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Abstract

Background: Guidelines recommend cardiovascular risk reduction and supervised exercise therapy as the first line of treatment in 
intermittent claudication, but implementation challenges and poor patient compliance lead to significant variation in management 
and therefore outcomes. The development of a precise risk stratification tool is proposed through a machine-learning algorithm 
that aims to provide personalized outcome predictions for different management strategies.

Methods: Feature selection was performed using the least absolute shrinkage and selection operator method. The model was 
developed using a bootstrapped sample based on patients with intermittent claudication from a vascular centre to predict chronic 
limb-threatening ischaemia, two or more revascularization procedures, major adverse cardiovascular events, and major adverse 
limb events. Algorithm performance was evaluated using the area under the receiver operating characteristic curve. Calibration 
curves were generated to assess the consistency between predicted and actual outcomes. Decision curve analysis was employed to 
evaluate the clinical utility. Validation was performed using a similar dataset.

Results: The bootstrapped sample of 10 000 patients was based on 255 patients. The model was validated using a similar sample of 
254 patients. The area under the receiver operating characteristic curves for risk of progression to chronic limb-threatening 
ischaemia at 2 years (0.892), risk of progression to chronic limb-threatening ischaemia at 5 years (0.866), likelihood of major adverse 
cardiovascular events within 5 years (0.836), likelihood of major adverse limb events within 5 years (0.891), and likelihood of two or 
more revascularization procedures within 5 years (0.896) demonstrated excellent discrimination. Calibration curves demonstrated 
good consistency between predicted and actual outcomes and decision curve analysis confirmed clinical utility. Logistic regression 
yielded slightly lower area under the receiver operating characteristic curves for these outcomes compared with the least absolute 
shrinkage and selection operator algorithm (0.728, 0.717, 0.746, 0.756, and 0.733 respectively). External calibration curve and 
decision curve analysis confirmed the reliability and clinical utility of the model, surpassing traditional logistic regression.

Conclusion: The machine-learning algorithm successfully predicts outcomes for patients with intermittent claudication across 
various initial treatment strategies, offering potential for improved risk stratification and patient outcomes.
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Introduction
Patients with intermittent claudication (IC) are at a heightened risk 

of chronic limb-threatening ischaemia (CLTI), major adverse 

cardiovascular events (MACE), major adverse limb events 

(MALE)1–3, and therefore death4. The European Society for 

Vascular Surgery3 and the National Institute for Health and Care 

Excellence5 both recommend first-line treatment strategies that 

encompass cardiovascular risk reduction and supervised exercise 

therapy (SET). However, implementation challenges, such as the 

non-availability of SET, compounded by poor patient uptake, 

adherence, and completion rates, mean there is significant 

variation in the management of these patients. This includes the 

adoption of a percutaneous transluminal angioplasty (PTA)-first 

strategy, despite poor patient compliance with smoking cessation 

and secondary prevention6,7. This variation underscores the 

pressing need for accurate risk prediction models for different 

management strategies for patients with IC. Machine learning (ML) 

can be used to develop such models.
Current ML-based predictive models for peripheral arterial 

disease (PAD) focus primarily on baseline characteristics, such 

as age and smoking status, and often overlook the non-linear 

interaction between these factors and other critical factors, such 

as compliance with best medical therapy (BMT), SET, smoking 

cessation, and lifestyle modification8–14. Consideration of these 

factors is essential for accurately predicting final outcomes. 

These models and nomograms can therefore predict death, 

albeit grossly, but their translation into real-time precise risk 

forecasting based on compliance and management strategies 

is limited. This also limits their use pragmatically, as they 

are unable to assist in the determination of the optimal 

management strategy for each patient. To address this, the 

development of a precise risk stratification model is proposed 

through an ML algorithm that aims to provide personalized 
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outcome predictions for different management strategies, 
accounting for factors such as compliance with BMT and 
smoking cessation. This approach aims not only to enhance the 
prognosis and management of IC but also to address 6 of the 10 
critical questions posed by the James Lind Alliance Priority 
Setting Partnership in PAD. These questions pertain to earlier/ 
better diagnosis of IC and its long-term impact, education of 
healthcare professionals and patients to improve the 
understanding of the consequences of IC, slowing down 
symptom progression in IC, and preventing and reducing the 
overall cardiovascular risk in PAD15.

Methods
Study design
A bootstrapped sample based on an anonymized retrospective 
data set of patients with intermittent claudication from a 
tertiary vascular centre was utilized to develop an ML-based risk 
prediction model, which considered 27 baseline characteristics, 
compliance with BMT/smoking cessation, and treatment 
strategy, that is BMT (pharmacotherapy and exercise advice), 
SET, endovascular intervention (EI), and SET + EI (Appendix S1). 
These data were then validated in a similar data set consisting 
of patient data that was not used in model development.

Patient characteristics in the data set
The data set consisted of patients with IC (Rutherford 1–3) who were 
referred to the vascular clinic from December 2014 to March 
2018. Their clinical progression was followed from the time of 
presentation until the most recent follow-up, including baseline 
characteristics, compliance with BMT (lipid-lowering agents and 
antiplatelet agents), enrolment and completion of SET, and time 
to MALE, MACE, and CLTI. The data of patients who had CLTI at 
index presentation or had a recurrence of symptoms after 
previous revascularization were excluded from the training 
data set. The diagnosis of IC was made clinically and was 
further supported by a resting ankle brachial pressure index or 
toe brachial pressure index, duplex ultrasonography, or 
cross-sectional imaging if required. Patients who declined SET 
were discharged back to their general practitioner, received 
regular follow-up, or underwent a revascularization procedure, 
depending on disease progression.

Interventions
Best medical therapy
All patients were initiated on BMT, which included antiplatelet 
therapy (aspirin and/or clopidogrel), smoking cessation advice 
and offer of support through the National Health Service smoking 
cessation programme, and nicotine replacement therapy. 
Additionally, risk-factor modification was implemented based on 
evidence-based care pathways, including goal-oriented 
management of diabetes, control of hypertension, and treatment 
of hypercholesterolaemia. Patients were also given advice leaflets 
on physical activity and exercise. Compliance with these 
measures was recorded through retrospective record review. 
Compliance was assessed based on the surgeon’s or clinician’s 
judgement of appropriate adherence during visits.

Endovascular interventions
An EI, including PTA and/or primary stenting, was performed by a 
consultant vascular radiologist, according to a predefined 

protocol, in accordance with the normal practice of the unit, in 
a dedicated vascular radiology suite.

Supervised exercise therapy
Patients underwent SET three times per week for 12 weeks, 
totalling 36 sessions. Any missed sessions were rescheduled and 
completed at the end of the 12-week programme16. The 
programme was supervised by an exercise physiologist, with 
assistance from undergraduate and postgraduate sports science 
students. Each SET session consisted of a circuit comprising six 
2-min stations, with 2-min walking intervals in-between. Before 
the circuit, a warm-up was performed, followed by a cool down. 
The stations included step-ups, standing knee bends, sitting 
knee extensions, biceps curls, cycling, and heel raises. As a 
patient’s exercise tolerance improved, one additional station 
was added each week, starting from the seventh week. By the 
end of week 12, patients completed two full circuits. The 
duration of each session ranged from 30 to 60 min. Successful 
completion of SET was defined as the completion of 36 sessions. 
This circuit-based training programme was developed based on 
previous recommendations that emphasized the effectiveness 
of combining upper and lower limb ergometry, resistance 
exercise, and walking-based exercises to enhance muscle 
strength and cardiorespiratory fitness. These interventions 
have demonstrated a greater cardiorespiratory stimulus 
compared with walking alone17–20.

Combined therapy
Combined treatment was defined as undergoing an EI, according 
to the protocol described above, followed by the initiation of 
SET, 1 week after the procedure.

Exclusion criteria
Patients with CLTI (Rutherford 4 and above) at their initial 
presentation or those who experienced a recurrence of symptoms 
after previous revascularization were excluded from the study. 
Additionally, patients who were referred for SET but deemed 
unsuitable due to contraindications or significant co-morbidities 
were also excluded.

Outcome measures
The outcomes of interest included the risk of progression to 
CLTI at 2 years, the risk of progression to CLTI at 5 years, the 
likelihood of major adverse cardiovascular events within 
5 years, the likelihood of major adverse limb events within 
5 years, and the likelihood of two or more revascularization 
procedures (on the index side) within 5 years, starting from 
the date of the clinic visit when the intervention was offered. 
CLTI was defined as ischaemic rest pain lasting for 2 or more 
weeks, non-healing wounds, or gangrene that was attributable 
to objectively proven arterial occlusive disease. A MACE was 
defined as non-fatal stroke, non-fatal myocardial infarction, 
or cardiovascular death21. A MALE was defined as acute limb 
ischaemia, untreated loss of patency, or major lower limb 
amputation22.

Feature selection and machine-learning analysis
The model was designed to utilize routinely collected data 
available at the time of presentation in the clinic (Appendix S1), 
thereby ensuring its relevance to everyday vascular surgical 
practice. Feature selection was performed using the least 
absolute shrinkage and selection operator (LASSO) method, 
which assigned weights to each clinical parameter to accurately 
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predict outcomes for each initial management strategy23. The 
LASSO method was applied to these variables to select the most 
relevant features for predicting the outcome. The form of the 
model equation is a linear combination of the selected features, 
with the coefficients determined by the LASSO method. The 
model was rigorously evaluated using 10 times repeated 5-fold 
nested cross-validation with a fixed seed to enhance robustness24. 
The first data set was split into five training (70%) and internal 
validation (30%) sets. The hyperparameters of the ML models were 
optimized on these training and validation sets via a grid search 
before final evaluation on the validation set. In this paper, the 
focus during model training was primarily on capturing the main 
effects of the variables. However, the potential presence of 
interaction effects between variables was also taken into account 
using the LASSO package in Stata 18. Missing data in the training 
and validation sets were compensated for using a multiple 
imputation by chained equations (MICE) framework25, which 
allows for the imputation of missing values using multiple 
iterations. Within the MICE framework, the predictive mean 
matching method was specifically utilized. In this study, the 
missing data were less than 5%, primarily observed in variables 
such as serum albumin, compliance with antiplatelet medication, 
and self-reported claudication distance. The predictive mean 
matching method was applied to impute the missing values for 
these variables. This technique selects observed values from 
similar individuals to impute the missing values, ensuring that 
the imputed values are plausible and reflect the underlying 
distribution of the variable.

Outcome class imbalance, a common issue in ML, refers to an 
unequal class distribution in the training data set. This can cause 
model bias towards the majority class, affecting its generalization 
ability. The imbalance was addressed in this case using random 
oversampling26. This technique involved identifying the minority 
class (MACE), which had fewer instances, and then randomly 
duplicating instances from this class. The selection process for 
duplication was random, ensuring each instance in the minority 
class had an equal chance of being selected. This duplication was 
repeated until the number of instances in the minority class was 
approximately equal to that in the majority class, thereby 
balancing the class distribution. The oversampled data set, which 
included both the original and duplicated instances, was then 
used for training the ML model.

The final model was then validated in an external data set of 
patients that was not used for training, thereby accounting for 
overfitting27. Model performance was evaluated using the area 
under the receiver operating characteristic (AUROC) for each 
outcome. The confidence intervals for the AUROC were calculated 
using the binomial exact method, which is a non-parametric 
approach to construct confidence intervals for a proportion in a 
statistical population. Calibration curves were generated to assess 

the consistency between predicted and actual outcomes. Decision 
curve analysis (DCA) was performed to evaluate the clinical 
usefulness of the model by quantifying the net benefits at 
different threshold probabilities28.

This study adhered to the transparent reporting of a 
multivariable prediction model for individual prognosis or 
diagnosis (‘TRIPOD’) guidelines29.

Sample size calculation
It is generally recommended to have a minimum of 100 events and 
100 non-events when conducting a validation study to assess the 
performance of a model using new data from the same or a 
different population. However, the question of determining an 
adequate sample size in ML remains an ongoing challenge. It is 
widely recognized that simply having a large sample size alone 
is not sufficient for reliable hypothesis testing30. It has recently 
been reported that the suitability of a sample size for ML-based 
prediction is contingent upon ML accuracy greater than 80%31. 
Therefore, based on the available data and considering the 
established guidelines, a sample size of some 250 patients in 
the training and validation sets is well suited for evaluating the 
performance of this proof-of-concept ML algorithm. However, it 
is important to note that this assessment of sample adequacy is 
based on the observed performance of the ML model rather than 
an a-priori calculation.

Statistical analysis
Statistical analysis was performed using Stata 18 (StataCorp LLC, 
College Station, TX, USA; 2023), SPSS® (IBM, Armonk, NY, USA; 
version 26.0; 2019), and MedCalc (MedCalc Software Ltd, 
Ostend, Belgium; https://www.medcalc.org; version 19.2.6; 
2020). The efficacy of each model was compared using receiver 
operating characteristic (ROC) curve analysis, with the AUROC 
calculated using predicted values. A DeLong test was used to 
compare ROC curves32. Statistical significance was determined 
by assigning a two-sided significance level of α = 0.050, unless 
otherwise specified.

Results
A bootstrapped sample of 10 000 based on a training data set of 255 
patients was utilised. There were a further 254 patients included in 
the testing data set. Patient characteristics of the two datasets are 
shown in Table S1. In the training set, the incidence of CLTI within 
2 years was 27.4% (70 patients), the incidence of CLTI within 5 years 
was 45.9% (117 patients), the requirement for two or more 
revascularization procedures within 5 years was 50.6% (129 
patients), MALE was 41.6% (106 patients), and MACE was 41.6% 
(106 patients). Similarly, in the testing set, the incidence of CLTI 
within 2 years was 29.1% (74 patients), the incidence of CLTI 

Table 1 Comparison of algorithm performance in the likelihood of prediction of adverse outcomes

Outcome Predictive ability based on initial management strategy

Machine-learning algorithm AUROC  
curve (95% c.i.), s.e.

Logistic regression AUROC  
curve (95% c.i.), s.e.

Risk of progression to CLTI at 2 years 0.892 (0.847,0.927), 0.024 0.728 (0.669,0.782), 0.032
Risk of progression to CLTI at 5 years 0.866 (0.818,0.906), 0.021 0.717 (0.657,0.771), 0.0272
Likelihood of MACE within 5 years 0.836 (0.785,0.880), 0.217 0.746 (0.688,0.798), 0.267
Likelihood of MALE within 5 years 0.891 (0.846,0.927), 0.018 0.756 (0.698,0.807), 0.022
Likelihood of two or more revascularization procedures within 5 years 0.896 (0.852,0.931), 0.018 0.733 (0.674,0.786), 0.023

AUROC, area under the receiver operating characteristic; CLTI, chronic limb-threatening ischaemia; MACE, major adverse cardiovascular events; MALE, major 
adverse limb events.
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within 5 years was 48.8% (124 patients), the requirement for two or 
more revascularization procedures within 5 years was 54.3% 
(138 patients), the incidence of MALE within 5 years was 52.4% 
(133 patients), and MACE was 49.2% (125 patients).

The developed model assigned the highest coefficients to factors 
such as hypertension, ischaemic heart disease, BMI, atrial 
fibrillation, self-reported claudication distance, non-completion 
of SET (that is a treatment strategy of BMT or EI alone), duration 
of smoking, and the presence of bilateral iliac/crural vessel 
disease. The model demonstrated its comprehensive analytical 
capability by dynamically assigning weights to each of the 30 
variables, including baseline characteristics, compliance data, 
and adopted treatment strategy for each outcome.

The LASSO algorithm demonstrated an excellent discriminatory 
capacity for various outcomes based on the initial management 
strategy. The comparative predictive abilities for the ML 
algorithm and logistic regression are shown in Table 1 and Fig. 1.

The reliability of the model was further confirmed by an external 
calibration curve, which showed a high degree of consistency 
between the predicted and actual outcomes of interest (test 
statistic = 16.2; P = 0.055) (Fig. 2a). This performance was consistent, 
regardless of the initial treatment strategy. DCA validated the 
clinical usefulness of the model, showing a significant advantage of 
greater than 45% by efficiently balancing potential benefits and 
harms. DCA was conducted to assess the clinical usefulness of the 

model, specifically comparing it with the ‘treat all’ and ‘treat none’ 
strategies. The results of the DCA demonstrated a significant 
advantage of greater than 45% when using the model, indicating 
that it efficiently balances the potential benefits and harms 
associated with the decision-making process. This suggests that 
the model outperforms both the ‘treat all’ and ‘treat none’ 
strategies in terms of clinical utility. By considering the net benefit 
of the model, DCA provided valuable insights into the potential 
benefits of using the model for decision-making, further supporting 
its practical application in clinical settings (Fig. 2b).

Discussion
This study underscores the significant potential of ML models 
compared with traditional logistic regression-based models 
in accurately predicting adverse outcomes in patients with IC. 
The developed model goes beyond considering baseline 
characteristics and incorporates compliance data to predict 
outcomes for different treatment strategies. The model exhibited 
an excellent discriminatory capacity, as evidenced by high 
AUROC values, and demonstrated clinical utility, as indicated by 
DCA results. Notably, this study stands out as one of the first to 
incorporate treatment strategies into outcome prediction, 
whereas the existing literature primarily focuses on baseline 
characteristics alone. By considering the impact of treatment 

100

a

80

60

40S
en

si
tiv

ity

20

0 20 40

100–specificity

60 80 100

b

100

80

60

40S
en

si
tiv

ity

20

0 20 40

100–specificity

60 80 100

c

100

80

60

40S
en

si
tiv

ity

20

0 20 40

100–specificity

60 80 100

d
100

80

60

40S
en

si
tiv

ity

20

0 20 40

100–specificity

60 80 100

e
100

80

60

40S
en

si
tiv

ity

20

0 20 40

100–specificity

60 80 100

LASSO

LR

LASSO

LR

LASSO

LR

LASSO

LR

LASSO

LR

Fig. 1 Area under the receiver operating characteristic of the least absolute shrinkage and selection operator algorithm versus logistic regression 
algorithm in the likelihood of prediction of adverse outcomes 

a Risk of progression to chronic limb-threatening ischaemia at 2 years.  b Risk of progression to chronic limb-threatening ischaemia at 5 years. c Likelihood of two or 
more revascularization procedures within 5 years. d Likelihood of major adverse cardiovascular events within 5 years. e Likelihood of major adverse limb events 
within 5 years. LASSO, least absolute shrinkage and selection operator; LR, logistic regression.
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strategies, this model provides a more comprehensive and nuanced 
approach to outcome prediction in IC patients. Furthermore, this 
study distinguishes itself due to the conduct of external validation, 
which adds further credibility to the model’s performance and 
generalizability. The inclusion of external validation enhances the 
robustness of the findings and strengthens the applicability of the 
model in real-world clinical settings.

Accurate risk prediction models are crucial for the management 
of IC, as they enable personalized treatment strategies. Current ML 
models primarily focus on the diagnosis of PAD. Whilst there are a 
few existing ML-based prediction models, it is important to note 
that they are not specific to IC but rather encompass the entire 
spectrum of PAD8–14. In contrast, the present study stands out as 
the first to examine the interaction between treatments offered 
and compliance, which has the potential to significantly impact 
clinical practice. By identifying high-risk patients at their initial 
presentation to the vascular clinic, these findings have the 
potential to bring about practice-changing implications. Whilst 
there have been two studies that have utilized large data sets to 
predict adverse outcomes, such as MALE and MACE, they 

predominantly rely on baseline clinical characteristics as 
predictors14,33. However, an important factor that significantly 
influences outcomes, namely compliance with medications and 
treatment strategies offered, is often overlooked in these models. 
Therefore, there is a critical gap in the existing literature, in 
which the incorporation of compliance data and treatment 
strategies in ML models is lacking. Addressing this gap is crucial 
for developing more comprehensive and accurate predictive 
models for adverse outcomes in PAD patients8–11.

This study serves as a preliminary step towards addressing 
this by proposing an ML model that provides personalized 
outcome predictions for different levels of compliance and 
management strategies. The model can also identify patients 
who are high risk, prompting timely and effective care. For 
example, if the model predicts that a patient is likely to progress 
to CLTI, regardless of the treatment approach or compliance, 
they can be identified as high risk. The model’s projections can 
be utilized to motivate patients to adhere to their treatment 
plans, showcasing the potential for real-time risk reduction 
during their initial visit to the vascular clinic.
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a Calibration curve, demonstrating good consistency between the predicted and actual outcomes. b The decision curve analysis shows that the LASSO model has a 
better overall clinical utility, demonstrating a predictive accuracy greater than 45%.
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The ML model in the present study utilizes readily available 
variables at the first patient contact in a vascular clinic, 
increasing its practicality and applicability. The model’s 
robustness was validated in an external data set spanning over 
a decade, encompassing significant temporal management 
changes. Despite these changes, the model maintained its 
predictive accuracy, demonstrating resilience and adaptability 
to evolving clinical practices. This validation enhances the 
credibility of the model and supports its potential for 
widespread application. In the context of clinical 
decision-making, the balance, as confirmed by DCA, is crucial, 
as it helps healthcare professionals weigh the potential positive 
outcomes of a treatment or intervention against its possible 
negative effects. The model’s ability to account for this balance 
enhances its utility in a clinical setting. It provides a more 
comprehensive view of the potential outcomes, allowing for 
more informed and effective decision-making. This is 
particularly important in scenarios where the benefits and 
harms are closely matched and even a slight shift in balance 
could significantly impact a patient’s health outcome28.

However, it is important to acknowledge the limitations of the 
model. First, the model was developed using retrospective 
data from a single vascular centre, which may restrict its 
generalizability to other settings and populations. Additionally, 
there is a possibility of unmeasured confounders that could 
impact the model’s accuracy. Furthermore, the measurement of 
compliance with medical therapy was not objectively assessed 
using appropriate tools, such as the eight-item Morisky 
Medication Adherence Scale (‘MMAS-8’)34, which may introduce 
potential bias into the results. Although missing data were 
appropriately handled, it is essential to recognize missing data as 
a limitation within the data set. Additionally, it is important to 
consider that the measurement of treatment compliance relied on 
self-declaration, which introduces the possibility of further 
confounding and potential inaccuracies in assessing true 
compliance levels. This potential self-declaration bias should 
be taken into account when interpreting the results and 
considering the limitations of the model. Furthermore, whilst the 
sample size of this study can be justified as appropriate for a 
proof-of-concept analysis, it is important to note that meticulous 
calculations or a larger sample size, ideally with at least 1000 
events, would be necessary to further validate and establish the 
predictive accuracy of the model.

It is worth noting that the incidence of adverse outcomes 
observed in this study aligns with what has been reported in the 
existing literature, suggesting that the data set provides a 
reasonable representation of the target population. Moving 
forward, the next crucial step would be to validate this model in 
different settings and populations. By conducting external 
validation studies, the model’s performance and generalizability 
beyond the initial data set can be assessed, thereby 
strengthening its reliability and applicability in diverse clinical 
scenarios.

This study presents a novel ML model for predicting outcomes 
in patients with IC. It can provide personalized outcome forecasts 
for different management strategies, facilitating precise risk 
stratification and enhancing patient and clinician engagement. 
The model’s robustness, demonstrated through external 
validation, supports its potential for widespread application.
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