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Abstract: This paper aims to build a system to discern non-exercise activity thermogenesis
(NEAT) and non-NEAT activities in a home environment. NEAT refers to energy spent on
activities other than sleeping, eating, or engaging in traditional forms of exercise. Our study
focuses on the following NEAT activities: cooking, sweeping, mopping, walking, climbing, and
descending (some of them are Indian specific) as well as non-NEAT activities: eating, driving,
working on a laptop, texting, driving, cycling, and watching TV/idle time. The goal of this paper
is to perform a detailed study of various parameters like features used for classification, rate at
which file need to uploaded to server, data sampling frequency, and choice of window length
on the battery depletion rate and classification accuracy. The current state of the art in the area
of activity recognition has not focused on NEAT activities, e.g., cooking, sweeping, mopping,
etc. Moreover, many works assume high frequency, whereas, we work with data sampled at
lower frequency (10 Hz and 1 Hz). Our results indicate the following – our results indicate the
following – if one needs to be most battery-efficient then one must use the ‘statistical features’
for pre-processing features, the data sampling rate should be set to ‘1 Hz’, file upload rate
and window length should be ‘as high as possible’ and ‘six secs or more’ respectively. These
parameters leads to battery depletion rate of about 33,000 milliamperes in one hour and an
overall accuracy of 87%. On the other hand, if one needs to achieve the best classification
accuracy, then one must use the ‘ECDF features’ for pre-processing features, ‘10 Hz’ as the
data sampling rate, file upload rate has ‘no effect’ and ‘six secs or more’ for window length.
Selecting these parameters will lead to battery depletion rate of around 37,000 milliamperes in
one hour and a overall accuracy of 97%.
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This paper is a revised and expanded version of a paper entitled [title] presented at [name,
location and date of conference].

1 Introduction

This paper aims to create a system that utilises the
accelerometer and gyroscope data collected by the
embedded sensors (Milette and Stroud, 2012) in a
smartwatch to distinguish and inform the user of the various
activities they perform at home. The system will be able
to differentiate 13 different activities, cooking, sweeping,
mopping, walking, climbing up, climbing down, eating,
driving, working on a laptop, browsing on a phone, cycling,
sitting in a car, and watching TV. Out of these activities, the
top six are considered non-exercise activity thermogenesis
(NEAT), which refers to any home activity that requires
energy, excluding sleeping, resting, and traditional exercise.
The remaining activities, such as driving and cycling, are
considered non-NEAT, as they do not require much energy.

NEAT activity recognition is crucial in health
monitoring applications that keep track of the time spent
on each activity (Levine, 2002). In Figure 1, we see
some of the daily house activities in an Indian home
scenario. In the fullness of time, a person can get a good
understanding of his time assigned to the NEAT activities
and will be given a sound vision of how to plan his
days (Villablanca et al., 2015; Levine et al., 2006). NEAT
activities have been linked to better health outcomes, such
as, reducing the risk of obesity, diabetes, heart disease, and
depression (Hamasaki et al., 2016; Villablanca et al., 2015;
Levine et al., 2006; Owen et al., 2009). Hence, a mobile
application that tracks these activities, especially during a
pandemic when people are confined to their homes, could
be beneficial in helping people keep track of their physical
activity levels.

In our opinion, a perfect solution for NEAT activity
recognition must possess the following two characteristics.
To begin with, it must use a single and readily
available hardware device (for example, a smartwatch or
a smartphone). Secondly, as NEAT activities are likely to
occur throughout the day, our recognition system should be
energy efficient. Any user would probably like the ability
to record meaningful data without needing to charge their
device numerous times during the day to get significant
results.

A smartwatch-based solution is developed in this work
to recognise NEAT and non-NEAT activities. If energy
efficiency is the goal, reducing the sampling rate of the
sensors is the most efficient way of achieving it; we know

that battery consumption are directly proportional to the
data sampling rate (Zheng et al., 2017). Other than sampling
rate, we can also vary the amount of pre-processing of
the features, timestamp length of the window, etc. We will
discuss this in detail in Section 5 of this paper.

Figure 1 A few NEAT and non-NEAT activities which are
different in our developing nation – India,
(a) sweeping (b) mopping (c) driving on right side
(d) flatting dough in kitchen (e) roasting chapati on
tava (f) eating food with hand (see online version
for colours)

(a) (b)

(c) (d)

(e) (f)



NEAT activity detection using smartwatch 3

Although good battery life is guaranteed by a low sampling
frequency, it should be noted that the 13 activities
focused on in this paper cannot be easily distinguished
in low-frequency data. Therefore, the user must make an
intelligent choice in determining the frequency that suits
them to achieve efficient battery life for their smartwatch.
The total accuracy (for our 13 activities of interest) obtained
by different classification algorithms on data sampled at
1 Hz, 5 Hz, and 10 Hz is demonstrated in Table 1. As
the frequency of sampling data increases, the accuracy is
expected to increase.”

Table 1 Accuracy of different classifiers

Frequency 1 Hz 5 Hz 10 Hz

KNN 77 (0.2) 87 (0.5) 88 (0.1)
Multi-layer perceptron 74 (1.1) 85(0.6) 87 (0.4)
SVM 78 (0.4) 88 (0.3) 88 (0.3)
Logistic 64 (0.7) 77 (0.4) 78 (0.6)
Random forest 48 (2.7) 55 (1.5) 56 (1.9)
Naive Bayes 62 (0.8) 71 (0.8) 71 (0.8)
XGBoost 80 (0.4) 91 (0.4) 92 (0.3)

Notes: Along with the standard deviation after five runs on
1 Hz, 5 Hz, and 10 Hz sampled data for two seconds
window length and 0% overlap.

1.1 Our contributions

1 In the preliminary version of this work (Dewan et al.,
2021), we focused on limited number of activities but
in current work we are expanding the scope to include
more activities. So now, in this paper, we have a total
of 13 activities:

• cooking

• sweeping

• moping

• walking

• climbing up

• climbing down

• eating

• driving

• working on laptop

• browsing on the phone

• cycling

• sitting in a car

• watching TV.

2 We deployed our classification models on the server
and used them according to the desired accuracy. We
deployed four strong classification models (XGB,
MLP, SVM, and random forest) on the Heroku server

using the Flask API. The prerequisites for using our
smartwatch entail establishing a Bluetooth connection
between the device and a compatible smartphone.
Furthermore, to obtain accurate output signals from
the server API, both the smartwatch and smartphone
must be connected to Wi-Fi. The classification model
utilised by the smartwatch operates on data derived
from the accelerometer and gyroscope sensors present
in a typical smartwatch.

3 As mentioned above, low-frequency data means low
accuracy and vice-versa. So we left this decision to
our end-user, which frequency is most suitable to
them depending upon the battery efficiency of their
watch.

4 We evaluated (trained and tested) the classification
models experimentally on actual data sampled by
seven volunteers. We show the experimentation graphs
for both, accuracies and the smartwatch’s battery life.

5 Lastly, we worked on ‘others’ class which means if
the activity detected does not belong to any of the
above-mentioned 13 classes then the prediction is
made as ‘others’. This works on the basis of threshold
which is configurable depending on the strictness a
user desires.

6 The brief results can be seen in Table 2.

Table 2 Key results

1.2 Scope of the paper

In this paper, the ‘NEAT’ motion class encloses the
following activities:

1 cooking

2 sweeping

3 moping

4 walking

5 climbing up

6 climbing down, and the ‘non-NEAT’ motion class
enclose the following activities:

7 eating
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8 driving

9 working on laptop

10 browsing on the phone

11 cycling

12 sitting in a car

13 watching TV.

These are the maximum activities a person can perform
in a home scenario. We can easily identify them using a
smartwatch’s sensors.

1.3 Outline of the paper

Section 2 discusses the basic concepts and the problem
definition at hand. In this, we explain all the activities
which we have evaluated and how the raw-data has
been processed. Section 3 discusses the work similar
to our work, which includes IoT devices and multiple
on-body sensors at a high frequency. Next, we discuss
our proposed approach (Section 4), the architecture
of our model (Subsection 4.2), the experimental
evaluation (Subsection 5), how we collected the dataset
(Subsection 5.1) (used for training purposes), and what
classification algorithms (Subsection 5.2) we are using
to train and test. Then, we show the experimentation in
which we discuss the variation of battery (Subsection 5.3.1)
and accuracy (Subsection 5.3.2) for above mentioned
parameters. Although there were many possibilities with
the parameters mentioned-above, we shown only a few
of them to understand the trend and hence saving the
redundant space of this paper. Next, we demonstrate the
real-time testing of all the activities (Subsection 5.5)
accomplished by an external volunteer whose data does
not get included in the training. Lastly, we present our key
results (Subsection 5.6), summarising the accuracy-driven
and energy-efficient models corresponding to each set of
parameters.

2 Basic concepts and problem definition

2.1 Basic concepts in motion classes

1 Cooking: The user is working in the kitchen for this
motion class. The user’s smartwatch has dedicated
buttons for starting and stopping the process. As
soon as one enters the kitchen, he presses the start
button, then the stop button once he leaves. This
class has described all aspects of conventional
cooking, including actions such as creating Indian
flatbread (smoothing and flattening the dough
[Figure 1(d)], toasting it over a pan [Figure 1(e)], as
well as preparing curry (slicing, dicing, washing, and
stirring the vegetables). So, it covers most of the
actions that one does in a regular Indian kitchen
setup daily.

2 Sweeping: This motion class is conducted throughout
the entire house. Volunteers sweep the floor with a
broomstick while performing this activity
[Figure 1(a)]. The person may move objects
intermittently while performing this activity.

3 Wet mopping: A person uses a wet-mopping stick to
mop the floor in this motion class [Figure 1(b)]. We
conduct it for the entirety of the house. In addition
to dipping the mop into a cleaning solution and
wringing it, this motion class includes wringing the
mop after using it.

4 Walking: When a user walks around at home (but
not while sweeping or mopping), they experience
this motion class.

5 Climb up/down: User will climb and descend the
stairs during this motion class. While performing this
activity, volunteers were also permitted to hold the
side railings.

6 Eating: In this activity, the volunteer will eat by
using his hand directly or can take the help of a
spoon or fork. In Indian culture, people usually
prefer eating with their hands [Figure 1(f)].

7 Driving: In India, driving is essentially done on the
left-hand side, and the steering wheel is on the right;
hence we primarily use the left arm for maneuvering
the gear and the right arm for the steering wheel
[Figure 1(c)].

8 Working on a laptop: In this activity, the volunteer is
primarily idle and has a minimal motion of typing
on a keyboard (at an average speed) or using a
touchpad.

9 Browsing on a phone: This activity deals with the
idle portion of human time. When a person is
browsing or texting on his mobile phone, his right
hand usually holds the phone in front of his face or
a little lower.

10 Cycling: In this activity, although the position of the
hand remains steady, due to holding the handle, some
amount of continuous jerk can be felt by smartwatch
sensors. The volunteer was instructed not to remove
their hands from the handle in this motion.

11 Sitting in car: This activity deals with again
idle/zero motion of a volunteer who is ideally not
doing any work, but a person may feel slight amount
of jerks moving in the car which can be perceived
by the smartwatch.

12 Watching TV: This activity deals with sluggish
motion. In this case, a person sits idle on a couch or
bed and will pick up the remote once in a while to
change channels.

In all the classes mentioned above, the volunteers were
wearing the smartwatch in their dominant hand, i.e., the
right hand.
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2.2 Problem definition

• Input: Our raw data includes a set of time series (T )
taken from smartwatch’s accelerometer and gyroscope
sensors. With the accelerometer and gyroscope
sensors in the smartwatch, we have sensor values at
any time point p in the time series ti ∈ T . Each time
series ti ∈ T corresponds to one of the 13 motion
classes.

The input set of time series T is transformed into
overlapping windows by applying W . Each window
wi ∈ W is β in length. There is a temporally adjacent
window overlapping by θ. In our experiments, we
vary both β and θ but for the real-time testing phase,
θ remains constant as 0. A class label is assigned to
each wi ∈ W corresponding to one of the 13 previous
activities, and the activity is represented using a
number of characteristics.

• Objective: Learning and deploying four strong
classification models (using data from W to train)
that are capable of classifying the previously cited 13
activity classes. The trained models are deployed on a
server, and with the help of trained models, the live
data can be classified by using an API.

3 Related work

During the past decade, researchers have been studying
human activity recognition from various perspectives. We
divided the work related to detecting home activities into
two categories. The first category (Tapia et al., 2004;
Skocir et al., 2016; Bianchi et al., 2019; Cicirelli et al.,
2016) talks about detecting home activities based on
IoT devices/sensors, and the second category talks about
detecting home activities with the help of wearable sensors
(e.g., Bianchi et al., 2019; Stisen et al., 2015; Jiang et al.,
2016; Mannini, 2015; Zhang and Sawchuk, 2012; Murao
and Terada, 2014; Guo et al., 2016; Inoue et al., 2015;
Ponce et al., 2016; Sun et al., 2010; Thiemjarus et al., 2013;
Ronao and Cho, 2016; Bayat et al., 2014; Sun et al., 2017;
Shoaib et al., 2014; Ordóñez and Roggen, 2016 which is
closer to our work. This category is further divided into
two sub-categories, i.e., use of multiple sensors (Mannini,
2015; Zhang and Sawchuk, 2012; Murao and Terada, 2014;
Guo et al., 2016; Inoue et al., 2015; Ponce et al., 2016)
and use of high-frequency sensor data (Stisen et al., 2015;
Jiang et al., 2016; Sun et al., 2010; Thiemjarus et al., 2013;
Ronao and Cho, 2016; Bayat et al., 2014; Sun et al., 2017;
Shoaib et al., 2014; Ordóñez and Roggen, 2016). Here is
a brief overview of the current research literature and its
relevance to the present discussion.

The first category requires lots of IoT instruments
which are a bit costly. For instance, Tapia et al. (2004)
talks about retrofitting their devices in the existing homes
which comprises three components, i.e., the environment
which fills with state change sensors taped to objects, an
experience sampling tool (ESM) that allows users to label

their activities in context and lastly recognition algorithms
that recognise patterns and categorise activities. They had
to install 80 sensors in a particular home to capture data,
which was quite a hassle. Although they tried to cover
the maximum home activities a person can perform, their
accuracy varied from 25% to 89%. Skocir et al. (2016)
talk about just entering and exiting a person inside a
room to adjust the settings of heating, ventilation, and
air conditioning (HVAC). Again, the IoT devices are used
to sense a human presence, making detection possible
using simple algorithms like ANN. Similarly, Bianchi et al.
(2019) uses the concept of IR motion sensors in every room
to recognise most of the activities of the person, along
with a wearable three-axis accelerometer sensor to identify
the posture of a person. Cicirelli et al. (2016) talk about
anomaly detection along with recognition of 11 activities
with the help of an H2O autoencoder. Again multiple
sensors were involved in solving the purpose. Furthermore,
there are tons of research going on in this field. They use
IoT devices in every part of the home and can guess a
user’s activity by knowing the location of a person inside
the house. The main idea behind this research is to make
an intelligent home environment with the help of sensor
devices and Wi-Fi connectivity.

The next category (e.g., Bianchi et al., 2019; Stisen
et al., 2015; Jiang et al., 2016; Mannini, 2015; Zhang
and Sawchuk, 2012; Murao and Terada, 2014; Guo et al.,
2016; Inoue et al., 2015; Ponce et al., 2016; Sun et al.,
2010; Thiemjarus et al., 2013; Ronao and Cho, 2016;
Bayat et al., 2014; Sun et al., 2017; Shoaib et al., 2014;
Ordóñez and Roggen, 2016 of activity recognition talks
about detection using wearable devices similar to our case.
The classification models developed in these works can
anticipate a wide range of activities. Research done in this
area has been broadly divided into two categories:

a multiple sensors were used (including a customised
hardware) (Stisen et al., 2015; Jiang et al., 2016;
Mannini, 2015; Murao and Terada, 2014; Inoue et al.,
2015; Ponce et al., 2016; Krishnan and Cook, 2014;
Shoaib et al., 2014)

b one sensor was used (e.g., smartphone and
smartwatch) (Zhang et al., 2010; Sun et al., 2010;
Ronao and Cho, 2016; Bayat et al., 2014; Sun et al.,
2017).

In the first category, classification models are developed
by using data from multiple sensors (e.g., Tapia et al.,
2007; Murao and Terada, 2014; Krishnan and Cook, 2014;
Ponce et al., 2016; Inoue et al., 2015). For example,
Inoue et al. (2015) proposed a model which incorporated
accelerometer data from three locations (one on the wrist,
one in the breast pocket, and one on the back hip) for
the purpose of recognising activity in a hospital setting.
Likewise, the method proposed in Tapia et al. (2007)
requires five accelerometers (located on the body in various
locations) and a heart monitor to assess human activity such
as rowing, cycling, walking, etc. Based on accelerometer
data (embedded in the legs, arms, and hips), Murao and
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Terada (2014) recognises body postures (standing, sitting,
etc.), movement (walking, running, etc.), and hand gestures
(throw, chop, punch, etc.). With the help of multiple
sensors mounted on the wrist, chest, and ankle, Ponce
et al. (2016) developed a classification model for detecting
18 of the most common household activities. Despite
the impressive results of these approaches, they are not
relevant in our problem setting since any technology that
uses multiple devices to recognise NEAT activities would
not be accepted by consumers. Ideally, data sampling
and prediction should be limited to one easily accessible
device (e.g., a smartphone or smartwatch, which are readily
available).

We can further segment the second category of solutions
(i.e., those which utilise a single device) into two
subcategories:

1 a high frequency (e.g., 20 Hz or above) data sampling
is performed (Sun et al., 2010; Ronao and Cho, 2016;
Bayat et al., 2014; Sun et al., 2017)

2 low-frequency data sampling is performed (Zhang
et al., 2010).

For NEAT activity recognition, solutions based on
high-frequency data are unsuitable because the battery
would be consumed faster by such solutions. There is a
direct correlation between high-frequency data sampling
rate and battery consumption, as cited in Zheng et al. (2017)
and Dewan et al. (2019). NEAT activities are likely to
spread throughout the day, so a solution should be energy
efficient, as a consumer would like to collect data for a full
day to get meaningful insights into their NEAT activities.

Zhang et al. (2010) operates at a low frequency of
1 Hz. In this paper, the volunteers wore their smartphones
on their belts to identify the activities. Seated activities,
standing activities, lying activities, walking activities,
posture changes, and gentle motions are distinguished
here. Even though these are some common activities (for
instance, walking), we focus on several activities that are
not trivial (for example, cooking, mopping, and sweeping),
which are integral in a solution for NEAT activity
monitoring. Patel et al. (2008) proposes a novel hierarchical
machine learning classifier specifically designed to address
closely related classes. It employs a temporal pattern mining
approach that recognises, for instance, the likelihood of
eating following the act of cooking. This work is a valuable
complement to our own.

4 Proposed approach

4.1 Pre-processing and features

For training, we divide raw sensor values into overlapping
windows (W) consisting of time series data T . A
certain degree of overlap between two temporally adjacent
windows wi and wi+1 in W is determined by the parameter
θ. The values of θ are 0, 0.3, 0.5 and 0.7 (Issa et al.,
2022). No overlap occurs at θ = 0. In θ = 0.3, θ = 0.5

and θ = 0.7, there is an overlap of 30%, 50% and 70%
respectively between two successive windows. By creating
an overlapping 50%, we are, in effect, adding another data
point between non-overlapping (but temporally adjacent)
windows. As a result, we can reduce the likelihood of
outliers, resulting in a more robust model.

Figure 2 Architecture for testing on live data

The windows are of length ω. In our study, ω equates two,
four, and six seconds.

• Accelerometer individual axis features: With the help
of an accelerometer, we calculate the rate at which
the device’s velocity changes. Accelerometers produce
results in all three dimensions, i.e., x-axis, y-axis, and
z-axis. There will be three sets of acceleration values
for a particular window wi ∈ W consisting of ax, ay ,
and az . A window of three time series is analyzed
using five statistical features:

1 mode

2 max

3 median

4 lower quartile

5 standard deviation.

The result is 15 possible combinations, composed of
three axes paired with five statistical features. We
used raw sensor values and do not apply a filter
before using them to calculate statistical features.
Similarly, we analyze a window of three time series
by finding five data points at equal intervals between
the minimum and maximum value, which we call
ECDF (empirical cumulative distribution function)
features.

• Gyroscope individual axis features: We measure an
angular speed by a gyroscope sensor attached to or
worn by a person. The gyroscope also displays three
dimensions for the x-axis, y-axis, and z-axis, just like
the accelerometer. We denote the resulting time series
by gx, gy , and gz . Gyroscope sensors can also be used
as a motion sensors to detect a device’s orientation in
conjunction with the accelerometer values. A
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time-series window with 15 statistical features has the
previously mentioned five statistical features and five
ECDF features for each axis.

4.2 Model architecture

After preparing the back-end models, we deploy them on
a server. Figure 2 gives an overview of how the live data
flows in the system and how we get the desired output in a
smartwatch by using Wi-Fi connectivity.

The process starts with a person wearing a smartwatch
with an active Wi-Fi connection; it automatically
synchronises with the smartphone’s Wi-Fi. With the press
of the start button, we begin capturing the raw inputs
from the sensors. We then pre-process this raw data using
static or ECDF features and save it into a CSV file in
the smartwatch itself. The processed CSV file gets sent to
the Heroku server regularly, hitting an API that expects
two parameters – the CSV file and the classifier’s name.
After the models process the CSV, the server sends back
the result to the smartwatch. We repeat this process until
the user presses the stop button and transfers the entire
prediction and actual activity class file to a smartphone.
We use this method to test the accuracy of all activities
(we will show this in Subsection 5.5).

4.2.1 Detection of ‘others’ class

Along with the instantaneous detection of the 13 NEAT
and non-NEAT activities, a user performs multiple other
activities too. So to generalise our approach towards
deployment, we detect those non-listed unknown activities
named the ‘others’ class. We use various clustering
algorithms and outlier detection methods to detect this
activity. We will discuss in brief each of them.

1 Gaussian mixture model: Its library has a
predict proba function, which gives us a probability of
a test point belonging to one of the classes. Even if
the points lie far from all the clusters, yet it gives a
high probability of belonging to one of the clusters.

2 OPTICS algorithm: We find different numbers of
clusters for our 13 classes and calculate the mean (the
average value of all data points belonging to one
class) and variance (the spread of all the data points
of a class from its class mean) of these clusters. Then,
we compared the distance between an outside class
data point and mean of each cluster and compared it
with three times the variance since for a normal
distribution 99% of the data lies within the three
times the standard deviation.

Unfortunately, we did not get any accurate results from
these experiments since it is challenging to find an outlier
in highly sparse data. Henceforth, we apply the threshold
concept, i.e., for every window, if more than 60% instances
do not belong to the same class, then we say that the

entire window belongs to the ‘others’ class. We chose
60% because any number above 50% would have been
acceptable. Basically to have some prediction for maximum
possible windows low threshold will be helpful.

5 Experimental evaluation

5.1 Dataset used

We collect real-time data at a frequency of 10 Hz from a
home environment. The data was collected using Fossil’s
sports smartwatch, which runs an Android platform and
is powered by Google’s Wear OS as shown in Figure 3.
All the seven volunteers wore their watches on their
dominant hands (mostly right hands). There is a list of
activities listed on the watch and a start and stop button
at the top. The volunteer would enter the ground truth
labels in the smartwatch application before commencing
any activity by clicking on any list item. So the volunteers
selected the activity they wanted to do (cooking, sweeping,
mopping, walking, climbing up, climbing down, eating,
driving, working on laptop, browsing on the phone, cycling,
sitting in a car, and watching TV) before pressing the start
button. With the press of the stop button, the volunteer
can halt the activity. To collect data, the volunteer had
to keep their mobile phone in their pocket or hands
because, using Bluetooth technology, we transfer data from
their smartwatch to their smartphone every few minutes.
According to our preferences, we can set a config to
transfer data from the smartwatch to the smartphone at any
given interval.

Figure 3 Architecture for data sampling

The watch or phone did not contain any ‘GPS’ or any
other sort of ‘tag’ information. A total of four to five
hours of data was collected but could consider only three
and a half hours (balanced data) due to an imbalance in
activity classes. The imbalance was natural since it took
significantly less time to climb up and down the stairs, than
to cook or do any other household work such as sweeping
or mopping, or even, for instance, sit idle/watch TV/work
on a laptop. To prevent the issue of misclassification
caused by dominant classes, we take equal samples from
each category. At last, the data is collected and sent to
the backend for some pre-processing (statical or ECDF).
We then tend to use this pre-processed data to create
classification models.
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Figure 4 Rate of battery depletion while using ECDF features as compared to the static features, (a) file to server = 5,000 ms (b) file
to server = 10,000 ms (c) file to server = 20,000 ms (d) file to server = 40,000 ms (see online version for colours)

(a) (b)

(c) (d)

Notes: The X-axis represents the time where one unit represents ten seconds, and Y-axis
represents the battery left (mAh) in the smartwatch.

Figure 5 Rate of battery depletion while taking different window length, such as, two, four, and six seconds, (a) file to server
= 5,000 ms (b) file to server = 10,000 ms (c) file to server = 20,000 ms (d) file to server = 40,000 ms (see online version
for colours)

(a) (b)

(c) (d)

Notes: The X-axis represents the time where one unit represents ten seconds, and Y-axis
represents the battery left (mAh) in the smartwatch.
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Figure 6 Rate of battery depletion while using 1 Hz sampling rate as compared to 10 Hz sampling rate, (a) file to server = 5,000 ms
(b) file to server = 10,000 ms (c) file to server = 20,000 ms (d) file to server = 40,000 ms (see online version for colours)

(a) (b)

(c) (d)

Notes: The X-axis represents the time where one unit represents ten seconds, and Y-axis
represents the battery left (mAh) in the smartwatch.

5.2 Candidate algorithms

Here, we are using the most common and most effective
classification models. These are in-built classifiers found
in most machine learning libraries (for example, sklearn
in Python). For the classification purpose, we chose the
following classifiers:

a MLP (multi-layer perceptron with three hidden layers
having 13 neurons each)

b SVM (support vector machine with kernel = ‘rbf’)

c random forest

d XGB (extreme gradient boosting)

e AutoML [automated machine learning with
parameters as time left for this task: 5 ∗ 60 (five
minutes) per run time limit: 50 seconds
initial configurations via metalearning: 0] (Patel et al.,
2020a).

5.3 Experimental goals

5.3.1 Effect of parameters on battery

We have some parameters on which we performed the
battery experiments, i.e., we calculate the battery depletion
rate. The four basic parameters are:

1 Features: We factor in two kinds of features, statical
and ECDF. We considered five statistical features:

1 mode

2 max

3 median

4 lower quartile

5 standard deviation.

Similarly, empirical cumulative distribution function is
a step function for n data points that jumps up by 1/n
each time. For ECDF, we find out five data points at
equal intervals between the minimum and maximum
value. We witness the battery depletion for both
ECDF and statistical features in Figure 4. The
computation of ECDF is more complicated than
simple statistical features that we are calculating for
pre-processing, subsequently, the rate of battery
depletion.

2 Window length: We denote the window’s length by ω.
In our study, ω equates to two, four, and six seconds
as shown in Figure 5. The longer the window length,
the lesser the battery consumption. Like ‘file upload
rate’, a smaller window length will mean multiple
windows; subsequently, it will pass more instances
through PKLs on the server.
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3 Sensor sampling rate: Although there are four types
of modes available in our android, i.e., normal, UI,
game, and fastest, we are using the slowest two, i.e.,
normal and UI (considering the low frequency → low
battery depletion phenomena). These are the delays
that the sensors provide. We get approximately 3–4
pings/second using normal mode, and UI mode
delivers approximately 13–15 pings/seconds. As we
insert the values of the accelerometer and gyroscope,
we consider the latest value that the sensor has
dispatched after every second and every 1/10th of a
second for normal and UI mode, respectively. Our
application’s onSensorChanged() callback method
receives sensor events based on the data delay (or
sampling rate). We can witness the battery depletion
in Figure 6, and, the higher frequency data sampling
rate, i.e., 10 Hz (UI mode), depletes the battery at a
faster rate as compared to the 1 Hz (normal mode).

4 File upload rate: This is the time we fix for sending
our file to the server for processing through PKLs
models (prepared classification models). We observe
the battery depletion graph in Figure 7. We vary the
time intervals from ten seconds (10 kms) to 70
seconds (70 kms). The smaller the gap for sending
files, the higher would be the battery depletion since
the server is getting pinged frequently. Time for
sending file to the server can be after every few
seconds or after full storage capacity its a personal
choice but optimal one would be ‘as high as possible’
since this is hardware dependent. We can increase this
time duration to some minutes or few hours till the
time our application does not freeze.

Figure 7 Rate of battery depletion while varying the file
upload rate to the server (see online version
for colours)

Notes: The X-axis represents the time where one unit
represents ten seconds, and Y-axis represents
the battery left (mAh) in the smartwatch.

We performed the above four experiments for one hour each
and noted the battery level at intervals of ten seconds. We
used to start the battery off with full charge and noted the
depletion rate concerning the last value reported. As the
absolute battery value may vary at full charge (100%), we
had to normalise the values to start from one absolute value.
We did this to get a better visualisation of the graphs.

5.3.2 Effect of parameters on accuracy

5.3.2.1 Training and evaluation metrics

We use two-second, four-second, and six-second window
lengths in our experiments. We vary a window overlap
parameter θ between 0 (i.e., no overlapping between
consecutive time windows) and 0.7 (i.e., 70% overlap
between consecutive time windows). Taking a set of W
values with their corresponding θ values, we divide it into
a 4:1 ratio, that is, assigning 80% of the data for training,
and the rest 20% is set for testing. Our dataset is randomly
divided into training and test sections (ten times) to obtain
reliable results. We train on each of the ten sections (and
tested the learned model). Lastly, we present the average of
the F1-scores and accuracy values obtained across these ten
test datasets.

1 Effect of varying window length and overlapping
percentage on the final accuracy: The average of ten
results is shown in the graphs of Figures 8, 9, 10 and
11. In all these figure:

a represents two seconds window

b represents four seconds window

c represents six seconds window.

There is a refinement of at least 2 to 3% accuracy for
each classifier to increase the window length. The
higher window length denotes lesser amount of
battery consumption (Figure 5) and more amount of
data to recognise the activity. Similarly, when we
increase the overlapping percentage of windows, there
is an improvement of at least 2 to 3% in accuracy for
each classifier.

2 Effect of varying frequencies and pre-processing
features on the F1-scores: As we increase the
frequencies of pings from the sensors, not just does
the battery consumption increase (Figure 6) but the
F1-scores boost too. Henceforth, the accuracies also
increase. The higher the frequencies of sensors, the
better the quality of information to predict. Likewise,
we have chosen two types for pre-processing features
– ECDF and statics. ECDF consumes additional
battery as compared to statics (as shown in Figure 4)
but gives more promising F1-scores and henceforth
the accuracies for our 13 activities.

We see in Table 3, for 0% overlapping among windows and
a two seconds window length, ECDF features give better
F1-scores and accuracies as compared to statical features.
The same observation can be seen in Table 4, i.e., for 50%
overlapping among windows and a two seconds window
length. In all of the eight tables, we see that the F1-scores
and accuracies are better for 10 Hz than 5 Hz.
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Figure 8 Effect of different overlapping windows percentage on overall accuracy for 5 Hz frequency and ECDF features, (a) two
seconds window (b) four seconds window (c) six seconds window (see online version for colours)

(a) (b) (c)

Figure 9 Effect of different overlapping windows percentage on overall accuracy for 5 Hz frequency and static features, (a) two
seconds window (b) four seconds window (c) six seconds window (see online version for colours)

(a) (b) (c)

Figure 10 Effect of different overlapping windows percentage on overall accuracy for 10 Hz frequency and ECDF features, (a) two
seconds window (b) four seconds window (c) six seconds window (see online version for colours)

(a) (b) (c)

Figure 11 Effect of different overlapping windows percentage on overall accuracy for 10 Hz frequency and static features, (a) two
seconds window (b) four seconds window (c) six seconds window (see online version for colours)

(a) (b) (c)

Please note that we alter the frequencies of sensor data by
adjusting the modes and designating the timer at which we

desire our pings. To work on 10 Hz data, we use the UI
mode, but for 5 Hz, we downsampled the 10 Hz data.
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Table 3 F1-scores and overall accuracy from the strong classifiers for ECDF vs. static for overlapping θ = 0 and window length = two
seconds

(a) overlapping θ = 0, frequency = 5 Hz, features = ECDF

(b) overlapping θ = 0, frequency = 5 Hz, features = static

(c) overlapping θ = 0, frequency = 10 Hz, features = ECDF

(d) overlapping θ = 0, frequency = 10 Hz, features = static

5.4 Comparison of feature selection algorithm –
TsFresh vs. ECDF vs. static features

Tsfresh (Patel et al., 2020b) provides a comprehensive
set of feature extraction methods, ranging from simple
statistical moments to more advanced features such as
entropy, fractal dimension, and autocorrelation. The large
number of features (789 for each of the six axes) provided
by tsfresh makes it a useful tool for time series analysis,
as it provides a rich set of features that can be used to
characterise the structure and behaviour of time series data.
Tables 5(a) and 5(b) shows the accuracy comparison for
5 Hz and 10 Hz sampling data and we can observe that
for four seconds and six seconds window the accuracy
of Tsfresh is better as compared to static and ECDF. But
in Tables 5(c) and 5(d) we can observe the computation
time of Tsfresh as compared to static and ECDF is much
much higher for both 5 Hz and 10 Hz sampling data. There

are several other feature extraction tools that are similar to
tsfresh such as – featuretools, tsfeat, rfeat, sktime, and tsaug
which we will be exploring in depth in our future work.

5.5 Real-time testing

In the real-time testing, we use XGB classifier since it
delivered the best accuracy for training and testing. We
chose the data sampling rate of 10 Hz since it was an
optimal choice among the two modes (normal and UI). We
chose the file upload rate as once every 70,000 ms as it
turns out to be more battery efficient and six seconds for the
window length as it gives the best results of accuracy and
battery efficiency. We choose an utterly different volunteer
to conduct all activities in this live testing phase. The
volunteer performed each activity for a varied amount of
time; hence we considered the ratio of time duration of
correctly classified instances and the time duration of the
activity. We can see the results in Figure 12.
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Table 4 F1-scores and overall accuracy from the strong classifiers for ECDF vs. static for overlapping θ = 0.5 and window length = two
seconds

(a) overlapping θ = 0.5, frequency = 5 Hz, features = ECDF

(b) overlapping θ = 0.5, frequency = 5 Hz, features = static

(c) overlapping θ = 0.5, frequency = 10 Hz, features = ECDF

(d) overlapping θ = 0.5, frequency = 10 Hz, features = static

Figure 12 Live data accuracy for all activities
(see online version for colours)

5.6 Key results

We deploy our models on lower frequencies, i.e., 10 Hz and
1 Hz. The four parameters (to reckon the battery depletion
rate) varied among features, file upload rate, data sampling
rate, and window lengths.

The two kinds of features taken into deliberation
are ECDF and statistical, and among these two, ECDF
being the complex one devours more battery as compared
to statistical. On the other hand, if we analogise the
accuracy score of both, we can observe that the ECDF
accuracy is considerably better than statistical. Hence, we
report statistical to be energy-efficient and ECDF to be
accuracy-driven.

File upload rate is the time interval after which we
send our file to the server for the prediction of results.
There is a significant drop in server hits if we increase
this time interval which automatically helps improve the
battery efficiency. This number does not affect accuracy,
but it should be as high as possible since it will be
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energy-efficient. Our watch used to hang when we tried
for longer durations like an hour or so, hence we varied
our experiments till 70 seconds only. Hence, we report
file upload rate to be ‘as high as possible’ to be an
energy-efficient and independent parameter for accuracy.

Data sampling rate is an Android out of the box
provides us with four different frequencies with a facade
– normal, UI, game, and fastest. The order of battery
depletion goes like fastest > game > UI > normal. Since
we are working on the battery efficiency goal, we consider
UI mode (10 Hz data sampling rate) and normal mode
(1 Hz sampling rate). The higher the frequency, the higher
the information available to make a definitive decision
and enhance accuracy. Hence, we report 1 Hz (normal
mode) to be energy-efficient and 10 Hz (UI mode) to be
accuracy-driven.

Table 5 Comparison of Tsfresh vs. static vs. ECDF features
selection algorithms w.r.t. accuracies and computation
time

(a) accuracies for 5 Hz sampling data

(b) accuracies for 10 Hz sampling data

(c) computation time for 5 Hz sampling data

(d) computation time for 10 Hz sampling data

Lastly, we consider window length in which we take into
account the time duration our classifier needs to learn and
predict the activity. The higher the duration we provide, the
better would be the accuracy, but it is valid till a specific
limit. After a certain point, the accuracy stops increasing.
That is what we scrutinised for window length beyond
six seconds. We considered window lengths of two, four,
and six seconds. Lower window length means an increased
count of predictions made and hence an increase in battery
consumption. Hence, we report six seconds and above to be
both energy-efficient and accuracy-driven.

Table 6 Key results

So the best set of parameters for good battery efficiency
would be → statistical features, file upload rate is chosen as
once every 70,000 ms, 1 Hz data sampling rate, six seconds
or above window length and lastly XGB as classifier (no
effect though since classifier is present on the server). The
best parameters for good accuracy would be → ECDF
features, file upload rate as once every 70,000 ms, 10 Hz
data sampling rate, six seconds or above window length and
lastly XGB as classifier (as shown in Table 6).

6 Conclusions

We develop a system that tells the user what kind of activity
they are doing by taking data from the smartwatch that the
user has worn on his wrist. We have a total of 13 activities:

1 cooking

2 sweeping

3 moping

4 walking

5 climbing up

6 climbing down

7 eating

8 driving

9 working on laptop

10 browsing on the phone

11 cycling

12 sitting in a car

13 watching TV.

The process to get this output is collecting the raw input
data from the smartwatch sensors by pressing a start button
and then dispatching the data to the server to get interpreted
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and passed through classification models deployed there.
The communication between the smartwatch and the server
happens through Wi-Fi connectivity. We evaluate the final
results in terms of battery depletion rate for each parameter
– pre-processing features (static and ECDF), File upload
rate, data sampling rate as 1 Hz or 10 Hz, and timestamp
length of the window. The battery depletion rate would
enable a user to make the best choice for determining an
optimal set of parameters. Since these classification models
are not deployable on a smartwatch, we had to take support
from the intermediate server, but in the future, we shall
try to deploy everything on the smartwatch to mitigate the
quotient of the internet availability.

We implement that if the user does not perform an
activity from the above chosen 13 activities, then our model
will point to another class termed the 14th class, i.e.,
‘others’, we term this when there is no majority voting to
any of the above-stated classes.

We used different clustering techniques to learn about
the ‘others’ class, but it was impossible to separate
the outliers from the actual plethora of activities in
high-dimensional data. Henceforth, we applied the concept
of dominating class (40% and above instances, if they
belong to the same class for a particular window, then we
say yes to that class; otherwise, the label is ‘others’). We
can change this threshold to 30% or 50%, depending on the
level of strictness/mildness we want in our system.
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