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Abstract

The increased sensation error between the surroundings and the driver is a major problem

in driving simulators, resulting in unrealistic motion cues. Intelligent control schemes have to

be developed to provide realistic motion cues to the driver. The driver’s body model incorpo-

rates the effects of vibrations on the driver’s health, comfort, perception, and motion sick-

ness, and most of the current research on motion cueing has not considered these factors.

This article proposes a novel optimal motion cueing algorithm that utilizes the driver’s body

model in conjunction with the driver’s perception model to minimize the sensation error.

Moreover, this article employs H1 control in place of the linear quadratic regulator to opti-

mize the quadratic cost function of sensation error. As compared to state of the art, we

achieve decreased sensation error in terms of small root-mean-square difference (70%,

61%, and 84% decrease in case of longitudinal acceleration, lateral acceleration, and yaw

velocity, respectively) and improved coefficient of cross-correlation (3% and 1% increase in

case of longitudinal and lateral acceleration, respectively).

Introduction

Evaluation of Virtual Reality in driving and on-road field studies have shown encouraging

resemblances [1, 2]. However, when compared to natural world driving, questions are raised

on the validity of driving simulators. It will not be easy to perceive a driver’s behavior in such

an environment. Driving simulators are considered very important to improve road safety

through proper indoor training and improved vehicle design [3]. Their use is crucial when the

number of vehicles is considerably large, and road structure is also not very appropriate.

Research has shown that a virtually trained driver saves money, time, life, and material. Nowa-

days, driving simulators are used not only as training simulators but also as entertainment
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platform in screw axis notation; θ, Angle of screw

axis in screw axis notation; f
^
xðsÞ, Sensation signal in

https://orcid.org/0000-0001-9743-2851
https://orcid.org/0000-0002-6509-5763
https://orcid.org/0000-0002-0795-0282
https://doi.org/10.1371/journal.pone.0290705
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290705&domain=pdf&date_stamp=2023-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290705&domain=pdf&date_stamp=2023-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290705&domain=pdf&date_stamp=2023-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290705&domain=pdf&date_stamp=2023-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290705&domain=pdf&date_stamp=2023-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290705&domain=pdf&date_stamp=2023-11-30
https://doi.org/10.1371/journal.pone.0290705
https://doi.org/10.1371/journal.pone.0290705
http://creativecommons.org/licenses/by/4.0/


simulators. Researchers have evaluated drivers’ behavior, performance, and attention. In the

automobile industry, they are used for optimal and risk-free vehicle design, resulting in

reduced vehicle cost and increased safety. We can have efficient hardware implementations of

driving simulators using energy efficiency techniques, such as SuperSlash [4], which is used for

energy efficiency of artificial intelligence (AI) based models.

The motion cueing algorithm (MCA) converts linear accelerations and angular velocities of

a virtual vehicle into movements of a driving simulator. One of the first methods to transform

these accelerations and velocities was the classical MCA proposed by Conrad et al. [5]. Classi-

cal MCA is a linear cueing algorithm that is simple and easily tunable and has been widely

used in different types of simulators [1, 6]. Classical motion cueing has a short processing time

and stable performance [7]. However, classical MCA has many drawbacks. For example, it

needs a regulation procedure that emphasizes the worst-case situation resulting in conven-

tional motion with deprived workspace usage, hence not being flexible in all situations. More-

over, it completely ignores the human vestibular system [8] and may generate false cues,

distort the signal, and lead to wrong motion signals due to filter characteristics [9]. Also, a low-

pass filter leads to phase delay [10]. The coordinated adaptive washout algorithm has been

applied to flight simulators in [11]. The authors replaced the tilt coordination block of the clas-

sical washout filter with an adaptive filter to avoid residual motion base displacements. In [12],

adaptive motion cueing using fuzzy-based tilt coordination has been proposed. Due to many

other possibilities of tilt coordination [13], the study of this algorithm is just at its initial stages.

An optimal MCA was proposed ignoring the vestibular system [14]. Optimal MCA has

some drawbacks, but it generally reduces the sensation error between the virtual surrounding

and real drivers. However, the results are not satisfactory to a real human perception due to

physical limitations and an optimal washout filter needs to be applied to a larger workspace

[15]. Getting realistic motion cues on a six-degree-of-freedom Stewart platform compared to

the actual vehicle is still a problem. In some cases, the motion system has to be effectively

turned off to avoid improper motion cues. A robust optimal MCA based on the linear qua-

dratic regulator (LQR) method and the genetic algorithm (GA) has been studied in [16]. The

driver feedback has been used in [17] to characterize desirable features of race cars; then the

numerical optimal control (NOC) was used to decide platform motions. NOC is a useful

open-loop method for analyzing performance constraints of the driver in loop strategies [17].

Other methods, including LQR-based optimal control and GA-based optimal control [16],

exhibit better performance in improving the sensation output, producing realistic motion cues

but cannot enhance workspace usage due to several constraints. The LQR-based method

improves the workspace, but it has more sensation error and the GA-based method decreases

error but with poor workspace usage [16]. Recently, many methods have introduced neural

networks and computational intelligence-based motion cueing [18, 19]; however, these tech-

niques are computationally complex.

This research utilizes H1-based optimal MCA, which shows superior performance com-

pared to the state-of-the-art methods. This article has the following main contributions:

1. A novel optimal MCA is proposed that utilizes the driver’s body model together with the

driver’s perception model.

2. The LQR is replaced with an H1-based controller to optimize the quadratic cost function

of sensation error.

A significant advantage of using H1-based MCA is that it can be used for any driving sim-

ulator without parameter tuning. We need to adjust the physical constraints of the new system

and do not need to care about “trial and error” for parameter tuning.
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case of linear motion; AP, Position of moving
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(s), Input to driver’s body model; uv (s), Input to

simulator; vyaw, Yaw velocity; W(s), Transfer

function for optimal motion cueing; λk, Search

direction identifier in Levenberg–Marquardt

Method; Ωp, Angular velocity or derivative of pitch;

Ω^ p(s), Sensation signal in case of angular motion;

dofi, Degrees of freedom of ith joint; dofp, Degrees

of freedom of passive mechanism; dofs, Degrees of

freedom of space;
A
BR, Orientation of moving

platform in rotation matrix notation.
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The article is organized as follows: the Background section comprises the math behind the

Stewart platform and its kinematics; the Proposed Methodology section includes the applica-

tion of proposed optimal MCA on the Stewart platform; the Results and Discussion section

compares different motion cueing techniques. Finally, the Conclusion section concludes the

article by discussing the improvements made by the proposed methodology.

Background

In this section, we will discuss the mathematics behind the Stewart platform along with its

kinematics. Fig 1 refers to the schematics of a generic Stewart platform. There are two parts to

every limb length (li) connected by a prismatic joint (Pi). This limb’s upper and lower sides are

connected to the upper and lower platforms with spherical (or universal) joints. In this robot,

six identical hydraulic actuators can be actuated to obtain six-degree-of-freedom motions of

the moving platform. Six universal joints at the base platform of the Stewart platform are

referred to as Ai, where i = 1, 2, . . . 6. Similarly, six spherical joints at the moving platform of

the Stewart platform are referred to as Bi, where i = 1, 2, . . . 6. The prismatic joints between

fixed and moving platforms are referred to as Pi, where i = 1, 2, . . . 6. The limb length of every

kinematic chain of Stewart platform is referred to as li , where i = 1, 2, . . . 6. Two frames OA
and OB are attached to the fixed and moving platforms, respectively.

Inverse kinematics

Inverse kinematics deals with the determination of limb lengths when the position and orien-

tation of the moving platform are known [20–22]. In the case of a parallel robot, like a Stewart

platform, inverse kinematics is easy [23]. The position AP of the moving platform and orienta-

tion ŝ are given, and limb lengths li s are to be determined. The position is given as follows:

AP ¼ px py pz
� �T

: ð1Þ

In the case of screw axis representation, the orientation of the platform is given as follows:

ŝ ¼ sx sy sz
� �

; y
� �

: ð2Þ

In the case of rotation matrix representation, the orientation of the platform is given as

follows:

A
BR ¼

ux vx wx

uy vy wy

uz vz wz

2

6
4

3

7
5: ð3Þ

Using the loop closure equation for each limb on the geometry of Fig 1,

li
A
i ŝ ¼

AP þ Abi �
Aai; ð4Þ

where A
Bbi ¼

A
B R

Bbi.
Eliminating ŝ from Eq (4),

li ¼ A
BP

TAPþBbTi
B
i bþ

AaTi
Aai � 2APTAai þ 2APT A

BR
Bbi

� �
� 2 A

BR
Bbi

� �T Aai�
1=2

� ð5Þ
h
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The procedure in [17] will be followed to find actuator velocity. Taking the derivative of Eq

(5) and simplifying for angular velocity, we get

A
B

_P ¼ _li
A
i ŝ �

A
i

_b þA
i _a: ð6Þ

Forward kinematics

Forward kinematics is the method of determining the position and orientation of moving plat-

forms when limb lengths of the Stewart platform are known. As shown in Fig 1, if vector L of

limb lengths li, where i = 1,2,� � �,6, is known, then the problem is to determine position AP and

orientation A
BR.

The optimal solution method having many iterations needs high-speed computation due to

the heavy computational burden [24]. A good initial guess has to be made to establish a rapid

and converging solution. Forward kinematics can be obtained using nonlinear least-squares

algorithms based on Levenberg–Marquardt or trust-region-reflective methods [23]. The trust-

region-reflective method is based on the interior-reflective Newton method proposed in [25].

The Levenberg–Marquardt method has been proposed in [26, 27]. To apply one of these algo-

rithms, the first step will be to merge Eqs (1) and (2):

t ¼ px py pz sx sy sz y
� �

ð7Þ

or, equivalently,

t ¼ t1 t2 t3 t4 t5 t6 t7½ �: ð8Þ

Position AP and orientation A
BR will be determined as follows:

PðtÞ ¼ t1 t2 t3½ � ð9Þ

Fig 1. A generic Stewart platform with basic frames and parameters.

https://doi.org/10.1371/journal.pone.0290705.g001
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and

RðtÞ ¼

t2
4
vt7 þ ct7 t4t5vt7 � t6st7 t4t6vt7 þ t5st7

t5t4vt7 þ t6st7 t2
5
vt7 þ ct7 t5t6vt7 � t4st7

t6t4vt7 � t5st7 t6t5vt7 þ t4st7 t2
6
vt7 þ ct7

2

6
4

3

7
5; ð10Þ

where vt7 = (1-cos (t7)), st7 = sin (t7) and ct7 = cos (t7).

sðtÞ ¼ t4 t5 t6 t7½ �: ð11Þ

From Fig 1, the moving platform has points Bi’s and the base platform has points Ai’s and

their vectors with respect to the base are bi’s and ai’s, respectively. The following set of nonlin-

ear equations can be solved for the forward kinematics:

FiðtÞ ¼ � l
2

i þ PðtÞ þ RðtÞbi � ai½ �
T PðtÞ þ RðtÞbi � ai½ � ð12Þ

and

F7ðtÞ ¼
X6

k¼4

t2k � 1: ð13Þ

Optimization methods can be employed here to solve the above seven nonlinear equations

(Eqs (12) and (13)). In case of least-squares optimization, minimize f ðtÞ ¼ 1

2

P
iFiðtÞ

2
, where t

2R.

The solution of forward kinematics is demonstrated as a flowchart in Fig 2. In the first flow-

chart process, Eqs 9 and 10 are used for the calculation of p and R, respectively. Then, block Fi
is evaluated using Eq (12). Now, f(t) is determined as demonstrated above. The conditional

block checks if this value is less than required accuracy ε or not. In case f(t) is less than ε, the

function iteratively calculates the new value of t and sends it back to calculate p and R, to recal-

culate the new values of p and R corresponding to the new value of t.
The input trajectories of position and orientation are shown in Fig 3. The calculated limb

lengths of the Stewart platform are obtained using inverse kinematics, as shown in Fig 4. The

method of forward kinematics using the Levenberg–Marquardt method is applied to get values

of position and orientation back from values of limb lengths of Fig 4. These values are com-

pared with the previous position and orientation with negligible error.

Motion cueing algorithm

Motion cueing refers to the approaches through which the environment of a driving simulator

is made to feel like a real environment. These approaches are known as cues and are classified

as acoustic, visual, and motion cues. A driving simulator of any class must contain an efficient

visual system. Moreover, most visual systems are accompanied by acoustic systems. Motion

simulators are required to provide motion cues sensed by vestibular, body, and perception sys-

tem models. In the real environment, motion system parameter values exceed the limits of the

driving simulator motion system. Therefore, it is essential to convert those parameters. The

methods applied to perform this conversion are known as MCAs, motion drive algorithms, or

washout filters. These algorithms aim to reproduce the motion cues in a realistic way, ensuring

the usage of maximum workspace. The first was classical motion cueing built in [5] for flight

simulators. Naturally, the requirements for a driving simulator are somewhat different; none-

theless, the classical algorithm can be adapted with some modifications.
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Proposed methodology

Optimal MCA for vehicle driving simulators that incorporate driver’s body and perception

models is proposed so as to include human body vibrations [15, 28–30]. Human vibrations are

of three types: the mass-spring-damper model [31], the model from the finite element method

[32], and the transfer function model [14]. Methods for measuring periodic, random, and

transient whole-body vibrations have been discussed in [28].

Fig 5 shows the basicentric coordinate system of a human body commonly used to illustrate

human body vibrations. The driver’s body model is given by Eqs (14–19) as a transfer function

that contains a band-limiting filter GBL in Eq (18). This filter contains high-pass filter GHP

Fig 2. Iterative solution of forward kinematics.

https://doi.org/10.1371/journal.pone.0290705.g002

Fig 3. Supposed trajectories of position and orientation.

https://doi.org/10.1371/journal.pone.0290705.g003
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Fig 4. Calculated values of limb lengths.

https://doi.org/10.1371/journal.pone.0290705.g004

Fig 5. Basicentric coordinate system of the driver body (seated position).

https://doi.org/10.1371/journal.pone.0290705.g005
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and low-pass filter GLP:

GHP ¼
s2

s2 þ a1

ffiffiffi
2
p

sþ a2
1

; ð14Þ

GLP ¼
1

s2 þ a2

ffiffiffi
2
p

sþ a2
2

; ð15Þ

GBL ¼ GHP � GLP; ð16Þ

GT ¼
1þ s

a3

1þ s
H4a4
þ s

a4

� �2
; ð17Þ

Gs ¼
1þ s

H5a5
þ s

a5

� �2

1þ s
H6a6
þ s

a6

� �2
�

a5

a6

� �2

; ð18Þ

G ¼ GBL � GT � Gs; ð19Þ

where ai, i = 1, 2, 3, . . . ,6 are the frequency weighted acceleration values and Hi, i = 1, 2, 3, . . .

,6 are the resonant quality factors. These factors evaluate the overall frequency weighting of the

transfer function. The values of these variables are obtained from [28].

The driver’s perception model comprises vestibular and otolith organs. These organs are

responsible for the perception of rotational velocity and specific force. Specific force is the dif-

ference between linear acceleration and gravity. Two transfer functions are shown in Eqs (20)

and (21). The first transfer function is the ratio of the vestibular organ to that of rotational

velocity:

GO ¼
LLLAs2

1þ LLsð Þ 1þ LSsð Þ 1þ LAsð Þ
: ð20Þ

The second transfer function is the ratio of the otolith organ to the specific force given as

follows:

Gr ¼
k 1þ tAsð Þ

1þ tssð Þ 1þ tLsð Þ
; ð21Þ

where LL, LA, and LS are the weighting factors from vestibular organ and τL, τA, and τS are

weighting factors from the otolith organ.

Problem statement

The block diagram of a driving simulator, including an optimal motion cueing block W(s), is

shown in Fig 6.

The input to this block is uv(s) and its output is us(s), which serves as input to the driver’s

body model. The six motions of the moving platform are grouped into four modes as follows:

1. Longitudinal mode

2. Lateral mode
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3. Heave mode

4. Yaw mode

The longitudinal mode contains surge and pitch as linear and angular motion components,

respectively. Sway has linear motion and corresponding roll as an angular motion component

in the case of the lateral mode. Heave mode only contains heave as a linear motion component

and yaw is the only component in yaw mode. In each mode, the state-space equation can be

obtained from the transfer function of the driver’s body models. The following text includes

the description of the algorithm of longitudinal mode, where Ωp is the angular velocity or

derivative of pitch and ax is linear acceleration along with surge.

The structure of the proposed MCA is given in Fig 6. Eq (22) shows longitudinal compo-

nents of input uv(s) to simulator block.

uvðsÞ ¼
Op

ax

" #

¼
uv1

uv2

" #

: ð22Þ

The specific force fx(s) is defined as force per unit mass along surge and is given as follows:

fxðsÞ ¼
g 0

0 1

" #
uv1=s

uv2

" #

: ð23Þ

The output of this cueing model is us(s):

usðsÞ ¼
ÔpðsÞ

f̂ xðsÞ

" #

¼WsðsÞ
uv1
uv2

" #

¼
us1
us2

" #

: ð24Þ

The problem is to determine a transfer function Ws(s) that will be used to compute the out-

put sensational signals for simulator moving platform position and orientation.

Determination of sensation signal. In optimal control theory, a cost function is to be

optimized considering the motion system constraints [32–34]. In this case, the sensation error

Fig 6. Proposed optimal cueing framework.

https://doi.org/10.1371/journal.pone.0290705.g006
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between virtual surroundings and real drivers is minimized. Sensation error can be deter-

mined by the observable canonical form of state space. In the case of angular motion channel,

Eqs (25) and (26) are used, and in the case of translational motion channel, Eqs (27) and (28)

are used.

_Xp ¼ ApXp þ Bpuv; ð25Þ

Ôp ¼ CpXp: ð26Þ

Similarly, using Eq (23),

_Xx ¼ AxXx þ Bxuv; ð27Þ

f̂ x ¼ CxXx: ð28Þ

Combining Eqs (25)–(28) with Eqs (29) and (30),

_Xv ¼
_Xp

_Xx

" #

¼
Ap 09�16

09�16 Ax

" #
Xp

Xx

" #

þ
Bp
Bx

" #

uv ¼ AvXv þ Bvuv; ð29Þ

Ôp

f̂ x

" #

¼
Cp 0

0 Cx

" #
Xp

Xx

" #

: ð30Þ

If the input to driver’s body model is us, then similar equations are obtained:

_Xv ¼ AvXv þ Bvus; ð31Þ

Ôp

f̂ x

" #

¼ CvXv: ð32Þ

Error dynamic equation can be obtained from Eqs (29)–(32) and is given as follows:

_Xe ¼ AvXv þ Bvus � Bvuv; ð33Þ

ev ¼ CvXe: ð34Þ

It is seen in practical situations that the vehicle signal is accompanied by a filtered white

noise signal, so it must be considered in the error signal. Eqs (35) and (36) show the state space

of vehicle signal for noise considering w as filtered white noise input:

_Xn ¼ AnXn þ Bnw; ð35Þ

uv ¼ Xn: ð36Þ

PLOS ONE Driving Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0290705 November 30, 2023 10 / 23

https://doi.org/10.1371/journal.pone.0290705


Adding the effect of white noise to the error dynamic equation for the determination of

cumulative error e,

_X ¼
_Xe

_Xn

" #

¼ AX þ BuþHw; ð37Þ

e ¼ CX; ð38Þ

where

An ¼
� 1 0

0 � 4p

" #

;Bn ¼
1

1

" #

:

A ¼
Av � Bv

02�25 An

" #

;B ¼
Bv

02�1

" #

;H ¼
025�1

Bn

" #

;C ¼ Cv 0½ �:

The main objective of this article is to produce realistic motion cues, i.e., motion cues simi-

lar to the real vehicle. To achieve this objective, the error between the vehicle signal and simu-

lator motion signal, given by Eq (38), must be minimized. In the last section error, the

dynamic equation is modeled; in this section, this error is minimized using the appropriate

choice of the optimization method. As explained in the motion cueing section, there are work-

space limitations of the motion simulator. These limitations must be included in the optimal

control problem to generate realistic motion cues. Objective and constraints of motion system

can be combined into a quadratic cost function and the problem is formulated as follows:

Find value of us that minimizes J:

J ¼
Z t2

t1

eTQeþ uTs Rus
� �

dt: ð39Þ

Subject to the following constraints,

lmin � li � lmax; ð40Þ

vmin � vi � vmax; ð41Þ

amin � ai � amax; ð42Þ

Xv ¼
Ôp

f̂ x

" #

¼ f Xp; uv
� �

; ð43Þ

us ¼ g uv;wð Þ; ð44Þ

where J is the quadratic cost function to be minimized, Q and R are weighting matrices, and

li,vi,ai,i = 1,2,3,� � �6 are limb length, velocity, and acceleration of every leg of the motion system,

respectively.

The enhanced sensitivity to the sensation error. The problem is to decide the inputs us
such that our quadratic cost function is minimized within the limits of constraints. Fig 6 shows

the input vehicle dynamics uv as a vector of longitudinal acceleration, lateral acceleration, and

yaw velocity. A similar vector us is generated as simulator input. Both of these inputs are used
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for the calculation of states of the system and outputs as discussed in Eq (30)–(38). The dis-

placement, velocity and acceleration of the actuators are limited by the constraints of the cost

function in Eq (40)–(42). The output error (oe) is the function of these states:

yðtÞ ¼

aREFlong ðtÞ � aslong ðtÞ

aREFlat ðtÞ � aslat ðtÞ

vREFyawðtÞ � vsyawðtÞ

2

6
6
4

3

7
7
5 ð45Þ

In short, there is a need of selecting such parameters which minimize the sensed longitudi-

nal acceleration, lateral acceleration, and yaw velocity. The accelerations are translational

whereas the velocity is a rotational parameter. However, this is a lengthy iterative process and

requires repeated driver feedback. This work includes driver’s body model, to minimize the

workload of drivers as shown in Eq (46) below:

yðtÞ ¼

aREFlong ðtÞ � aslong ðtÞ � avlong ðtÞ

aREFlatðtÞ � aslatðtÞ � avlatðtÞ

vREF yaw
ðtÞ � vsyawðtÞ � vvyawðtÞ

2

6
6
4

3

7
7
5 ð46Þ

Analysis of cost function. We require to cue the brake system and the accelerate system

while in longitudinal mode. For both situations we use numerical control techniques for error

free acceleration profiling. The basicentric coordinate system of a human body in Fig 5 shows

the direction of the longitudinal acceleration, lateral acceleration, and yaw velocity.

The reference (blue solid line) and the simulated (red dashed line) linear acceleration in

Fig 7. The simulated wave is obtained by minimizing the time invariant objective function

from Eq (44) with only minimizing the square of the sensation error. The platform must start

Fig 7. Longitudinal acceleration and resulting cues using linear quadratic regulator based on optimal MCA.

https://doi.org/10.1371/journal.pone.0290705.g007

PLOS ONE Driving Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0290705 November 30, 2023 12 / 23

https://doi.org/10.1371/journal.pone.0290705.g007
https://doi.org/10.1371/journal.pone.0290705


the maneuver at the front of the workspace and must conclude it there for the optimum reac-

tion to operate. As a result, the platform was set up for braking, and the maneuver concluded

in an acceleration-ready posture. This cueing signal has two characteristics that need discus-

sion. The first is a delayed reaction that causes the platform’s peak deceleration to coincide

with the cars. The platform comes to a stop near the end of the braking action due to a mistake

made during workspace management, which is the motion’s second distinguishing feature.

This answer falls short of what the racing car drivers we contacted demand in terms of a strong

early onset cue, hence it is not acceptable. Discussions led to the conclusion that drivers need a

strong first onset cue followed by a mistake of the smallest feasible size. Since the cueing accel-

eration produced lacks these traits, it needed to be modified.

In a drawn-out high-speed turn, lateral acceleration signals can be of great amplitude and

extended duration and have a substantially different form from the longitudinal case. Simula-

tors with a constrained workspace cannot simulate this kind of acceleration. Again, the accel-

eration at the beginning is cued but not maintained. Since the yaw acceleration and the lateral

cue have a similar shape, an objective function of the type Eq (44) is also utilized in this

situation.

Results and discussion

A good motion cueing system should possess the following properties:

1. Realistic motion cues, i.e., the wave shape of output acceleration cues, should be more simi-

lar to that of input linear acceleration. Similarly, the wave shape of output angular velocity

cues should be more similar to that of input angular velocity.

2. Usage of more workspace, i.e., the limits of theoretical workspace, should be achieved by

optimum position and orientation of motion base.

3. It does not generate false cues.

Fig 8. Lateral acceleration and resulting cues using linear quadratic regulator based on optimal MCA.

https://doi.org/10.1371/journal.pone.0290705.g008
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In this article, all the above three qualities have been practically achieved. Results are com-

pared based on the root-mean-square difference (RMSD) and coefficient of cross-correlation

(COCC) that show similarity between two waveforms to produce realistic motion cues. The

following section includes the application of control strategies step by step for motion cueing

and compares the results.

State-of-the-art motion cueing algorithms

Optimal MCA based on the linear quadratic regulator (LQR) is modified by changing the axis

of rotation to the driver’s body axis instead of the motion system’s center of rotation [16, 22].

The main aim behind this change is to achieve realistic motion cues and remove false cues. Fig

5 shows the basicentric coordinate system of the driver body (seated position). The cross-cou-

pling between the simulator and driver depends on the distance between their respective coor-

dinate systems. As discussed in the motion cueing section, MCA receives linear acceleration

and angular velocity as input to produce a proper cueing signal for the simulator motion base.

Furthermore, a tilt rate limiter is introduced after cueing has been achieved for better tilt coor-

dination. This addition investigates the effects on both motion cue fidelity and displacement.

The translational input has time values of longitudinal, lateral, and heave-specific forces.

These inputs vary depending on acceleration, deceleration, and retardation, as shown in Figs 7

and 8. In these Figs., the blue plot shows values of input linear acceleration and illustrates that

these values are never uniform; i.e., they keep on changing with time. According to Fig 7, lon-

gitudinal specific force values are applied to linear quadratic regulator-based optimal MCA,

and resultant cues are plotted in a red dashed line. By thorough investigation of this plot, it can

be observed that the coherence between waveforms is less guaranteed when specific force is

changed quickly. Therefore, the LQR-based MCA can better track and follow the input signals

during uniform conditions. The NOC-based technique [17] has a poor COCC of 0.8 and more

RMSD of 0.455 than the LQR-based method, which has an improved COCC of 0.88 and

Fig 9. Yaw velocity and resulting cues using linear quadratic regulator based on optimal MCA.

https://doi.org/10.1371/journal.pone.0290705.g009
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minimized RMSD to 0.218. This shows that the LQR method provides much better results in

the form of generating realistic motion cues. RMSD should be decreased to zero to achieve

realistic motion cues.

Fig 8. shows the comparison between normalized lateral specific force inputs and generated

motion cues using the LQR-based optimal MCA. Like the previous case of longitudinal specific

force, it is observed that the coherence between waveforms is less guaranteed when the specific

force is changed quickly. Therefore, LQR-based MCA can better track and follow the input sig-

nals during uniform conditions. The NOC-based technique [17] has a lower COCC of 0.83

and RMSD of 0.196 than the LQR-based method, which has an improved COCC of 0.86 and

increased RMSD to 0.221. This shows that the LQR method provides much better results in

the form of generating realistic motion cues. Greater RMSD shows the doubtful performance

of the algorithm during sudden changes of input like braking. To achieve realistic motion, a

more precise MCA must be developed that minimizes RMSD to zero.

Fig 9 shows the comparison between yaw velocity and generated velocity cues based on the

LQR-based optimal MCA. In contrast to the numerical optimal MCA, this method has an

improved COCC of 0.89 and an angle of 3.22. The RMSD was minimized to 0.219. In the case

of NOC, these values are 0.81, 2.23, and 0.417, respectively. This shows that LQR-based MCA

can decrease sensation error between virtual surroundings and real drivers. The improvement

is significant compared with the previous MCA, but it still needs to be improved.

We now compare two popular motion cueing methods based on LQR and GA. The LQR

method discussed earlier in this section shows some improvements in RMSD and COCC

when compared with the NOC strategy, but it still has undesirable RMSD. All methods are

based on the mathematics derived in the motion cueing section, which employs human per-

ception and the human body model to achieve desired results.

These methodologies improve sensation signals by minimizing RMSD and improving the

COCC. Using more simulator workspace results in increased sensation error, but an optimal

solution may result in the optimized workspace with RMSD as minimum as possible, which

needs to have more constraints to be considered with relative simplicity in each constraint.

For GA implementation, some parameters have to be chosen, for example, population size,

crossover rate, and mutation rate. By choosing these parameters, the selection is made between

the degree of freedom of solution and speed of convergence of the GA. Thus, proper selection

of crossover and mutation rate should be ensured to obtain the best results [16]. Depending on

different applications, these parameters may vary as they are chosen by trial and error. In the

case of a large mutation rate, the individual chromosomes may jump to the closer solution,

whereas in the case of a small mutation rate, they may stick in local minima.

The recommended settings of these parameters are included in [22]. GA consists of the set-

tings of crossover rates and mutation rates, which are satisfactory and meet the demands of

the experimental study. Evolutionary operators are assigned to individual chromosomes that

constitute the population. It should be noted that the search capacity of the GA is limited

because of the small number of chromosomes in the population. If the number of chromo-

somes increases, the computational time also increases, not suitable for the proposed applica-

tion. Therefore, an optimal value for population size should be selected to avoid the slow

performance of the algorithm. From [7], the population size of fifty chromosomes is appropri-

ate for acceptable results. If the number of chromosomes increases, it will not improve the

solution considerably; however, it will significantly decrease computational speed and increase

the time of convergence of the solution.

Alternatively, chromosomes are initialized based on the values of the LQR method, as dis-

cussed in the previous section. According to the literature [7], the parameter settings for GA
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parameters are as follows: the crossover rate is 0.8, the mutation rate is 0.2, and half of the size

of the chromosomes for individual regeneration.

As the population size tends to increase, the results become more satisfactory in terms of

sensation error, but the computational speed tends to decrease accordingly. According to a

convergence test on 20, 50, and 100 chromosomes in [16], the best fitness function value,

human sensation error, and displacement are obtained using a population size of 50 chromo-

somes instead of 20. No fruitful results are achieved by increasing the population size from 50

chromosomes. Finally, GA has been successful in decreasing human sensation error and dis-

placement and improving the COCC.

It must be kept in mind that the speed of computation for a population size of 100 chromo-

somes decreases significantly, resulting in an increased computational burden. When the pop-

ulation size is selected greater than 50, the speed of computation becomes too slow without

significant improvement in fitness function value.

Computational time per iteration in the case of 20 chromosomes is 13.90s, whereas in the

case of 50 chromosomes is 27.72 s and in the case of 100 chromosomes, it is 52.06 s [16]. GA-

based optimal MCA stops searching at 455th iteration in case of 50 chromosomes. The density

of genetic problems is based on several constraints, generations, and iterations per second,

tends to increase with the increase in population size, and is less significantly affected using a

population size of 50 compared to a population size of 100.

Fig 10 shows normalized values of reference longitudinal linear accelerations for comparing

MPC-, LQR- and GA-based optimal MCAs with the proposed one. A range of longitudinal

acceleration, deceleration, and retardation is applied to the LQR-based optimal MCA and GA-

Fig 10. Plots of longitudinal acceleration and resulting cues show a comparison between the MCAs based on MPC, LQR MCA, GA, and the proposed one.

https://doi.org/10.1371/journal.pone.0290705.g010
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based optimal MCA. The resulting longitudinal acceleration cues are generated and plotted in

Fig 10.

According to Fig 10, the GA-based optimal MCA shows better performance than the LQR

method because the GA can track input-specific force with high accuracy. In addition, false

cues are removed using the GA.

A comparison of RMSD and COCC between various algorithms is shown in Tables 1 and 2,

respectively. The RMSD has been compared with NOC [17], LQR [16], GA [33], OPT [35],

and MPC [36]. From the Table 1 is can be seen that the NOC behaves imperfectly in case of

longitudinal acceleration and yaw velocity, whereas lateral acceleration is inefficiently in case

of MPC. This is because the NOC is more related to conventional techniques and MPC cannot

better predict the model while in lateral direction. The proposed technique is well suited in all

cases as it employs the extended sensation error. Similarly, while we see the coefficient of cross

correlation in Table 2 for the sake of comparison between the above techniques, our results are

comparable to the GA based approach in all cases of longitudinal & lateral acceleration and

also in yaw velocity. This is because our methodology is more closely related to the OPT and

GA, benefitting from both. Later we also plot these values of COCC in Fig 10 for the sake of

visual comparison with MPC, LQR, GA based techniques.

According to Fig 10, the sensation error between virtual surroundings and the real driver

has decreased in the case of the GA method compared to the LQR method. This error can be

further decreased and taken below the human threshold using other techniques such as one

utilized in the next subsection using H1 control.

A comparison of maximum displacement and maximum angle between various algorithms

is shown in Tables 3 and 4, respectively. As shown in Table 3, it is clear that displacement of

the simulator in surge direction using GA-based optimal MCA significantly drops to 0.37,

which was 0.44 in the case of LQR-based optimal MCA. However, the OPT based approach

results least values of both surge and Heave. This can be due to the constraints applied by their

methodology. Moreover, the yaw angle from Table 4 in the case of GA-based optimal MCA

decreases to 2.04, which was 3.22 in the case of LQR-based optimal MCA. Hence, the GA-

based optimal MCA reduces workspace usage by decreasing RMSD and improving COCC.

Table 1. Comparison of RMSD.

Along αlat vyaw
NOC [17] 0.455 0.196 0.417

LQR [16] 0.218 0.221 0.219

GA [33] 0.072 0.092 0.082

OPT [35] 0.335 0.271 -

MPC [36] 0.194 0.310 -

Proposed 0.022 0.036 0.013

https://doi.org/10.1371/journal.pone.0290705.t001

Table 2. Comparison of COCC.

Along αlat vyaw
NOC [17] 0.80 0.83 0.81

LQR [16] 0.88 0.86 0.89

GA [33] 0.95 0.96 0.98

OPT [35] 0.90 0.92 -

MPC [36] 0.68 - -

Proposed 0.98 0.97 0.98

https://doi.org/10.1371/journal.pone.0290705.t002
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H1 control-based optimal MCA

The human body model and human perception model have been integrated into the classical

washout filter to observe the sensation error, the error between virtual surroundings and real

driver. Driver’s health comfort and motion sickness are significantly apparent if this error is

more than a specified threshold. To minimize this error, hence, to produce realistic motion

cues, optimal motion cueing is applied using different optimization methods, like LQR, GA,

PSO, and H1.

All previous methods result in some acceptable improvement in error with less workspace

usage. H1 control strategies are helpful for their ready applicability to systems involving mul-

tiple variables with cross-coupling between channels. However, for an H1 controller, it is dif-

ficult to optimize robust performance and stabilization simultaneously. However, many

methods, known as extensions of this strategy, exist, such as H1 loop-shaping, which permits

the designer to apply classical loop-shaping concepts to the frequency response of the multi-

variable system and achieve robust performance.

Then favorable robust stabilization is achieved by optimizing the system’s response near

bandwidth frequency. Here, the Riccati equation is reformulated using optimization and linear

matrix inequalities with fewer constraints.

Figs 11–13 show the results of H1 control-based optimal MCA in the case of lateral accel-

erations, longitudinal acceleration, and yaw velocities, respectively, compared to reference sig-

nals along with their cues.

The sensation error between the simulator and driver and the time derivative of the sensa-

tional reference signal is input to the H1 control method. Then, the H1 controller generates

a supplementary reimbursing signal “Fi,” which removes the sensation error between the sim-

ulator and driver. The human body has limited ability to enumerate motion applied to it, and

the human vestibular system cannot differentiate between small, medium, or large motions in

various directions. This motion is divided into logical perceptible ranges. Therefore, in this

proposed H1 control method, sensation error values have been divided into five groups:

heavily positive, positive, zero, negative, and heavily negative. In this way workspace of the

simulator is improved.

In the translational channel of the H1 controller, both inputs are classified as the otolith

organ and vestibular organ. The result of the high-pass filter is input to this block and then

Table 3. Comparison of maximum displacement.

Surge (m) Sway (m) Heave (m)

NOC [17] 0.33 0.37 0.20

LQR [16] 0.44 0.45 0.21

GA [33] 0.37 0.39 0.18

OPT [35] 0.27 - 0.18

Proposed 0.50 0.49 0.22

https://doi.org/10.1371/journal.pone.0290705.t003

Table 4. Comparison of maximum angle.

Roll (o) Pitch (o) Yaw (o)

NOC [17] 2.50 2.79 2.23

LQR [16] 3.50 2.98 3.22

GA [33] 0.37 0.39 0.18

Proposed 3.33 4.34 3.58

https://doi.org/10.1371/journal.pone.0290705.t004

PLOS ONE Driving Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0290705 November 30, 2023 18 / 23

https://doi.org/10.1371/journal.pone.0290705.t003
https://doi.org/10.1371/journal.pone.0290705.t004
https://doi.org/10.1371/journal.pone.0290705


compared with vehicle input. Then, this error is compared as an input to H1 controller that

eliminates error in translational sensational signal.

In the rotational channel of the H1 controller, inputs are provided through the otolith

organ and vestibular organ. The result of the low-pass filter is input to this block for tilt coordi-

nation and then compared with linear vehicle input to determine the error. Then, this error is

then provided as an input to the H1 controller.

As seen in Table 1, in the case of GA-based MCA, the RMSD in the longitudinal direction

is 0.072 and the COCC is 0.95. In the case of H1-based optimal MCA, RMSD is significantly

reduced to 0.022 and the COCC is significantly improved to 0.98. Moreover, in the case of

Fig 11. Lateral acceleration and resulting cues using the proposed approach.

https://doi.org/10.1371/journal.pone.0290705.g011

Fig 12. Longitudinal acceleration and resulting acceleration cues using the proposed approach.

https://doi.org/10.1371/journal.pone.0290705.g012
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GA-based optimal MCA, the RMSD in the lateral direction is 0.092 and the COCC in the same

direction is 0.96. In the case of the H1-based optimal MCA, RMSD is significantly reduced to

0.036 and the COCC is significantly improved to 0.97. The RMSD in the yaw velocity direction

in the case of GA-based optimal MCA is 0. 082 and the COCC in the same direction is 0.98. In

the case of the H1-based optimal MCA, RMSD is significantly reduced to 0.013 and the

COCC is significantly improved to 0.98.

The RMSD, COCC, maximum displacement, and maximum angle of NOC, LQR, GA, and

H1 control-based MCAs are given in Tables 1–4, respectively.

From Table 3, H1-based optimal MCA shows a significant increase in displacement of the

simulator to 0.50 in the surge direction. In the case of LQR-based optimal MCA, it is 0.44; in

the case of GA-based optimal MCA, it is 0.37. Also, the yaw angle is increased to 4.34 in the

case of H-based optimal MCA, 3.22 in the case of LQR-based optimal MCA, and 2.04 in the

case of GA-based MCA. Hence, the H1-based optimal MCA improves workspace usage by

decreasing RMSD and improving the COCC. This leads to effective implementation of the

H1-based optimal routine for motion cueing of driving simulators, considering fewer con-

straints, and resulting in more workspace usage.

The proposed MCA confirms the production of realistic motion cues by minimizing

RMSD. Workspace usage is maximized in two ways:

1. Optimally solving forward kinematics

2. Using H1 controller

This leads to the effective implementation of optimal routine for motion cueing of driving

simulators, considering fewer constraints and resulting in more workspace usage.

In short, all the current optimal MCAs do not utilize a sufficient simulator workspace. Linear

data fitting techniques for motion cueing problems are limited by second-order performance

indices, such as acceleration values. In contrast, model predictive control involves different

Fig 13. Yaw velocity and resulting cues using the proposed approach.

https://doi.org/10.1371/journal.pone.0290705.g013
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systems with different physical constraints. NOC overcomes these limitations by integrating

time-varying cost functions adjusted by driver’s feedback. Although NOC is an open-loop

method, it is still helpful in analyzing performance constraints in loop strategies. Other meth-

ods, such as LQR-based optimal control and GA-based optimal control, show better perfor-

mance in improving the sensation signal. However, they cannot enhance workspace usage due

to more constraints involved. The LQR-based method improves the workspace but has more

sensation error, and the GA-based method decreases error but with poor workspace usage.

Conclusion

This research proposes a novel optimal MCA for vehicle driving simulators that decreases the

sensation error between virtual surroundings and real drivers. The quadratic cost function of

the error between vehicle signal and simulator output is minimized using the conventional

H1-based optimal control. In addition, usage of the simulator workspace is improved by

implementing driver’s body model with driver’s perception model in optimal MCA. The pro-

cedure to design optimal MCA W(s) and the performance of this algorithm through computer

simulations have been presented. The simulation results have shown significant improvement

both quantitatively and qualitatively.

For future work, other optimization techniques like PSO can be applied for assessment.

Moreover, fuzzy logic controller-based optimal MCA can be employed. Like the H1 control-

ler, a fuzzy logic controller can be adopted to enhance motion fidelity.
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