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13 

Abstract 14 

The use of the discrete element method (DEM) to study soil mechanics’ problems at particle level opens 15 
a new window to enhance our understanding of the mechanical behaviour of soil. This method can 16 
provide abundant information at the particle-scale and can be used as a powerful tool to illustrate the 17 
macro-mechanical behaviour of soils based on the inter-particle mechanisms. The triaxial test is one of 18 
the most common laboratory methods to study the macro-mechanical behaviour of particulate 19 
materials such as soil. However, many problems in geotechnical design can be assumed and simplified 20 
as a plane strain problem. Therefore a biaxial test can be conducted to reproduce the macro-mechanical 21 
behaviour of soil, where the sample is enclosed by two horizontal rigid platens and a vertical latex 22 
membrane, which is a deformable continuous element and allowing the enclosed specimen to deform 23 
freely while maintaining confining stress during loading. This paper presents an algorithm to represent 24 
physical and mechanical characteristics of latex membrane in the 2D DEM simulation of biaxial test 25 
using the PFC2D code. To investigate the impact of the lateral boundary conditions on micro-macro 26 
mechanical behaviour of soil samples, two sets of DEM biaxial tests are considered with rigid and 27 
deformable lateral boundary conditions. The DEM modeling results indicate that the lateral boundary 28 
conditions have a significant effect on the micro-scale fabric properties, thickness and inclination of the 29 
shear band. The comparison between these two simulations also demonstrates that the lateral boundary 30 
conditions play a major role in the peak and post-peak stress-strain behaviour as well as the dilation 31 
and critical state behaviour of granular soils. 32 

Keywords: Discrete Element Method, Biaxial test, Deformable boundaries, Shear band, Critical state, 33 
Fabric Anisotropy, Geometrical Stability Index 34 

1. Introduction 35 

The triaxial test is the most common laboratory method applied on the soil element to determine stress 36 
strain characteristics [1, 2]. This information is produced by monitoring the imposed displacement and 37 
pressure over the boundaries of the sample. Many problems in geotechnical design, however, are 38 
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assumed to be plane strain [3, 4]. That is, studying the soil behaviour through two-dimensional 1 
laboratory tests such as biaxial test can be more appropriate. In a biaxial test, the granular soil is 2 
bounded with four boundaries: two horizontal rigid platens and two vertical membranes which allow 3 
the particulate system to deform freely during shearing, while maintaining a specified confining 4 
condition. However, applying such laboratory test on the granular soil is not fully addressed in the 5 
literature. Alternatively, a two-dimensional simulation, for instance using Discrete Element Method 6 
(DEM), can be applied to analyse this test. Since the response of granular soils, such as stress and strain 7 
to the applied load in this test is only measured over the boundaries of sample, simulating the proper 8 
boundary condition using DEM plays a major role in the macro mechanical behaviour of particulate 9 
system during testing. The use of DEM to simulate and analyse the problems in the geomechanics field 10 
has been increasing  [5, 6, 7]. It has been proven that DEM is a powerful numerical tool to study the 11 
micro and macro scales of granular soils by providing abundant information at the particle scale such 12 
as inter-particle interactions, particle velocities, displacements and rotations that might not be 13 
measured in the laboratory tests. Many researchers, the most notable [8, 9, 10], have illustrated that an 14 
invaluable insight can be attained from considering two-dimensional models of idealized soil. A series 15 
of DEM biaxial tests on intact rock with rigid boundary condition were performed for comparison and 16 
calibration purposes with standard triaxial test data from the laboratory [11, 12].  The most notable 17 
DEM biaxial test on idealized soil with edge bounded particles were implemented by Oda et. al [13] 18 
and Kawamoto et. al [14]. This method can result in developing the bending stiffness which has an 19 
impact on the bulk responses of the particulate systems. Additionally, the boundary particles cannot 20 
freely move during loading.  Chung and O’Sullivan [41] have introduced an algorithm to simulate 21 
deformable boundaries. In their work, boundary particles are able to move, while limited by a confining 22 
pressure.  In this paper, we have made some improvements in the algorithm to model the continuous 23 
membrane for lateral boundaries of biaxial test as deformable boundaries  [15]. The modified algorithm, 24 
which is described in detail in section 6 of this paper,  is used to investigate the sensitivity of the macro-25 
mechanical behaviour of soil as well as the fabric evolution to the lateral boundary conditions: rigid 26 
boundaries and deformable boundaries.   27 

2. DEM implementation in PFC2D 28 

DEM is an advanced numerical algorithm which was originally proposed by Cundall and Strack [5]. It 29 
can dynamically simulate and track the micro-macro scale behaviour of granular materials. The main 30 
advantage of this method is the generation of abundant information at the particle scale, which can be 31 
used to comprehend the physics of granular systems. This method is proven to be a comprehensive 32 
method to study granular soils [16, 17, 18, 19, 20, 21, 22, 23, 24]. The framework of this method is based 33 
on both contact law and motion equation. Contact model is applied to compute contact forces including 34 
normal and shear form from imposed contact deformations through the normal and shear contact 35 
stiffnesses, while motion equation is used to calculate the particle movement. In this paper, the DEM 36 
simulations are implemented using the software PFC2D 4.1.  37 

2.1. Contact law 38 

The contact force (𝑭𝑭𝒊𝒊) applied on a disk particle in PFC2D code is decomposed into normal force (𝑭𝑭𝒊𝒊𝒏𝒏) 39 
and tangential force (𝑭𝑭𝒊𝒊𝒔𝒔). The former is directed along the tangent to the particle and the latter is 40 
directed toward the particle center. 41 

𝑭𝑭𝒊𝒊 = 𝑭𝑭𝒊𝒊𝒏𝒏 + 𝑭𝑭𝒊𝒊𝒔𝒔 (1) 

To preserve the geometry of particles during loading, it is assumed in PFC2D that particles are rigid with 42 
soft contact, which means that a contact overlap between two particles (e.g., a and b) is applied rather 43 
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than a contact deformation. The magnitude of this overlap is computed by a contact law. In the present 1 
study, a linear elastic contact law is applied to calculate the components of contact forces. The normal 2 
and tangential displacements at time step 𝚫𝚫𝐭𝐭 is calculated as follows:  3 

𝜟𝜟𝒏𝒏 = [(ẋ𝑏𝑏 − ẋ𝑎𝑎)] 𝒏𝒏 𝛥𝛥𝑡𝑡 
(2) 

𝜟𝜟𝒔𝒔 = �[(ẋ𝑏𝑏 − ẋ𝑎𝑎)]𝒕𝒕 − ��̇�𝜃𝑎𝑎|𝑅𝑅𝑎𝑎| + �̇�𝜃𝑏𝑏𝑅𝑅𝑏𝑏��∆𝒕𝒕 

where ẋ𝑎𝑎, ẋ𝑏𝑏, �̇�𝜃𝑎𝑎 and �̇�𝜃𝑏𝑏 are translational and rotational particle velocities of particle a and b, 4 
respectively. 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑏𝑏are the particle radius. 𝒏𝒏 and 𝒕𝒕 are the normal and tangential unit vector of. 5 

To calculate inter-particle normal force, contact models including linear elastic or Hertzian [25] can be 6 
used. In the present study, a linear elastic model is applied. The magnitude of the normal and tangential 7 
contact forces is calculated via: 8 

(𝑭𝑭𝒊𝒊𝒏𝒏)𝒕𝒕 =   (𝑭𝑭𝒊𝒊𝒏𝒏)𝒕𝒕−𝟏𝟏 + (∆𝑭𝑭𝒕𝒕𝒏𝒏)𝒕𝒕   where ∆𝑭𝑭𝒕𝒕𝒏𝒏 = 𝐾𝐾𝑛𝑛(𝜟𝜟𝒏𝒏)𝒕𝒕 (3) 

(𝑭𝑭𝒊𝒊𝒔𝒔)𝒕𝒕 =   (𝑭𝑭𝒊𝒊𝒔𝒔)𝒕𝒕−𝟏𝟏 + (∆𝑭𝑭𝒕𝒕𝒔𝒔)𝒕𝒕 < 𝜇𝜇(𝑭𝑭𝒊𝒊𝒏𝒏)𝒕𝒕 where  ∆𝑭𝑭𝒕𝒕𝒔𝒔 = 𝐾𝐾𝑠𝑠(𝜟𝜟𝒔𝒔)𝒕𝒕 (4) 

The total contact shear force is compared to the Coulomb sliding friction or sliding capacity criterion 9 
(i.e. 𝜇𝜇(𝑭𝑭𝒊𝒊𝒏𝒏)𝒕𝒕) to check whether sliding has occurred. When the resultant force and torque in the z-10 
direction (calculated by multiplying tangential contact force by the distance from the particle center to 11 
the contact location) are computed for each particle, the local damping force 𝑭𝑭𝒊𝒊𝒅𝒅 will be added to them:  12 

𝑭𝑭 = �[(𝑭𝑭𝒊𝒊𝒏𝒏)𝐭𝐭𝒏𝒏 + (𝑭𝑭𝒊𝒊𝒔𝒔)𝐭𝐭𝒕𝒕] + 𝑭𝑭𝒊𝒊𝒅𝒅 

(5) 𝑴𝑴 = �R�[(𝑭𝑭𝒊𝒊𝒔𝒔)𝐭𝐭𝒕𝒕� + 𝑭𝑭𝒊𝒊𝒅𝒅 

𝑭𝑭𝒊𝒊𝒅𝒅 = −𝛼𝛼|𝑭𝑭|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�̇�𝑥);         𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣) = �
+1,   if �̇�𝑥 >  0 
−1,   if �̇�𝑥  <  0 
0,      if �̇�𝑥 =  0 

 

where 𝜶𝜶, |𝑭𝑭| and �̇�𝒙 are damping constant, resultant force on the particle and particle velocity, 13 
respectively. The computed resultant force and torque acting on the particle is used to determine the 14 
change in particle velocity via Newton`s second law for the next time step. 15 

3. Soil Fabric  16 

In granular mechanics, soil fabric refers to the size, shape and arrangement of soil particles. Fabric 17 
quantities include either particle orientation, if 2D disk particles are used, or contact orientation and 18 
branch vector orientation for non-circular particles. These fabric quantities are often presented as an 19 
average or graphically (e.g. polar diagram of contacts). Rothenburg et al. [26] proposed a closed form 20 
solution to estimate the polar diagram of contacts.  21 

𝐸𝐸(𝜃𝜃) = 1
2𝜋𝜋

[1 + 𝑎𝑎 cos2(𝜃𝜃 − 𝜃𝜃𝑎𝑎)]                                                                (6) 

where 𝑎𝑎 represents “fabric anisotropy” in a granular system, depending on the number and density of 22 
unit normal vectors in principles axes. Note, Equation (6) should be drawn in polar coordinates. The 23 
shape of 𝐸𝐸(𝜃𝜃)'s function is circular in polar coordinates and 𝐸𝐸(𝜃𝜃) represents mathematically the radius 24 
of the polar diagram distribution of normal contacts at each 𝜃𝜃 value. The variable 𝜃𝜃, which is measured 25 
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clockwise, varies between 0° and 360°). Figure 1 schematically illustrates the concept of 𝐸𝐸(𝜃𝜃) and 𝜃𝜃. 𝑎𝑎 1 
represents the deviation between the geometry of contact distribution and the isotropic contact 2 
distribution. For example, if 𝑎𝑎 = 0, 𝐸𝐸(𝜃𝜃) will be a circle such that the state of the system being 3 
considered is in an isotropic state. 𝜃𝜃𝑎𝑎 𝑠𝑠𝑠𝑠 the direction of anisotropy. Parameters, 𝑎𝑎 𝑎𝑎𝑠𝑠𝑎𝑎 𝜃𝜃𝑎𝑎, are obtained 4 
by the following equations:  5 

a = 2 sin∆𝜃𝜃
𝑁𝑁∆𝜃𝜃

�[∑ 𝑁𝑁𝑔𝑔 sin�(2𝑠𝑠 − 1)∆𝜃𝜃�𝑛𝑛𝑔𝑔
𝑔𝑔=1

2
+ [∑ 𝑁𝑁𝑔𝑔 cos�(2𝑠𝑠 − 1)∆𝜃𝜃�𝑛𝑛𝑔𝑔

𝑔𝑔=1
2
  

(7) 

𝜃𝜃𝑎𝑎 =
1
2

tan−1
∑ 𝑁𝑁𝑔𝑔 sin((2𝑠𝑠 − 1)∆𝜃𝜃𝑛𝑛𝑔𝑔
𝑔𝑔=1

∑ 𝑁𝑁𝑔𝑔 cos((2𝑠𝑠 − 1)∆𝜃𝜃𝑛𝑛𝑔𝑔
𝑔𝑔=1

  
(8) 

where 𝑁𝑁 is the total number of contacts, ∆𝜃𝜃 = 360
𝑛𝑛𝑔𝑔

, 𝑠𝑠𝑔𝑔the number of segments and 𝑁𝑁𝑔𝑔 is the number of 6 

contacts within the 𝑠𝑠th segment. Figure 1 schematically presents the concept of segment, 𝑠𝑠𝑔𝑔, highlighted 7 
in Equation 7 and Equation 8. 8 

 9 

Figure 1 Schematically presentation of the concept of 𝑬𝑬(𝜽𝜽), 𝜽𝜽, segment, 𝒏𝒏𝒈𝒈highlighted in Equation 6 to Equation 8 10 

In fact, fabric anisotropy parameter shows the ability of granular systems to create the anisotropy state 11 
in normal contact distribution. Rothenburg [27] applied a similar idea to estimate an analytical form of 12 
polar diagram for normal contact force distribution, 𝑓𝑓�̅�𝑛𝑐𝑐(𝜃𝜃), of an idealised 2D particulate system during 13 
loading:  14 

𝑓𝑓�̅�𝑛𝑐𝑐(𝜃𝜃) = 𝑓𝑓0̅𝑐𝑐[1 + 𝑎𝑎𝑛𝑛 cos 2(𝜃𝜃 − 𝜃𝜃𝑛𝑛)]                                                                                  (𝟗𝟗) 15 

where 𝑎𝑎𝑛𝑛 is the normal contact force anisotropy. Note, similar to Equation (6) the above Equation should 16 
be drawn in polar coordinates. 𝜃𝜃𝑛𝑛 is a direction of 𝒇𝒇�𝒏𝒏𝒄𝒄 (𝜽𝜽). The similar approach applied to specify 𝑎𝑎𝑛𝑛 17 
and 𝜃𝜃𝑛𝑛: 18 

𝑓𝑓0̅𝑐𝑐 =
1

2𝜋𝜋
�𝑓𝑓𝑛𝑛𝑐𝑐(𝑠𝑠)∆𝜃𝜃

𝑛𝑛𝑔𝑔

𝑔𝑔=1

  

 

                     (10) 
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𝑓𝑓𝑛𝑛𝑐𝑐(𝑠𝑠) = �𝑓𝑓𝑛𝑛
𝑐𝑐𝑖𝑖

𝑛𝑛𝑐𝑐𝑔𝑔

𝑖𝑖=1

 

𝑎𝑎𝑛𝑛 sin 2𝜃𝜃𝑛𝑛 =
1
𝜋𝜋𝑓𝑓0̅𝑐𝑐

�𝑓𝑓𝑛𝑛𝑐𝑐(𝑠𝑠) sin((2𝑠𝑠 − 1)∆𝜃𝜃)∆𝜃𝜃

𝑛𝑛𝑔𝑔

𝑔𝑔=1

 

𝑎𝑎𝑛𝑛 cos 2𝜃𝜃𝑛𝑛 =
1
𝜋𝜋𝑓𝑓0̅𝑐𝑐

�𝑓𝑓𝑛𝑛𝑐𝑐 (𝑠𝑠)cos((2𝑠𝑠 − 1)∆𝜃𝜃)∆𝜃𝜃

𝑛𝑛𝑔𝑔

𝑔𝑔=1

 

where 𝑠𝑠𝑛𝑛𝑔𝑔 and 𝑓𝑓𝑛𝑛
𝑐𝑐𝑖𝑖 are the number of contacts within gth segment and the normal contact force of ith 1 

contact from gth segment respectively. If 𝑎𝑎𝑛𝑛 = 0, 𝑓𝑓�̅�𝑛𝑐𝑐(𝜃𝜃) = 𝑓𝑓0̅𝑐𝑐. That is, the system is likely to be isotropic 2 
[22]. One of the key microscopic parameters, which are defined at particle-level, is the average 3 
coordination number which increases with densification [28, 29]. This parameter is the average number 4 
of contacts per particle within a specific volume of a particulate assembly and consequently it provides 5 
a measure of packing density or packing intensity of fabric at particle-level. For a volume of particulate 6 
assembly with 𝑁𝑁𝑝𝑝 particles and total number of contacts, 𝑁𝑁𝑐𝑐, the definition of average coordination 7 
number 𝐶𝐶𝑛𝑛 is given by:  8 

𝐶𝐶𝑛𝑛 = 2𝑁𝑁𝑐𝑐
𝑁𝑁𝑝𝑝

                          (11) 

Since each contact is shared between two particles, the actual number of contacts is multiplied by 2. 9 
Rothenburg and Kruyt [30] and Maeda [31] have shown that average coordination number should be 10 
at least three for idealized disk particle when a granular system is in quasi-static equilibrium. 11 

4. Geometrical stability index  12 

The fabric quantities illustrated above are average quantities for a volume of particles. For instance, the 13 
average coordination number provides an average measure of bulk packing density. However, this 14 
average fabric quantity cannot demonstrate how contacts are distributed around a particle. This issue 15 
was considered in average normal contact distribution which statistically describes the orientation of 16 
contacts during loading. These collective fabric terms can be used to interpret the bulk stability of a 17 
granular system and give an indication of the response and bulk instability [9, 28]. However, instability 18 
occurs at a particle level which may progress causing local instability. Geometrical stability index, ʎ, is 19 
a state-of-the-art fabric term which can measure the contact deviation of each particle from the 20 
arrangement of the most stable contacts during loading [32]. In this concept, a set of n-stable contact 21 
arrangements is defined for each particle which is in contact with n particles. The radial distance 22 
between two contacts on the perimeter of a particle is the minimal angle between them. The deviation 23 
of the contact arrangement of a particle, 𝑎𝑎𝑆𝑆𝑛𝑛, from a geometrical stable contacts arrangement is 24 
expressed as the sum of the deviation of each contact point, d(sin), from the associated stable location 25 
such that: 26 

𝑎𝑎𝑆𝑆𝑛𝑛 = �𝑎𝑎(𝑆𝑆𝑖𝑖𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

 (12) 

This is repeated for each contact. The minimum value of 𝑎𝑎𝑆𝑆𝑛𝑛 is D:  27 

𝐷𝐷 = min{𝑎𝑎𝑆𝑆𝑛𝑛} (13) 

To make it dimensionless, it is divided by 360°. 28 
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𝜆𝜆 =
𝐷𝐷𝑀𝑀
360

  (14) 

in which 𝜆𝜆 is geometrical stability index. 1 

Figure 2a shows particle, D, is contact with three particles, A, B and C. A set of 3-stable contact 2 
arrangements is defined for this contact arrangement as shown in Figure 2b–d. If the angle between 3 
particle A and particle B is 120 ° and the angle between particle B and particle C is 120 °, there is 4 
geometric stability. If either of these angles ≠ 120 ° then the configuration is no longer geometrically 5 
stable. This is expressed in terms of the deviation of the lines connecting the centers of the particles 6 
from the geometrically stable configuration. The dash lines in each of these figures is the stable contact 7 
configuration, when the angle between them is 120 °.  8 

 9 

Figure 2 Concept of geometrical stability index  (After Momeni et al. 2022 [])Therefore, there are three 10 
sets of 𝑎𝑎𝑆𝑆𝑛𝑛. For the first set (Figure 2b):  11 

𝑎𝑎𝑆𝑆𝑛𝑛𝐴𝐴 = 𝛼𝛼1 + 𝛼𝛼2 (15) 

For the second set (Figure 2c) 12 

𝑎𝑎𝑆𝑆𝑛𝑛𝐵𝐵 = 𝛽𝛽1 + 𝛽𝛽2 (16) 

For the third set (Figure 2d): 13 

𝑎𝑎𝑆𝑆𝑛𝑛𝐶𝐶 = 𝛾𝛾1 + 𝛾𝛾2 (17) 

Thus, the geometrical stability index for this particle is: 14 

𝜆𝜆2 =
𝑚𝑚𝑠𝑠𝑠𝑠 {𝑎𝑎𝑆𝑆𝑛𝑛𝐴𝐴 ,𝑎𝑎𝑆𝑆𝑛𝑛𝐵𝐵 ,𝑎𝑎𝑆𝑆𝑛𝑛𝐶𝐶}

360
 (18) 

It is assumed that particles with one or no contact are not stable and are assigned a value of λ of one. 15 
Reader to refer to Momeni et. al [32] for more details of this state-of-the-art fabric term. 16 

5. Boundary conditions in DEM biaxial test overview 17 

In this paper, two-dimensional biaxial specimens consisting of 2D idealized disk particles are used to 18 
qualitatively investigate the sensitivity of the micro-macro mechanical behaviour of idealized granular 19 
sand to the side boundary conditions: rigid boundary and deformable boundary. Particles are initially 20 
generated within a chamber enclosed with four rigid boundaries then isotropically consolidated to the 21 
target confining pressure. As biaxial specimen is sheard, the confining stress along the side boundaries 22 
is maintained at a constant value in combination with a servo-controlled system to control the stress. A 23 
servo-control mechanism together with boundary conditions are required to be employed in DEM 24 
biaxial tests to maintain the hydrostatic confining pressure during application of the deviatoric load. 25 
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The servo-control is used at the side boundaries of the sample. A rigid boundary is usually employed 1 
by DEM analysts [32, 33, 34]. In this approach, a specific velocity is given to the rigid boundary through 2 
the servo-control to maintain the target confining pressure. However, the true fabric evolution and bulk 3 
deformation of sample cannot be developed as the rigid boundaries inhabit the free movement of 4 
boundary particles. Additionally, the magnitude of contact forces developed between those particles 5 
that are in contact with the rigid boundary are high. This results in significant changes in the macro 6 
stress distribution over the boundary. Using an inflexible boundary takes longer for the particulate sand 7 
system to reach the critical behaviour. As stated by Momeni [32] the elastic parameters including 8 
Young’s modulus and Poisson’s ratio attained from inflexible boundary can be reliable. To show a true 9 
bulk deformation (e.g. bulge deformation and true shear band) and fabric evolution a deformable 10 
boundary should however be employed. Similar to continuum model where boundary conditions can 11 
be either displacement or force control over the nodes of boundary elements, the boundary condition 12 
in a DEM simulation can be expressed by either displacement or force control over the boundary 13 
particles. The concept of displacement boundary condition is to maintain the confining stress over each 14 
boundary particle, in two directions, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦, to a target stress value by adjusting the velocity of each 15 
boundary particle in two directions, �̇�𝐮𝐱𝐱  and �̇�𝐮𝒚𝒚, within a biaxial sample. At the start of each time step, 16 
the value of the boundary particle stresses within the biaxial chamber in two directions, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦, is 17 
calculated by DEM solver (e.g. PFC2D) and compared with the target confining stress, 𝜎𝜎𝑡𝑡. If the boundary 18 
particle stresses are equal to 𝜎𝜎𝑡𝑡, the particle velocity, �̇�𝐮𝐱𝐱  and �̇�𝐮𝒚𝒚 will be set to zero; otherwise the particle 19 
velocity might be adjusted through the following relation:    20 

�̇�𝐮𝐱𝐱 = Gx(𝛔𝛔𝐱𝐱 − 𝛔𝛔𝐭𝐭)      where      Gx ≤
𝛽𝛽 Ax

𝐾𝐾𝑛𝑛∆𝑡𝑡
 

(19) 

�̇�𝐮𝒚𝒚 = Gy�𝛔𝛔𝐲𝐲 − 𝛔𝛔𝐭𝐭�      where    Gy ≤
𝛽𝛽 A𝑦𝑦

𝐾𝐾𝑛𝑛∆𝑡𝑡
 

where Gx, Gy, Ax, Ay, 𝛽𝛽, Kn and ∆t are the gain parameter, projection area of particle in 𝑥𝑥 and 𝑦𝑦 directions, 21 
a constant value between 1 and 0.01, normal contact stiffness and time step. The projection area of 22 
particle in 𝑥𝑥 and 𝑦𝑦 directions will be explained in Section 6.1. A change in the displacement value given 23 
to a boundary particle leads to a change in its deformation value with neighboring particles. This 24 
alteration in the contact deformation of a boundary particle results in a change in its contact force value 25 
and stress value. For stability, the absolute value of the change in particle stresses must be less than the 26 
absolute value of the difference between the measured and target stresses. This prevents overshooting 27 
of the target stress, which would lead to an oscillation about the target stress that would grow in an 28 
unbounded fashion and lead to numerical instability.  29 

In the force boundary condition, an external force equal to the target confining stress applied to the 30 
boundary particles at each time step to maintain the target confining stress. However, using force 31 
boundary conditions is more efficient since in displacement boundary conditions at each time step the 32 
stress tensor of each boundary particle should be calculated and compared with target confining stress. 33 
Periodic boundary is also used by DEM analysts to simulate the boundary of DEM models [35, 36]. In 34 
this approach, the particulate element is virtually extended in all directions by repeating this element. 35 
Additionally, either displacement or force boundary conditions should be coupled over the periodic 36 
boundary particles to maintain the target confining stress during the biaxial test. The use of periodic 37 
boundaries has the following effect on the physics of the DEM model. When a particle flies over the 38 
periodic boundary, a new particle with the same properties enters the system from the adjacent virtual 39 
system on the opposite side. When this boundary condition is applied, the expansion and localization 40 
of the model during loading cannot be take place because the dimension of periodic space is already set 41 
to a constant value. When the system expands, the displacement of boundary particles may exceed the 42 
set periodic space. At this stage, those boundary particles will be removed automatically, and the same 43 



8 
 

particle enters the system from the adjacent virtual system on the opposite side. This leads to change in 1 
the normal shear force distribution on the boundary. However, any unexpected changes in boundary 2 
particles result in change in the average un-balanced force system. That means the significant and 3 
permanent chaos in un-balanced forces and particle velocities will be take place. Thus, the magnitude 4 
of deviatoric load should be small enough to prevent boundary particles passing the periodic boundary. 5 
El Shamy and Denissen [37] applied periodic boundary to investigate liquefaction phenomena using 6 
DEM simulations. Zamani and El Shamy [38] studied earthquake seismic wave propagation through 7 
the dry granular soil using PFC3D [39] qualitatively. The periodic boundary condition was used for this 8 
work.  9 

6. The history of simulating membrane latex in DEM  10 

The role of latex in triaxial test is to prevent the pressurized fluid getting into the sample, allowing the 11 
system to naturally deform during loading. To simulate this in DEM, those particles that are in contact 12 
with latex in the real triaxial text should be identified through the given algorithm. These boundary 13 
particles should also behave similarly to the latex membrane in a real physical test. Two algorithms are 14 
generally applied to identify the boundary particles by DEM analysts. In both algorithms the sample 15 
enclosed with rigid boundaries is firstly isotropically consolidated. People including [8, 9, 10, 13, 40] 16 
first identified those particles are in contact with rigid side boundaries. They then applied a contact 17 
bond with a high tensile capacity between the boundary particles. The boundary particles in this 18 
method cannot be updated as the boundary particles are bonded initially. Additionally, the magnitude 19 
of the contact bond should be high enough to not fail during bulk expansion. As the moment stiffness 20 
of latex applied in triaxial tests is ignorable, bonding the lateral boundary particles generates larger 21 
moment stiffness than recommendable to model experiments properly. Therefore, boundary particles 22 
cannot freely move during loading. This difficulty was sorted out partially in the work carried out by 23 
Cheung and O’Sullivan [41] who developed an algorithm written by FISH language programming to 24 
simulate a lateral membrane boundary for biaxial test using PFC2D. They applied force control boundary 25 
conditions to maintain the confining stress along the boundary particles. In this approach, frictionless 26 
membrane particles can deform freely during testing without bounding them, while maintaining a 27 
specified stress condition. O’Donovan et al. [42] applied this algorithm to maintain confining pressure 28 
over the lateral boundaries in order to study two-dimensional seismic S-waves propagation within an 29 
idealized frictional uniformly-radius sized disks 0.0029 [m] in a hexagonal packing using a series of 30 
PFC2D simulations. At large deformation where the biaxial specimen starts to bulge or a shear band 31 
traverses the sample, a number of particles that have been already part of membrane boundary particles 32 
may separate from the biaxial sample by losing their contact with other particles within the sample. 33 
Based on this algorithm, those particles that have been separated from the specimen and flown over the 34 
boundary are identified by only comparing the x-coordinate of each particle centroid within the 35 
specimen with the minimum centroidal x-coordinate of the boundary particles. As the membrane 36 
boundary deforms during loading, both y- and x-coordinates of separating particles need to be 37 
considered to identify escaping particles from boundary. This will help to insert these particles to an 38 
appropriate position at the boundary, which was not clear from the work of   Cheung and O’Sullivan 39 
[41] and O’Donovan et al. [42]. In the current paper we introduce a slightly modified algorithm to 40 
simulate the continuous latex membrane for biaxial test simulation using PFC2D. This algorithm is 41 
described in detail below.   42 

6.1. Deformable lateral boundary  43 

This section will explain the algorithm to produce deformable lateral boundaries. When the two-44 
dimensional granular system enclosed with four rigid boundaries is isotropically consolidated, the two 45 
lateral boundaries are removed and two deformable membrane lateral boundaries are applied to 46 
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maintain the lateral confining stress. For this purpose, comprehensive subroutines using PFC2D and fish 1 
language programming [15] were developed to derive the pathway of deformable boundary particles. 2 
The stages of this algorithm which is based on directed graph theory is as follows: 3 

1. Introduce two separate ranges for the left- and right-hand sides of the sample to recognize the 4 
boundary particles (see Figure 3(a)). The boundary particles should form two continuous chains at the 5 
edge of the model. This means that the centroid of particle (𝑠𝑠) is above the centroid of particle (𝑠𝑠 – 1) and 6 
below the centroid of particle (𝑠𝑠 + 1).  However, this is not always the case as shown in Figure 3(b) where 7 
some particles at the edge of the model are not part of the chain, i.e. while particles in Figure 3b. This 8 
means that the deformable boundary lies within a boundary zone. Trial and error study showed that 9 
the zone was ten times the mean particle size. 10 

 11 

Figure 3 (a) Define two separate ranges for left- and right-hand side of the sample. (b) Finding the degenerate 12 
particles on left boundary schematically 13 

2. Two-dimensional arrays are then defined to store all the particles’ addresses within the ranges 14 
stated in stage 1. The first component of array is to store the particles’ identification (i.e. particle number 15 
and the second component of array is to assign an index “1” or “0” to all these particles, executed in the 16 
next stage. 17 

3. A loop upon all particles stored in arrays, defined in stage two, are executed and the index of 18 
the particles are assigned to “1” and “0” for particles that are in contact with their immediate above and 19 
those that are not in contact with their immediate above particle, respectively.   These are shown in 20 
Figure 4a (gray and while particles assigned with the index of 1 and 0, respectively). 21 

4. Next, the loop will be continued to find the degenerate directed graphs (white pathway in 22 
Figure 4(a)) and continuous directed graphs (light gray pathways in Figure 4(a)).   23 

(a) (b) 



10 
 

 1 

Figure 4 (a) Determination of all degenerate particles and paths within Range 2 (right range) schematically, (b) 2 
Determination of boundary particles 3 

5. Next, the non-degenerate outermost right-hand particle which is in contact with the bottom 4 
wall is recognized. The outermost right dark gray pathway shown in Figure 4(b) is then selected 5 
as deformable boundary particles because the connectivity between them leads to transmit 6 
properly the hydrostatic pressure to the sample.  7 

6. During shearing of the biaxial specimen where the sample experiences large deformation, some 8 
particles separate from the specimen and pass the boundary. A separate cell is assigned to each 9 
individual deformable boundary particle which was identified in stage 5. The cell number, y-10 
coordinate of the bottom and top of each cell and x-coordinate of deformable boundary particle 11 
centroid are stored in a four-dimensional array. To recognize those particles separating from 12 
the specimen and passing over the deformable boundary particles the following stages need to 13 
be implemented:  14 

• Comparing the y-coordinate of all particles within the right range with the 15 
bottom and top y-coordinates of right cells, defined in the array above, to identify the 16 
cell number which can be allocated to each particle.  17 

• Comparing the x-coordinate of all particles with the x-coordinate of their 18 
corresponding cell number, defined in the array above, 19 

• If the x-coordinate of particle is greater than the x-coordinate of its 20 
corresponding cell, that particle is marked as a particle outside the boundary. For the 21 
left deformable boundary, if the x-coordinate of particle is less than the x-coordinate 22 
of its corresponding cell, that particle is marked as a particle outside the boundary.  23 

(a) (b) 
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7. The inter particle friction of the boundary particles is set to zero because it is assumed that these 1 
particles form the interface between the external pressure and the soil model and only transmit 2 
lateral pressure. In practice, latex is used which is considered a frictionless material [36].  3 

8. While in practice a uniform pressure is applied, in the DEM model a force is applied to each 4 
boundary particle. The force divided by the effective length is equal to the confining pressure, 5 
σ(t), (see Figure 5(a)). The effective length is defined by the line connecting the two contact 6 
points which defines the pathway through the particle (see Figure 5(b)). The magnitude of this 7 
force for each deformable boundary particle is σ(t) × effective length. The components of the 8 
boundary forces are the product of the external pressure and the effective length (see Figure 9 
5(c)).   10 

 11 

Figure 5 Applying external forces on right boundary particles schematically. 12 

9. As the deviatoric loading proceeds, some particles near the edge of boundary (white particles 13 
in Figure 4b) may fall outside the boundary by losing their contact with deformable boundary 14 
particles.  Once a particle is passed the deformable boundary, a force equal to the σ(t) × particle 15 
diameter is then applied to push them back to the deformable boundary particles in the 16 
following time step. This resembles holding particles using latex with lateral confining pressure 17 
(σt) in real experiments where each particle at the edge of boundary faces the aforementioned 18 
pressure, pushing it back to the assembly.  The process to identify the boundary particles is 19 
repeated.    20 

10. The same procedure is applied for the left boundary particles. 21 
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11. Stages three to nine are invoked every time step. 1 

The advantages of this approach over those mentioned before is that the boundary particles are always 2 
in real contact though the actual particles forming the boundary may change between time steps. At 3 
larger displacements where the biaxial sample is sheared, there is a possibility that the formed particle 4 
chain at the boundary changes in each time step, introducing instantaneous changes in the positions in 5 
which the boundary is considered during the application of the lateral pressure to the system. 6 

6.2. The sensitivity of micro-macro mechanical behaviour of particulate system to the 7 

lateral boundary conditions 8 

To study the influence of boundary conditions on the micro-macro mechanical behaviour of particulate 9 
sand, two biaxial tests were performed. One test was with deformable boundary particles and other 10 
was with a rigid wall boundary. To avoid overlapping at the generation stage,  disk particles with the 11 
size range of 0.5 [mm] and 3 [mm], corresponding to a well graded sand, were initially randomly 12 
generated with their half size (i.e. 0.25 [mm] and 1.5 [mm]) within four enclosed rigid walls. Ideally, 13 
there should be at least three contacts per idealised disk particle (i.e. the average coordination number) 14 
when a granular system is in quasi-static equilibrium. By doing this, the chains' force can transmit across 15 
the particulate system. For this purpose, the half-sized generated particles in the biaxial chamber were 16 
expanded to achieve the different target porosity of 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16 and 17 
0.17. It was observed that the samples with target porosity between 0.12 and 0.14 can produce at least 18 
three contacts per particle, therefore porosity of 0.12 was chosen for this study. Linear elastic contact 19 
model was used in this study. It is to be noted that the inter-particle properties for typical sand used for 20 
this study was selected based on the sensitivity of micro-macro mechanical behaviour of sand to the 21 
inter-particle properties by Momeni et. al [44]. They conducted thirty DEM biaxial tests to study the 22 
sensitivity of the macro-micro mechanical properties of particles to the inter-particle properties of an 23 
idealized sand system. Their research identifies the critical parameters and the range over which the 24 
parameters impact mass behaviour.  The time step required to simulate the biaxial test must be very 25 
small to prevent instability of the model. The density scaling approach, originally developed by Sheng 26 
et al. [43], was applied in this work to increase the time step and decrease the computational effort of 27 
simulations. A dimensionless inertia parameter, I, was introduced to study the effect of density scaling 28 
for various strain rates applied to the particulate systems. This method is only applicable for quasi-static 29 
simulation where, 𝐼𝐼, in the following equation must be less than 10-3 [43]. 30 

𝐼𝐼 = �
𝜀𝜀̇2𝜌𝜌𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛2

𝑝𝑝𝑦𝑦
 

   (20) 

where 𝜀𝜀̇, 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛, 𝑝𝑝𝑦𝑦 and 𝜌𝜌 are the strain rate, the minimum radius of the particles, the limiting contact 31 
pressure between particles and the density of the particles. There is a transition zone in the behaviour 32 
of the materials near 𝐼𝐼 = 10−3 for which higher values of 𝐼𝐼 leads to a transient and dynamic behaviour, 33 
and the behaviour maintains a quasi-static response for lower values. A sensitivity analysis showed 34 
that the particle density 𝜌𝜌 = 2x108 [𝑘𝑘𝑔𝑔

𝑚𝑚3] can reproduce the similar macro-micro behaviour as real particle 35 
density 𝜌𝜌 = 2650 [𝑘𝑘𝑔𝑔

𝑚𝑚3]. The particle size distribution is presented in Figure 6. Table 1 shows the input 36 
data used for this study.  37 
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 1 

Figure 6 Particle size distribution 2 

 3 

 4 

Initial porosity 0.12 

Normal particle stiffness: Kn 8.45x107 [N/m] 

D50  1.7 [mm] 

Shear particle stiffness: Ks 8.45x107 [N/m] 

Coefficient of friction between particles 0.9 

Coefficient of friction between a particle and the platen  0.0 

Width  75 [mm] 

Height 150 [mm] 

Strain rate: 𝜀𝜀̇ 2%/min 

Particle density: 𝜌𝜌 2x108 [kg/m3] 

Contact pressure: 𝑝𝑝𝑦𝑦  150 [MPa] 

Table 1 The initial porosity and micro-mechanical properties of the sample 5 

Once the biaxial specimen reaches to the target porosity, the sample was isotropically consolidated to 6 
100 [kPa]. Additional cycles were then executed to bring the system to a static equilibrium. From this 7 
point forward one test was carried out with rigid boundaries while applying servo-control mechanism 8 
to maintain lateral stress of 100 [kPa] during shearing of the sample (see Figure 7b). At the start of 9 
each time step, the average stress along the rigid lateral wall, 𝜎𝜎(w), is calculated by summing the 10 
particle-wall contact force (𝑓𝑓𝑐𝑐

𝑝𝑝𝑝𝑝) over the area of wall, 𝐴𝐴. 11 

𝜎𝜎(𝑝𝑝) =
∑𝑓𝑓𝑐𝑐

𝑝𝑝𝑝𝑝

𝐴𝐴
                                                                                                                      (21) 12 

The wall stress is then compared with the target stress. If the wall stress is equal to 𝜎𝜎(t), the wall 13 
velocity will be set to zero; otherwise the wall velocity, �̇�𝑢(𝑝𝑝), should be adjusted through the following 14 
relation: 15 
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�̇�𝑢(𝑝𝑝) = 𝐺𝐺�𝜎𝜎(𝑝𝑝) − 𝜎𝜎(𝑡𝑡)�     where    𝐺𝐺 ≤
0.5A
𝐾𝐾𝑛𝑛∆𝑡𝑡

                                                               (22) 1 

For the other test, the algorithm described above was applied to form deformable lateral boundaries 2 
and control the lateral stress state replaced the rigid boundaries (see Figure 7a). The top and bottom 3 
platens are then moved slowly inward at a constant velocity to perform a strain-controlled test. The 4 
strain rate applied for these two tests was 2%

𝑚𝑚𝑖𝑖𝑛𝑛
 such that the incremental acceleration of each particle at 5 

each time step is small. All the imposed energy generated during the simulation was dissipated 6 
through frictional sliding between particles and loss of contacts. During the deformation of the 7 
sample, some boundary particles at the edge of the sample escape. The cell of these particles is then 8 
identified at the current time step. The coordinates of such particles are then not considered to 9 
calculate the volumetric strain and lateral strain until they touch the membrane boundary. These 10 
particles then push back to touch the membrane boundary by applying an external force to them. 11 
Once they touch the boundary, the applied external force on them will be removed. 12 

  13 

 14 

Figure 7 The biaxial sample: (a) deformable vertical boundaries, (b) rigid vertical boundaries; 1-1 and 2-2 are the 15 
direction of major and minor axis. 16 

To precisely study the macro mechanical behaviour of granular soil, it is essential this system is 17 
investigated at a microscopic scale. To this end, fabric qualities of these two biaxial tests including 18 
average fabric anisotropy, average coordination number and average geometrical stability index with 19 
axial strain are considered. Figure 8 compares the evolution of polar diagrams of contacts distribution 20 
of both samples during the shearing at three axial strain levels: at 𝜀𝜀11= 0.0% (i.e. at isotropic state), at 21 
axial strain corresponds to peak stress and at 𝜀𝜀11= 10%. To draw these polar diagrams, 18 bins were 22 
considered with an angular interval Δθ = 20°. The radius of each bin corresponds to the number of 23 
contacts. If the polar diagram is fully circled, it shows that the contact distribution is in an isotropic 24 
state. At 𝜀𝜀11= 0.0%, where both samples at macro-scale are isotropically consolidated to 100 [kPa], the 25 
average fabric anisotropy is 0.0034 and a circle can present the analytical contact distribution. The 26 
number of contacts per each segment is distributed almost equally. By applying a deviatoric load, the 27 

(a) (b) 
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contacts are aligned in the direction of major principal stress (i.e. 1-1 axis) to take the load. Note, the 1 
direction of major principal stress (axis 1-1) is in the same direction as the deviatoric stress. The average 2 
fabric anisotropy then rises to 0.35 and 0.29 for rigid and deformable boundaries, respectively. This 3 
shows the sample enclosed with four rigid boundaries enables to mobilize more contacts to take more 4 
load. Quantitatively comparing the diameter of the two polar diagrams at peak stress shows that the 5 
diameter of polar diagram for deformable boundaries is around 3200, while it is about 3600 for rigid 6 
boundaries. At 𝜀𝜀11= 10%, the orientation of contact points is toward the confining stress and average 7 
fabric anisotropy reduced to 0.27 and 0.18 for rigid and deformable boundaries. This indicates both 8 
systems are not able to mobilize more contacts after peak stress, meaning the particulate system has 9 
been collapsed.  10 

 11 

 12 

 13 

 14 At peak stress 
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 1 

 2 
Figure 8 The evolution of contact distribution of particulate: rigid boundaries, deformable boundaries. Note, the 3 
unit of radial angle is "Degrees” and the unit of the radius of the polar diagram is “Number of contacts".  4 

Figure 9a compares the variation of average fabric anisotropy vs. axial stain for the rigid and 5 
deformable boundaries. Up to an axial strain of about 1%, both simulations present a similar trend. 6 
From axial strain of 1% to 1.5%, the peak value of fabric anisotropy for rigid boundaries is more than 7 
that for deformable boundaries. The rigid lateral boundaries restrict the shape of lateral deformation 8 
and do not allow the particles to move freely. In contrast, particles along the deformable boundaries are 9 
free to move during shearing. For the deformable boundaries, the post-peak variation of fabric 10 
anisotropy (from the axial strain of about 4%) is less than that of the rigid, suggesting that the test with 11 
rigid boundaries probably requires longer time shear to reach the critical state. Figure 9b illustrates the 12 
variation of average coordination number against axial strain for different boundary conditions. The 13 
trend of average coordination number vs. axial strain between rigid boundaries and deformable 14 
boundaries is similar until peak fabric anisotropy. It is about 3.4 for rigid boundaries while it is about 15 
3.0 for deformable boundary. The bigger the average coordination number, the more stable the granular 16 
system is. Therefore, the granular system enclosed with rigid boundaries has a bigger strength and is 17 
more stable than that with a deformable boundary. The trend remains relatively constant at 3.3 for the 18 
rigid boundaries, while it is about 2.9 for deformable boundaries. The reason of this decrease in average 19 
coordination number in the case of deformable boundaries after peak is its dilation behaviour. As the 20 
rate of dilation increases, the tendency of particles to move and lose their contacts increases and 21 
subsequently their stability decreases.    22 

At 𝜀𝜀11= 10% At 𝜀𝜀11= 10% 

Deformable 
Boundaries 

Rigid 
Boundaries 
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 1 

Figure 9 The sensitivity of (a) Average Fabric anisotropy and (b) average coordination number to the different 2 
boundary condition for rigid and deformable boundary 3 

Applying the rigid lateral boundaries to maintain the confining pressures during shearing also results 4 
in a substantial increase in average normal contact forces, 𝒇𝒇�𝟎𝟎𝒄𝒄 . For example, Figure 10a and Figure 10b 5 
compare the polar diagram and analytical form of normal contact force distributions for both 6 
deformable and rigid boundaries samples at the end of the test (i.e. 𝜺𝜺𝟏𝟏𝟏𝟏 = 10%). Similar to the polar 7 
diagram of contact distribution, 18 bins are taken into account with an angular interval Δθ = 20° to a 8 
draw polar diagram of normal contact force distribution. The radius of each bin corresponds to the 9 
summation of normal contact forces. The average normal contact forces, 𝒇𝒇�𝟎𝟎𝒄𝒄 , at the end of the test are 10 
significantly different between these two models. As highlighted, the value of average contact forces is 11 
160.82 [N] for the model using deformable boundaries, while it is 658.277 [N] for rigid boundaries. This 12 
notable discrepancy between these two values is because of the interaction between the rigid walls and 13 
the neighboring particles and the lack of free deformation at the lateral boundaries.   14 

               15 

Figure 10 Normal contact force distribution at  𝜺𝜺𝟏𝟏𝟏𝟏 = 10% , (a) deformable boundary particles, (b) rigid boundary 16 

The variations of average geometrical stability index for both samples are shown in Figure 11a. An 17 
equal distribution of contacts of an idealised 2D particle is defined as the most stable contact distribution 18 

(a) (b) 

(a) (b) 
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and the deviation of the contact distribution from the most stable contact distribution is the geometrical 1 
stability index. It is seen that when the samples are in an isotropic state, the average geometrical stability 2 
index is about 0.22. That means that the contacts around each idealised disk particle are not in a stable 3 
configuration. However, the value of this micro-scale descriptor increases for both samples during 4 
shearing. Up to an axial strain of about 1.5%, where the contacts are orientated toward the major 5 
principal stress and corresponds the peak fabric anisotropy and inflection point in average coordination 6 
number, the trend of average geometrical stability index significantly increases to around 0.33 and 0.35 7 
for deformable boundaries and rigid boundaries, respectively. However, beyond this point this 8 
behaviour significantly diverged such that the trend for deformable boundary significant dropped to 9 
around 0.29 at an axial strain of about 4% and then slightly reduced to a value of 0.27 at the end of test. 10 
This trend for rigid boundary gradually increases from an axial strain of about 4% to the end of the test. 11 
It found that there is a correlation between the response of average geometrical stability index and fabric 12 
anisotropy for both models (see Figure 11b). Readers refer to Momeni et al. [7]  for more details of 13 
average geometrical stability index. 14 

 15 

Figure 11 (a)The sensitivity of average geometrical stability index to the different boundary condition, linear 16 
coloration between average fabric anisotropy and average geometrical stability index 17 

Figure 12 shows that the trend of deviatoric stress ratio (ratio of axial stress to confining stress) with 18 
axial strain between these two models is similar up to an axial strain of about 1%. However, from this 19 
point to an axial strain of about 1.5% the sample with the rigid boundary and deformable lateral 20 
boundaries reach to a peak deviatoric stress ratio of 2.6 and 2.3, respectively, which is in agreement 21 
with the work of Cheung and O’Sullivan [41]. The reason for a higher peak deviatoric stress ratio 22 
associated with rigid boundaries is that the lateral movement of the particles is strictly restricted. This 23 
results in generating considerable inter-particle and particle-wall contact deformations. That is, the 24 
contact forces significantly grow during loading. As a result of this, the sliding capacity of contacts as 25 
shown in Equation 4 significantly increases and consequently the system can take a higher load. Both 26 
samples show a notable drop from the peak deviatoric stress ratio up to the axial strain of 4% (i.e. within 27 
the softening-strain behaviour). Beyond this axial strain, the deviatoric stress ratio for the model with 28 
deformable lateral boundaries has a very slow change, showing the system approaches to the critical 29 
state behaviour. However, the stress ratio for the model with rigid lateral boundaries showed growth 30 
from the axial strain of 4% to the end of the test, which is not compatible with the typical behaviour of 31 
Sand. The volumetric strain behaviour of these two models is demonstrated in  Figure 12b. Both 32 
samples show a contraction in the volumetric strain around the peak deviatoric stress ratio. However, 33 
the sample with deformable boundaries shows a slightly larger contraction. The deformable boundaries 34 
allow the particles to move freely, therefore, the average coordination number from an axial strain of 35 

(a) (b) 
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0% to 1.5% decreases by about 20%, while this fall is over 12% for the rigid boundary (see Figure 9b). 1 
That is, the loss of contacts in the case of the rigid boundary is less than that for the deformable 2 
boundary. Thus, during the contraction, the sample with the deformable boundary experiences higher 3 
contraction. From this axial strain to an axial strain of 3%, both samples partially show a similar dilation 4 
behaviour. Changes in the trend of volumetric strain by increasing axial strain beyond this point for the 5 
model with deformable boundaries are substantially smaller than that of rigid boundary, indicating the 6 
system approaches a critical state behaviour. When soil sample under shearing reaches the critical state 7 
behaviour, changes in volumetric and deviatoric stress ratio responses become constant at some point 8 
at post-peak (e.g. Wood [4] and Verdugo and Ishihara [46]. In contrast, the trend of volumetric strain 9 
shows a rise notably by increasing axial strain for the model with lateral rigid boundaries from an axial 10 
strain of about 3% to the end of the test, indicating longer shear and more time is required for the model 11 
with rigid boundary to reach the critical state (e.g. Gu, et al. [47] and Nguyen et al. [48]. Soil will reach 12 
a unique critical state during shearing, at which it deforms continuously with a constant stress state, 13 
constant volumetric state, constant coordination number, constant fabric anisotropy and constant 14 
stability index. Tracking these parameters as shear proceeds demonstrates when the soil will reach to 15 
the critical state behaviour. 16 

 17 

Figure 12 The sensitivity of macro-mechanical behaviour of the system to the different boundary condition: 18 
deviatoric stress ratio vs. axial strain, volumetric strain vs. axial strain 19 

The dilation behaviour of the model with deformable boundaries at post-peak is more representative 20 
of the typical volumetric behaviour of sand. Figure 12b qualitatively compares the volumetric behavior 21 
of sand carried out by Wu et al. [44] and the present study. The different between the volumetric 22 
behavior of these two works is mainly because of particle size distribution and strain rate. Wu et al. [44] 23 
applied a strain rate  of 5%/min while in this work it was 2%/min. 24 

Table 2 summaries the sensitivity of macro-mechanical elasto-plastic parameters to the boundary 25 
conditions.   26 

Elasto-plastic parameters 
Lateral boundary Condition 

Rigid  Deformable  

E (MPa) 35 30 

(a) (b) 
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Poisson’s ratio 0.18 0.20 

∅ (°) (angle of internal 
friction) 

27 24 

Table 2 The sensetivity of macro-mechanical elasto-plastic parameters to the boundary condition 1 

The difference between the computed Young’s modulus of rigid and deformable boundaries is 17%. 2 
This difference between the computed Poisson’s ratio between of deformable and rigid boundaries is 3 
11%. As the peak stress for the sample with rigid boundary is higher than that with a deformable 4 
boundary, the angle of internal friction for rigid boundary is about 9% bigger than that for the 5 
deformable boundary. The angle of internal friction is computed from peak deviatoric stress as follows: 6 

𝐭𝐭
𝐬𝐬

= 𝐓𝐓𝐓𝐓𝐓𝐓𝟐𝟐 �𝟒𝟒𝟒𝟒 +
∅
𝟐𝟐
� (23) 

where t is the deviatoric stress and s is the isotropic stress. 7 

7. The sensitivity of Shear band to the lateral boundary conditions  8 

In soil mechanics, shear band refers to a diagonal shear strain localization, characterised by large 9 
amount of shear strain [45, 14, 46]. Within this zone, particles experience higher amount of rotation but 10 
less movements [41, 14, 7]. Momeni et al. [7] stated that particles which locate within this zone have less 11 
contacts compared with the rest of particles and therefore they are less stable. That is, the shear band 12 
behaviour is influenced by particle rotations rather than particle displacements [44]. Momeni et al. [7] 13 
also showed that those particles that are within this zone have at least two contacts. Sadrekarimi and 14 
Olson [47] stated that the onset of shear band is when soil reaches to the elastic limit. In the classical soil 15 
mechanics, Coulomb’s yield criterion is generally applied to predict the inclination angle of shear band 16 
of fine granular materials which is based on the force equilibrium on the failure plane. According to 17 
this theory where the ratio of shear stress to normal stress is a maximum at shear only for non-cohesive 18 
particulates, the inclination angle of shear band, ф𝑪𝑪, can be measured from the direction of minor 19 
principal stress, which is orthogonal to the deviatoric stress direction in a biaxial test (see 21.a). The 20 
inclination angle of shear band, ф𝑪𝑪, can be measured by following empirical relationship:  21 

ф𝑪𝑪  =  𝟒𝟒𝟒𝟒° + 
∅
𝟐𝟐

                                                                     (𝟐𝟐𝟒𝟒) 22 

For coarse granular soils, Roscoe theory is applied to predicts the angle of shear band inclination, where 23 
dilatancy angle (i.e. 𝛗𝛗) is used to calculate angle of shear band inclination, ф𝑹𝑹, [48].  24 

ф𝑹𝑹  =  𝟒𝟒𝟒𝟒° + 
𝛗𝛗
𝟐𝟐

                                                                     (𝟐𝟐𝟒𝟒) 25 

The significant difference between Equation (24) and Equation (25) is that the dilatancy angle is much 26 
smaller than the angle of internal friction. Figure 13(b) to Figure 13(f) presents the contour plots of the 27 
development of particles displacements during shearing at different axial strain levels for the model 28 
with lateral deformable boundaries. As the sample is sheared, a diagonal zone in which the particles 29 
displacements are less than the rest of sample is formed. At small axial strain level, the formation of 30 
shear band is evident. From axial strain 0.7% to axial strain corresponds to the peak stress (i.e. 𝜀𝜀11 = 31 
1.5%) the shear band is well formed, and particles experience large amount of displacement. As the bulk 32 
dilation increase, the geometry of particles displacements changes notably (e.g. compare particles 33 
displacements at 𝜀𝜀11 = 0.5% and 𝜀𝜀11 = 1.5%). From 𝜀𝜀11 = 1.5% to 𝜀𝜀11 = 10%, two wedges failure forms 34 
and particles experience higher displacements. This shear band is qualitatively in a good agreement 35 
with that shown in Figure 13(g) carried out by Kawamoto et al. [14]. Kawamoto et al. [14] implemented 36 
triaxial tests on the coarse sand to study the shear band behaviour, where the samples were isotropically 37 
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consolidated to 100[kPa]. They loaded the samples up to axial strain 15% and reported a dilatancy angle 1 
and the angle of inclination of shear band of 10° and 50°, respectively. Figure 13(h) shows the shear 2 
band is clearly formed for the model with lateral rigid boundary at 𝜀𝜀11 = 10%. Simple measurements 3 
were made to estimate the orientation of the shear band of those models used deformable lateral 4 
boundaries and rigid lateral boundaries which are 56° and 62°. With the angle of internal friction 5 
provided in Table 2, the inclination of the shear band calculated from Equation (24) for the model with 6 
deformable and rigid boundaries are 57° and 59° respectively. The measured angle of shear band for 7 
the model with deformable lateral boundaries is in good agreement with that calculated from Equation 8 
(24), while the measured angle of shear band for the model with rigid lateral boundaries is bigger from 9 
that calculated from Equation (24). Alshibli and Sture [49] measured shear band thickness using digital 10 
imaging techniques by implementing a number of experimental biaxial tests on sands, where the 11 
samples were isotropically consolidated to 100[kPa]. They recommended the following empirical 12 
relationship to estimate the thickness of shear band:  13 
𝐭𝐭𝒔𝒔  = (𝟏𝟏𝟎𝟎 − 𝟏𝟏𝟏𝟏) 𝐱𝐱  𝐃𝐃𝟒𝟒𝟎𝟎                                                                   (𝟐𝟐𝟐𝟐) 14 

Using simple measurement, the thickness of shear band for the model with deformable and rigid boundaries are 15 
17.5mm and 15mm, respectively. The authors implemented this relationship to estimate the shear band thickness 16 
for both models. By applying Equation (26), the thickness of shear band is “10.5x1.7=17.8mm” which is in good 17 
agreement with the measured shear band thickness attained from the model with deformable lateral boundaries. It 18 
should be noted that in two-dimensional simulation, a particle has three degrees of freedom and is restricted to 19 
move and rotate only in-plane while in three-dimensional modelling a particle has six degrees of freedom and is 20 
free to move and rotate in any direction without no restriction. Additionally, the number of contacts per particle 21 
in 3D models is more than that in 2D models. Hence, longer shear is required that a shear band to be formed for 22 
3D particulate systems in comparison with 2D models. As bulk deformation is restricted in-plane in 2D systems, 23 
the 2D models are stiffer than the 3D systems. Chung and O’Sullivan [41] qualitatively studied the shear behaviour 24 
of particulate soils under 2D biaxial and 3D triaxial simulations using DEM. They showed that those particles that 25 
fall within the shear band in 2D systems experience more rotation in comparison with particles’ rotation within 26 
the shear band in 3D systems. They also indicated that the bulk shear capacity of particulate soils in 3D systems 27 
is greatly dependent on the particles’ rotation in radial directions such that particles that fall into the shear band 28 
experience similar values of rotation in lateral radial directions. 29 

 30 

 31 
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 1 

 2 

Figure 13 (a) shear band inclination angle based on Coulomb and Roscoe theories, (b to f) Evolution of shear 3 
band during shearing for deformable lateral boundaries, (g) Experimental shear band formation at axial strain 4 
15% (Kawamoto et al. [14]) and (h) shear band formation at axial strain 15% for rigid lateral boundaries. The grey 5 
bar is displacement.   6 

8. Conclusion  7 

An algorithm to implement the deformable lateral boundaries for the 2D DEM biaxial test is presented 8 
in this paper where the micro-mechanical behaviors of particles are studied, and compared with the 9 
case of rigid boundaries: 10 

- Tracking the variation of average fabric anisotropy shows that from axial strain of about 1.5% 11 
onwards, the average fabric anisotropy for both systems reduces, indicating the particulate 12 
systems are not able to develop more contacts per particle to take the higher major principal 13 
stress. This drop in average fabric anisotropy from axial strain 1.5% onwards is more notable 14 
for the model with deformable boundary particles.  15 
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- It is found that the model with rigid boundaries leads to higher value of average fabric 1 
anisotropy and average geometrical stability index.  In particular, as the sample is sheared, after 2 
the peak stress the instability index constantly reduces to the end of the test  for the model with 3 
deformable boundaries, while rigid boundaries shows a slight increase of average geometrical 4 
stability index after a strain of about 4%.  5 

- Tracing the evolution of particle movements during shearing for the model with deformable 6 
lateral boundaries shows the angle of inclination of the shear band 23develops long before peak 7 
stress is achieved. The measured thickness of the shear band and inclination of the shear band 8 
from the model with deformable lateral boundaries are in good agreement with the value of 9 
shear band thickness and inclination of shear band calculated from empirical equations.  10 

The DEM modeling tests suggest that the developed algorithm for the deformable boundary could 11 
improve the accuracy of modeling soil samples and can better represent the actual behavior of 12 
granular soils.  13 

 14 
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Nomenclature 

�̇�𝒙 translational Particle velocity        �̇�𝜽 rotational Particle velocity 

𝜃𝜃𝑎𝑎 rotation of 𝐸𝐸(𝜃𝜃)                               𝜃𝜃𝑛𝑛   direction of 𝒇𝒇�𝒏𝒏𝒄𝒄 (𝜽𝜽)      

𝒇𝒇�𝟎𝟎𝒄𝒄  average normal forces                    𝐶𝐶𝑛𝑛 Average coordination number                                                        

𝜟𝜟𝒏𝒏 Normal contact deformation       𝑎𝑎 Fabric anisotropy  

Δt Time step                                        𝜟𝜟𝒔𝒔 Shear contact deformation 

θ Angle of contact force from x-axis and angle friction 

α Damping constant                          𝜀𝜀̇ Strain rate 

𝐾𝐾𝑠𝑠 Tangential contact stiffness         𝐾𝐾𝑛𝑛 Normal contact stiffness 

 𝑭𝑭𝒊𝒊𝒏𝒏 Total normal contact force          𝑭𝑭𝒊𝒊𝒔𝒔  Total tangential contact force  

𝜌𝜌 Particle density                                𝜀𝜀̇ Strain rate 

𝑝𝑝𝑦𝑦 Contact pressure                            I density scaling factor 

𝑭𝑭𝒊𝒊 contact force                                    𝑎𝑎𝑛𝑛 normal contact force anisotropy 

F Resultant force                                 M Torque 

𝑭𝑭𝒊𝒊𝒅𝒅 Local damping force                     𝒏𝒏 and 𝒕𝒕 unite vector                            

𝑣𝑣 Particle velocity and Poisson’s ratio    

 R Particle radius                                ф𝐶𝐶 Angle of shear band: Coulomb’s 
theory 

t Deviatoric stress                                s Isotropic stress                                  

E Young’s Modulus                            ф𝑅𝑅 Angle of shear band: Roscoe’s theory 

𝜀𝜀11 Major Strain tensor component in axial direction 

𝜀𝜀𝑣𝑣  Volumetric strain                         φ dilatancy angle 

𝐷𝐷50 Mean particle size                       t𝑠𝑠 thickness of shear band 

𝜇𝜇 coefficient of friction                     𝐮𝐮𝐱𝐱 Particle velocity in x-direction 

𝐮𝐮𝐲𝐲 Particle velocity in y-direction   𝜎𝜎𝑡𝑡 Target stress 
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