community exercise programme (1.6%; $n = 3$). Considering that nearly all
144	patients who discontinued SET did so without attending at least 50% of the sessions, it was deemed
145	appropriate to combine both groups, i.e., those who discontinued and those who declined SET, for the
146	purpose of analysis.
147	Serial univariable and logistic regression analyses revealed that CLTI had the greatest number

148 of statistically significant predictor variables than the other outcomes, and, therefore, these significant predictors were used to guide PSM, which was performed to account for the independent association 149 between these variables and outcome measures. Haemoglobin, self reported claudication distance, 150 151 ABPI, presence of ischaemic heart disease (IHD), neutrophil to lymphocyte ratio, compliance with 152 smoking cessation and non-completion of SET were found to be statistically significant predictors of 153 CLTI based on serial univariable analyses. Logistic regression analysis performed using these 154 variables indicated that haemoglobin, self reported claudication distance, ABPI and the presence of 155 IHD were significant predictors of CLTI. This was confirmed via an independent variable importance 156 analysis (Fig. 2). The multilayer perceptron (MLP) algorithm is employed to evaluate the relative 157 contribution of independent variables in predicting CLTI. By assigning weights to each input variable based on their importance, the MLP algorithm provides valuable insights into the significant of each 158

variable. This importance analysis helps identify the variables with the greatest impact on CLTIoccurrence.

161	After PSM based on these variables, 49 patients were analysed in each cohort. There was no
162	difference between groups with respect to haemoglobin (g/L) (130.9 \pm 19.3 vs. 138.6 \pm 18.8;
163	p = .080), IHD (59.2% vs. 63.3% $p = .56$), self reported claudication distance (metres) (131 ± 19.4
164	vs. 130 ± 18.9 ; $p = .81$), and ABPI (0.7 ± 0.1 vs. 0.7 ± 0.2 ; $p = .29$) (Table 2). The Cox proportional
165	hazards analysis revealed a significant association between completion of SET and progression to
166	CLTI (HR 0.091, 95% CI 0.04 – 0.24; $p < .001$), completion of SET and MACE (HR 0.52; 95% CI
167	0.28 - 0.99; $p = .050$) and completion of SET and MALE (HR 0.28, 95% CI 0.13 - 0.65; $p = .003$).
168	The Kaplan-Meier curves demonstrated a consistent and statistically significant difference in
169	outcomes among those who completed SET, compared with those who did not complete SET (Fig. 3).
170	The Harrell's C index for all of these models were greater than 0.75 indicating good predictive
171	accuracy.
172	To assess the adequacy of sample size, a post hoc power analysis was conducted, revealing
173	that a total of 48 events and a sample size of 36 patients in the SET completion cohort and 186
174	patients in the non-completion cohort were required to detect a significant association between SET
175	and outcomes. This estimation followed the methodology outlined by Schoenfeld et al.,24 assuming a
176	significance level of .05, 80% power, a 16% incidence of SET completion among referred patients, ²⁵ a
177	relative hazard of 3, a median survival of 12 years, and a planned follow up of seven years (Fig.

178 4).^{15,26,27}

179 DISCUSSION

- 180 This study demonstrates that completion of SET is associated with a reduced risk of experiencing
- 181 MALE, MACE, and progression to CLTI. This study is thought to represent one of the first
- 182 evaluations of long term outcomes following SET with a focus on cardiovascular morbidity and
- 183 mortality in individuals with peripheral arterial disease. While the data suggest a positive effect of
- 184 SET, it is important to acknowledge that the patients in this cohort may differ in ways that have not

Commented [ACG1]: AQ: please check the citation inserted for Figure 4

185 been accounted for, and their outcomes may have been influenced by factors beyond SET. It is 186 important to note that even with rigorous PSM, confounding by indication cannot be completely adjusted for, as there may be unmeasured covariates that affect both the variable and outcome of 187 188 interest. Although this analysis provides important insights and suggests an association, the efficacy 189 of SET for improving cardiovascular outcomes cannot be established. Nevertheless, these findings 190 provide a strong rationale for increasing the delivery of SET and conducting further research to better 191 understand its potential long term benefits. Moving forward, efforts should be directed towards 192 reducing SET barriers (such as the time commitment) to maximise patient engagement. By doing so, it may be able to optimise the effectiveness of SET and improve outcomes for a broader range of 193 194 patients.

195 Currently, high quality evidence shows that SET provides an important benefit with respect to 196 maximum walking distance (MWD), pain free walking distance and QoL compared to home-based exercise therapy and walking advice.14,28 Better SET compliance, measured by attendance at exercise 197 198 sessions, is significantly associated with greater improvements in MWD and adherence to SET may 199 imply better adherence of several factors in life, such as to smoking cessation, healthy diet and medication, resulting in better outcomes.²⁹ However, even patients at the lowest tercile of exercise 200 201 attendance demonstrate a significant improvement in MWD.³⁰ Despite this evidence, and the guidance provided by NICE and the ESVS,9,10 SET provision is not consistent in the UK, with less than 50% of 202 203 vascular centres offering it and less than 25% of these adhering to the recommended exercise dose.³¹ 204 The low availability of SET in the UK can be attributed to various constraints faced in a centralised 205 hub and spoke model. These constraints include running costs and a lack of resources and qualified 206 personnel.^{32–34} When SET is offered, patients may not want to participate due to a lack of availability near their home or the required time commitment, which contributes to the poor uptake rates seen.^{25,35} 207 208 Further research is needed to explore ways to address or minimise the constraints felt by patients and providers to improve the accessibility and acceptability of SET. 209

During the last two decades there has been a substantial increase in the number of studiescomparing primary interventional therapy to SET. The results of these studies suggest that SET is

comparable to primary percutaneous transluminal angioplasty (PTA) for improving in walking
distance and QoL.³⁶⁻³⁸ This suggests that the current first line treatment strategy of SET is advocated.
However, poor uptake and adherence to SET, poor patient fitness, and patient preference are cited as
reasons for using a "PTA first" strategy in patients with IC.³⁹⁻⁴¹ Based on the results of the current
study, even if a PTA first strategy is pursued due to these constraints, the integration of an exercise
intervention may yield additional improvements in long term cardiovascular outcomes, which may not
occur with PTA alone.

219 Recent evidence has also demonstrated that SET produces a notable improvement in cardiovascular risk factors, such as cholesterol levels and resting and exercising blood pressure.^{12,13} 220 221 Interestingly, the greater the improvement in cardiovascular health, the greater the improvement in 222 walking performance.¹² Despite this evidence for a reduction in cardiovascular risk factors, there is 223 limited data to support the reduction of long term cardiovascular risk following SET.^{42,43} The 224 reduction in cardiovascular morbidity and mortality following SET demonstrated in this study could be attributable to these beneficial effects on cardiovascular risk factors. 225 226 Determining the percentage of outcomes that are directly associated with the completion of 227 SET is difficult, given the presence of unmeasured confounding variables that may impact the 228 findings, such as patient motivation. Even amongst highly motivated patients, uptake and adherence 229 to SET can be difficult, underscoring the importance of offering alternative options to patients who wish to engage in SET but face barriers to compliance and uptake.34 High intensity interval training 230 231 (HIIT) or remotely delivered supervised exercise interventions are alternatives that could offer promising benefits, specially tailored to the unique needs and conditions of patients who were 232 previously unable to enrol in SET due to time or travel constraints.^{44,45} Currently, a time efficient 233 234 HIIT programme is being assessed as a potential alternative for SET, to reduce the time barrier faced by patients.⁴⁶ Early evidence has suggested that this HIIT programme appears to be feasible and well 235 tolerated in patients with IC, which is to be confirmed via a proof of concept study.⁴⁶ 236 237 Other alternative approaches to delivering SET have been explored, including remote

238 monitoring, videos, support groups, mobile applications and trackers and virtual reality.^{44,47,48} A

smartphone enabled home based exercise programme is feasible and effective in patients with symptomatic peripheral arterial disease, as is a community based walking programme with training, monitoring, and coaching components.^{47,49} These alternative approaches to delivering SET have the potential to increase patient access and improve adherence. However, they are currently limited to small proof of concept studies. Further research is needed to explore their effectiveness in fully powered randomised controlled trials.

245 Limitations

246 Although this study provides useful insights, its retrospective nature encompasses several inherent limitations, including unmeasurable confounding factors, potential biases, and the lack of blinding or 247 248 randomisation that can affect the objectivity of the analysis. The limitations associated with the 249 retrospective nature of this study were addressed by enrolling consecutive patients over an 18 month period and conducting a meticulous PSM method with a 0.2 calliper. While there are many 250 251 alternatives to 1:1 PSM such as mahalanobis distance matching, kernel matching, and covariate 252 matching, PSM is considered the best approach due to its ability to balance covariates, flexibility in handling different types of covariates, interpretability, and the opportunity for sensitivity analysis.⁵⁰⁻⁵³ 253 254 Despite using rigorous PSM, it is impossible to fully account for confounding by indication. This is because there might be unmeasured factors that impact both the variable being studied and the 255 256 outcome of interest. In the current study, statistically significant variables were included in the PSM 257 to ensure that factors that had a proven association with the outcome were controlled for. This 258 approach was taken to minimise the risk of overfitting and to ensure the robustness of the findings. 259 However, there is potential for type II errors and the possibility of missing relevant variables. The lack 260 of differences observed in Table 1 after implementing PSM could potentially be attributed to a type II error. The use of inverse probability weighting is a valid approach that can enhance the robustness of 261 262 findings by retaining a larger sample size. However, PSM was chosen for the study due to specific 263 reasons. PSM allows one to best mimic a randomised controlled trial by matching patients who 264 completed SET with control patients based on observed characteristics, reducing bias from confounding variables. While inverse probability weighting could retain a larger sample size, it can 265

266	introduce challenges such as sensitivity to model specification and unstable estimates with extreme
267	weights. PSM is believed to be more suitable for this study, considering these factors, although there
268	are limitations, such as potential bias from unobserved confounding and a reduced sample size.
269	Additionally, it is important to acknowledge that although this analysis offers valuable insights and
270	indicates a potential connection, the effectiveness of SET in improving cardiovascular outcomes
271	cannot be definitively established.
272	This study indicates an association between patients completing SET and better long term

clinical outcomes, such as slower disease progression, and a lower likelihood of experiencing MALE
or MACE. However, due to the potential for unmeasured confounding, that SET leads to an
improvement in cardiovascular health or mitigates adverse long term outcomes in IC cannot be
definitively concluded. Rather, the findings suggest a potential association that warrants further
investigation. Overall, these outcomes underscore the potential significance of SET in relation to
cardiovascular health in patients with IC.

279 CONFLICT OF INTEREST

280 None.

281 FUNDING

282 None.

283 ACKNOWLEDGEMENTS

- 284 The authors gratefully acknowledge the invaluable contribution of Dr Dror Rosentraub for his
- 285 expertise and guidance in the application of statistical methods. The authors would also like to express
- their sincere gratitude to the academic vascular surgical unit for their invaluable support and
- 287 collaboration throughout the course of this study. Their expertise and guidance have greatly
- 288 contributed to the successful completion of this research.

289 **REFERENCES**

290	1.	Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. <i>Circ Res</i> 2015; 116 :1509–
291		26.
292	2.	Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality
293		over a period of 10 years in patients with peripheral arterial disease. N Engl J Med
294		1992; 326 :381–6.
295	3.	Pell JP. Impact of intermittent claudication on quality of life. Eur J Vasc Endovasc Surg
296		1995; 9 :469–72.
297	4.	Gohil RA, Mockford KA, Mazari F, Khan J, Vanicek N, Chetter IC, et al. Balance impairment,
298		physical ability, and its link with disease severity in patients with intermittent claudication.
299		Ann Vasc Surg 2013; 27 :68–74.
300	5.	Meru AV, Mittra S, Thyagarajan B, Chugh A. Intermittent claudication: an overview.
301		Atherosclerosis 2006;187:221–37.
302	6.	Eid MA, Mehta K, Barnes JA, Wanken Z, Columbo JA, Stone DH, et al. The global burden of
303		peripheral artery disease. J Vasc Surg 2023;77:1119–26.
304	7.	McDermott KM, Bose S, Keegan A, Hicks CW. Disparities in limb preservation and
305		associated socioeconomic burden among patients with diabetes and/or peripheral artery disease
306		in the United States. Semin Vasc Surg 2023;36:39-48.
307	8.	Bevan GH, White Solaru KT. Evidence-based medical management of peripheral artery
308		disease. Arterioscler Thromb Vasc Biol 2020;40:541–53.
309	9.	NICE. Overview. Peripheral arterial disease: diagnosis and management. Guidance [cited 2022
310		May 7]. Available at: <u>https://www.nice.org.uk/guidance/cg147</u> [Accessed 22 November 2023].
311	10.	Aboyans V, Ricco JB, Bartelink MLEL, Björck M, Brodmann M, Cohnert T, et al. Editor's
312		Choice – 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in

Commented [ACG2]: AQ: Ref. 10 has been updated to the EJVES version of the joint guideline

313		collaboration with the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc	
314		Surg 2018; 39 :305–68.	
315	11.	Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.	
316		Supervised exercise, stent revascularization, or medical therapy for claudication due to	
317		aortoiliac peripheral artery disease: the CLEVER study. J Am Coll Cardiol 2015;65:999–1009.	
318	12.	Slysz JT, Tian L, Zhao L, Zhang D, McDermott MM. Effects of supervised exercise therapy	
319		on blood pressure and heart rate during exercise, and associations with improved walking	
320		performance in peripheral artery disease: results of a randomized clinical trial. J Vasc Surg	
321		2021; 74 :1589–600.	
222	12	Lancer SCD Harmore DDN Harles CE and day Hanter MMI. Scholinger MDM Tottigh	
322	13.	Jansen SCP, Hoorweg BBN, Hoeks SE, van den Houten MML, Scheltinga MRM, Teijink	
323		JAW, et al. A systematic review and meta-analysis of the effects of supervised exercise	
324		therapy on modifiable cardiovascular risk factors in intermittent claudication. J Vasc Surg	
325		2019; 69 :1293–308.	
326	14.	Hageman D, Fokkenrood HJP, Gommans LNM, van den Houten MML, Teijink JAW.	
327		Supervised exercise therapy versus home-based exercise therapy versus walking advice for	
328		intermittent claudication. Cochrane Database Syst Rev 2018;4:CD005263.	
329	15.	Sakamoto S, Yokoyama N, Tamori Y, Akutsu K, Hashimoto H, Takeshita S. Patients with	
330		peripheral artery disease who complete 12-week supervised exercise training program show	
331		reduced cardiovascular mortality and morbidity. <i>Circ J</i> 2009; 73 :167–73.	
332	16.	Harwood AE, Totty JP, Pymer S, Huang C, Hitchman L, Carradice D, et al. Cardiovascular	
333		and musculoskeletal response to supervised exercise in patients with intermittent claudication.	
334		J Vasc Surg 2019; 69 :1899–1908.	
335	17.	Jansen SCP, Abaraogu UO, Lauret GJ, Fakhry F, Fokkenrood HJP, Teijink JAW. Modes of	
336		exercise training for intermittent claudication. Cochrane Database Syst Rev	

338 18. Harwood AE, Pymer S, Ingle L, Doherty P, Chetter IC, Parmenter B, et al. Exercise

- 339 for intermittent claudication: a narrative review and summary of guidelines for practitioners.
- 340 BMJ open Sport Exerc Med 2020;6:e000897.
- 341 19. Mockford KA, Gohil RA, Mazari F, Khan JA, Vanicek N, Coughlin PA, et al. Effect of
- supervised exercise on physical function and balance in patients with intermittent claudication. *Br J Surg* 2014;101:356–62.
- 344 20. British Association of Sport and Exercise Sciences. The BASES Expert Statement on
- 345 Exercise Training for People with Intermittent Claudication due to Peripheral Arterial Disease.
- 346 Available at:
- 347 https://www.bases.org.uk/imgs/autumn_2018_7601_bas_expert_statement_v2_569.pdf
- 348 [Accessed 23 November 2023].

Bianco M, Mottola FF, Cerrato E, Giordana F, Cinconze S, Baralis G, et al. Acute coronary
 syndrome in very elderly patients-a real-world experience. *Heart Vessels* 2023;38:1019–27

- 351 22. Fashandi AZ, Mehaffey JH, Hawkins RB, Kron IL, Upchurch GR, Robinson WP. Major
- 352 adverse limb events and major adverse cardiac events after contemporary lower extremity
- bypass and infrainguinal endovascular intervention in patients with claudication. *J Vasc Surg*2018;68:1817.
- 355 23. Idrissi J, Amine M. Multilayer perceptron: architecture optimization and training.
- Schoenfeld DA. Sample-size formula for the proportional-hazards regression model.
 Biometrics 1983;**39**:499.
- Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A systematic review of the
 uptake and adherence rates to supervised exercise programs in patients with intermittent

Commented [ACG3]: AQ: Please ref. 20: I've updated it according to the new link you sent

claudication. Ann Vasc Surg 2016;34:280-9. 360

361	26.	Voci D, Fedeli U, Valerio L, Schievano E, Righini M, Kucher N, et al. Mortality rate related to
362		peripheral arterial disease: a retrospective analysis of epidemiological data (years 2008-2019).
363		Nutr Metab Cardiovasc Dis 2023;33:516–22.
364	27.	Klaphake S, Fakhry F, Rouwet E V., Van Der Laan L, Wever JJ, Teijink JA, et al. Long-term
365		follow-up of a randomized clinical trial comparing endovascular revascularization plus
366		supervised exercise with supervised exercise only for intermittent claudication. Ann Surg.
367		2022; 276 :E1035–43.
368	28.	van den Houten MML, Hageman D, Gommans LNM, Kleijnen J, Scheltinga MRM, Teijink
369		JAW. The effect of supervised exercise, home based exercise and endovascular
370		revascularisation on physical activity in patients with intermittent claudication: a network
371		meta-analysis. Eur J Vasc Endovasc Surg 2019;58:383–92.
372	29.	Hammond MM, Tian L, Zhao L, Zhang D, McDermott MM. Attendance at supervised
373		exercise sessions and walking outcomes in peripheral artery disease: results from 2
374		randomized clinical trials. J Am Hear Assoc Cardiovasc Cerebrovasc Dis 2022;11:26136.
375	30.	McDermott MMG, Criqui MH, Liu K, Guralnik JM, Greenland P, Martin GJ, et al. Lower
376		ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial
377		pressures, and association with leg functioning in peripheral arterial disease. J Vasc Surg
378		2000; 32 :1164–71.
379	31.	Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A Systematic review of the
380		uptake and adherence rates to supervised exercise programs in patients with intermittent
381		claudication. Ann Vasc Surg 2016;34:280–9.
382	32.	Harwood AE, Smith GD, Broadbent E, Cayton TE, Carradice D, Chetter I. Access to
383		supervised exercise services for peripheral vascular disease patients. Bull R Coll Surg Engl

supervised exercise services for peripheral vascular disease patients. Bull R Coll Surg Engl

384	2017;99:207-11.
304	2017,99.207-11.

385	33.	Waddell A, Seed S, Broom DR, McGregor G, Birkett ST, Harwood AE. Safety of home-based
386		exercise for people with intermittent claudication: a systematic review. J Vasc Surg
387		20221; 75 :1490.
388	34.	Harwood AE, Pymer S, Ibeggazene S, Ingle L, Caldow E, Birkett ST. Provision of exercise
389		services in patients with peripheral artery disease in the United Kingdom. Vascular
390		2022; 30 :874–81.
391	35.	Harwood AE, Hitchman LH, Ingle L, Doherty P, Chetter IC. Preferred exercise modalities in
392		patients with intermittent claudication. J Vasc Nurs 2018;36:81-4.
	24	
393	36.	Mazari FAK, Gulati S, Rahman MNA, Lee HLD, Mehta TA, McCollum PT, et al. Early
394		outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and
395		combined therapy in intermittent claudication. Ann Vasc Surg 2010;24:69-79.
396	37.	Mazari FAK, Khan JA, Samuel N, Smith G, Carradice D, McCollum PC, et al. Long-term
397		outcomes of a randomized clinical trial of supervised exercise, percutaneous transluminal
398		angioplasty or combined treatment for patients with intermittent claudication due to
399		femoropopliteal disease. Br J Surg 2017;104:76-83.
400	38.	Thanigaimani S, Phie J, Sharma C, Wong S, Ibrahim M, Huynh P, et al. Network meta-
401		analysis comparing the outcomes of treatments for intermittent claudication tested in
402		randomized controlled trials. J Am Heart Assoc 2021;10:19672.
403	39.	Harwood AE, Broadbent E, Totty JP, Smith GE, Chetter IC. "Intermittent claudication a real
404		pain in the calf"—Patient experience of diagnosis and treatment with a supervised exercise
405		program. J Vasc Nurs 2017; 35 :131–5.
405		program v rate (1975) 2017,00.101 0.
406	40.	Vemulapalli S, Dolor RJ, Hasselblad V, Schmit K, Banks A, Heidenfelder B, et al. Supervised
407		vs unsupervised exercise for intermittent claudication: s systematic review and meta-analysis.

408 Am Heart J 2015;169:924–37.

- 409 41. Saratzis A, Paraskevopoulos I, Patel S, Donati T, Biasi L, Diamantopoulos A, et al. Supervised
- 410 exercise therapy and revascularization for intermittent claudication: network meta-analysis of
- 411 randomized controlled trials. *JACC Cardiovasc Interv* 2019;**12**:1125–36.
- 412 42. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al.
- 413 Supervised exercise versus primary stenting for claudication resulting from aortoiliac
- 414 peripheral artery disease: Six-month outcomes from the claudication: Exercise versus
- 415 endoluminal revascularization (CLEVER) study. *Circulation* 2012;**125**:130–9.
- 416 43. McDermott MM, Ferrucci L, Tian L, Guralnik JM, Lloyd-Jones D, Kibbe MR, et al. Effect of
 417 granulocyte-macrophage colony-stimulating factor with or without supervised exercise on
 418 walking performance in patients with peripheral artery disease: the PROPEL randomized
 419 clinical trial. *JAMA* 2017;**318**:2089–98.
- 420 44. Sivagangan P, Harwood AE, Stather PW. Patient and healthcare professional priorities for a
 421 mobile phone application for patients with peripheral arterial disease. *Cureus* 2023;15:e33993.
- 422 45. Aalami OO, Lin J, Savage D, Ho V, Bertges D, Corriere M. Use of an app-based exercise
 423 therapy program including cognitive-behavioral techniques for the management of intermittent
 424 claudication. *J Vasc Surg* 2022;**76**:1651–6.
- 425 46. Pymer S, Harwood A, Ibeggazene S, McGregor G, Huang C, Twiddy M, et al. High INtensity
 426 Interval Training In pATiEnts with intermittent claudication (INITIATE): protocol for a
- 427 multicentre, proof-of-concept, prospective interventional study. *BMJ Open* 2020;**10**:e038825.
- 428 47. Harzand A, Vakili AA, Alrohaibani A, Abdelhamid SM, Gordon NF, Thiel J, et al. Rationale
 429 and design of a smartphone-enabled, home-based exercise program in patients with
 430 symptomatic peripheral arterial disease: The smart step randomized trial. *Clin Cardiol*
- 431 2020;43:537–45.

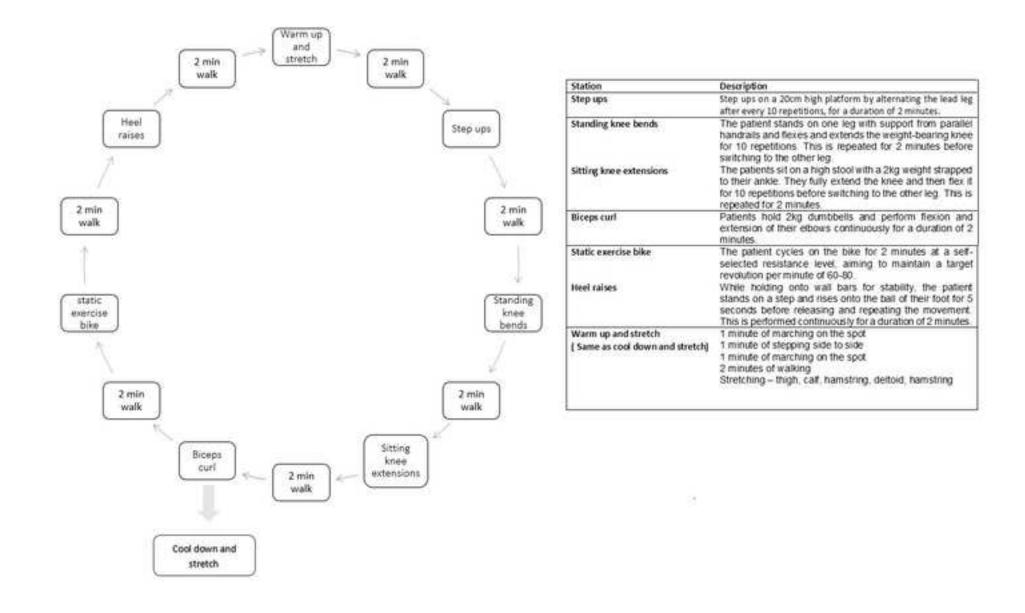
432	48.	Persson AB, Buschmann EE, Lindhorst R, Troidl K, Langhoff R, Schulte KL, et al.					
433		Therapeutic arteriogenesis in peripheral arterial disease: combining intervention and passive					
434		training. Vasa 2011; 40 :177–87.					
435	49.	49. Mays RJ, Hiatt WR, Casserly IP, Rogers RK, Main DS, Kohrt WM, et al. Community-based					
436		walking exercise for peripheral artery disease: an exploratory pilot study. Vasc Med					
437		2015; 20 :339–47.					
438	50.	Austin PC. A critical appraisal of propensity-score matching in the medical literature between					
439	1996 and 2003. Stat Med Stat Med 2008;27:2037-49.						
440	51.	Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci					
441		2010; 25 :1–21.					
442	52.	Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score					
443		matching. J Econ Surv 2008;22:31–72.					
444	53.	Amusa L, North D, Zewotir T. A tailored use of the mahalanobis distance matching for causal					
445		effects estimation: A simulation study. Sci African. 2022;16:e01155.					
446	Figu	re 1. Supervised exercise therapy protocol. Outline of each session during weeks 1–6, with an					
447	additi	onal station added each week from week 7 until the patient had completed two full circuits. The					
448	figure	illustrates the progression of the supervised exercise therapy protocol used in the study.					
449	Figu	e 2. Independent variable importance analysis using multilayer perceptron to identify the most					
450	signif	icant predictors of chronic limb threatening ischaemia to guide propensity score matching along					
451	with	multivariable and logistic regression analyses. SET = supervised exercise therapy.					
452	Figu	re 3. Number of cardiovascular events for patients who did and did not complete supervised					
453	exerc	ise therapy (SET) after median follow up of 2 164 days. CLTI = chronic limb threatening					
454	ische	mia; MALE = major adverse limb events; MACE = major adverse cardiovascular events.					

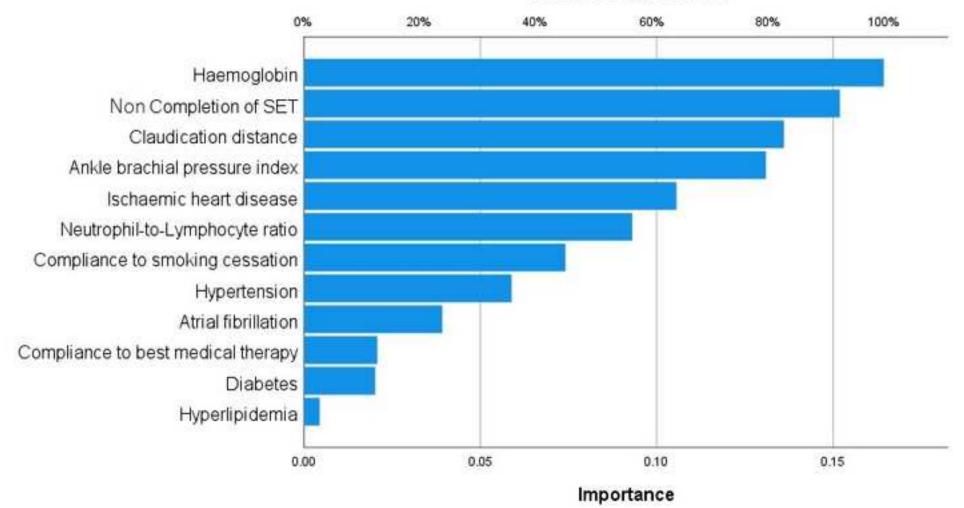
455 Figure 4. Cumulative Kaplan–Meier estimate of (A) time to chronic limb threatening ischaemia, (B)

456 time to first major adverse cardiovascular event, and (C) time to first major adverse limb event.

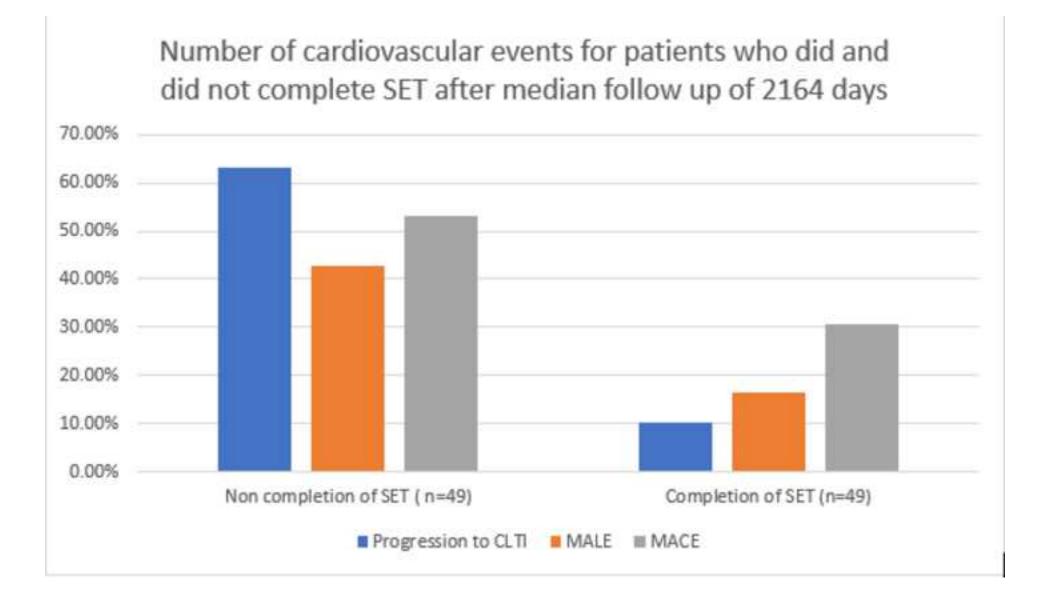
Attribute	Patients who did not start SET (n = 183)	Patients who prematurely discontinued SET (n = 19)	Patients who completed SET (n = 64)	<i>p</i> value
Age – y	67.95 ± 10.4	70.1 ± 7.3	69.5 ± 7.8	.40
Male	119 (65.7)	12 (63.2)	44 (68.8)	.87
Diabetes mellitus	54 (29.5)	4 (21.1)	29 (45.3)	.076
Hypertension	131 (71.6)	10 (52.6)	45 (70.3)	.17
Hyperlipidaemia	82 (44.8)	6 (31.5)	30 (46.8)	.24
Ischaemic heart disease	101 (55.8)	11 (57.9)	28 (43.8)	.23
Cerebrovascular disease	25 (13.7)	4 (21)	8 (12.5)	.12
Atrial fibrillation	38 (20.7)	2 (10.5)	8 (12.5)	.18
Albumin – g/L	36.9 ± 4.28	37.1 ± 3.3	35.2 ± 3.7	.16
Haemoglobin – g/L	132.73 ± 20.6	138.3 ± 19.0	136.5 ± 22.7	.16
Compliance with smoking cessation	45 (24.9)	5 (26.3)	22 (34.0)	.34
ABPI at presentation				
Right	0.79 ± 0.18	0.74 ± 0.19	0.80 ± 0.15	.41
Left	0.81 ± 0.20	0.82 ± 0.29	0.84 ± 0.15	.58

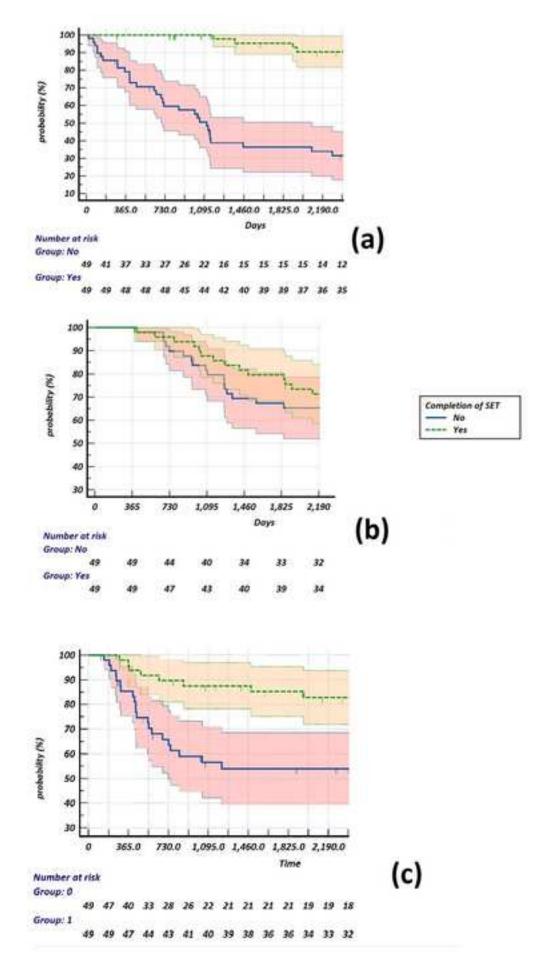
	1			
Self reported claudication distance – m	77.5 ± 6.75	79.1 ± 7.5	79.4 ± 6.0	.11
No iliac disease	37 (20.2)	3 (15.7)	29 (45.3)	
Unilateral iliac disease	63 (34.4)	6 (31.5)	8 (12.5)	.010
Bilateral iliac disease	83 (45.4)	10 (52.6)	26 (40.6)	
No femoral disease	11 (6.0)	1 (5.2)	5 (7.8)	
Unilateral femoral disease	76 (41.5)	9 (47.3)	8 (12.5)	.030
Bilateral femoral disease	96 (52.5)	9 (47.3)	50 (78.1)	
No crural disease	87 (47.5)	10 (52.6)	38 (59.3)	
Unilateral crural disease	56 (30.6)	7 (36.8)	13 (20.3)	


Bilateral crural disease	40 (21.9)	2 (10.5)	13 (12.5)	.47
				67797


Data are presented as mean \pm SD or *n* (%). SD = standard deviation; IQR = interquartile range; SET = supervised exercise therapy; ABPI = ankle–brachial pressure index.

Attribute	Non-completion SET $(n = 49)$	Completion SET $(n = 49)$	p value
Haemoglobin – g/L	130.9 ± 19.3	138.6 ± 18.8	.080
Ischaemic heart disease	59.2	63.3	.56
Claudication distance – m	131.1 ± 19.4	130.2 ± 18.9	.81
Ankle–brachial pressure index			
Left	0.81 ± 0.16	0.86 ± 0.15	
Right	0.71 ± 0.12	0.64 ± 0.16	.11


459 Data are presented as mean \pm SD or *n* (%).


Figure 1: Supervised Exercise Therapy Protocol: Outline of each session during weeks 1-6, with an additional station added each week from week 7 until the patient had

Normalized Importance

Short title: Long Term Outcomes Following Supervised Exercise Therapy in Intermittent Claudication

Use white star with blue outline as the footnote symbol and for the title symbol

Figure 1: diagram; insert this space before units cm and kg; use en dash between number ranges

Figure 2: Hyperlipidemia to Hyperlipidaemia; delete hyphens and use spaces; Non Completion to Non-completion; Top axis: change to Normalised importance – % and delete % symbols from the axis

Figure 3: Follow E1 and E2; delete title

Figure 4: Follow H1 and H2; change vertical axes to Probability – %; use thin space not comma in large numbers

The Editorial team

European Journal of Vascular and Endovascular Surgery

Subject: Request for Inclusion of All Original Authors in Manuscript

We are writing to request the inclusion of all the original authors in the manuscript titled "The association between completion of supervised exercise therapy for intermittent claudication and long-term outcomes: A propensity score matched analysis " submitted to the European Journal of Vascular and Endovascular Surgery (EJVES). We firmly believe that these authors have made substantial contributions to the research and meet the criteria for authorship as outlined by the International Committee of Medical Journal Editors

Based on these criteria, we would like to provide a justification for each author's inclusion:

- 1. Acquisition of data:
 - Bharadhwaj Ravindhran
 - Thomas Kurian
 - Arthur Lim
- 2. Drafting the manuscript:
 - Bharadhwaj Ravindhran
 - Josie Walshaw
 - Sean Pymer
- 3. Analysis:
 - Bharadhwaj Ravindhran
 - Daniel Carradice
 - Ian Chetter
 - Sean Pymer
- 4. Final approval of the version:
 - George Smith
 - Louise Hitchman
 - Ross Lathan
- 5. Concept and design:
 - Bharadhwaj Ravindhran
 - Daniel Carradice
 - Sean Pymer

We firmly believe that all the listed authors have met the ICMJE criteria for authorship and have made substantial contributions to the manuscript. Their inclusion as authors is essential to acknowledge their significant efforts and ensure the integrity of the research process.

We kindly request the editors to reconsider including all the authors in the publication of this manuscript. We are confident that this decision will be in line with the ICMJE guidelines and will appropriately recognize the contributions of each author.

Thank you for your attention to this matter. We look forward to your favourable response.

Yours Sincerely,

Bharadhwaj Ravindhran NIHR Academic Clinical Fellow Specialty trainee in Vascular Surgery Yorkshire and Humber, United Kingdom (On behalf of all authors)