
A Decision Making Framework for Joint Replenishment and Delivery

Scheduling Problems under Mixed Uncertainty

Guang Wanga, Jian Zhoub,∗, Athanasios A. Pantelousc, Yuanyuan Liud, Youwei Lie

aCollege of Transportation Engineering, Tongji University, Shanghai 201804, China
bSchool of Management, Shanghai University, Shanghai 200444, China

cDepartment of Econometrics and Business Statistics, Monash Business School, Monash University, 20
Chancellors Walk, Wellington Rd, Clayton, VIC 3800, Australia

dSchool of Management Science and Engineering, Shangdong University of Finance and Economics, Jinan
250014, China

eHull University Business School, University of Hull, Cottingham Rd, Hull HU6 7RX, United Kingdom

Abstract

Concerning the essence of risk, a joint replenishment and delivery scheduling problem with
fuzzy cost-related parameters and random number of imperfect quality items is developed to
make it suitable for the inherent uncertainties of procurement-shipment process. The mathe-
matical modelling-based decision system is formulated as a chance-constrained programming
with the idea of embedding decision makers’ risk tolerance. Following this notion, the model
is translated into an equivalent non-linear counterpart and a neighbourhood heuristic search
is designed based on the properties of the cost function. We introduce an integrated cross-
entropy algorithm, incorporating the heuristic in the cross-entropy framework, to solve it. The
numerical results demonstrate that ICE is quite effective in comparison to state-of-the-art
algorithms. Our framework is helpful for decision makers to determine economically accept-
able performance objectives in the presence of uncertain issues, and thus to build resilience in
supply chain.

Keywords: supply chain resilience, joint replenishment, mixed uncertainty,
chance-constrained programming, cross-entropy algorithm

1. Introduction

1.1. Background and motivation

The Shanghai Omicron outbreak, which occurred in early March 2022, caused a significant
crisis in China, leading to an excess of 600,000 confirmed cases of illness. The implementation
of the government’s dynamic zero-COVID plan has resulted in a prolonged two-month period
of lockdown and strict restrictions. This has significantly hampered financial growth and
imposed severe negative effects on the nation’s economic well-being. In light of the limited
accessibility of infection prevention measures, such as protective clothing and N95 face masks,
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at affordable prices, it is imperative for the healthcare system to prioritize the procurement
and distribution of medical supplies. This will facilitate the strengthening of market resilience.
The serious concerns of addressing the spread of epidemics and managing health expenditure
have become increasingly pressing due to governmental and community pressures. Fortunately,
the successful implementation of vaccination programs has enabled a substantial number of
individuals, amounting to hundreds of millions, to effectively evade infection stemming from
the pandemic. As of April 2022, China had acquired a total of 3.2 billion vaccine doses,
with an associated expenditure exceeding 120 billion US dollars. The optimization of vaccine
supply chains and the development of efficient logistics and maintenance scheduling methods
are crucial considerations due to the stringent storage requirements of vaccinations.

The implementation of joint replenishment, a strategic approach that facilitates the sharing
of significant ordering costs across enterprises, has demonstrated its efficacy as a cost-saving
measure inside logistics networks. In the context of a densely populated urban centre such as
Shanghai, the establishment of a streamlined supply chain for direct distribution from suppli-
ers to shops poses significant challenges. Typically, the coordination of procurement-shipment
activities necessitates the involvement of a third-party warehouse. The joint replenishment and
delivery scheduling (JRD) framework is designed to address the challenges related to vaccine
supply. It enables the smooth flow of vaccines from pharmaceutical manufacturers to distribu-
tion centres, such as central pharmacies, and eventually to retailers like hospitals or vaccination
units. This framework is essentially a simplified version of the centralized drug procurement
systems in China (Liu et al., 2022). In this study, we examine the scheduling improvements
related to replenishment and shipment within a specific scenario involving numerous suppliers,
a single distribution centre, and multiple retailers in a three-stage supply chain.

In fact, the replenishment-shipment activities in supply chain, may be subject to “mixed
uncertainty” due to various factors, such as the subjective ambiguity or imprecise preferences
and objective operational conditions (Arlin Cooper et al., 1996). It is risky to define crisp pa-
rameters in mathematical optimization based on inadequate prior knowledge, which may result
in unreliable solutions for practical systems. Firstly, it is widely acknowledged that cost co-
efficients in an unstable market are predominantly influenced by human subjectivity, typically
derived from the expertise of experienced professionals. Consequently, this reliance on sub-
jective judgements poses challenges in extracting pricing patterns from historical data (Maiti
and Maiti, 2006; Zhao et al., 2023). A concrete illustration can be observed in the interac-
tions between the National Medical Insurance Administration and pharmaceutical producers
throughout the period spanning from 2021 to 2022. These engagements have resulted in a
series of price reductions for vaccines, with the cost per dosage being successively lowered from
90 yuan to 40 yuan and then to 20 yuan. The presence of cost coefficients in this argument
demonstrates the inherent traits of fuzziness in nature, as viewed through the lens of fuzzy
set theory. Furthermore, it is well acknowledged that in the case of controlled infections such
as human papilloma virus, there exists a prevailing notion that individuals may not attain
flawless and long-lasting immunity with vaccination (Gandon et al., 2001; Pezzoli and Azman,
2021). This phenomenon can be attributed, in part, to the potential degradation of vacci-
nation efficacy resulting from suboptimal handling and temperature fluctuations encountered
throughout the logistic and storage phases. In this particular scenario, there exists a suffi-
cient amount of historical data that allows for the estimation of the probability distribution
function of the parameter. Consequently, the utilization of randomness is favoured over other
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alternatives (Khan et al., 2011). Chance-constrained programming (CCP) is a natural modal
for dealing with uncertainty, where the vague goal is minimizing the budget under a certain
chance value that could also be interpreted as the decision maker’s risk tolerance (Charnes and
Cooper, 1959). These requirements, necessitates extension of the JRD in a mixed uncertainty
framework, something that has received little attention so far.

Motivated by the above points, this paper aims at addressing these gaps in the literature
by developing an analytical decision making model for JRD with fuzzy cost-related parameters
and stochastic imperfect quality rate, denoted as FSJRD for short. Then, a tailored integrated
cross-entropy algorithm (ICE) ia designed by absorbing the advantage of heuristics and meta-
heuristics to solve effectively.

1.2. Related literature

The classical joint replenishment problem (JRP) model was firstly proposed and heavily
researched since the early works of Shu (1971) and Goyal (1974). After that, several extended
JRP models have been put forward incorporating a variety of constraints/parameters into
some classical assumptions. Multi-item joint replenishment has become a common practice in
business operations, and the subject remains fashionable in academic research. Those who are
interested in JRPs may refer to Khouja and Goyal (2008) and Bastos et al. (2017) for knowing
the latest extensions and practical applications.

Following the notion of joint replenishment, the deterministic JRD with n-retailer, one-
warehouse, and n-supplier was first proposed in Cha et al. (2008). Researchers have also
developed several relevant extensions involved very specific problems, which presented a diver-
sity of models for solving multi-product related problems. Wang et al. (2012) established the
JRD with stochastic demand. Wang et al. (2013a) investigated a three-level JRD under fuzzy
environment. Liu et al. (2017) extended the replenishment and delivery model in a multi-
warehouse system. Cui et al. (2020a,b) simultaneously considered the stochastic lead-time and
demand. Carvajal et al. (2020) considered the budget and storage capacity constrains in a
two-echelon supply chain. Wang and Wang (2022) formulated the case that the distribution of
demand is normally-distributed and its mean and variance can be evaluated. Other works with
the consideration of dynamic demand can be found in e.g., Kang et al. (2017) and Baller et al.
(2019). It is noteworthy to mention that previous studies have shown a positive reception for
research on stochastic demand under the premise of perfect quality. However, the consistency
of commodities, particularly those with stringent storage requirements like vaccinations, in
terms of ideal quality does not align with the practical situation (Gandon et al., 2001; Khan
et al., 2011; Pezzoli and Azman, 2021). Given the aforementioned context, it is of significance
to construct a model that captures the uncertainty in demand, specifically focusing on faulty
items. The exploration of various forms of uncertainty arising from diverse demand-cost pat-
terns is a relatively nascent area of research. One potential solution to address this discrepancy
is to implement a framework known as FSJRD, which allows for the utilization of accurate
distributions based on historical data or personal experience.

Due to the NP-hard feature of JRPs and JRDs (Arkin et al., 1989; Cha et al., 2008), one
difficult point of our FSJRD model is to find an effective solution method, since FSJRD is based
on that with fuzzy costs and random number of imperfect items considered additionally. Usu-
ally, meta-heuristics seem more suitable to these inventory problems, like many other NP-hard
problems. Those more sophisticated algorithms, such as evolutionary computing (e.g. Olsen,
2005), genetic algorithm (e.g. Ongkunaruk et al., 2016; Otero-Palencia et al., 2019), particle
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swarm optimization algorithm (e.g. Kang et al., 2017), differential evolution algorithm (e.g.
Wang et al., 2013a; Cui et al., 2020c), characterized by easy-to-use features are most favorable
to researchers. Whereas, heuristics and some special algorithms using the mathematical prop-
erties of the problems have been attractive recently. For classic deterministic model, Cha et al.
(2008) illustrated that RAND algorithm is considered the best approach in terms of solution
quality and computational time. Lee and Yao (2003) and Yao et al. (2020) proved that the
JRP model is a piece-wise convex function under power-of-two (PoT) policy. Wang and Wang
(2022) introduced Lipschitz optimization method using Lipschitz continuous property of the
objective function of stochastic JRD. Wang et al. (2023) demonstrated the favourable perfor-
mance of an iterative heuristic algorithm that is based on the RAND algorithm in addressing
the location-inventory-delivery model. All of the aforementioned algorithms possess certain
limitations. Meta-heuristics are not able to provide a guarantee of producing solutions of high
quality, particularly when dealing with problems of a large scale. The design of heuristics
involves the creation of a solving thread that is capable of providing unique solutions. This
thread is tailored to address specific optimization issues and relies heavily on the qualities in-
herent to those problems. In nature, when flexibility and complexity are considered, heuristic
coupled with meta-heuristic is a preferred solution strategy by sharing advantages of both–our
focus in this paper. This insight may be a guidance for designing efficient algorithms to solve
JRP- or JRD-type problems.

The cross-entropy (CE) method of Rubinstein (1999), known also as a stochastic search
algorithm for rare event estimation, has numerous applications in various of constrained com-
binatorial (discrete) optimization problems, such as closed-loop supply chain planning (Wang
et al., 2016), facility layout problem (Ning and Li, 2018), among others. Considering that the
JRDs consists of only one continuous variable with limited search range, we may adopt the
equally-spaced discretization method to deal with it. In this case, CE method provides a simple
and efficient tool for solving such discrete problems. It essentially transforms an optimization
into a rare probability event estimation problem. Due to its precise mathematical framework
and tailored updating rules, Rubinstein and Kroese (2004) conducted a survey that it has
a polynomial time complexity and high searching ability. To the best of our knowledge, we
are the first to utilize the CE-based algorithm as a solution methodology to handle inventory
problems.

1.3. Contribution and organization

Based on these descriptions, the novelty and the main contributions of this paper are
summarized as follows:

1. For the family of JRD model, a novel component of it considers the mutual influence of
fuzzy cost and random number of imperfect quality items, which is suitable to accom-
modate the inherent uncertainties in supply chain.

2. The chance-constrained programming is initially adopted in the practical inventory sce-
nario with the consideration of decision makers’ risk tolerance additionally. We then
derive the tractable reformulation of FSJRD model by leverage recent advances in un-
certainty theory.

3. To better hedge against model computational complexity, a neighbourhood heuristic
search is designed stemming from the optimality and improvement conditions of the cost
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function. An integrated cross-entropy algorithm (ICE) incorporating the heuristic is
proposed to improve the quality of solutions and promote convergence speed-up.

The rest of this paper proceeds as follows. Section 2 describes the mathematical framework
of the proposed FSJRD model under known distributions. Correspondingly, the CCP model
and its crisp counterpart are formulated. Section 3 presents several propositions inherited in
the equivalent model. We then propose a neighbourhood heuristic search approach. In Sec-
tion 4, an ICE algorithm incorporating the heuristic is introduced with a redesigned solution
structure. Numerical experiments and elaborate comparisons are presented in Section 5, where
we illustrate the effectiveness and efficiency of the ICE compared to the state-of-the-art al-
gorithms, and the impacts of uncertainty-related parameters. Section 6 summaries the main
findings of this research, and provides several remarks and lines on the management sights.

2. Model formulation

In this section, we consider the specific situation of a three-stage supply chain consisting
of multi-suppliers, one distribution centre (DC), and multi-retailers. The DC joint coordi-
nates the scheduling of replenishment process from upstream suppliers and delivery process
to downstream retailers, based on the demand and cost information. Both of them directly
affect the total system cost, but of different nature, and represent uncertainties of two different
types correspondingly. Also, a relevant CCP model is employed to construct a well-defined
modelling-based inventory system with risk tolerance level of decision makers.

2.1. Proposed FSJRD

The classic JRD in a deterministic framework for items replenishment might lead to inferior
solutions and leave the supply chain vulnerable to risk event, since it assumes away the intrinsic
feature of uncertainty in practical operations. In response to this concern, we develop a new
mixed-uncertainties decision model, namely FSJRD, which concentrates on fuzzy unit costs
and random number of imperfect items. Before we proceed further, the necessary mathematical
notations of our FSJRD model including the decision variables and relevant parameters are
reported in Table 1. Note that throughout this paper, a fuzzy variable is associated with a
tilde sign.

To be a little more detailed here, information uncertainties in supply chain are of diverse
types. According to Sazvar et al. (2021), the occurrence of randomness is observed when a
sufficient amount of data is available, whereas fuzziness is associated with a state of limited
information. Using vaccine allocation as a case study, it can be observed that the pricing of
vaccines is determined through a process of negotiation between governmental entities and
vaccine makers. In this context, it is conceivable to establish linguistic parameters indicating
that the cost of purchasing per order could range from $7 to $8, with the condition that it
cannot be lower than $6 or exceed $9 (Vujošević et al., 1996; Maiti and Maiti, 2006). In many
cases, the expenses related to things often encompass vague or unclear data. In contrast, the
major ordering cost is not contingent upon the specific item and can be easily regulated, so it is
seen as deterministic. If deemed required, it is possible to infer a broader fuzzy situation. In line
with the literature Wang et al. (2013b) and Sazvar et al. (2021), triangular and trapezoidal
fuzzy numbers are employed to describe the cost parameters. Further, we assume that the
imperfect rate of each replenished item is a random variable and follows Beta distribution by
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Table 1: Notation for the proposed FSJRD problem.

Decision variables
T The basic supply cycle time, T ∈ (0, 1)
ki A positive integer representing the replenishment frequency of item i
fi A positive integer representing the outbound frequency of item i
Parameters

i The index of item, i = 1, 2, . . . , n
Di The demand rate for qualified items i per unit time
S The fixed major ordering cost for each replenishment
s̃DC
i The minor ordering cost of item i, (sDC

i min, s
DC
i mid1, s

DC
i mid2, s

DC
i max)

s̃i The outbound transportation cost of item i, (si min, si mid1, si mid2, si max)

h̃DC
i The holding cost for item i in DC per unit time, (hDC

i min, h
DC
i mid, h

DC
i max)

h̃i The holding cost of item i in retailer per unit time, (hi min, hi mid, hi max)
pi The imperfect rate of item i in each replenishment, p1 ∼ Beta(ai, bi)
xi The screening rate of item i per unit time
α0 The confidence level, predetermined by the decision-maker, α0 ∈ (0, 1]

referring to the assumption of Cui et al. (2020c). The benefits of appropriately treating the
uncertainties of underlying data or parameters are in terms of risk reduction.

Fig. 1(a) shows n items involved in the replenishment and delivery activities. The basis
cycle time T is assumed as the benchmark period. Under indirect grouping strategy, the period
between successive replenishments of item i from its supplier is ki (replenishment frequency)
multiple of T (basis cycle time), i.e., Ti = kiT . The delivery of item i to the retailer who
orders it, is placed fi (outbound frequency) times during the replenishment period Ti, i.e., the
outbound period of item i is defined as kiT/fi. In order to avoid shortages, the expected replen-
ishment quantity for item i may be interfered and given by QDC

i (ki, fi, T ) = DikiT/(1− E[pi]),
where E[pi] represents the expectation value of imperfect rate. Subsequently, the outbound
transportation quantity of item i can be calculated by Qi(ki, fi, T ) = DikiT/((1− E[pi])fi).

(a) The basic structure in a JRD procedure. (b) Example of the inventory profiles of item i.

Figure 1: The structure and inventory profiles for FSJRD system.

Herein, we show the coordination in our FSJRD system in Fig. 1(b). As depicted, the
outbound period remains the same throughout the planning horizon, and the inventory level
of DC does not change until the next period comes. By referring to Paul et al. (2014), after
item i is delivered to its retailer, it will be screened at the rate xi to identify the imperfect
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quality items, and so the screening time is denoted as ti = Qi/xi. Based on this, we get the
average inventory levels for DC and retailer as follows:

IDC
i (ki, fi, T ) =

DikiT (fi − 1)

2(1− E[pi])fi
and Ii(ki, fi, T ) =

DikiT

2fi
+

D2
iE[pi]kiT

xi(1− E[pi])2fi
. (1)

Then, the total cost can be calculated as the sum of fixed major ordering, minor ordering,
transportation, and inventory holding costs for DC and retailers, which is given as

T̃C(k,f , T ) =
S

T
+

n∑
i=1

s̃DC
i

kiT
+

n∑
i=1

s̃ifi
kiT

+
n∑

i=1

h̃DC
i IDC

i +
n∑

i=1

h̃iIi, (2)

where k = (k1, k2, . . . , kn) and f = (f1, f2, . . . , fn) are both decision vectors.

Clearly, for a given feasible solution (k,f , T ), the total cost T̃C(k,f , T ) is a regular fuzzy
interval. If we adopt the classic objective, the meaning of the minimum total cost (i.e., mini-
mum a fuzzy interval) is not so clear. As indicated by Liu and Iwamura (1998), a decision-maker
may concern more about the reliability of the optimal solution, which is reflected by his/her
risk tolerance. In this case, a meaningful and solvable optimization model of FSJRD is formu-
lated for the first time using the CCP model with the credibility measure1. Analogously to the
spectrum of model (A.10), combining the constraints on ki, fi and T , the new optimization
problem can be constructed as follows:

min
k,f,T

min b

s.t. Cr{T̃C(k,f , T ) ≤ b} ≥ α0

Eqs. (1)− (2)

0 < T < 1

ki, fi ≥ 1, i = 1, 2, . . . , n, integers.

(M1)

where b can be audited as the budget to systematically exploit the positive aspects of uncer-
tainty events and get the bad influences well under control.

2.2. Model transformation

It is known that CCP is an exceptionally complex model whose solution is very challenging
to be calculated and it can be generally achieved through simulations (see, e.g. Liu and Iwa-
mura, 1998). However, the simulation processes are usually very time-consuming especially
when the number of contained fuzzy intervals increases and/or the functions involved are high
dimensional, and/or most importantly, the results might not be reliable either. Aiming at ap-
propriately dealing with these problems, this section provides the new theoretical background
needed to transform model (M1) into its crisp non-linear counterpart. Given feasible solution

(k,f , T ), the value of “min b” in model (M1) is exactly the α-pessimistic value2 of T̃C(k,f , T ),

i.e., T̃C(k,f , T )inf(α0). This section is to introduce the reader to the underlying mathematics

and the analytic expression of “min b”, i.e., T̃C(k,f , T )inf(α0).

1See appendix 1, Definition A.4 for the concept of credibility measure
2See appendix, Definition A.5.

7



Lemma 1. For any given feasible solution (k,f , T ), the fuzzy objective function T̃C(k,f , T )
given by Eq. (2) is continuous, and increasing with respect to s̃DC

i , s̃i, h̃
DC
i and h̃i, respectively.

Proof: The proof is provided in the Appendix B.1 of the appendix.

Proposition 1. For any given feasible solution (k,f , T ), the α-pessimistic value of the fuzzy

objective function T̃C(k,f , T ) is given by

T̃C(k,f , T )inf(α) =
S

T
+

n∑
i=1

(s̃DC
i )inf(α)

kiT
+

n∑
i=1

(s̃i)inf(α)fi
kiT

+

n∑
i=1

(h̃DC
i )inf(α)DikiT (fi − 1)

2(1− E[ pi ])fi

+

n∑
i=1

(h̃i)inf(α)DikiT

2fi
+

n∑
i=1

(h̃i)inf(α)D
2
iE[ pi ]kiT

xi(1− E[ pi ])2fi
,

(3)

wherein if 0 < α ≤ 0.5,

(s̃DC
i )inf(α) = (1− 2α)sDC

i min + 2αsDC
i mid1, (s̃i)inf(α) = (1− 2α)si min + 2αsi mid1,

(h̃DC
i )inf(α) = (1− 2α)hDC

i min + 2αhDC
i mid, (h̃i)inf(α) = (1− 2α)hi min + 2αhDC

i mid,
(4)

and if 0.5 < α ≤ 1,

(s̃DC
i )inf(α) = (2− 2α)sDC

i mid2 + (2α− 1)sDC
i max, (s̃i)inf(α) = (2− 2α)si mid2 + (2α− 1)si max,

(h̃DC
i )inf(α) = (2− 2α)hDC

i mid + (2α− 1)hDC
i max, (h̃i)inf(α) = (2− 2α)hi mid + (2α− 1)hi max.

(5)

Proof: The proof is provided in the Appendix B.2 of the appendix.
Until now, the arithmetic operation of the equivalent analytical formula has been derived,

and thus its α-pessimistic value is explicitly and directly computed. The formula is utilized
to implement the fuzzy to crisp and deterministic conversion process. Based on Proposition 1,
the reformulated model is demonstrated by

min T̃C(k,f , T )inf(α0)

s.t. Eqs. (3)− (5)

0 < T < 1

ki, fi ≥ 1, i = 1, 2, . . . , n, integers.

(M2)

Thus, the optimal solution of ki, fi and T can be obtained via the deterministic mixed-integer
model (M2) with a non-linear objective function. As a result, it is now possible to solve the CCP
model without simulation, and so with lower computational complexity and higher accuracy.
However, it has been determined that the model (M2) is a highly complex problem that falls
within the category of NP-hard problems. This suggests that finding an analytical solution
for it may be infeasible. This study presents the introduction of a meta-heuristic approach,
namely an integrated cross-entropy algorithm, as a means to address the aforementioned crucial
problem and achieve a solution of superior quality.
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3. Neighbourhood heuristic search

Meta-heuristic algorithms, such as the Genetic Algorithm (GA), have demonstrated sat-
isfactory efficacy in addressing deterministic JRDs. Nevertheless, a significant proportion of
these algorithms exhibit elevated computational cost and reduced stability, hence posing a
notable limitation when applied to larger-scale problems. Taking into consideration the afore-
mentioned points, there is an expectation for the creation of a heuristic methodology that
can ensure improved initial feasible solutions and convergence. In this part, we provide a
neighbourhood heuristic search algorithm that exhibits qualities of reliability, accuracy, and
time-efficiency. The unique heuristic approach is developed based on the premise of determin-
ing the optimality conditions of choice variables and developing the improvement conditions of
current solutions. The fundamental characteristics and principles for the development of these
algorithms are outlined below:

For our purpose, the mathematical structure of model (M2) is restated as follows. For each
retailer i, the cost function Θi(ki, fi, T ) for item i is given by

Θi(ki, fi, T ) =
(s̃DC

i )inf(α0)

kiT
+

(s̃i)inf(α0)fi
kiT

+
(h̃DC

i )inf(α0)DikiT (fi − 1)

2(1− E[ pi ])fi

+
(h̃i)inf(α0)DikiT

2fi
+

(h̃i)inf(α0)D
2
iE[ pi ]kiT

xi(1− E[ pi ])2fi
.

Hence, we have

T̃C(k,f , T )inf(α0) =
S

T
+

n∑
i=1

Θi(ki, fi, T ). (6)

3.1. Identifying optimality conditions

From Eq. (6), an explicit formula for the best outbound frequency of items i that achieves
the lowest cost is deduced, which is a function of ki and T .

Proposition 2. For given fixed values of ki and T , there is a function δ such that the best
value of fi is uniquely given by

f ∗
i (ki, T ) =

⌊
1

2
+

1

2

√
1 + 4δ(ki, T )

⌋
, (7)

where ⌊x⌋ represents that the floor function maps x to the largest integer smaller than or equal
to x and

δ(ki, T ) = k2i T
2Di

(h̃i)inf(α0)xi(1− E[pi])
2 + 2(h̃i)inf(α0)DiE[pi]− (h̃DC

i )inf(α0)xi(1− E[pi])

2(s̃i)inf(α0)xi(1− E[pi])2
.

Proof: The proof is provided in the Appendix B.3 of appendix.
It is noticed that the cost function is convex in T , and thus the best value of T can be

derived by the first order derivative of Eq. (6).

Proposition 3. For given fixed values for k and f , the best value of T is given by

T ∗(k,f) =
√
A(k, f)/B(k, f), (8)
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wherein

A(k,f) = S +
n∑

i=1

(s̃DC
i )inf(α0) + (s̃i)inf(α0)fi

ki
(9)

and

B(k,f) =

n∑
i=1

Diki
(h̃DC

i )inf(α0)xi(1− E[pi])(fi − 1) + (h̃i)inf(α0)xi(1− E[pi])
2 + 2(h̃i)inf(α0)DiE[pi]

2xi(1− E[pi])2fi
.

(10)

Proof: The proof is provided in the Appendix B.4 of appendix.

3.2. Constructing improvement conditions

We now construct a conditional improvement for the existing solutions to identify a higher-
performance population such as to make the whole procedure computationally efficient.

Proposition 4. For a given solution (k,f , T ), if the basic replenishment cycle T is not larger
than the critical replenishment cycle T 1∗

i for item i, where

T 1∗
i =

√√√√ 2xifi(1− E[pi])2
(
(s̃DC

i )inf(α) + (s̃i)inf(α)fi
)

ki(ki + 1)Di

(
(h̃DC

i )inf(α)xi(1− E[pi])(fi − 1) + (h̃i)inf(α)xi(1− E[pi])2 + 2(h̃i)inf(α)DiE[pi]
) , (11)

then a vector k̂ = (k1, . . . , ki+1, . . . , kn) exists such that T̃C(k̂,f , T )inf(α0) ≤ T̃C(k,f , T )inf(α0).

Proof: The proof is provided in the Appendix B.5 of appendix.

Proposition 5. For a given solution (k,f , T ), if the basic replenishment cycle T is not less
than the critical replenishment cycle T 2∗

i for item i, where

T 2∗
i =

√√√√ 2xifi(1− E[pi])2
(
(s̃DC

i )inf(α) + (s̃i)inf(α)fi
)

ki(ki − 1)Di

(
(h̃DC

i )inf(α)xi(1− E[pi])(fi − 1) + (h̃i)inf(α)xi(1− E[pi])2 + 2(h̃i)inf(α)DiE[pi]
) , (12)

then a vector k̂ = (k1. . . . , ki−1, . . . , kn) exists such that T̃C(k̂,f , T )inf(α0) ≤ T̃C(k,f , T )inf(α0).

Proof: The proof is provided in the Appendix B.6 of appendix.

3.3. Heuristic design

On the solid foundations of the above Propositions 2-5, a neighbourhood heuristic search
can now be formulated. The idea stems from a mechanism of adding (or subtracting) 1 for each
element of the existing solutions. To do so, we assume that the values of ki and T are known
and serve as inputs. Then, from Proposition 2, the best values of f1, f2, . . . , fn are calculated
via Eq. (7). Thus, a feasible solution ϑ = (k1, . . . , kn, f1, . . . , fn, T ) is obtained. According to
Eqs. (11) and (12), by just adding (or subtracting) 1 now from ki, the new solution is always
better than the previous one. In addition, if the value of ki is revised, a direct way to further
improve the quality of the solution by utilizing Proposition 2 is also possible. Finally, from
Proposition 3, the optimal value of T is precisely calculated. Algorithm 1 describes the detailed
steps of the heuristic.
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Algorithm 1: Neighbourhood heuristic search

Input: The set ω = (k1, . . . , kn, T ), and the lower and upper bounds of ki, i.e., k
low
i and kupi .

Output: The high-quality solution ϑ̂.
1 According to the set ω, compute the best value of fi using Eq. (7).
2 for i = 1, . . . , n do
3 Compute the thresholds T 1∗

i and T 2∗
i using Eqs. (11) and (12);

4 if T ≤ T 1∗
i and ki + 1 ≤ kupi then

5 Set k̂i = ki + 1;

6 else if T ≥ T 2∗
i and ki − 1 ≥ klowi then

7 Set k̂i = ki − 1;

8 Compute the best value of fi, denoted as f̂i, using Eq. (7).

9 Compute the best value of T , denoted as T̂ , using Eq. (8).

10 Return the high-quality solution ϑ̂ = (k̂1, . . . , k̂n, f̂1, . . . , f̂n, T̂ ).

4. Integrated cross-entropy framework

In this section an ICE solution framework is developed by absorbing the exploration ef-
fectiveness of CE method in solving integer programming problems. Considering only one
continuous variable T involved in model (M2), an equally-spaced discretization approach is
employed to divide its search range into several sub-intervals. We then iteratively optimize the
quality of each solution by using the proposed neighbourhood heuristic search.

Before we proceed further, it should be mentioned that each sample in the ICE is stated
through an (n+ 1)-ary vector ω, where n represents the number of items. The vector contains
values of replenishment frequencies ki and the basic cycle time T , i.e., ω = (k1, . . . , kn, T ). In
the following, the structure and detailed steps of ICE with examples are described.

4.1. Sample generation mechanism

Let x = (x1, x2, . . . , xd) which consists all the possible values, and p = (p1, p2, . . . , pd),
p1 + p2 + · · · + pd = 1 which represents the corresponding probability of a random variable.
The combination of x and p can be regarded as the distribution law of the discrete variable.

For one thing, if the decision variable refers to the replenishment frequency (ki) with the
lower and upper bounds klowi and kupi , the elements in x are exactly all the integers in the
interval [klowi , kupi ]. For another, considering that the special variation range of the continuous
variable, T , is smaller than 1, the equally-spaced discretization method is adopted to handle
it. Denote T low and T up as the lower and upper bounds of T . The operation process divides
the range (T low, T up) into m equally-spaced sub-intervals 3. In this case, the elements in x
are essentially m sub-intervals rather than real numbers. It is a rather novel idea to generate
random samples for continuous decisions.

We define a matrix PG in the Gth iteration, which comprises a family of probability density
functions. Note that the initial policy for each decision variable is assumed to be an uniformly
random one. Subsequently, a set of discrete probability distributions forms the matrix PG, i.e.,
PG = (pG

k1
, . . . ,pG

kn
,pG

T ). Based on the distribution laws for ki and T , the selected values of the

3The value of m is determined by the decision makers.
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ki and T can be randomly constructed in a straightforward way, i.e., Monte Carlo simulations4.
In this regard, the vector ω = (k1, . . . , kn, T ) is obtained. At last, the correspondingly high-
quality solution ϑ̂ is generated through the neighbourhood heuristic search in Algorithm 1.

4.2. Elite samples retention mechanism

For each individual ϑ̂ in the population, the fitness is calculated on the basis of the objec-
tive function in model (M2), denoted as S(ϑ̂). To ensure that the elite samples of the next
generation are not worse than the last ones, a certain number of best samples is maintained and
copied to the next generation. We then sort the fitness of all individuals in a non-decreasing
order, and return ⌈ρK⌉ elite values and their corresponding samples, where K is the number of
population, ρ is the percentage of elite individuals, and ⌈x⌉ represents that the ceiling function
maps x to the minimum integer larger than or equal to x. Clearly, the ρ sample quantile of
the performances can be roughly set as the fitness of the ⌈ρK⌉th sample, i.e., S(ϑ̂⌈ρK⌉). In this
way, the objective value varies monotonically during the iteration process.

4.3. Parameter update mechanism

In the Gth iteration, the new matrix P̂G is built using the characteristics of elite individuals
with the conditions that each row sums up to 1. We could obtain the elements in P̂G =
(p̂G

k1
, . . . , p̂G

kn , p̂
G
T ) as

p̂G
ki,j

=

⌈ρK⌉∑
k=1

I{ϑ̂k(ki)=klowi +j−1}

⌈ρK⌉
, j = klowi , . . . , kupi and p̂G

T,j =

⌈ρK⌉∑
k=1

I{T low
j <ϑ̂k(T )≤Tup

j }

⌈ρK⌉
, j = 1, . . . ,m,

(13)
where T low

j and T up
j are respectively the lower and upper bounds for the jth sub-interval. Using

a smoothed updating procedure, the matrix in the next generation is updated as

PG+1 = λP̂G + (1− λ)PG, (14)

where λ ∈ (0, 1) represents the transition probability. Meanwhile, since less information is
obtained in the early stage of iteration, the smooth parameter is increasingly changed. Instead

of taking a predetermined value, the smoothing parameter is defined by λ = 1−0.8e
1− G2

max
G2
max+1−G2 .

In terms of parameter updating for the continue variable (T ), the search range that will
be sought in the next generation is also need to reconstruct via a sufficient small factor ϵ.
The idea is to reduce the length of the search range of T . In other words, a sub-interval will
not be considered if its corresponding probability is less than ϵ, and the new search range
will be divided again into a new set of m sub-intervals. The detailed steps are displayed in
Algorithm 2.

4The choosing possible value is a sub-interval for T , and we uniformly take a value from that range to get
a specific number.
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Algorithm 2: Reconstruction process for the continuous variable T

Input: The original distribution law of T in generation G, pG
T , the number of sub-intervals

|m| and a tolerance factor ϵ.
Output: The reconstructed distribution law of T in generation G, pG

T .
1 Find the probability degree greater than ϵ and corresponding sub-interval in pG

T . Denote me

as the number of eligible sub-intervals.
2 if me < m then
3 Each eligible sub-interval and corresponding probability are equally divided into m

shares;
4 Every me shares constitute a group;
5 The elements in each group constitute a new sub-interval;
6 The probability degree of the new sub-interval is the sum of the probabilies in each

group;
7 Normalize the probability degrees to sum up to 1.

8 The combination of the new sub-intervals and normalized probability degrees forms pG
T .

5. Numerical experiments

In this section, numerous experiments are performed to illustrate the superiority of MRAND
and ICE5. Meanwhile, sensitivity analysis is conducted to reveal the effects of the uncertainty-
related parameters involved, i.e., confidence level and imperfect rate, on the objective value
and the solution. All algorithms are encoded in Matlab2017 on a Windows 10 platform, and
the computational experiments are run on Intel Core i7 with 2.60 GHz and 8.00 GB of RAM.
By referring to Cha et al. (2008) and Carvajal et al. (2020), and combining the result of joint
replenishment, the bounds of ki and fi are set to [1, 10], and (0, 1) for T , accordingly. In the
rest of paper, the confidence level α0 is generally set as 0.8. All algorithms run ten times to
obtain reliable results.

5.1. Experiment 1: Validity of the improvements for CE

The proposed ICE for tackling FSJRD combines an equally-spaced discretization method
with a neighbourhood heuristic approach. To assess the effects of the improvements on the
searching performance, three algorithms, including CE, CE plus discretization method (DCE)
and CE plus heuristic approach (HCE), are compared with ICE. The value of ratio ρ, i.e., the
percentage of elite samples, is 0.2 for all the above algorithms. The smooth parameter for CE
and HCE is set as a constant number 0.4, while for DCE and ICE, it is an increasing function.

The general testing instance contains 20 items, and Table C.1 in the appendix shows the
detailed data. We then conduct four sub-experiments based on the data in Table C.1, i.e., the
problem scales are set to 5 (items 1 to 5), 10 (items 1 to 10), 15 (items 1 to 15), 20 (items 1
to 20), respectively. Meanwhile, the fixed major ordering cost, i.e., S, is constantly set as 200.
Table 2 reports the average-found target values, average error and average computational time
for each algorithm.

5Due to space limitation, some details and complementary results of the numerical experiments conducted
here are moved in appendix.
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Table 2: Computational results showing the different improvements for CE.

Item
num

CE DCE HCE ICE
Ave.

bmin(α0)
Ave.
Err.

Ave.
Time

Ave.

bmin(α0)
Ave.
Err.

Ave.
Time

Ave.

bmin(α0)
Ave.
Err.

Ave.
Time

Ave.

bmin(α0)
Ave.
Err.

Ave.
Time

5 7441.94 0.2538 1.6941 7423.09 0.0000 1.3751 7423.09 0.0000 0.5617 7423.09 0.0000 0.4920
10 13363.17 5.5933 3.3281 13080.80 3.3621 2.2479 12655.32 0.0000 1.4450 12655.32 0.0000 0.9961
15 18033.23 8.1394 4.1826 17570.58 5.3651 3.3419 17006.00 1.9794 2.6936 16675.91 0.0000 1.3094
20 20788.25 9.5774 5.6129 20342.60 7.2283 4.6831 19362.74 2.0634 3.1266 18971.29 0.0000 1.6387

bmin(α0): the objective value under the confidence level α0.

As shown in Table 2, referring to the average error, ICE gets the lowest error, while CE
performs the highest. Generally, as the problem scale increases, the searching efficiency of
all the algorithms is getting worse, but ICE retains the lowest increment in terms of the
computational time. Through the comparison between CE and DCE (or HCE and ICE), it is
found that the discretization method may slightly reduce the running time. In addition, the
algorithms with the proposed discretization method are more likely to obtain higher-quality
solution, causing about 2% cost savings. With regard to the improvement of neighbourhood
heuristic search now, the solution accuracy is also improved significantly. Especially when the
item number is reaching 20, the computational target values show a difference of about 7% in
the view of CE and HCE (or DCE and ICE). Although the neighbourhood heuristic approach
has shown significant improvements, it has the tendency to converge towards local optima,
hence limiting the effectiveness of the HCE conclusion. Overall, from Table 2, we may draw
a conclusion that the improving methods for CE indeed show a good performance, but have
some differences in the effect of influence.

5.2. Experiment 2: Comparison on alternative meta-heuristics

As long as acceptable performance has been obtained in solving JRP- or JRD-type problems
via meta-heuristics, in this paper, several state-of-the-art algorithms such as the genetic algo-
rithm (GA) (Otero-Palencia et al., 2019), particle swarm optimization algorithm (PSO) (Kang
et al., 2017), modified differential evolution algorithm (MDE) (Wang et al., 2013a) and bare-
bones differential evolution algorithm (BBDE) (Cui et al., 2020c) are designated, and then,
compared with the newly proposed ICE approach.

In order to provide convincing evidence regarding versatility and superiority of ICE, a set of
various numerical experiments are devised across many sizes. In this part, we initially examine
an issue scale of 20 by utilizing the data shown in Table C.1. Furthermore, to ensure the
validity of the findings, additional experiments were done using randomly generated instances
consisting of 30 and 40 elements within a broader framework. The range (or rule) of the
relevant parameters is displayed in Table C.2. To facilitate a direct comparison of all the
algorithms, following previous works, the parameters used for GA, PSO, MDE and BBDE are
calibrated accordingly. In specific, for GA, the probability of crossover, Pc, and the probability
of mutation, Pm, are given by 0.7 and 0.2, respectively. For PSO, the combination of the inertia
factor, ωn, and the acceleration constants ψ1 and ψ2 are correspondingly given by 0.73, 1.49,
and 1.49. In the case of MDE, the scaling factor F and the crossover factor CR are accordingly
equal to 1.2 and 0.6. Moreover, the predefined tolerance factors for the degree of population
diversity are settled to 0.02. The unique factor for BBDE is the crossover probability which
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is 0.7. The computational results of the above-mentioned five meta-heuristic algorithms are
presented in Table 3.

Table 3: Computational results of the five algorithms.

Item
num

Algorithm
Best

bmin(α0)

Ave.

bmin(α0)

Worst

bmin(α0)
Ave.

Err. (%)
Std.
Dev.

Ave.
Time (s)

20

MDE 22681.91 23097.38 23407.62 21.7491 240.12 11.2538
PSO 21047.96 21550.34 21899.54 13.6451 216.51 6.4843
GA 20557.56 20764.60 21094.40 9.3001 175.66 16.6399
BBDE 18971.29 19252.06 19981.27 1.4800 358.68 12.6494
ICE 18971.29 18971.29 18971.29 0.0000 0.00 1.6387

30

MDE 37331.27 38441.10 38914.96 26.8897 427.06 14.1256
PSO 35341.57 35866.16 36368.50 18.3901 373.20 9.2625
GA 33029.95 33857.21 34536.95 11.7588 462.55 25.2963
BBDE 31309.90 31979.24 32566.95 5.5598 377.50 15.0187
ICE 30294.89 30294.89 30294.89 0.0000 0.00 1.8451

40

MDE 46092.31 47272.42 47955.23 28.8544 599.11 15.5078
PSO 43127.01 44047.06 44956.48 20.0628 579.47 10.5814
GA 40761.66 41412.57 42217.79 12.8817 424.02 35.0017
BBDE 38714.75 39458.63 40081.51 7.5557 347.50 15.6979
ICE 36686.69 36687.06 36687.16 0.0010 0.19 2.1805
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Figure 2: The convergence graphs of the best-found solutions of five algorithms.

According to the findings presented in Table 3, the following conclusions can be derived:
In terms of the searching quality, the target values of ICE and BBDE are evidently lower
than those obtained from the other three algorithms, in which MDE presents the biggest value
yielding the largest error, noticeably reaching 28.8544% in the case of scale of 40. In terms of
the searching robustness, except for ICE, the standard deviations of the other four algorithms
are significantly larger. Apparently, the standard deviation increases substantially with respect
to problem scale. However, ICE has much lower standard deviation (only 0.19) even when the
problem size reaches the scale of 40. In terms of the computational time, the ICE is the most
efficient one, followed by PSO, while GA is the most time-consuming. The best-found solution
of each algorithm will be selected to show its evolution over iterations, which is illustrated in
Fig. 2. In terms of the convergence speed, from Fig. 2, we observe that only ICE converges
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in all the three cases, while BBDE does not converge when the problem scale reaches 30. GA
generally shows moderate performance in convergence. Furthermore, PSO and MDE converge
prematurely into the local optimum. Unstable and slow evolving process are also observed
in PSO and MDE. In summary, ICE provides a reliable solution in shorter times during the
experimentation phase. MDE, PSO, GA and BBDE fall behind ICE in terms of robustness,
and their target values are much larger.

5.3. Experiment 3: Comparison on alternative heuristics

In the existing literature, there has been a notable increase in the attention given to the
utilization of heuristics in the context of JRDs. Cha et al. (2008) pointed out that the opti-
mality conditions can be utilized such as to construct a RAND-type algorithm for solving the
deterministic JRDs. The computational findings offer empirical support for the assertion that
the RAND method exhibits superior efficiency compared to alternative solution approaches.
Following the same idea, Wang and Wang (2022) proposed a RAND-type algorithm for the
stochastic JRD problem and Wang et al. (2023) presented the iteratively search RAND to
solve the location-inventory JRD model. Both studies demonstrate remarkable comparative
effectiveness. Considering the above, in alignment with our proposed framework, we have
developed a modified RAND algorithm (MRAND). The details of MRAND may be found
in Appendix D. The primary method involves iteratively determining the optimal value of T
until it reaches a point of convergence when no further changes occur.

In this section, several instances of different scales (i.e., n from 40 to 2000) through random
generating from Table C.2 are conducted. Noting that the major ordering cost S is changed
from n (the problem scale) to 10 × n for our purpose to test the search ability of proposed
algorithms. The value ofM in MRAND algorithm is set to 506 following the similar experience
of Wang and Wang (2022) and Wang et al. (2023). Computational results are shown in Table 4.

Table 4: Computational results of MRAND and ICE under different settings.

Item
num

S
MRAND ICE

Ave. bmin(α0) Ave. Err. (%) Ave. Time (s) Ave. bmin(α0) Ave. Err. (%) Ave. Time (s)

40
40 34039 0.217 0.5039 33906 0.2286 2.0283
200 35228 0.2121 0.3847 35154 0.0000 1.9954
400 36806 0.3264 0.3835 36687 0.0010 1.9950

100
100 82427 0.6389 0.6231 82018 0.1399 3.7264
500 85458 0.2036 0.3087 85284 0.0000 3.2252
1000 89251 0.1045 0.4932 89158 0.0000 3.2332

500
500 410121 0.5765 0.7629 408135 0.0896 5.7196
2500 425849 0.3199 0.7624 425040 0.1293 5.6709
5000 444646 0.1940 0.6647 445491 0.3846 6.1321

1000
1000 825342 0.5272 0.7347 821921 0.1105 9.5424
5000 856833 0.2543 0.7304 855505 0.0989 10.6226
10000 898846 0.6118 0.7280 896047 0.2985 9.7908

2000
2000 1666072 0.5330 1.2131 1659266 0.1223 13.6152
10000 1737151 0.6238 1.1133 1736381 0.5792 12.7428
20000 1817196 0.8006 0.9121 1806994 0.2347 12.8124

6We also try to increase the number of M , but the effect does not have great improvement.
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Based on the findings presented in Table 4, it is evident that the time consumption associ-
ated with the MRAND algorithm is significantly lower compared to that of the ICE algorithm.
The MRAND algorithm is a straightforward approach to iterative search that does not use
mechanisms such as crossover or mutation. Therefore, the higher speed aligns with our intu-
itive understanding. Meanwhile, the computational time grows linearly with dimensionality.
The search efficiency of MRAND is notably better in smaller scenarios, particularly when the
major ordering cost is higher. The potential explanation for the observed phenomenon is that
lower ordering costs result in a larger search range. However, the iterative MRAND limits
the search for the fundamental cycle time T . While it is possible to get satisfactory perfor-
mance with the MRAND approach, it is important to note that this method may result in
the loss of crucial information necessary for obtaining the ideal outcome. On the other hand,
the utilization of the neighbourhood heuristic facilitates a seamless exploration for the most
favourable region. The experimental results indicate that the error rate of the ICE algorithm,
when utilizing neighbourhood heuristics, is generally lower compared to the error rate of the
MRAND algorithm throughout the majority of testing situations. The analysis of efficacy and
efficiency reveals that both MRAND and ICE algorithms are valuable for JRDs, albeit with
distinct application contexts. The ICE demonstrates superior accuracy compared to MRAND,
and it also offers ease of use for other constrained JRD problems. In comparison, MRAND has
superior speed capabilities relative to ICE, rendering it a more appropriate choice for customers
with time constraints.

5.4. Experiment 4: Uncertainty-related parameters analyses

In order to check the impact of uncertainty-related parameters to the secure budget of
model (M2), two sensitivity parameters are analyzed with different confidence levels and im-
perfect rates. In this direction, Table C.3 on the appendix presents complementary data as a
benchmark.

5.4.1. Sensitivity for different confidence levels

The confidence level in our case may be relevant to the risk. The higher the α0, the lower
the risk tolerance of decision makers. Also, we should emphasis that the best-case (α0 = 0),
most-likely (α0 = 0.5), and worst-case (α0 = 1) are provide planners with the ability to
coordinate procurement-shipment policy for any risk events. We could separate the confidence
level into higher risk scenario, α0 ∈ (0, 0.5], and lower risk scenario, α0 ∈ (0.5, 1]. The main
comparative results are reported in Table 5 including the solutions, target values. Accordingly,
the replenishment and distribution quantities of each item are given in Table 6. Fig. 3 gives
an illustration of the relationships of the changes between distribution quantity, replenishment
quantity and outbound frequency, taking item 1 as an example. The replenishment frequencies
keep stable, and thus they are omitted.

According to Table 5, in both higher and lower risk scenario, with an increment of the
confidence level, the basic cycle time T is gradually compressed the basic cycle time T is grad-
ually compressed, and the target value increases because of the added value of cost factors. In
details, with the increasing of α0, when the replenishment frequency of an item remains un-
changed, DC tends to mitigate this by reducing the basic cycle time, which results a reduction
of replenishment quantity QDC

i (see the green bar chart in Fig. 3). While this may indicate
that DC would pay more on ordering to hold less inventory to keep a balance. Interestingly,
if the outbound frequency, fi, of an item drops to the next level, the outbound quantity, Qi,
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Table 5: The optimal solutions under different confidence levels.

α0
Solution Best

bmin(α0)k1 k2 k3 k4 k5 k6 f1 f2 f3 f4 f5 f6 T

0.0+ 1 1 1 2 2 4 7 5 4 4 3 4 0.2533 3791.30
0.1 1 1 1 2 2 4 6 4 3 4 3 3 0.2283 4103.85
0.2 1 1 1 2 2 4 6 4 3 4 3 3 0.2147 4392.72
0.3 1 1 1 2 2 4 5 4 3 3 3 3 0.2003 4664.96
0.4 1 1 1 2 2 4 5 4 3 3 3 3 0.1910 4923.26
0.5 1 1 1 2 2 4 5 3 3 3 2 3 0.1801 5168.44
0.5+ 1 1 1 2 2 4 5 3 3 3 2 3 0.1823 5231.21
0.6 1 1 1 2 2 4 4 3 2 3 2 2 0.1709 5464.88
0.7 1 1 1 2 2 4 4 3 2 3 2 2 0.1650 5690.15
0.8 1 1 1 2 2 4 4 3 2 3 2 2 0.1597 5908.93
0.8 1 1 1 2 2 4 4 3 2 2 2 2 0.1540 6121.37
1.0 1 1 1 2 2 4 4 3 2 2 2 2 0.1498 6327.99

a+: the nearest value larger than a.

Table 6: The optimal replenishment and distribution quantities under different confidence levels.

Replenishment quantity Distribution quantity

α0 QDC
1 QDC

2 QDC
3 QDC

4 QDC
5 QDC

6 Q1 Q2 Q3 Q4 Q5 Q6

0.0+ 2814.19 1407.10 844.26 562.84 337.70 225.14 402.03 281.42 211.06 140.71 112.57 56.28
0.1 2536.91 1268.46 761.07 507.38 304.43 202.95 422.82 317.11 253.69 126.85 101.48 67.65
0.2 2385.26 1192.63 715.58 477.05 286.23 190.82 397.54 298.16 238.53 119.26 95.41 63.61
0.3 2226.05 1113.03 667.82 445.21 267.13 178.08 445.21 278.26 222.61 148.40 89.04 59.36
0.4 2122.13 1061.06 636.64 424.43 254.66 169.77 424.43 265.27 212.21 141.48 84.89 56.59
0.5 2001.46 1000.73 600.44 400.29 240.18 160.12 400.29 333.58 200.15 133.43 120.09 53.37
0.5+ 2025.77 1012.88 607.73 405.15 243.09 162.06 405.15 337.63 202.58 135.05 121.55 54.02
0.6 1898.89 949.45 569.67 379.78 227.87 151.91 474.72 316.48 284.83 126.59 113.93 75.96
0.7 1833.38 916.69 550.02 366.68 220.01 146.67 458.35 305.56 275.01 122.23 110.00 73.34
0.8 1774.81 887.40 532.44 354.96 212.98 141.98 443.70 295.80 266.22 118.32 106.49 70.99
0.8 1711.49 855.75 513.45 342.30 205.38 136.92 427.87 285.25 256.72 171.15 102.69 68.46
1.0 1664.12 832.06 499.24 332.82 199.69 133.13 416.03 277.35 249.62 166.41 99.85 66.56

shows a large number of increment, otherwise if the outbound frequency remains the same, it
has an adverse effect on the outbound quantity of that item (see the orange bar chart in Fig. 3).
The discontinuity point 0.5 only affects the ordering and outbound cost factors as these two
are trapezoidal fuzzy numbers. In this case, DC slightly increases the basic cycle time, which
means more item quantities and time are processed for inventory holding to alleviate high costs
burden of ordering and outbound.

5.4.2. Sensitivity for different imperfect rates

Examining now how the effect of the objective function is influenced by the imperfect
rate. Similarly, the solutions and target values are reported in Table 7. The replenishment
and distribution quantities of each item are given in Table 8. Fig. 4 gives an illustration of
the relationships of the changes between distribution quantity, replenishment quantity and
outbound frequency, taking item 1 as an example.

In a similar manner, the following observations hold: As the rate of imperfect quality item
is increasing, the target value shows an increasing trend. It is true that if the imperfect quality
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Figure 3: Changes of the optimal results of item 1 under different confidence levels.

Table 7: The optimal solutions under different imperfect rates.

E[pi]
Solution Best

bmin(α0)k1 k2 k3 k4 k5 k6 f1 f2 f3 f4 f5 f6 T

0.00 1 1 1 2 2 4 4 3 2 3 2 2 0.1881 4828.89
0.02 1 1 1 2 2 4 4 3 2 3 2 2 0.1857 4891.12
0.04 1 1 1 2 2 4 4 3 2 3 2 3 0.1838 4956.47
0.06 1 1 1 2 2 4 5 3 3 3 2 3 0.1853 5024.71
0.08 1 1 1 2 2 4 5 3 3 3 2 3 0.1827 5094.76
0.10 1 1 1 2 2 4 5 3 3 3 2 3 0.1801 5168.44
0.12 1 1 1 2 2 4 5 3 3 3 2 3 0.1775 5246.01
0.14 1 1 1 2 2 4 5 4 3 3 2 3 0.1766 5327.25
0.16 1 1 1 2 2 4 5 4 3 3 3 3 0.1748 5411.61
0.18 1 1 1 2 2 4 5 4 3 3 3 3 0.1720 5500.49
0.20 1 1 1 2 2 4 5 4 3 3 3 3 0.1691 5594.36

units exist, the cost is further increased, as the DC will add the number of item ordered which
leads to higher inventory holding cost. Also, Table 7 gives evidence that the replenishment
frequency, ki, of each item remains unchanged with respect to E[pi]. Interestingly, comparing
with the results in the previous section, it is found an opposite conclusion that the outbound
frequencies fi are smoothly increasing. When the data details in Table 8 are examined, changes
to the imperfect quality rates of all involved items follow a special rule to affect the replenish-
ment and distribution quantities. In the first stage, i.e., the effect of imperfect quality rate is
less severe, the order and outbound frequencies do not change much, and DC would slightly
increase the replenishment quantities to compensate the imperfect items to meet the real de-
mand from retailer, while the basic supply time, T , is reducing to avoid large-increment of the
inventory holding cost. In the second stage, as the imperfect rates keeps increasing, further
reducing on T may be not plausible, since that may cause great increases of ordering and
outbound costs. In terms of the distribution quantity, from Fig. 4, if the outbound frequency
of an item remains the same, the distribution quantity of that item increases, otherwise if the
outbound frequency is increasing, the distribution quantity decreases sharply.
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Table 8: The optimal replenishment and distribution quantities under different imperfect rates.

E[pi]
Replenishment quantity Distribution quantity

QDC
1 QDC

2 QDC
3 QDC

4 QDC
5 QDC

6 Q1 Q2 Q3 Q4 Q5 Q6

0.00 1881.39 940.69 564.42 376.28 225.77 150.51 470.35 313.56 282.21 125.43 112.88 75.26
0.02 1895.35 947.68 568.61 379.07 227.44 151.63 473.84 315.89 284.30 126.36 113.72 75.81
0.04 1914.58 957.29 574.38 382.92 229.75 153.17 478.65 319.10 287.19 127.64 114.88 51.06
0.06 1971.11 985.55 591.33 394.22 236.53 157.69 394.22 328.52 197.11 131.41 118.27 52.56
0.08 1986.27 993.13 595.88 397.25 238.35 158.90 397.25 331.04 198.63 132.42 119.18 52.97
0.10 2001.46 1000.73 600.44 400.29 240.18 160.12 400.29 333.58 200.15 133.43 120.09 53.37
0.12 2016.68 1008.34 605.00 403.34 242.00 161.33 403.34 336.11 201.67 134.45 121.00 53.78
0.14 2053.94 1026.97 616.18 410.79 246.47 164.32 410.79 256.74 205.39 136.93 123.24 54.77
0.16 2081.06 1040.53 624.32 416.21 249.73 166.49 416.21 260.13 208.11 138.74 83.24 55.50
0.18 2097.37 1048.69 629.21 419.47 251.68 167.79 419.47 262.17 209.74 139.82 83.89 55.93
0.20 2113.74 1056.87 634.12 422.75 253.65 169.10 422.75 264.22 211.37 140.92 84.55 56.37

Figure 4: Changes of the optimal results of item 1 under different imperfect rates.

6. Conclusion

This paper presents a study into the analysis of uncertain factors within the context of
inventory systems in a three-stage supply chain. The organizational framework of the JRD
policy pertaining to centralized medication procurement in China provides significant impetus
for investigating the allocation strategies of vaccines in an environment characterized by uncer-
tainty. In a more realistic scenario, the consideration of fuzzy costs and a random number of
imperfect goods is incorporated into the analysis of JRD. In order to accomplish this objective,
a framework based on chance-constrained programming is utilized. This framework enables the
planner, such as a government entity, responsible for policy-making related to procurement and
shipment, to actively engage in risk management strategies. The perception of non-for-profit
government is manifested in the degree of risk as indicated by the CCP model. Based on a
comprehensive review of existing literature in this field, it is evident that no prior investigations
have been conducted to examine the phenomenon of JRD in the context of mixed uncertainty.
We anticipate that our research study will offer profound insights into previously unexplored
aspects of knowledge, namely in the realm of logistics modelling, by identifying various forms
of uncertainty.
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This study also holds significant implications for the management of vaccination supply
chains. a) The concept of JRD under conditions of randomization and fuzziness contributes to
the effective management of uncertain factors in centralized medication procurement systems,
particularly in the context of vaccine procurement and shipment. Historical data can be em-
ployed to derive a probability distribution for the uncertainty resulting from objective factors,
such as transportation losses. In the context of imprecisely calculated parameters, such as
linguistic phrases used to describe price, the fuzzy set proves to be a useful approach, par-
ticularly when dealing with confined intervals. Various activity habits exhibit distinct forms
of uncertainty. (b) The allocation of funds for vaccines within the government’s budget is
determined by extensive negotiations between non-for-profit healthcare systems and for-profit
pharmaceutical firms. In light of the urgent need to combat the epidemic, centralized medica-
tion procurement systems are compelled to seek an optimum vaccine supply in order to achieve
a positive external effect. The consumers’ perception of the manufacturers significantly im-
pacts the pricing of the goods. A higher level of confidence, characterized by a tough attitude,
has the potential to save costs but also presents a potential increase in supply chain risk. (c)
In addition to the inherent cost variability associated with products, the numerical experiment
demonstrates the considerable potential for cost savings through the reduction of the major
ordering cost S. Since it is unrelated to products (vaccines), it is less unclear and easier to
govern. A decrease in the value of variable S corresponds to an increase in the frequency at
which replenishment occurs. In this scenario, the ability to manage the budget becomes not
only advantageous but also adaptable to fluctuations in demand through the modification of
the allocation plan. (d) The study revealed that the solution exhibits a high degree of ro-
bustness with regards to replenishment. The implementation of our treatment significantly
enhances the company’s competitiveness, hence increasing its long-term viability. However,
it is imperative for the managerial team to allocate greater focus towards crucial factors that
can potentially lead to alterations in outbound frequencies. This is due to the high sensitivity
of these frequencies to item ordering quantities, and any incorrect resolution could result in
substantial financial losses. (e) Both the MRAND and ICE decision-support tools have been
offered as valuable tools for identifying solutions that are close to optimal. However, it is
important to note that both tools have distinct applications. It is advisable for individuals
seeking to make prompt decisions to utilize the MRAND algorithm, particularly during the
initial phases of an epidemic, as it is imperative for the healthcare system to promptly react. In
terms of cost-saving, the ICE algorithm exhibits superior performance and may be effectively
employed in a broader range of constrained cases.

Future research can be implemented on constructing a JRD problem with multi-warehouse
and/or multi-distribution centras with some special replenishment policies, defining the ob-
jectives containing the relative costs, time and customer satisfactory, and designing accord-
ingly adaptive intelligent algorithms for the new JRD problem. Also, the coordination of
procurement-shipment problem and vehicle routing problem is also an interesting topic to
analyse. From the computation perspective, establishing some theoretical guarantees to ad-
dresses the constrained version of JRDs is needed to be practical.
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Appendix A. Preliminaries

Definition A.1. A fuzzy interval M̃ is a quantity with a quasi-concave membership function
µM̃ , i.e., a convex fuzzy subset of the real line R such that

µM̃(z) ≥ min{µM̃(x), µM̃(y)} ∀x, y ∈ R, z ∈ [x, y]. (A.1)

Definition A.2. A fuzzy interval M̃ is of LR-type if there exist shape functions L (for left),
R (for right), and four parameters: (m,m) ∈ R2

⋃
{−∞,+∞}, γ > 0, β > 0 with membership

function

µM̃(x) =


L

(
m− x

γ

)
, if x ≤ m

1, if m < x ≤ m

R

(
x−m

β

)
, if x > m.

(A.2)

Provided that the shape functions L and R are continuous and strictly decreasing with respect
to x at which {x

∣∣ 0 < L(x) < 1} and {x
∣∣ 0 < R(x) < 1}, respectively, the LR fuzzy interval

M̃ is said to be regular.

Definition A.3. A random variable ξ has a beta distribution if its probability density function
satisfies:

f(x) =
xa−1(1− x)b−1∫ 1

0
ua−1(1− u)b−1du

, (A.3)

where a, b > 0. Its expected value can be deduced as E[ξ] = a
a+b

.

Definition A.4. Suppose that M̃ represents a fuzzy interval with membership function µM̃ .

Then, the credibility distribution of M̃ is

Cr{M̃ ≤ x} =
1

2

(
supy≤xµM̃(y) + 1− supy>xµM̃(y)

)
, ∀x ∈ R. (A.4)

which can be denoted by ΦM̃(x).

Definition A.5. Suppose that M̃ represents a fuzzy interval and Cr is the credibility measure.
Then, the α-pessimistic value of M̃ is

M̃inf(α) = inf{x
∣∣ Cr{M̃ ≤ x} ≥ α}, ∀α ∈ (0, 1]. (A.5)

Definition A.6. Suppose that M̃ represents a regular fuzzy interval with credibility distribu-
tion ΦM̃ . Then, the inverse function Φ−1

M̃
is called the inverse credibility distribution of M̃ . If

required, we may extend the domain via

Φ−1

M̃
(0) = lim

α̂→0+
Φ−1(α̂), Φ−1

M̃
(1) = lim

α̂→1−
Φ−1(α̂). (A.6)
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Let M̃ = (a, c, c, b) be a trapezoidal fuzzy number with a < c < c < b. The shape functions

are generally assumed as L = R = max{1− x, 0}, and so M̃ is clearly a regular fuzzy interval.
Its α-pessimistic value and inverse credibility distribution can be directly deduced as

M̃inf(α) =

{
a+ 2αγ, if 0 < α ≤ 0.5

b− (2− 2α)β, if 0.5 < α ≤ 1,
(A.7)

and

Φ−1

M̃
(α) =


a+ 2αγ, if 0 ≤ α < 0.5

[a+ γ, b− β], if α = 0.5

b− (2− 2α)β, if 0.5 < α ≤ 1,

(A.8)

respectively, where γ = c− a and β = b− c are the left and right spreads.

Remark A.1. The triangular fuzzy number could be viewed as a special type of trapezoidal
fuzzy interval. In other words, when the condition ‘c = c’ is satisfied, the analytical formula-
tions in Eqs. (A.7) and (A.8) hold for triangular case.

Definition A.7. A real-valued function f(t1, t2, · · · , tn) is said to be increasing with respect
to t1, t2, . . . , tn if

f(t1, t2, . . . , tn) ≤ f(s1, s2, . . . , sn),

whenever ti ≤ si, for i = 1, 2, . . . , n.

Theorem A.2. Suppose that M̃1, M̃2, . . . , M̃n are independent regular fuzzy intervals with
inverse credibility distributions Φ−1

M̃1
,Φ−1

M̃2
, . . . ,Φ−1

M̃n
, respectively. If the function f(t1, t2, . . . , tn)

is continuous and increasing with respect to t1, t2, . . . , tn, then M̃ = f(M̃1, M̃2, . . . , M̃n) is a
regular fuzzy interval with inverse credibility distribution

Φ−1

M̃
(α) = f

(
Φ−1

M̃1
(α),Φ−1

M̃2
(α), · · · ,Φ−1

M̃n
(α)

)
, ∀α ∈ [0, 1]. (A.9)

Under the seminal work of Liu and Iwamura (1998), a minimin chance-constrains program-
ming (CCP) is constructed in Liu (2002) by employing the credibility measure, which is an
appropriate tool to formulate a fuzzy decision system with minimal objective function. The
typical single-objective minimin CCP model is given as

min
x

min f

s.t.

Cr{f(x,M̃ ) ≤} ≥ α

Cr{gj(x,M̃ ) ≤ 0, j = 1, 2, . . . , q} ≥ β,

(A.10)

where x = (x1, x2, . . . , xm) and M̃ = (M̃1, M̃2, . . . , M̃n) represent the decision vector and

fuzzy vector, respectively, f(x,M̃ ) denotes the cost function under the constraint functions

gj(x,M̃ ), and α and β are the confidence levels arbitrarily determined by decision makers.
Note that if the decision vector x is given, the value of ‘min f ’ is the α-pessimistic value of
f(x,M̃ ) in the view of Definition A.5.

27



Appendix B. Proofs

Appendix B.1. Proof of Lemma 1

According to the aforementioned notation, it should be noted that the decision variables
ki, fi and T are all positive. Then, it follows immediately from Definition A.7.

Appendix B.2. Proof of Proposition 1

It is not hard to find that T̃C(k,f , T ) is a regular fuzzy interval and following from Def-

inition A.2-A.5, for α ∈ (0, 1] and α ̸= 0.5, we have T̃C(k,f , T )inf(α) = Φ−1(α), where Φ−1

represents the inverse credibility distribution of T̃C(k,f , T ). In this regard, the argument may
break down into two cases.

Case I: α ∈ (0, 0.5) ∪ (0.5, 1]. In accordance with Theorem A.2 and the monotonicity

property of T̃C(k,f , T ) proven in Lemma 1, its inverse credibility distribution is derived as

Φ−1(α) =
S

T
+

n∑
i=1

Φ−1
s̃DC
i

(α)

kiT
+

n∑
i=1

Φ−1
s̃i

(α)fi

kiT
+

n∑
i=1

Φ−1

h̃DC
i

(α)DikiT (fi − 1)

2(1− E[ pi ])fi

+

n∑
i=1

Φ−1

h̃i
(α)DikiT

2fi
+

n∑
i=1

Φ−1

h̃i
(α)D2

iE[ pi ]kiT

xi(1− E[ pi ])2fi
,

(B.1)

where Φ−1
s̃DC
i
,Φ−1

s̃i
,Φ−1

h̃DC
i

and Φ−1

h̃i
are the inverse credibility distributions of s̃DC

i , s̃i, h̃
DC
i and h̃i,

i = 1, 2, . . . , n, respectively. Additionally, according to Eqs. (A.7) and (A.8), if 0 < α < 0.5,
we have

Φ−1
s̃DC
i

(α) = (1− 2α)sDC
i min + 2αsDC

i mid1 = (s̃DC
i )inf(α),

and if 0.5 < α ≤ 1, we have

Φ−1
s̃DC
i

(α) = (2− 2α)sDC
i mid2 + (2α− 1)sDC

i max = (s̃DC
i )inf(α).

Combining the above analyses, we could substitute Φ−1
s̃DC
i

(α) in Eq. (B.1) with (s̃DC
i )inf(α). In

a similar manner, the process can be implemented for s̃i, h̃
DC
i and h̃i, respectively. Besides,

the α-pessimistic value of T̃C(k,f , T ), i.e., inf{x
∣∣ Φ(x) ≤ α}, absolutely equals to Φ−1(α) in

this case. That is Eq. (3).

Case II: α = 0.5. On the basis of Definition A.5, it is easy to obtain T̃C(k,f , T )inf(0.5) by
taking advantage of the mathematical property of its inverse credibility function, that is the left
end point of the Φ−1(0.5) which can be calculated by the infimum of Φ−1

s̃DC
i

(0.5),Φ−1
s̃i
(0.5),Φ−1

h̃DC
i

(0.5)

and Φ−1

h̃i
(0.5). In that way, the α-pessimistic value of T̃C(k,f , T ) can be regarded as a function

of (s̃DC
i )inf(0.5), (s̃i)inf(0.5), (h̃

DC
i )inf(0.5) and (h̃i)inf(0.5) in the view of Eqs. (A.7) and (A.8).

That is Eq. (3).

Appendix B.3. Proof of Proposition 2

It is clear that for given fixed values ki and T , the best f ∗
i may satisfy the following

conditions:

Θi(ki, f
∗
i , T )−Θi(ki, f

∗
i − 1, T ) ≤ 0 and Θi(ki, f

∗
i , T )−Θi(ki, f

∗
i + 1, T ) ≤ 0,
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which leads to

−DikiT

(h̃i)inf(α0)
2

+ (h̃i)inf(α0)DiE[pi]
xi(1−E[pi])2

− (h̃DC
i )inf(α0)

2(1−E[pi])

fi(fi − 1)
+

(s̃i)inf(α0)

kiT
≤ 0

and

DikiT

(h̃i)inf(α0)
2

+ (h̃i)inf(α0)DiE[pi]
xi(1−E[pi])2

− (h̃DC
i )inf(α0)

2(1−E[pi])

fi(fi + 1)
− (s̃i)inf(α0)

kiT
≤ 0.

Denote δ(ki, T ) = k2i T
2Di

(h̃i)inf(α0)xi(1−E[pi])
2+2(h̃i)inf(α0)DiE[pi]−(h̃DC

i )inf(α0)xi(1−E[pi])

2(s̃i)inf(α0)xi(1−E[pi])2
. Therefore, we

have f ∗
i (f

∗
i −1) ≤ δ(ki, T ) ≤ f ∗

i (f
∗
i +1), where δ(ki, T ) depends on the predetermined confidence

level α0 and is larger than zero. Since f ∗
i must be a positive integer in practice, it is not hard

to get

−1

2
+

1

2

√
1 + 4δ(ki, T ) ≤ f ∗

i ≤ 1

2
+

1

2

√
1 + 4δ(ki, T ).

Consider that these two inequalities differ 1, which indicates if the values of ki and T are
ascertained, there exists an integer number in this interval, or two integer numbers in the end-
point of this interval. Note that the latter case implies when f ∗

i takes either of these two values,
the objective function would be minimized. Clearly, we have f ∗

i (ki, T ) = ⌊1
2
+ 1

2

√
1 + 4δ(ki, T )⌋.

Appendix B.4. Proof of Proposition 3

Apparently, for given vectors k and f , the objective function

T̃C(k,f , T )inf(α0) =
A(k, f)

T
+B(k,f)T

is a convex function of T , where A and B are declared in Eqs. (9) and (10). By taking the

partial derivative of T̃C(k,f , T )inf(α0) with respect to T and equal to zero, i.e.,

∂T̃C(k, f, T )inf(α0)

∂T
= −A(k, f)

T 2
+B(k, f) = 0,

denote T ∗(k,f) =
√

A(k,f)
B(k,f)

. Clearly, T ∗(k,f) ∈ (0, 1). It is also found that

∂2T̃C(k, f, T )inf(α0)

∂T 2
= 2

A(k, f)

T 3
> 0,

which implies that T̃C(k,f , T )inf(α0) is strictly decreasing in {T
∣∣ 0 < T ≤ T (k,f)∗} and

strictly increasing in {T
∣∣ T ∗(k,f) ≤ T < 1}, which indicates that the value of T ∗(k,f)

achieves the lowest objective value.

Appendix B.5. Proof of Proposition 4

Assume that a movement of adding 1 in ki may result in solution quality improvements,
i.e., T̃C(k̂,f , T )inf(α0) ≤ T̃C(k,f , T )inf(α0). To prove this, the difference (D1) on the above-
mentioned function is computed first. Then, we have

D1(ki) = Θi(ki, fi, T )−Θi(ki + 1, fi, T ).
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That is,

D1(ki) = −DiT
(h̃DC

i )inf(α)xi(1− E[pi])(fi − 1) + (h̃i)inf(α)xi(1− E[pi])
2 + 2(h̃i)inf(α)DiE[pi]

2xi(1− E[pi])2fi

+
(s̃DC

i )inf(α) + (s̃i)inf(α)fi
ki(ki + 1)T

.

Therefore, the first-order partial derivative of the right-side equality with respect to T , i.e.,

∂D1(ki)

∂T
= −Di

(h̃DC
i )inf(α)xi(1− E[pi])(fi − 1) + (h̃i)inf(α)xi(1− E[pi])

2 + 2(h̃i)inf(α)DiE[pi]

2xi(1− E[pi])2fi

−(s̃DC
i )inf(α) + (s̃i)inf(α)fi

ki(ki + 1)T 2
.

is absolutely less than zero. In this regard, we may conclude that the function D1(ki) is
decreasing with respect to T . Let D1(ki) = 0. The critical value is exactly T 1∗

i in Eq. (11).

Clearly, when T ≤ T 1∗
i , we have D1(ki) ≥ 0 and so T̃C(k̂,f , T )inf(α0) ≤ T̃C(k,f , T )inf(α0).

Appendix B.6. Proof of Proposition 5

Assume that a movement of subtracting 1 in ki may result in solution quality improvements,
i.e., T̃C(k̂,f , T )inf(α0) ≤ T̃C(k,f , T )inf(α0). In a similar manner, we denote

D2(ki) = Θi(ki, fi, T )−Θi(ki − 1, fi, T ).

That is,

D2(ki) = DiT
(h̃DC

i )inf(α)xi(1− E[pi])(fi − 1) + (h̃i)inf(α)xi(1− E[pi])
2 + 2(h̃i)inf(α)DiE[pi]

2xi(1− E[pi])2fi

−(s̃DC
i )inf(α) + (s̃i)inf(α)fi

ki(ki − 1)T
.

Therefore, the first-order derivative of the left-side inequality with respect to T , i.e.,

∂D2(ki)

∂T
= Di

(h̃DC
i )inf(α)xi(1− E[pi])(fi − 1) + (h̃i)inf(α)xi(1− E[pi])

2 + 2(h̃i)inf(α)DiE[pi]

2xi(1− E[pi])2fi

+
(s̃DC

i )inf(α) + (s̃i)inf(α)fi
ki(ki − 1)T 2

.

is absolutely greater than zero. In this regard, we may conclude that the function D2(ki) is
increasing with respect to T . Let D2(ki) = 0. The critical value is exactly T 2∗

i in Eq. (12).

Clearly, when T ≥ T 2∗
i , D2(ki) ≥ 0 and so T̃C(k̂,f , T )inf(α0) ≤ T̃C(k,f , T )inf(α0).
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Appendix C. Experiment data

Table C.1: The problem parameters involving 20 items for experiments.

NO. Di xi ai bi s̃DC
i s̃i h̃DC

i h̃i

Item 1 10000 12500 10.5 100 (45.1,45.6,46.2,47.3) (4.0,4.2,4.3,4.7) (0.42,0.61,0.91) (1.03,1.38,1.69)
Item 2 9500 11875 13.0 100 (45.7,46.0,46.7,47.4) (4.6,4.9,5.2,5.5) (0.51,0.72,0.79) (1.02,1.41,1.74)
Item 3 9000 11250 13.5 100 (42.1,43.4,43.6,44.7) (5.2,5.3,5.6,6.2) (0.47,0.74,1.05) (0.97,1.25,1.49)
Item 4 8500 10625 20.3 100 (44.2,45.1,45.6,46.0) (4.9,5.1,5.4,5.8) (0.56,0.64,0.95) (1.14,1.39,1.68)
Item 5 8000 10000 3.3 100 (41.5,42.9,43.2,44.4) (3.5,3.7,3.9,4.5) (0.51,0.67,0.76) (1.23,1.41,1.84)
Item 6 7500 9375 6.0 100 (43.9,44.7,45.1,45.9) (4.7,5.1,5.2,5.6) (0.65,0.74,1.02) (1.13,1.28,1.83)
Item 7 7000 8750 23.2 100 (44.6,45.9,46.2,46.6) (3.9,4.1,4.3,4.8) (0.72,0.92,1.24) (1.03,1.42,1.67)
Item 8 6500 8125 19.7 100 (42.9,43.8,44.6,45.4) (4.8,4.9,5.3,5.5) (0.48,0.53,0.74) (1.10,1.35,1.66)
Item 9 6000 7500 11.0 100 (44.4,45.1,45.6,46.1) (3.5,4.0,4.1,4.6) (0.77,0.90,1.04) (1.14,1.31,1.78)
Item 10 5500 6875 9.1 100 (41.7,42.8,43.3,44.2) (4.4,4.7,5.1,5.2) (0.83,0.88,1.02) (1.20,1.37,1.76)
Item 11 5000 6250 7.9 100 (44.1,44.4,44.9,45.5) (4.1,4.5,4.6,4.9) (0.64,0.75,1.00) (1.12,1.30,1.69)
Item 12 4500 5625 24.1 100 (42.9,43.9,44.5,45.2) (4.0,4.4,4.6,4.8) (0.76,0.89,1.19) (1.10,1.42,1.75)
Item 13 4000 5000 2.9 100 (41.8,42.9,43.3,44.5) (3.7,4.0,4.3,4.7) (0.58,0.73,1.06) (1.12,1.38,1.43)
Item 14 3500 4375 15.6 100 (43.1,44.5,45.0,45.5) (3.6,3.8,4.2,4.4) (0.83,0.90,1.06) (1.07,1.27,1.61)
Item 15 3000 3750 13.8 100 (42.1,43.2,43.5,44.4) (3.9,4.3,4.4,5.2) (0.72,0.98,1.17) (1.02,1.38,1.81)
Item 16 2500 3125 7.2 100 (41.9,42.4,43.1,43.4) (4.8,4.9,5.4,5.5) (0.51,0.60,0.89) (1.07,1.27,1.73)
Item 17 2000 2500 22.5 100 (44.8,45.8,45.8,46.6) (4.0,4.2,4.5,5.1) (0.55,0.61,0.94) (1.20,1.28,1.65)
Item 18 1500 1875 8.2 100 (44.0,45.1,45.8,46.0) (4.9,5.2,5.4,5.8) (0.57,0.75,0.87) (1.01,1.31,1.73)
Item 19 1000 1250 1.2 100 (44.0,44.5,45.4,46.1) (5.0,5.3,5.5,6.0) (0.55,0.70,0.92) (1.27,1.36,1.82)
Item 20 500 625 5.5 100 (43.4,44.2,44.6,44.9) (4.5,4.7,5.0,5.5) (0.43,0.60,0.78) (1.27,1.34,1.77)

Table C.2: Problem parameter settings of the large-scale cases.

Parameter Data range Parameter Data range Parameter Data range

Di U [100, 10000]

s̃DC
i

sDC
i min U [40, 46]

s̃i

si min U [3, 5.5]

S 10× itemnum sDC
i mid1 sDC

i min + 1.5× rand() si mid1 si min + 0.5× rand()

xi 1.25Di sDC
i mid2 sDC

i mid1 + 1× rand() si mid2 si mid1 + 0.5× rand()

ai U [0, 25] sDC
i max sDC

i mid2 + 1.5× rand() si max si mid2 + 0.5× rand()

bi 100
h̃DC
i

hDC
i min U [0.4, 0.9]

h̃i

hi min U [0.9, 1.4]

α0 0.8 hDC
i mid hDC

i min + 0.5× rand() hi mid hi min + 0.5× rand()

hDC
i max hDC

i mid + 0.5× rand() hi max hi mid + 0.5× rand()

Table C.3: The problem inputs for parameter analysis (S = 200).

NO. Di xi E[pi] s̃DC
i s̃i h̃DC

i h̃i

Item 1 10000 12500 0.1 (43.5,45,46,47.5) (4.5,5.0,5.5,6.0) (0.50,1.00,1.50) (1.00,1.50,2.00)
Item 2 5000 6250 0.1 (44.5,46,47,48.5) (4.5,5.0,5.5,6.0) (0.50,1.00,1.50) (1.00,1.50,2.00)
Item 3 3000 3750 0.1 (45.5,47,48,49.5) (4.5,5.0,5.5,6.0) (0.50,1.00,1.50) (1.00,1.50,2.00)
Item 4 1000 1250 0.1 (42.5,44,45,46.5) (4.5,5.0,5.5,6.0) (0.50,1.00,1.50) (1.00,1.50,2.00)
Item 5 600 750 0.1 (43.5,45,46,47.5) (4.5,5.0,5.5,6.0) (0.50,1.00,1.50) (1.00,1.50,2.00)
Item 6 200 250 0.1 (45.5,47,48,49.5) (4.5,5.0,5.5,6.0) (0.50,1.00,1.50) (1.00,1.50,2.00)
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Appendix D. Modified RAND algorithm

In this part, we construct a modified RAND algorithm (MRAND) according to the opti-
mality conditions of ki, fi and T , respectively. In the main body of the paper, the conclusions
and proofs of fi and T are given in Propositions 2-3. Here, we supplement the best value of ki
for given fi and T as follows:

Proposition D.1. For given fixed values of fi and T , there are functions γ1 and γ2 such that
the best value of ki is uniquely given by

k∗i (fi, T ) =

⌊
1

2
+

1

2

√
1 + 4γ1(fi, T )/γ2(fi, T )

⌋
, (D.1)

where

γ1(fi, T ) =
(s̃DC

i )inf(α0) + (s̃i)inf(α0)fi
T

and

γ2(fi, T ) = DiT
(h̃DC

i )inf(α0)(fi − 1)xi(1− E[ pi ]) + (h̃i)inf(α0)xi(1− E[ pi ])
2 + 2(h̃i)inf(α0)DiE[ pi ]

2xi(1− E[ pi ])2fi
.

Proof: It is clear that for given fixed values fi and T , the best k∗i may satisfy the following
conditions:

Θi(k
∗
i , fi, T )−Θi(k

∗
i − 1, fi, T ) ≤ 0 and Θi(k

∗
i , fi, T )−Θi(k

∗
i + 1, fi, T ) ≤ 0,

which leads to

−
(s̃DC

i )inf(α0)

T
+ (s̃i)inf(α0)fi

T

ki(ki − 1)
+
((h̃DC

i )inf(α0)DiT (fi − 1)

2(1− E[ pi ])fi
+
(h̃i)inf(α0)DiT

2fi
+
h̃i)inf(α0)D

2
i TE[ pi ]

xi(1− E[ pi ])2fi

)
≤ 0

and

(s̃DC
i )inf(α0)

T
+ (s̃i)inf(α0)fi

T

ki(ki − 1)
−
((h̃DC

i )inf(α0)DiT (fi − 1)

2(1− E[ pi ])fi
+
(h̃i)inf(α0)DiT

2fi
+
h̃i)inf(α0)D

2
i TE[ pi ]

xi(1− E[ pi ])2fi

)
≤ 0.

Therefore, we have k∗i (k
∗
i − 1) ≤ γ1(fi, T )/γ2(fi, T ) ≤ k∗i (k

∗
i + 1), where γ1(fi, T ) and γ2(fi, T )

are declared in the above, and depend on the predetermined confidence level α0. Since k
∗
i must

be a positive integer in practice, it is not hard to get

−1

2
+

1

2

√
1 + 4γ1(fi, T )/γ2(fi, T ) ≤ f ∗

i ≤ 1

2
+

1

2

√
1 + 4γ1(fi, T )/γ2(fi, T ).

Consider that these two inequalities differ 1, which indicates if the values of fi and T are
ascertained, there exists an integer number in this interval, or two integer numbers in the
end-point of this interval. Note that the latter case implies when k∗i takes either of these
two values, the objective function would be minimized. Clearly, we have k∗i (fi, T ) = ⌊1

2
+

1
2

√
1 + 4γ1(fi, T )/γ2(fi, T )⌋.
The MRAND is in essential an iteratively search between ki, fi and T . Firstly, the range

of T is divided into M equally-spaced values. Then, for given vectors k = (1, 1, · · · , 1) and
f = (1, 1, · · · , 1), update the optimal value for ki, fi and T until the value of T does not change,
accordingly. The detailed steps of MRAND are shown as follows:
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Algorithm D.1: Modified RAND algorithm

Input: The initial sets k = (1, 1, · · · , 1),f = (1, 1, · · · , 1).
Output: The best result and solution.

1 Divide the range of [0, 1] into M equally-spaced values T1, · · · , Tm, · · · , TM . Set m = 1.
2 Set T s = Tm and T s ̸= T e.
3 while T s ̸= T e do
4 Reset T s = T e;

5 For given (fi, T ), compute the best of ki, denoted as k̂i, using Eq. (D.1);

6 For given (k̂i, T ), compute the best of fi, denoted as f̂i, using Eq. (7);

7 For given (k̂1, . . . , k̂n, f̂1, . . . , f̂n), compute the best of T , denoted as T̂ , using Eq. (8);

8 Reset T e = T̂ .

9 Given solution (k̂1, . . . , k̂n, f̂1, . . . , f̂n, T̂ ), calculate the cost TCm using Eq. (6).
10 Reset m = m+ 1.
11 If m ≤ M , repeat the steps 2 to 10. Otherwise, stop and return the best solution with the

corresponding minimum TCm.
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