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 
Abstract—Based on a force density method coupled with optimal 
design of node positions, a novel approach for optimal surface 
profile design of mesh reflectors is presented. Uniform tension is 
achieved by iterations on seeking optimum coefficients of the force 
density. The positions of net nodes are recalculated in each 
iteration so that the faceting rms error of the reflector surface is 
minimized. Applications of both prime focus and offset 
configurations are demonstrated. The simulation results show the 
effectiveness of the proposed approach. 

Index Terms—Antenna surface design, Deployable mesh 
reflectors, Cable net, Uniform tension, Force density method 

1. Introduction

The technological development of modern space-borne
deployable antennas is trending toward both larger apertures 
and greater accuracy [1, 2]. Large deployable mesh reflectors like 
the AstroMesh [3] have brought continuous interest in research 
and development in the past several decades.  

As illustrated in Fig.1, the AstroMesh reflector is based on a 
tension truss concept. The outer supporting ring truss, called 
deployable rim truss, is connected to a cable net structure and 
has sufficient stiffness and high stability to support the cable- 
net structure once deployed. The cable net structure is 
comprised of two identical paraboloid-shaped nets (i.e., a front 
net and a rear net) and a series of vertical tension ties. The 
tension-tie assembly imposes vertical tensile forces between 
the front net and the rear net to pretension the cable-net 
structure. The radio frequency (RF) reflective mesh is attached 
to the backside of the front net and is pretensioned fairly 
isotropically and uniformly. The deployed reflector is 
approximately formed by flat triangular facets of the RF 
reflective mesh and the vertices of the mesh facets are nodes of 
the front net. Namely, the reflective mesh is shaped by the front 
net.  

For concentrating radio frequency radiation, the operating 
reflective mesh needs to maintain an exact paraboloidal shape. 
Proper design of the cable-net structure to minimize the 
faceting rms error and to optimize the error distribution of the 
mesh surface is essentially important to the performance of 
such space structures [2]. Meanwhile, uniform tension in the 
supporting cable net is desirable from geometrical and 
mechanical point of view. It is the most stable position since it 
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corresponds to the minimum potential energy configuration [4]. 
Until recently, several design methods have been published 

on antenna cable net configuration designs. Tibert [5] presented 
a shape-optimal design approach for searching minimal length 
mesh configurations with three shape-forming steps. 
Morterolle et al. [4] proposed a numerical form-finding 
approach for calculating the geodesic paraboloidal mesh 
configurations using the force density method (FDM). Li et al.
[6, 7, 8] proposed design methods to generate geodesic cable nets 
for mesh reflector, a pretension design method based on the 
projection principle for mesh reflector and a pretension design 
method considering multi-uncertainty. Shi et al. [9, 10] proposed 
design methodologies to automatically generate 
pseudogeodesic mesh geometries of spherical and parabolic 
reflector surfaces. Additionally, when considering the elastic 
deformation of rim trusses, several techniques have been 
introduced to compensate the deformation of the supporting 
trusses [11, 12, 13] after form-finding for the cable net 
configurations.  

Fig.1 AstroMesh reflector and its components 

Among all these researches, only the approach proposed by 
Morterolle et al. [4] guarantees a uniform tension in the 
cable-net within the reflective zone. But their approach has one 
common imperfect feature with all the others: the cable net 
nodes designed are always exactly on a paraboloidal surface. 
According to our previous work [14], if and only if all the 
projections of triangular facets fall exactly into equilateral 
triangles on the aperture plane, the cable net nodes designed 
could be exactly on an appointed paraboloidal surface to 
minimize the axial faceting rms error within the hexagonal 
reflective zone. Otherwise, it might not be the best idea putting 
all the cable net nodes exactly on a paraboloidal surface.  

In this paper, it is attempted to get better results in the far 
field patterns of concerned reflectors by integrating a procedure 
on optimizing the positions of the cable net nodes with the 
numerical form-finding procedure proposed by Morterolle et al. 
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[4]. 
This paper is organized as follows. Section 2 presents the 

coordinate systems used when describing the revised form- 
finding approach proposed by us. In section 3, systematic 
faceting errors of mesh reflectors and the method to minimize 
the faceting errors are investigated. Section 4 presents the 
form-finding approaches proposed by both Morterolle et al. [4] 
and ourselves with emphasis on the differences. In section 5, 
two applications, for a prime focus and an offset paraboloidal 
reflector, are shown to illustrate the efficiency of the method. 
Section 6 gives a brief conclusion of this paper. 

2. Coordinate systems

Generally, the reflector surface of a paraboloidal antenna is
defined by the intersection of a parent rotary paraboloid (with 
diameter pD ) and a cylinder (diameter aD ) parallel to the 

paraboloid axis which characterizes the antenna aperture. The 
paraboloidal antennas are based on the same principle: all 
incident rays parallel to the paraboloid axis converge to the 
focal point (feed) after reflection on the surface. Conversely, all 
emitted rays are reflected out parallel to the paraboloid axis. 

For a “prime focus” antenna (Fig.2), the axes of the parent 
paraboloid and the cylinder are coincident. The reflector 
surface is thus a paraboloid of revolution ( ap DD  )。 For a 

Cartesian coordinate system ( ZYX


,, ), Z


being the axis of

revolution, the equation describing this axi-symmetric 
parabolic surface is  

)4/()( 22 FYXZ   ( 1 ) 

where F is the focal length. 

Fig.2 Prime focus paraboloidal reflector 

One drawback of the axi-symmetric reflector is that the feed 
and its support are bulky and can block a part of the rays. To 
eliminate this problem and improve performance, antennas 
with offset feed are used. The cylinder axis is therefore 
separated to the paraboloid rotary axis with an offset distance 
d and ap DdD  2 (Fig. 3). It can be proven that the rim of 

the resulted reflector surface is a flat ellipse. The coordinate 

system ( ZYX


,, ) is usually named as “global coordinate 

system”, and the coordinate system ( ZYX 


,, ) is named as 

“local coordinate system” which has its origin on the surface 
center O  and with an angle  ( )2/(tan Fd ) between 

the X 


axis and the plane perpendicular to the paraboloid axis. 
For a mesh reflector structure like the AstroMesh[3], the 

tension ties are usually parallel to the Z 


axis. The equilibrium 
equations of the nodes used in the force density method (FDM) 
are usually set up in the local coordinate system ( ZYX 


,, ). 

Since it is more convenient to find optimal positions of cable 
net nodes in the global coordinate system, transformations have 

to be performed between the two coordinate systems in our 
form- finding approach. 

Fig.3 Axonometric view of offset paraboloidal surface 

Given an arbitrary point P, which is described in the global 

coordinate system as T),,( ZYX  and in the local coordinate 

system as T),,( ZYX  , the relationship between the two 

coordinate systems of the point P can be defined as 
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where T2T ))4/(,0,(),,( FddZYX OOO  is the origin of the 

local coordinate system described in the global coordinate 
system. 

For a prime focus antenna, such a local coordinate system is 
indeed not required but is assumed to exist and coincide with 
the global coordinate system. In this case, the transformation 

matrix should be an identity matrix and T),,( OOO ZYX  have 

zero values. 

3. Position optimization of cable net nodes

3.1 Reflector surface error 

The ideal mathematical shape defined by Eq. (1) is however 
purely theoretical since it has to be realized by a faceted mesh 
stretched on the tension truss (cable net structure). The 
topology of the cable net determines the forms and dimensions 
of the flat facets. The deviations of the faceted paraboloidal 
reflector from its ideal shape cause, in general, loss of gain and 
pattern degradation. 

The effects of surface deviations on the radiation pattern and 
gain may be predicated from the actual distribution of surface 
deviations over the aperture. A simple approximate method for 
computing these effects is presented by Ruze [15], as the 
following well-accepted form for the gain: 

2
0

0G  eG      (4) 






A

A

dSrf

dSrfr

)(

)()( 2

2
0 


    (5) 

where G and 0G are the gains of antenna with and without 
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errors respectively; r


 is an aperture position vector; the 
function )(r

 represents effective surface deviation from the 

best-fit paraboloid for deterministic errors; )(rf


is the aperture 

illumination function; A represents the aperture area of the 

antenna reflector; 2
0  is the mean square of the effective 

surface deviations and 2
00   is the surface rms error. The 

effective surface deviation is defined as one half of the change 
in the RF path length. The best-fit paraboloid is a chosen 
paraboloid so that an imperfect surface can be best 
approximated by, or in another word, expression (5) falls in a 
minimum value. 

The relation between an axial deviation )(rz


  and the 

corresponding effective surface deviation is 

)4/()(1

)(
)(

222 FYX

rz
r







                                           (6) 

Then (5) may be rewritten as follows, 

ces /2
0   or ces /0                                         (7) 

where, 

 A
dSrfc )(


                                                 (8) 

 
A

s dSrwrze )()(2 
                                        (9) 

2222 ))4/()(1(

)(
)(

FYX

rf
rw







                          (10) 

The surface error investigated in this paper is only that 
caused by approximating an ideal paraboloid surface with mesh 

facets. se  will be named as the faceting square error and 0  as 

the faceting rms error in the following sections. 

3.2 Aperture illumination function 

The aperture illumination function )(rf


is equivalent, but 

not identical, to the radiation pattern of the feed in the focal 
point. This function determines the illumination efficiency of 
the antenna, which is the ratio of the gain of the antenna to that 
of a uniformly illuminated aperture. The illumination function 
is normally characterized by the “edge taper”, i.e. the level of 
the illumination at the edge of the reflector compared to that in 
the center. However, different functional forms of the 
illumination function with the same edge level can result in 
different values for the illumination efficiency.  

An aperture illumination (field distribution) function with 
circularly symmetric amplitude and constant phase front is used 
here, which is the parabolic to a power n  on a pedestal 
distribution and has the form of 

n
aDrrf ))/2(1)(1()( 2

                                   (11) 

where  represents the edge level while the level in the 
aperture center is normalized to one, and n  represents the 
aperture taper. Both of these two parameters must be chosen 
properly to approximating the aperture field from an ideal 
reflector surface. 

3.3 Node position optimization 

From Eq. (4) to (10), it is clear that for an optimal surface 
profile design of a mesh reflector, the faceting square error se  

should be as small as possible to get a higher gain.  
Let us start with a more detailed expression of se with design 

variables involved. For the front net of a mesh reflector where 

the X


and Y


 coordinates of all the nodes are given, the nodes 

are considered to be movable along the Z


direction. 

 
Fig. 4 Cable net projection on antenna aperture 

Considering a (flat) triangular facet isolated from the cable 
net, with i , j  and k  as its vertexes (the projection on antenna 

aperture is shown in Fig.4), the space plane determined by the 
facet can be denoted as a function of the vertexes coordinates in 

Z


direction as follows, 

kkjjii ZrBZrBZrBZ )()()(


                           (12) 
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where )(rBi


, )(rB j


and )(rBk


are linear functions of X and Y ,  

and ),,( mmm ZYX  ),,( kjim  are the coordinates of the vertex 

points. 
The faceting square error of the triangular facet can be 

written in a more detailed form as, 

dSrwFYX

ZrBZrBZrBe
ijkA

kkjjii
ijk
s

)())4/()(

)()()((

222 





                    (13) 

where ijkA represents the projection area of the triangular facet 

on the antenna aperture. 

From Eqs. (12) and (13) it can be seen that ijk
se should be a 

pluralistic quadratic function of iZ , jZ and kZ . Also, it can be 

noticed that an accurate integral of Eq. (13) might not be easy 
because of the complicated form of )(rw


(Eqs. (10) and (11)). 

However, the result of Eq. (13) can be obtained by numerical 
integral methods with suitable accuracy. In this paper, the 
quadrature rule of order 6 with 12 integral points given by 
Dunavant [16] is used. Although quadrature rules of higher 
degree can be used, it does not make significant difference. 
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The faceting square error se  for the whole reflector, which is 

a summation of faceting square errors for all facets in the cable 
net, can be expressed in a pluralistic quadratic function of the 

Z


direction coordinates of the net nodes, and its minimum 
value can be easily figured out. Meanwhile, the node positions, 
that make the se  reaching its minimum value, determine a 

cable net with an optimal surface profile. 
Moreover, since all the boundary nodes of a cable net 

generally need to be on a plane from structural point of view 
(the loops of a deployed rim truss should be flat), all the 

Z 


direction coordinates of boundary nodes should have a same 
value. This makes it difficult to minimize the faceting square 
error se , since the expression of error se  in Eq. (9) is for the 

global coordinate system. Fortunately, an offset of the 
paraboloid has the same effects with an offset of boundary 

nodes as a whole in the Z


direction, and the ideal reflector rim 
implies a flat spatial circle or ellipse when the antenna aperture 
is a circular one. So the following Eq. (14) are preferably used 
instead of Eq. (13) when the faceting square error se is 

calculated. Also, the boundary nodes of the cable net are fixed 
on the ideal paraboloidal surface during the procedure of node 
position optimization.  

dSrwtFYX

ZrBZrBZrBe
ijkA

kkjjii
ijk
s

)())4/()(

)()()((

222 





                    (14) 

where t represents an offset distance of paraboloid in 

Z


direction. Accordingly, the best-fit paraboloid for the 
resulted reflector is defined by 

tFYXZ  )4/()( 22                             (15) 

Incidentally, when a best-fit paraboloid surface needs to be 
found for a given net without variation of the focal length, 
Eqs.(14) and (15) can also be used for determining the best-fit 
paraboloid and thus for calculating the faceting square error 

se or the surface rms error 0 . 

4. Form-finding strategies based on FDM 

4.1 Basis of the force density method (FDM) 

The principle of FDM is to linearize the equilibrium 
equations of the nodes connecting the tensile cable elements. 
Considering an isolate node i which is connected to ic cables of 

length jl with tension jT  ( icj ,,2,1  ) and without external 

forces (Fig. 5), the node equilibrium, written in the 

X 


direction of a coordinate system ( ZYX 


,, ), implies that 





ic

j
jijj lXXT

1

0/)(                              (16) 

 

Fig.5 Cable net equilibrium (from Morterolle [4]) 

The same relations may also be written in the Y 


 and 

Z 


directions. There is no need to set up such relations for the 
boundary nodes which define the anchoring conditions and 
have no degree of freedom. 

Then, a “force density” coefficient jq for every cable 

element is introduced to linearize these nonlinear equilibrium 
equations by defining 

juj lTq /                                           (17) 

where uT  is a required uniform tension. It results in the 

following expression: 





ic

j
ijj XXq

1

0)(  and thus 



ii c

j
j

c

j
jji qXqX

11

)/()(  (18) 

Once these linear equations are solved, the global equilibrium 
and new positions for all the free nodes, corresponding to the 
given coefficient jq , are obtained. Cable tensions are then 

evaluated by jjj lqT  . 

The principle of the FDM strategy is to evaluate the force 
density coefficients iteratively and eventually obtain the 
required uniform tension uT . For instance, if step p gives 

tension p
jT and length p

jl for an element j , the new coefficient 

used in the following step is 
p
ju

p
j lTq /1                                            (19) 

If the boundary conditions make it possible to form a 
uniformly tensioned cable net, this method generally converges 
to a solution. However, conditions for a guaranteed 
convergence are still under investigation, and this analysis is 
indeed difficult to achieve since it depends on many factors 
such as the net topology and the anchoring conditions. 

4.2 Form-finding strategy proposed by Morterolle 

 
Fig.6 Cable net formed by out-of-plane loads (from Tibert [5]) 

To make a cable net of mesh reflector and form a parabolic 
surface, the tension ties, which connect the front and rear cable 
nets, provide the cable nets with additional forces in 

Z 


direction (Fig.6). The force values of the tension ties are 
chosen to ensure the proper nodes positioning.  

In the method proposed by Morterolle, all nodes of cable net 
were forced exactly positioning on a paraboloid surface. From 
an initial net and a given set of force density coefficients jq , the 

equilibrium position of a node i in X 


and Y 


 directions was 
determined by the FDM (Eq. (18)). With these two coordinates 
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and the surface equation described in the coordinate system 

( ZYX 


,, ), the corresponding accurate position along Z 


was 

determined. For a prime focus configuration, the surface 
equation had the same form as Eq. (1), but it would be different 
from Eq. (1) for an offset configuration (the details can be 
found in Ref. [4]). Lengths and tensions in the cable elements 
were then calculated and the condition of uniform tension was 
tested. The process was resumed by iteratively changing the 
force density coefficients (Eq. (17)) until (i) a uniform tension 

uT  was obtained in all the cables, and (ii) the node positions did 

not vary (stable at equilibrium positions). 
If the process converges, a uniformly tensioned synclastic 

cable net with every node exactly on the parabolic surface was 
obtained. The necessary force in the tension tie to equilibrate 

the node i  along Z 


direction could be calculated by 




 
i

i

c

j
ijjZ ZZqF

1

)(                                    (20) 

The criteria used for convergence were the followings. To 
satisfy the uniform tension requirement, the difference with the 
objective uT  must be lower than a tolerance Ttol  (set to 0.1%). 

Moreover, a node was considered stable in position if, between 
two consecutive iterations, the norm of its coordinate 

variations iX

 was inferior than Xtol  (set to 6-10 m). There 

was another criterion to check about the equilibrium of the 
nodes in Ref. [4], but we consider it as a convergence criterion 
for the results of linear force density equations and therefore do 
not list it here.  

4.3 Our form-finding strategy 

The procedure of form-finding proposed in this paper is 
similar but different from the one given by Morterolle [4]. In 

our method, when the corresponding position along Z 


is 

calculated, after the equilibrium position of a node i in X 


and 

Y 


 directions is obtained by the FDM (Eq. (18)), the node i  
will not position exactly on the objective paraboloidal surface 
any more. Instead, an optimal position for node i  is sought by 
using the approach detailed in section 3. For instance, if step p  

gives an equilibrium position for node i ( p
iX  and p

iY  ), the 

coordinates ),, 1-p
i

p
i

p
i ZYX （ of node i are firstly transformed 

to the global coordinate system ( ZYX


,, ) based on Eq. (2). 

Here, 1piZ is the Z 


direction coordinate of node i last 

updated. Then, after the new position of node i is obtained by 
the optimization procedure described in Section 3, Eq. (3) is 
used to transform the coordinates of node i back to the 

coordinate system ( ZYX 


,, ). It should be mentioned that, the 

coordinates p
iX  and p

iY   will also be slightly changed when 
p

iZ  is finally figured out, but these small changes have no 

significant influence on the characteristics of convergence of 
the form-finding process. The overall method is presented in 
Fig.7 as an algorithm. 

 
Fig.7 Algorithm for geometry construction 

Compared to the method proposed by Morterolle [4], this 
approach takes a little more time because of more calculations 
involved in calculating and minimizing of the faceting square 
error. Therefore it may be advisable to use the node positions 
resulted by Morterolle’s method as the initial node positions 
just for saving time. In order to verify the feasibility of our 
form-finding strategy as a whole, the initial net patterns and 
node positions used here are the same as the ones Morterolle 
used, which are generated as follows. Generally, the initial net 
pattern for a paraboloid mesh reflector is located inside a circle 
with a diameter of aD on the antenna aperture plane (an 

example of the initial net pattern is shown in Fig. 4). The circle 
has its center at 0X  and  0Y  for a prime focus 
configuration, or at dX  and 0Y for an offset configuration. 

Then, the Z


direction coordinates are figured out by the 
relationship in Eq. (1). This means that all nodes of the cable 
net have their initial positions exactly on the paraboloid surface, 
and the boundary nodes, which are located on the reflector rim 
truss, are all fixed points in the whole procedure of the 
form-finding. 
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5. Applications 

The method has been applied to several applications. Here, 
only two of them are illustrated and both are originated from 
Ref [4]. The first one has a prime focus configuration, and the 
second has an offset configuration. Both of the paraboloidal 
reflectors have a circular aperture (viewed from the boresight 
direction) with a diameter of 12aD m. The focal ratios 

(defined as pDF / ) are 0.4 and 0.45 respectively, and the offset 

distance d for the latter is 8.3m. 
In order to make a comparison of the resulting nets obtained 

by the approaches proposed in Ref. [4] and by us, the far field 
radiation patterns of the corresponding mesh reflector systems 
were calculated and used as the evaluation basis for the 
resulting nets. All the electromagnetic calculations concerned 
were carried out using the GRASP (version 9.7) software. 

It is started from calculating the radiation patterns of a 
reflector system with an ideal reflector surface, which has the 
same parameters of the mesh reflector concerned. The reflector 
is illuminated by a corrugated horn with its aperture at the focal 
point of the reflector and pointed towards the centre of the 
reflector. The corrugated horn radiates a Gaussian beam 
providing an edge illumination of -12 dB. The feed is linearly 

polarised in the plane which contains the axes of both X


 and 

Z


. The working (or operating) frequency was determined 
based on a pre-estimate of the faceting rms error of the resulting 
mesh reflector which was approximately 5mm for the prime 
focus case or 0.5mm for the offset case. Thus, the 
single-reflector systems were analyzed at 2 GHz for the prime 
focus case and at 20GHz for the offset case. Based on the 
resulting near field patterns for the ideal reflector surfaces, the 
parameters  and n were chosen properly for the aperture 
illumination functions, which were 35.2,199526.0  n for 

the prime focused case, and 80.1,251189.0  n for the 

offset. 
For convenience, the resulting cable net and the 

corresponding mesh reflector resulted from Ref. [4] are both 
denoted by mesh0, and the ones resulted from this paper aiming 
at minimizing the faceting square error se  are both denoted by 

mesh1.  
Moreover, it would be easier for structural people to measure 

the surface rms error of a reflector if the function 
)(rw


described in Eq. (10) takes a constant unit value. It is 

interesting to have an investigation of such a case. That is to say, 
the faceting square error is replaced by the axial faceting square 
error which is defined by 

 
A

s dSrze )(2
z


                                   (21) 

The resulting cable net and the corresponding mesh reflector 
resulted from minimizing the axial faceting square error are 
both denoted by mesh2. 

It should be mentioned that, if Eq. (21) is used the faceting 
square error or rms error should be calculated by 

c~/2
0 zse  o r  c~/0 zse                       (22) 

instead of Eq. (7), where c~ is the area of antenna aperture. 

5.1 Prime focus configuration 

5.1.1 Calculation of the nets 

In the prime focus case, a 6 by 6 diamatic net pattern is 
investigated. The initial net pattern is composed of 6 disc 
sectors where each boundary side is divided into 6 elements. 
The initial net pattern on the antenna aperture is shown in Fig. 4. 

The Z


 coordinates of all the initial nodes are figured out by the 
relationship in Eq. (1). 

For a 100N uniform tension in the net, the form-finding 
method converged no matter which objective function ( se or 

zse ) was used in optimizing the node positions. Because the 

differences between the resulting mesh1 and the others are too 
small to distinguish in a figure, only the resulting mesh1 is 
shown in Fig.8. Other details of the results are listed in Table 1 
for a comparison. 

 
Fig.8 Symmetric 6 by 6 diamatic net under uniform tension 

Table 1 Form-finding result for the prime focus configuration 

 

From Table 1, it can be seen that the uniform tension 
requirement is always well satisfied when the nodes converge 
to their stabilized equilibrium positions. The faceting rms 
errors of the mesh1 and mesh2 are close and both of them are 
better than that of the mesh0. Even though there are some 
differences in the standard deviations of forces in the tension 
ties, the differences in the average forces are no significant. 

It should be mentioned that all the faceting rms errors 
showed in this table were figured out according to Eq. (7), even 
though a different equation (Eq. (22)) was used to obtain the 
configuration of the mesh2. The focus position (corresponding 
to the parameter t in Eq. (14)) of the best-fit paraboloid for the 
mesh2 was determined by minimizing the faceting rms error in 
Eq. (22). These resulted parameters are 25.11 mm for t and 6.14 
mm for the resulted faceting rms error. 
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It should also be mentioned that the number of iteration steps 
counted here is smaller than that reported in Ref. [4]. It was 
approximately 200 iterations for convergence to mesh0. The 
reason for the difference is that the number of iterations for 
solving the force density equations (Eq. (18)) was not counted 
in. 

5.1.2 Radiation patterns  

Even if there are other error sources in a real mesh reflector 
such as manufacturing, mesh saddling, and thermal extremes. It 
is assumed here that the RF reflective mesh will exactly follow 
the shape of the cable net and there is no other but faceting error 
in the resulted mesh reflector. Also, the wave leakage through 
the mesh is ignored. 

The co-polar far-field radiation patterns, calculated at 2 GHz 
by the physical optics (PO) method in both the E-plane and the 
H-plane, are shown in Fig.9 and Fig.10, respectively. Where, 
both the mesh1 and mesh2 give radiation patterns closer to the 
one for the ideal surface than the mesh0 does, and the radiation 
pattern for the mesh1 is not significantly better than the one for 
the mesh2, even though the mesh2 was obtained aimed at 
minimizing the axial faceting square error sez , which has a 

much simpler form than the faceting square error se .  

 
Fig.9 Far field patterns in E-Plane for prime focus case 

 
Fig.10 Far field patterns in H-Plane for prime focus case 

In order to explain the reason why the mesh0 gives a worse 
radiation pattern, the free node positions of the mesh0 in the 

Z


direction were optimized base on the optimization strategy 

given in section 3 with the X


and Y


 coordinates unvaried. 
With the optimal node positions obtained, a new mesh was 
obtained and denoted as mesh01. The axial deviation from 
best-fit paraboloid was calculated and the contours graph is 
shown in Fig.11 for both the mesh0 and mesh01. Also, there is 

a comparison of the radiation pattern for the mesh01 with the 
ones for the ideal surface and the mesh0 in Fig.12. 

 
Fig.11 Axial deviation distribution for mesh0 and mesh01 

 
Fig.12 Far field patterns in E-Plane for mesh0 and mesh01 

From Fig.11, it can be seen that the axial deviation 
distribution is improved by the node position optimization 
process since the mesh01 (see the lower half pie) has more 
uniform deviation distribution than the mesh0 (see the upper 
half pie) does. Fig.12 shows that the mesh01 has a better 
radiation pattern than the mesh0 does.  

Now, it may be concluded that the introduction of node 
position optimization is significant for getting a better surface 
profile. It means that, with all net nodes exactly on a paraboloid 
may not be a good idea in designing a surface profile of mesh 
reflector under the uniform tension strategy. 

Meanwhile, it can be seen from Figs. 9, 10 and 12 that only 
the main beams and nearby sidelobes are affected significantly 
by the improvements made in the mesh1 and mesh2. For this 
reason, a smaller range of angles is taken when the offset 
configuration cases are discussed in section 5.2. 

5.2 Offset configuration 

5.2.1 Calculation of the nets 

In the offset case, a 6 by 10 diamatic net pattern is considered. 
The initial net pattern on the antenna aperture is shown in Fig. 
13. All the initial nodes, including the fixed boundary nodes, 
were positioned exactly on the paraboloid surface given by Eq. 
(1). 

For a 100N uniform tension in the net, all the form-finding 
approaches converged to stabilized equilibrium positions. In 
Fig.14, only the resulting mesh1, described in the local 
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coordinate system ( ZYX 


,, ), is presented. Other details of the 

results are listed in Table 2 for a comparison. The faceting rms 
errors shown in Table 2 are all figured out by using Eq. (7). 

 

 
Fig.13 A 6 by 10 diamatic net pattern for the offset case 

 
Fig.14 Offset configuration net under uniform tension 

Table 2 Form-finding results for the offset configuration 

 
Table 2 shows similar results compared with Table 1. The 

uniform tension requirement is always well satisfied when the 

nodes converge to their stabilized equilibrium positions. 

However, because the reflector surface is finely meshed in this 

case, the differences among the faceting rms errors are smaller, 

so are the differences among the average forces in the tension 

ties. 

It should be mentioned that, for the offset configuration case, 

the coordinates p
iX  and p

iY   were slightly changed after the 

coordinate p
iZ  was found by the optimization process. It did 

have influence on the form-finding procedure, reflected in 

more iteration steps being taken for both the mesh1 and mesh2. 

But, since only two more steps were taken in this application, 

the influence was apparently small. 

5.2.2 Radiation patterns  

Here, it is also assumed that the RF reflective mesh will 
exactly follow the shape of the cable net, and there is no other 
but faceting error on the resulted mesh reflector, and the wave 
leakage throughout the mesh is ignorable. Moreover, the 

attachment of the nets to the antenna rim trusses implies that the 
boundary conditions are not necessarily compatible with the net 
patterns. The rim is realized with a 30-bay ring in the case of the 
AstroMesh [3] and the net is thus attached at 30 points to the ring 
truss, whereas it requires 60 points to fix a 6 by 10 diamatic 
pattern. For the cases like this, the method proposed in Ref. [4] 
can be used to generate new cables which can connect the main 
part of the cable net (resulted from the proposed form-finding 
approach) to the rim truss without changing the node positions 
and the cable tensions in the main part. Here, this specific 
method is not going to be discussed. The full net patterns of the 
resulting meshes were still used in the calculations for the far 
field radiation patterns. 

The co-polar far-field radiation patterns, calculated at 20 
GHz by the physical optics (PO) method in both the E-plane 
and the H-plane, are shown in Figs.15 and 16 respectively. Fig. 
17 is the magnified image in the main beams of Fig. 15. In all 
these figures, the radiation patterns for the mesh1 and mesh2 
are nearly coincident with each other. Compared to the 
radiation patterns of the mesh0, they are closer to the ones for 
the ideal surface. In the E-Plane, symmetry of the radiation 
pattern is kept only for the ideal surface, but when only the 
main beams are considered, it is the radiation pattern for the 
mesh0 which loses the symmetry because of a beam squint. The 
beam squint can be seen clearly in Fig. 17 and in Table 3 where 
the maximum directivities in the E-plane for the ideal reflector 
and for the mesh reflectors are listed. 

 
Fig.15 Far field patterns in E-Plane for offset configuration 

 
Fig.16 Far field patterns in H-Plane for offset configuration 
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Fig.17 The magnified image of Fig. 15 in the main beams 

Table 3 Maximum directivity in E-plane 

 
These results suggest that even there is no much 

improvement to the reflector faceting rms error and in turn for 
the antenna gain in such a case, the mesh1 and mesh2 obtained 
by the proposed method provide better RF performance in 
comparison with the mesh0 obtained by the usual form finding 
method [4]. Note that the mesh1 and mesh2 really have much 
smaller faceting rms errors than the mesh0 in the prime focus 
case where the reflector is roughly meshed. 

5.2.3 Further discussions 

Based on the above results, it can be seen that there is no 
much space for reducing the reflector faceting rms error in this 
application without increasing the number of facets or the focal 
ratio. However, a much better result seemed to have been 
achieved in [9] for the same application investigated here. The 
result was a faceting rms error of 0.254mm compared to the one 
of 0.33mm given by Morterolle [4]. 

Two issues may be observed here. The first one is that both 
the faceting rms errors appeared in [4] and [9] were smaller 
than that listed in Table 2 (it is 0.53 mm for the mesh0). The 
second one is that a remarkable improvement was achieved in 
[9] but we think it shouldn’t be that much. The key to answer 
these questions is the method used in calculating the faceting 
rms errors. In the method presented in [4], the faceting rms 
error of a mesh reflector was calculated by 

2

1

1

2

1

)/)(( 



N

i
igi

N

i
irms AZZA

i
                           (23) 

where N represents the total number of facets in the mesh 
reflector; iA is the projected area of triangular facet i on the 

plane of ),( YX


; 
igZ  is the position of the gravity center of 

triangular facet i on the vertical axis Z


of the parent 
paraboloid and iZ is the theoretical position of this point on the 

reference paraboloid surface calculated with the ),(
ii gg YX  

coordinates. The reference paraboloid, which minimizes rms , 

is the best-fit paraboloid. 
The equation for the best-fit paraboloid was 

tFYXZ bf  )4/()( 22                            (24) 

where bfF represents the focal length of the best-fit paraboloid 

and t represents the offset distance of the best-fit paraboloid in 

Z


direction. 
In order to compare our results with the ones given in [4] and 

[9], the faceting rms errors for the mesh1 and mesh2 were 
recalculated using their method (Eq. (23)) but without adjusting 
the focal length of the desired paraboloid ( FFbf  ). The 

results are listed in Table 4. 

Table 4 Faceting rms errors calculated by Eq. (23) 

 
Apparently, the faceting rms errors of both the mesh1 and 

mesh2 became smaller than the ones listed in Table 2. They are 
also smaller than the faceting rms errors listed in [4] and [9] for 
this case. The mesh2 now becomes the best reflector under this 
criterion compared with the mesh0, mesh1 and the one given in 
[9]. 

However, the mesh2 should not be the best result because Eq. 
(23) was not the objective function when it was figured out. By 
using Eq. (23) as the objective function to optimize the 
Z positions of the net nodes during the form finding procedure, 
one more cable net was obtained and denoted as mesh3. The 
faceting rms error for the mesh3 is also listed in Table 4. It is 
apparent that the mesh3 has an even smaller faceting rms error 
than the mesh2. 

So far, it seems that the mesh3 should have the best RF 
performance for such an antenna. In order to verify this, the 
co-polar far field radiation patterns for the mesh3 in both the 
E-plane and the H-plane were figured out and shown in Figs. 18 
and 19. Fig. 20 is the magnified image in the main beams of Fig. 
18. Table 5 lists the maximum directivities in the E-plane for 
the ideal reflector and the mesh reflectors. 

Table 5 Maximum directivity in E-plane (extended) 

 

 
Fig.18 Far field patterns in E-Plane for the mesh3 
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Fig.19 Far field patterns in H-Plane for the mesh3 

 
Fig.20 The magnified image of Fig. 18 in the main beams 

It can be seen clearly in both these figures and Table 5 that 
the mesh3 does not have a better RF performance than the 
mesh2 even it has a smaller faceting rms error. The maximum 
directivity for the mesh3 is less than the one for the mesh2. 
Meanwhile, the radiation pattern for the mesh3 has a beam 
squint in the opposite direction in comparison with the one for 
the mesh0 in the E-plane.  

In fact, the rms error calculated by Eq. (23) should not be 
applied into Eq. (4) for the predication of the effects of surface 
deviations on the radiation pattern and gain of an antenna 
because it is only an approximation of Eq. (22) and Eq. (22) is 
also an approximation of Eq. (7). To calculate the value of Eq. 
(22), integrations on triangular regions (Eq. (13)) are inevitable. 
Note that the integrant of Eq. (13) has a degree of 4 when 

1)( rw


, a quadrature rule of no less than order 4, which in 

turn means a quadrature rule of at least 6 integral points, should 
be used to get a fairly accurate result for Eq. (22). Since Eq. (23) 
only takes one integral point in calculating the integration of Eq. 
(13), much accuracy could be lost. 

All of these show that a blindly seeking for minimizing of Eq. 
(23) does not make much sense to the performance 
improvement of a mesh reflector. However, it does not mean 
that the way in calculating rms error by Eq. (23) is meaningless. 
In fact, such estimation is often used by mechanical engineers 
in practice. To have a better understanding on such things, the 
faceting rms errors of mesh0 and mesh2 on a series of cases 
were calculated and listed in Table 6.  

 
 

Table 6 Comparison of faceting rms errors for mesh0 and mesh2 

 

In these cases, both the aperture and the offset distance of the 
reflectors remain the same with the ones investigated above. 
Three different focal ratios and four different division numbers 
for the diamatic net patterns were considered. For the reason 
that when the focal ratio of the reflector changes the parameters 
of the illumination function should be changed accordingly, the 
results for mesh1, which should contain the chosen parameters 
for the illumination functions, are not listed here. 

In Table 6, the faceting rms errors in the columns three and 
five are calculated by Eq. (22) and they are fairly accurate 
values for the real faceting rms errors. The ones in the columns 
four and six are calculated by Eq. (23) and are approximate 
values for the real faceting rms errors. It can be seen that, for 
both the mesh0 and mesh2, even there are quite obvious 
differences between the accurate values and the approximate 
values, the approximate values have the same trend with the 
accurate values. This means that the approximate rms errors 
calculated by Eq. (23) are suitable in most cases to give a rough 
estimation on some reflector designs, even if the estimation 
may not be taken rigorously for a final decision. 

6. Conclusion 

Based on the FDM, a new method to calculate a uniformly 
tensioned cable net is presented, where the faceting rms error is 
minimized to update the node positions in the iteration steps. 
Examples on both prime focus and offset configurations show 
the efficiency of the method proposed. 

It may be concluded that the method proposed here is more 
effective than the one proposed in Ref. [4]. The results for the 
mesh2 are always close to the ones for the mesh1 and are better 
than the ones for the mesh0 in all the applications investigated.  
It is recommendable to use the axial faceting square 
error sez rather than the faceting square error se in a 

form-finding procedure to take the advantage of its simpler 
form. 
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