
Integrating User-Centred Design in the Development of a 

Silent Speech Interface based on Permanent Magnetic 

Articulography 

Lam A. Cheah1, James M. Gilbert1, Jose A. Gonzalez2, Jie Bai1, Stephen R. Ell3,  

Michael J. Fagan1, Roger K. Moore2, Phil D. Green2, and Sergey I. Rychenko1

1School of Engineering, The University of Hull, Kingston upon Hull, U.K. 
2Department of Computer Science, The University of Sheffield, Sheffield, U.K. 

3Hull and East Yorkshire Hospitals Trust, Castle Hill Hospital, Cottingham, U.K.

{l.cheah, j.m.gilbert, j.bai, m.j.fagan, 

s.i.rynchenko}@hull.ac.uk, {j.gonzalez, r.k.moore, 

p.green}@sheffield.ac.uk, srell@doctors.org.uk

Abstract. A new wearable silent speech interface (SSI) based on Permanent 

Magnetic Articulography (PMA) was developed with the involvement of end 

users in the design process. Hence, desirable features such as appearance, port-

ability, ease of use and light weight were integrated into the prototype. The aim 

of this paper is to address the challenges faced and the design considerations 

addressed during the development. Evaluation on both hardware and speech 

recognition performances are presented here. The new prototype shows a com-

parable performance with its predecessor in terms of speech recognition accura-

cy (i.e. ~95% of word accuracy and ~75% of sequence accuracy), but signifi-

cantly improved appearance, portability and hardware features in terms of min-

iaturization and cost. 

Keywords: Assistive Speech Technology, User-Centred Design, Silent Speech 

Interface, Permanent Magnetic Articulography, Magnetic Sensors 

1 Introduction 

Speech is an important part of human communication and plays a vital role in our 

social and work life. There are many situations in which people wish to communicate 

through speech but where it is either impossible (i.e. medical condition) or not desira-

ble (i.e. communicating in private or in noisy environment).  Patients whose voice 

box has to be removed because of throat cancer, trauma, destructive throat infections 

or neurological problems will inevitably lose their ability to speak. Therefore, they 

may experience a severe impact on their lives which can lead to social isolation and 

depression [1]. Conventional speech restoration methods after laryngectomy (e.g. 

oesophageal speech, the electrolarynx and speech valves) have limitations in terms of 

quality of speech and usability [1,2]. Moreover, in the case of implanted speech 

valves, frequent valve replacement is required within a time span of 3-4 months, be-
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cause of the growth of biofilm coating over time [3,4,5]. To address these shortcom-

ings, a novel approach has been introduced: silent speech interfaces (SSIs).  

SSIs are devices that enable speech communication in the absence of audible 

acoustic signals. To do that, SSIs exploit other non-acoustic information generated 

during the speech production process. These alternative sources can range from brain 

activity to articulator movements. To extract these forms of information several types 

of SSIs using different modalities have been proposed so far [6]. Permanent Magnetic 

Articulography (PMA) is a type of SSI and it is based on sensing the magnetic field 

variations from a set of permanent magnets attached to the articulators (i.e. lips and 

tongue) during speech [1,2]. Contrary to other similar SSIs such as Electromagnetic 

Articulography (EMA), PMA does not provide explicit information regarding the 

position of the attached magnets. Instead, the measured PMA data is the summation 

of the magnetic field patterns associated to a particular articulatory gesture. As will be 

shown later, this is not a limitation of PMA as long as captured articulator data is used 

for pattern recognition (e.g. speech recognition). In this case, pattern recognition 

techniques can be employed to recognize the PMA patterns associated to the particu-

lar speech sounds. 

Although there are obvious advantageous in using SSIs, there are still challenges in 

the form of the processing software (e.g. efficiency, robustness and reliable speech 

generation) and hardware (e.g. portability, light weight, unobtrusiveness and weara-

bility). Preliminary investigation on the influential factors of the SSIs’ implementa-

tion had been presented in [6], based upon criteria such as ability to operate in silence 

and noisy environments, usability by laryngectomees, issues of invasiveness, market 

readiness and cost. The focus of this paper is on the hardware challenges facing the 

PMA-based SSI system. A number of significant steps have been taken in order to 

develop a wearable system that is appropriate for everyday use. A novel embodiment 

comprising miniaturized sensing modules and a wireless headset that is compact and 

comfortable is proposed in this work. 

The rest of this paper is organized as follow. The next section overviews the PMA 

technique and its development to date. Section 3 describes the design of the 2nd gener-

ation system and the associated challenges, followed by the performance evaluation in 

section 4. The final section concludes and provides an outlook for future research. 

2 Overview on PMA-based SSI 

A PMA-based device, the Magnetic Voice Output Communication Aid (MVOCA), is 

developed within the DiSArM (Digital Speech Recovery from Articulator Movement, 

www.hull.ac.uk/speech/disarm) project, aiming to restore speech communication 

ability for patients who have undergone surgical removal of the larynx.  

In a nutshell, the current MVOCA device consists of multiple magnetic sensors 

mounted onto a lightweight headset for detection, a set of permanent magnets, four on 

the lips (ø1mm × 5mm), one at tongue tip (ø2mm × 4mm) and one at tongue blade 

(ø5mm × 1mm) as illustrated in Fig. 1. Information on magnet placement was de-

scribed in [2]. These magnets are temporarily attached using Histoacryl surgical tissue 



adhesive (Braun, Melsungen, Germany). Eventually, these magnets will be surgically 

implanted for long term usage. The acquired measurements are pre-conditioned by the 

control unit prior to further signal processing.   

To date, all the experiments were carried out using the 1st generation MVOCA, 

which consisted of five tri-axial Honeywell HMC2003 magnetic sensors, mounted on 

a pair of safety glasses, as shown in Fig. 2. The fluctuation in the magnetic field is 

captured on the 15 PMA channels and recorded onto a PC via ADLink DAQ-2206 

analogue-to-digital converter (ADC), a PCI-based card with 16-bit linear encoding. 

Before describing the 2nd generation MVOCA device in next section, related back-

ground works on PMA are briefly outlined as follow:  

 In earlier work [2,7], the viability of isolated-word and connected digits recogni-

tion tasks using the PMA technology were presented.  

 Investigation into the performance across multiple speakers conducted in [8].  

 A feasibility study of direct speech synthesis bypassing the intermediate recog-

nition step was reported in [9].  

 More recently, extensive investigation into effectiveness of PMA data in terms 

discriminating the voicing, place and manner of articulation of English phones 

was presented in [10].  

 

Fig. 1. Placement of six magnets with diameter and length of 1mm × 5mm for lips (pellets 1-4), 

2mm × 4mm for tongue tip (pellet 5) and 5mm × 1mm for tongue blade (pellet 6). 

 

Fig. 2. MVOCA headset (1st generation) - five magnetic sensors mounted on a frame that at-

tached onto a pair of safety glasses. Appearance of the device worn by user. 



3 System Description 

3.1 Design Challenges and Considerations 

In order, to make the MVOCA device more usable and desirable, the 1st generation 

prototype has undergone several design cycles over the last 12 months. This is be-

cause the earlier MVOCAs [2,7,8] were not satisfactory, particularly in their appear-

ance, comfort and ergonomic factors for the user, despite encouraging performance. 

The focus of the development task was to consider underexplore user-inclusive re-

quirements by using a qualitative methodology, including informal opinion survey, 

focus group and user observation. These approaches were commonly used in other 

user-centred design studies [11,12,13]. 

Through discussion with the panels (i.e. laryngectomees) of the focus group and 

data from the survey questionnaires of 50 potentials users and their families/friends, 

the appearance of the device was seen as the major factor affecting acceptability. In 

fact, other researches also indicated that unobtrusive appearance is considered a high-

ly desirable feature for any assistive device [12,14]. Six possible configurations were 

presented in the survey. Those resembling a Bluetooth earpiece or a pair of spectacles 

were preferred by the majority of the potential users, while the device resembling a 

headset microphone was marginally acceptable by approximately 25% of the re-

spondents. On the other hand, devices that might obstruct the view of the mouth in 

anyway (in full or partially, such as the 1st generation MVOCA as illustrated in Fig. 2) 

were deemed unacceptable. Moreover, through focus group meetings and observation 

studies (participants had given their consent and the studies were approved by The 

University of Hull ethics committee), valuable feedback was gained and has greatly 

influenced the creation of a user-centred design prototype. Critical design questions 

were raised during prototype development, in term of headset appearance, portability, 

weight, ease of use and cost. 

Table 1. Desirable software features. 

Ranking Software feature Description 

1st Speech quality Measuring the quality of reconstructed speech (see 

Table 2) 

2nd Speech mode Ability to communicate in fluent speech (ranging 

from isolated words to fluent speech) 

3rd Vocabulary Size and range of words available in the database 

(ranging from a small context specific vocabulary to 

unrestricted vocabulary) 

4th Speaking delay Synchronization between lips movement and      

synthesized voice (ranging from speaking a com-

plete phrase before any speech output to no delay) 

 



Table 2. Desirable speech qualities. 

Ranking Speech quality Description 

1st Intelligibility Ability to communicate intelligibly (i.e. ranging 

from barely intelligible to a BBC newsreader) 

2nd Naturalness Ranging from a monotonic electronic voice to 

natural speech 

3rd Personification The choice of using own or preferred voice 

(ranging from another appropriate voice to the 

user’s own voice) 

4th Ability to convey 

emotion 

Ability to include emotions (ranging from no 

emotional content to full emotion content) 

 

In addition, the survey questionnaires also identified other desirable features, such 

as software features (see Table 1) and speech quality (see Table 2), by their preferred 

ranking. As indicated in Table 1, the quality of reconstructed speech is highly rated, 

whereas the issue of delay between reconstructed sound and lips movement is least 

prioritized. In term of speech quality, this was further subdivided into the characteris-

tics listed in Table 2. Both intelligibility and naturalness of speech are considered 

equally important, but the ability to convey emotion into the reconstructed speech is 

least preferred. It should be noted that respondents to the survey may have had some 

difficulty interpreting the meaning of some of these terms since, for instance, they 

may not be aware of the extent of emotion present in normal speech. The non-

hardware related features will not be discussed in this paper but will be addressed 

separately in our future work. 

3.2 New MVOCA Device 

Based on the information gathered from the potential users (as presented in section 

3.1), a new prototype has been developed. Key components of the 2nd generation 

MVOCA prototype consists a set of four tri-axial Anisotropic Magnetoresistive 

(AMR) magnetic sensors (Honeywell HMC5883L), a control unit and a power source 

(rechargeable 7.4V Lithium Ion battery). These components are mounted on a cus-

tomized headset, as illustrated in Fig. 3. Two headsets design were developed: 1) 

attached onto a headband (see Fig. 4a), and 2) onto a pair of spectacles (see Fig. 4b). 

The headsets (excluding the pair of spectacles or headband) were fabricated using 

rapid prototyping technology and their building materials were VeroWhitePlus 

RGD835 and VeroBlue RGD840. A set of six Neodymium Iron Boron (NdFeB) per-

manent magnets are attached onto the lips and tongue as illustrated in Fig. 1. Each 

magnetic sensor has three orthogonal sensing elements to measure the three spatial 

components of the magnetic field. Sensor1-3 (a total of 9 channels) are used to cap-

ture magnetic field variations caused by articulatory movements and digitize it with 

12-bit resolution. Sensor4 on the other hand is used for background cancellation that 

is for compensating the effect of earth’s magnetic field on the articulography signals 

captured by other sensors, in order to enhance the signal-to-noise (SNR) of the articu-

latory signals. 



 

Fig. 3. Overview of the 2nd generation MVOCA system, a) MVOCA headset with b) sensor 

modules, c) control unit and battery. 

 

Fig. 4.    Two MVOCA headset designs, a) mounted on a headband and b) attached on a pair of 

glasses. Appearance of the devices when worn by a user. 

An operational block diagram of the 2nd generation MVOCA is shown in Fig. 5. 

Each magnetic sensor communicates to a low-power ATmega328P microcontroller 

(housed inside the control unit) through an I2C interface, and a handful of control 

signals (i.e. SE, S0, and S1) are used in managing the acquisition process where sam-

ples are acquired at 100 Hz for each channel. These samples (total of 12 PMA chan-

nels) are then transmitted to a computer/tablet PC wirelessly via Bluetooth or via a 

USB connection for further processing. A bespoke graphical user interface (GUI) has 



been developed in the MATLAB environment and used mainly for on-line recogni-

tion testing or demonstration purposes. All necessary speech processing and recogni-

tion algorithms were embedded into the GUI and running in the background. If the 

acquired PMA signal correctly matched an articulation gesture from the pre-stored 

training dataset, thus the corresponded utterance will be identified. A text-to-speech 

synthesizer is used to generate a playback audio as an output for the identified utter-

ance, via an audio device (e.g. integrated speaker of a computer). 

For wireless data transmission, a class 2 Bluetooth module BTM411 (housed inside 

the control unit) and USB transceiver (attached on computer) are used. In the wireless 

case, the MVOCA device will acquire its power from a battery rather than from the 

computer via USB (wired mode). The average power consumption of the current 

MVOCA prototype from a 5V (regulated from 7.4V) supply is ~104 mA, which 

means that it can run continuously for ~10 hours on a full charge (total 1080mAh). 

The battery can be removed from the headset for charging using a freestanding 

charger.  

 

Fig. 5. Simplified MVOCA (2nd generation) operational block diagram. 

4 Experiments and Results 

4.1 Test Speaker 

As stated previously [7], the current MVOCA is a speaker-dependent device, i.e. all 

associated headset measurements and training parameters were calibrated towards 

particular individual. In this work, the data used for evaluating the latest MVOCA 

prototype were collected from a male native English speaker who is proficient in the 

usage of the MVOCA interface. Although inter-speaker performance has proven pos-

sible [8] the headset design and measurements would require individually tailored for 



optimal performance. In particular, the headset was specifically designed according to 

the speaker’s anatomy. 

4.2 Data Recording 

A continuous speech recognition task consisting of the identification of sequences of 

English digits is chosen in this work to evaluate the performance of the latest 

MVOCA prototype. This was chosen because the limited size of vocabulary enables 

whole-word model training from relatively sparse data and also because of the sim-

plicity of the language model involved. The algorithm used to generate the random 

digits sequences was the one underlying the TIDigits database of connected digits 

[15]. The longest digit sequence consists of seven individual digits. During the train-

ing, both zero and oh (the two representations of 0) were denoted as separate items.  

The data used for training the speech recognizer were collected in six independent 

sessions, i.e. two sessions using each of the different 2nd generation MVOCA headsets 

(Fig. 4a and Fig. 4b) and the remained two sessions using the 1st generation headset 

(see Fig. 3). Each training session consisted of a total of 385 utterances containing 

1265 individual digits. Furthermore, within each session, five different datasets were 

recorded: four of them (three spoken datasets and one mouthed dataset) were used for 

training and the remained mouthed dataset was used for testing purpose. The reason 

behind this configuration is to try to mimic a realistic scenario where the voice of the 

patient is recorded before the operation happens for personalizing the speech synthe-

sizer, while after the operation only articulography PMA (mouthed) data can be ob-

tained. 

4.3 Experimental Setup 

To achieve optimal recording performance, all experiments in this paper were con-

ducted inside a sound-proof room, where the audio signal was recorded with a shock-

mounted AKG C1000S condenser microphone and a dedicated USB sound card (Lex-

icon Lambda). A Matlab-based GUI was created to provide visual prompt of the digit 

sequences to the speaker at regular interval of 5 seconds during the recording session. 

The GUI also used provides simultaneous recording of both audio signal (sampled at 

48 kHz) and PMA data (sampled at 100 Hz) as illustrated in Fig. 6. 

Since both data streams were measured from separate modality, synchronization 

between the two data streams was necessary to compensate for any small deviation 

from the ideal sampling frequencies of the analog-to-digital converters (ADC). To do 

that an automatic timing alignment mechanism was used to realign both data streams 

by generating start-stop markers in addition to both audio and PMA data streams. The 

measured PMA data were transferred to a PC via USB connection. Since the speak-

er’s head was not restrained, large movements could potentially distort the recorded 

data and thus degrade the recognition performance. Hence, background cancellation 

was applied to compensate for any movement induced interference against the desired 

PMA signals. 



 

Fig. 6. Acoustic and PMA data streams were recorded in parallel into PC via a bespoke GUI. 

Both data streams were then synchronized prior to pre-processing. 

4.4 HMM Training and Recognition 

The acquired PMA data used for speech recognition was first low-pass filtered (i.e. 

removal of 50 Hz noise) and normalized as described in [7]. Two different conditions 

(i.e. Sensor and SensorD) were computed in connected digits recognition experi-

ments, and they relate to a specific configuration of the data used for model training 

and testing: 

 Sensor: training and testing directly on the 9 channels of PMA data. 

 SensorD: as above, plus the first time derivatives (related to articulator velocity, 

D stands for “delta”).  

An overview of the two conditions is presented in Table 3. The second-order deriva-

tives (i.e. delta-delta parameters) were not included as part of the feature vector since, 

as shown in our previous works [7,8], they did not produced significant improvement 

in performance.  

Table 3. Vector sizes for different experimental conditions. 

Condition Original 1st delta Vector size 

Sensor √  9 

SensorD √ √ 18 

 

The processed PMA data were then used for training the speech recognizer using 

HTK [16]. The acoustic model in the recognizer uses whole-word Hidden Markov 

Models (HMMs) [17] with 25 states and 5 Gaussians per state [7]. These parameters 

were not optimal, but the suggested parameters settings were known for their perfor-

mances from our previous works [7,8]. For clarification, audio signals were not used 

to train the recognizer, but only the PMA data. 



4.5 Performance between 1st and 2nd Generation MVOCAs 

Both word and sequence accuracy results across multiple MVOCA devices are pre-

sented in Fig. 7. The results reflect the averaged value of the data (i.e. Sensor and 

SensorD) collected on two independent training sessions on each of the 1st and 2nd 

generation MVOCA devices. The data were analyzed independently session-by-

session, and the recognition rates averaged across the sessions. Merging all the data 

from different sessions for recognition would seem a more attractive approach, but 

this might lead to inconsistent outcomes as very precise repetitive magnets placement 

are required on each training session. Nonetheless this could be overcome, as the 

magnets will be surgically implanted in the final MVOCA for long term usage. Inves-

tigations into session-independent approach on other SSIs technique were presented 

in [18,19]. 

As seen in Fig. 7, it is obvious that SensorD performs significantly better than us-

ing Sensor data alone. Similar trends were also reported in [7]. Moreover, the results 

showed a comparable performance between the 1st and 2nd generation MVOCAs. 

Hence, this suggests that the newer MVOCA can have better hardware features (i.e. 

appearance, light weight and portability) but without compromising its recognition 

performance by using miniaturized components (i.e. sensors and data acquisition 

unit). 

 

Fig. 7. . Comparison of word and sequence accuracies of connected digits between 1st and 2nd 

generation MVOCAs. 

Fig. 8 illustrates that the inclusion of mouthed data in the training dataset improves 

the recognition accuracy, particularly in terms of sequence recognition. A comparison 

between using mixed data (spoken and mouthed data) and non-mixed data (spoken 

only data) as part of training dataset was investigated. The darker bars relate to mixed 

training data (spoken and mouthed data) and the light ones to non-mixed training data 

(spoken only data). The results presented in Fig. 8 were trained and tested using only 



SensorD data from the 2nd generation MVOCA devices, as they provided better per-

formance as illustrated in Fig. 7. Although further investigation is needed, we recog-

nized the importance of mixing both spoken and mouthed data in any training session.  

 

Fig. 8. Comparison of training dataset (mixed or non-mixed data) used in the recognition of 

connected digits. 

 

Fig. 9. Decrease in word error rate (WER) with the increase in training sessions. 

So far, the results in Fig. 7 and Fig. 8 suggest that a SensorD data trained using a 

mixture of spoken and mouthed data generally performed better.  A follow up test was 

conducted to explore the relationship between quantity of training data and the recog-

nition performances (i.e. word and sequence recognition). Fig. 9 illustrates that an 

increased number of training sessions yields an improvement in the performance in 

both word and sequence recognitions through the reduction of in word error rate 

(WER). Fewer training sessions (i.e. ≥ 2 sets) is needed to achieve reasonable perfor-

mance in word recognition as compared to sequence recognition, whereas it appears 

significantly more training sets would be required to achieve similar sequence recog-



nition performance. It also appears that even for word recognition, the inclusion of 

further training data sets could reduce the WER further. The training sessions were 

not extended because of the speaker fatigue and increased the likelihood of the mag-

nets becoming detached. 

4.6 Hardware Comparison between 1st and 2nd Generation MVOCAs 

So far, the challenge is to satisfy the design objective to improve the MVOCA’s ap-

pearance, without compromising the device’s performance. A summary of the key 

features of the latest MVOCA system is presented in Table 4. Two versions of 

MVOCA headsets were designed (see Fig. 4), both headsets aim to provide the desir-

able features such as light weight, comfort and unobtrusive appearance as suggested 

by the survey questionnaires. The current designs significantly reduces the unattrac-

tive appearance of the previous headset (see Fig. 2), thus this would improve the ac-

ceptability to the end user and ultimately improves its usage. 

Table 4. Hardware specifications of the 2nd generation MVOCA. 

 Specification Parameter 

S
en

so
r 

M
o

d
u

le
s 

  

Type Anisotropic Magnetoresistive 

Dimension 12 x 12 x 3 mm3 

Sensitivity 440 LSb/gauss  

Sampling rate 100 Hz/sensor 

No. channels 12 (3 per sensor) 

C
o

n
tr

o
l 

U
n

it
 

  

Microcontroller Low power ATmega328P 

Dimension 50 x 60 x 15 mm3 

Operating voltage 5 V 

Power source Lithium Ion battery 

Transceiver Bluetooth/USB 

H
ea

d
se

t   

Material VeroBlue/VeroWhitePlus resin 

Total weight 160g (including battery & control unit) 

 

In addition, significant improvements were made in term of the hardware miniatur-

izations and portability, as previous generation relied on a PCI-based data acquisition 

card, thus restricted it to a desktop PC/workstation which is highly immobile and 

bulky. Although the magnetic sensors HMC2003 are high precision sensors, they are 

significant larger in size (24×45×10 mm3) and required higher operation voltage (i.e. 

12V), thus making them non-power efficient. In the current prototype, magnetic sen-

sors HMC5883L were chosen because of their compactness, low operation voltage, 

low cost and wide sensitivity range. As for signal conditioning, low-powered micro-

controllers were used. By utilizing a Bluetooth modules and a tablet PC (i.e. mobile 

processing unit), the current MVOCA will be highly portable and practical for every-

day use. In addition, the cost of the prototyping is relatively low, as the MVOCA only 



utilized commercial off-the-shelf (COTS) components. Moreover, by shrinking the 

size of electronics, this inevitably reduces the overall weight of the headset, and mak-

ing it more appealing as a wearable assistive speech technology. 

On the other hand, this would mean the omission of higher precision components 

(i.e. magnetic sensors) used in the previous prototype, a reduction in the numbers of 

sensors and the use of a lower sampling rate. However, from the results presented in 

Fig. 7, these concerns would appear to be irrelevant as the performances are compara-

ble between 1st and 2nd generation MVOCAs. This could be that the articulator 

movements during speech are slow and therefore a lower sampling rate (i.e. 100 Hz) 

might be sufficient. In addition, reduction in the number of sensors was possible be-

cause there were excess of information available from previous MVOCA, thus some 

sensors can be made redundant. 

5 Conclusion 

The preliminary evaluation of the new MVOCA prototype shows comparable recog-

nition performances to the previous system, but providing much more desirable hard-

ware features such as portability, hardware miniaturization, improved appearance and 

lower cost. Nonetheless, there are still many challenges ahead before MVOCA can be 

practically operated outside laboratory environments on a day-to-day basis. Encour-

aged by the results obtained so far, extensive work is needed to create a viable weara-

ble assistive communication aid. Potential future works may include enhancing over-

all MVOCA appearance, reducing power consumption and implementing real-time 

features (i.e. reducing latency in processing and decision making). On the other hand, 

to address the desirable features on speech quality as discussed in section 3, investiga-

tion work on speech synthesis (similar to the work in [9]) from PMA data has started 

and preliminary results obtained are very encouraging. 
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