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Abstract

Motivation is a central concept in the development of autonomous agents and robots. This paper describes an archi-

tecture that uses a psychological BDI model of reasoning, combined with a distributed multi-level model of motivation.

The robot controlling architecture makes use of a generic set of deliberative components plus an environment task-

centred set of reactive components that reflect the architecture’s embodiment. The architecture has been used in a

number of simulated environments and here is used to control a mobile robot. A theoretical framework for motivation

and affect is given, and related to the nature of autonomy and embodiment. A BDI model, based on a psycholog-

ical model of reasoning in a 5 year old child, is described in terms of the nature of motivation and affect within the

architecture. Finally, criteria for judging the nature of an agent’s motivation are introduced, and used to validate the

motivational constructs implemented within the architecture. Experimental results lead to a comparative discussion.
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1. Introduction

Mobile robots provide an essential tool when investigating the interac-

tion of cognitive architectures and the physical environment. Robots

have been used to investigate many different aspects of artificial in-

telligence such as mapping and localization techniques [1, 2], robot

perception [3] and robot learning [4, 5]. This research described here

seeks to use a mobile robot to investigate a specific area of cognitive

science known as the anchoring problem. The anchoring problem de-

scribes the problem of generating and maintaining links between sym-

bols and perceptual data.

The high level aspects of the cognitive architecture have been de-

veloped over a number of related projects using simulation environ-

ments [6–9]. This paper describes how we anchor this cognitive ar-

chitecture using an embodied agent (or robot). This research attempts

to achieve two main goals. The first is to develop a robotic agent that

can learn how to achieve its goals with no prior understanding of the

effect of its actions. To do this the agent must be able to identify the

focus of its goal, i.e. if the goal is to touch a specific object, it must

recognise when that object is close. The agent must also be able to

recognise when the objective of its goal has been achieved. This is akin

to dynamically creating plans for behaviours to achieve successful goal

completion [10].

To achieve these goals a hybrid reactive-deliberative architecture has

been implemented upon a mobile robot [11]. Hybrid architectures seek

to avoid the disadvantages of their component architectures, whilst re-

taining all their benefits. A common hybrid architecture is the reactive-

deliberative architecture [12]. Here we present an architecture con-

sisting of several different elements including a set of low-level robot

actions; a reactive component built from many different reactive be-
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haviours; a belief-desire-intention (BDI) schema; a distributed model of

affect; an association construct; a domain model; and a motivational

blackboard that links all these subsystems together. All these com-

ponents implemented on a robotic platform combine to make robo-

CAMAL.

Motivation can be considered as the driving force behind all the ac-

tions of an agent [13, 14]. Motivation cannot be observed directly, but

it can be inferred from the observable behaviour of an agent [15]. If a

robotic agent is to act of its own volition, then it requires some form of

motivation to be incorporated within its architecture. Other researchers

([5, 16, 17]) have employed such concepts with promising results. This

paper will discuss the nature of the motivational constructs used by the

robo-CAMAL architecture, and show how motivation is grounded within

its environment. Summary results from extensive testing and experi-

mentation show how effective these mechanisms are for controlling an

autonomous robot in a structured dynamic environment. A discussion

of the relative merits of the current approach is given, before highlight-

ing current and future directions in the concluding remarks.

2. Research issues

This section will consider some of the issues that need to be addressed

in answering the questions under investigation. robo-CAMAL is one

instantiation of the range of cognitive architectures developed within

the CAMAL research, and the first to couple the cognitive architecture

with a physical robot. CAMAL is a cognitive architecture that attempts

to provide a positive answer to the two following questions.

The first is can the robotic agent developed here modify its goals and

behaviour in response to changes, outside of its control, in a dynamic

physical real-time environment.

The second question is can the agent learn which actions to use to

achieve its goals. One research question that this and ongoing projects

are addressing is how can architecture learn the optimal configura-

tion of these various sub-systems through a combination of adapta-
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tion, learning and (meta-) reasoning. The agent has a set of beliefs it

can hold, actions it can perform, and goals to achieve. To achieve its

goal the agent needs to instigate the correct action based on its cur-

rent belief. Given that the agent is given no explicit knowledge of the

correct belief-goal-action combination (or association), can it determine

the correct combination on its own? A related point is the case where

the agent is provided with several possible belief-goal-action combina-

tions that achieve a specific goal. Can the agent determine which is the

best combination, and then modify its preferred selection as the envi-

ronment changes? For a robotic agent to provide a positive answer to

these questions its architecture needs to address several key issues

within cognitive science and robotics.

2.1. The anchoring problem

The symbol grounding problem concerns the difficulties of generating

symbols using perceptual systems, and the meaning of those sym-

bols [18]. The anchoring problem is a subset of the grounding prob-

lem. It investigates how links are generated and maintained between

symbols used within an agent’s cognitive architecture, and the data

obtained via the agent’s perceptual system [19]. In the past within

robotics, this linking of symbols to perceptual data has been buried

in the code of the agent’s architecture.

Recently there has been a push to formalise the problem in order to

identify the difficulties in linking symbols to objects, and to either sepa-

rate the anchoring process from the rest of the architecture, or to specify

when and where anchoring occurs. This approach provides insight into

the specific problems that surround the anchoring process. If an agent

is to reason about symbolic representations of its environment, it must

be able to perceive its environment. It must also be able to link those

perceptions to the relevant symbols.

2.2. Situated and embodied cognition

Situated and embodied cognition refers to the role the environment

plays in the development of cognitive processes within the agent [20–

22]. The cognitive processes of an agent that is situated (i.e. is present

within its environment) are determined to a large extent by its environ-

ment.

The cognitive processes of an agent that is embodied (has a physi-

cal body within its environment) are determined by its interactions with

its environment. In other words, cognitive processes develop from

real-time, goal-directed interactions between the agent and its environ-

ment [23]. From this viewpoint the agent can learn to achieve its goals

by interacting with its environment. If this is the case then information

about its environment and its physical body must be available to the

agent. Furthermore for such an agent to be considered autonomous,

it must have the means to select and achieve actions in motivated be-

haviour [17].

2.3. Machine learning

One of the questions posed earlier, is whether the agent can learn the

correct behaviour required to achieve its goal. It is therefore clear that

the agent needs some form of learning mechanism [10, 24]. There are

various different mechanisms possible but the one implemented here

uses a simplified reinforcement learning technique [25]. This is where

an agent learns by interacting with, and receiving feedback from, its

environment.

3. CAMAL: A Cognitive Architecture for
Motivation, Affect and Learning

This section will briefly introduce some of the main components of the

generic CAMAL architecture, of which robo-CAMAL is a variant.

3.1. Motivation in CAMAL

Mind can be viewed as an organised collection of cognitive processes.

These processes are integrated in a way that enables an agent to de-

cide its next action. One approach that takes this view is the use of

mind as a control system [4]. This takes the approach that mind is a

collection of many different control processes passing data between

them asynchronously.

The use of control states within the CAMAL architectures leads to the

use of motivational control states. Figure 1 shows the five (top-level)

motivational control states that have been used in implementations

to date [7, 8]. Further sub-types have been investigated in other

research [9]. To a certain extent, motivational states to the left of

this figure can be subsumed within those to the right. For example,

the intention to combine certain behaviours and plans may subsume

the desire to avoid-collisions, which subsumes the qualitative goal

no(collision), which makes use of adaptive thresholds (managed as

quantitative goals) related to instincts and reflexes to perform specific

micro-behaviours (such as stop, turn-left etc.). Drives are low level

mechanisms and refer to the same types of systems as seen from

the behaviourist or reactive perspective of motivation. The onset of a

drive is dependent on variables that fluctuate in response to internal

and external processes. If the variable crosses a specific threshold

then the drive activates a pre-set behaviour or response. Instincts

and reflexes are highly constrained drives. Instincts and drives are

present in CAMAL at the reactive level. As the reactive aspects of

CAMAL architectures are dependent upon the application, these

are typically related to specific embodiments and environments. For

example, robo-CAMAL has a number of low-level micro-behaviours

(such as ”turn right”, ”stop”, ”turn left” etc.). Each micro-behaviour can

be considered a reflex. For example the reactive control rule

IF left sonar value < threshold THEN turn right

is a pre-set response to a sensor variable. The (reactive) threshold can

be varied according to deliberative goals, or environment. The form-

ing of optimal combinations of micro-behaviours to create a macro-

behaviour can be also considered an agent’s drive.

Goals come in two types, quantitative and qualitative. Quantitative

goals are the same as goals used within control theory [26]. Within

control theory the system has a specific output that it needs to achieve

or maintain. The system uses feedback from its environment to mod-

ify its actions to achieve or maintain that state. Quantitative goals are

present within CAMAL at the reactive level and the deliberative-reactive

interface. For example, in some simulation experiments we have in-

vestigated artificial physiologies and metabolisms [9]. We could design

robo-CAMAL to track other (dynamic) objects using goals that state

the preferred (minimum and maximum) range and tie suitable reactive

behaviours direct to the perceptual systems. Such a behaviour would

then return control to the deliberative system only on failing to meet this

quantitative goal or after performing the goal for a set time limit.

Qualitative goals describe some desired end state for an agent; for

example, when an agent searches through problem space to find a

solution or goal state. Qualitative goals are present in CAMAL at the

deliberative level and take the form hit a ball (in five-aside football) or

avoid an object (in general navigation).However with the adoption of
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Figure 1. Five major Motivational Control States with (non-exhaustive set of)
subtypes.

BDI reasoning model, it is more appropriate to think of these goals as

propositions describing the end states associated with desires.

Desires are symbolic statements that define a specific preferred

environmental state. Desires here are the same as those used within

a BDI schema. Desires within CAMAL describe the specific goal, the

belief required for the goals success, and the desires importance.

Desires are present at the deliberative level within CAMAL. These take

the form

goal(Desire, SuccessCondition, GoalImportance, ThreatValue
goal(Desire, SuccessCondition, GoalImportance, ThreatValue)

Intentions are also the same as those used within a BDI schema. They

are strategies, plans and behaviours that are used to achieve desires.

Intentions are found within CAMAL at the deliberative level. They take

the form of predicates detailing the various possible reactive architec-

tures, or calls to planners or other reasoning sub-systems.

Finally attitudes are pre-dispositions to respond in certain ways to cer-

tain perceptual or internal triggers. For example consider an agent de-

veloped to play five-a-side football. The agent may choose to attack

or defend. This can depend on team orders or the specific environ-

mental situation [27]. These attitudes affect which goals are chosen.

If the attitude is to attack then the goal may be to hit the ball. If the

attitude is to defend then the goal may be to get between the ball and

the scoring zone. Attitudes are present within robo-CAMAL, but are

pre-programmed prior to run time. An attitude in robo-CAMAL refers

to the pre-defined goal set. Different attitudes or goal sets must be

changed by the user off-line. Other research has looked at the use

of meta-cognition to dynamically change attitudes using collections of

Norms [9].

In summary motivational control states are distributed throughout the

CAMAL architecture. Instincts, desires, and quantitative goals are

present at the reactive level. Qualitative goals, desires, intentions, and

attitudes are all managed at the deliberative level using a motivational

blackboard system.

3.2. Reasoning using a Cognitive BDI Model

The belief-desire-intention (BDI) model [28] is a schema that calculates

the actions of an agent based on its beliefs and its desires. A belief is

a statement about the confidence of a proposition. The confidence the

agent can have in a belief can vary. In the BDI model beliefs are based

on input from the agent’s perceptual system, and its previously held

beliefs. The agent’s desires are a set of goals which the agent wishes

to achieve. The agent’s current desires are based on its internal state,

possibly its emotional state, and its previously held desires. Coupling

the agent’s beliefs and its desires generate a set of intentions or plans

to achieve its goals. For example the agent has a goal to hit a ball. Its

perceptual system generates the belief that there is a ball to the right.

The agent can implement a set of plans to turn the agent right and

move forward.

The CRIBB (Children’s Reasoning about Intentions, Beliefs and Be-

haviour) model was developed to investigate reasoning in young chil-

dren [29]. This schema was implemented as a computer model to sim-

ulate knowledge and the inference processes of a child solving prob-

lems [30]. For the current work, a major difference to the standard BDI

model is that different degrees of belief are ascribed to belief state-

ments, according to the source of the belief. A preference operator

allows discrimination between beliefs that are based on assumption,

perception and deduction. Perception can be further sub-divided to in-

clude direct perception and indirect perception (i.e. from another agent

that has some degree of trust associated with it). Hence beliefs can be

ordered according to the degree of trust in them.

The CRIBB computer model did not incorporate emotions present in

the original cognitive schema. The a-CRIBB model [31] was developed

to investigate the use of affective computing within the CRIBB schema.

a-CRIBB added several new elements to the original CRIBB computer

model. In moving from the first to later CAMAL models (i.e. [6–8, 32]),

these novel aspects of a-CRIBB were further developed, and integrated

into the existing CAMAL model (Figure 2). In terms of the BDI model,

degrees of belief could be added to every component of the a-CRIBB

BDI schema based on a distributed model of affect. The interpretation

of these real-number values is consistent with the semantic interpreta-

tion of motivational states, as proposed by Sloman [4] and Davis [7, 8].

Since with situated agents, many forms of sensor may be available, de-

grees of trust can be ascribed to them (and modified over the life-time

of any experiment). This gives rise to Belief statements based on these

sensors (direct perception), as well as assumption and deduction, tak-

ing real-number values which can propagate across the BDI schema.

Figure 2. robo-CAMAL (left) in an experiment environment with ball and a fur-
ther robot within a bounded maze.

Affective computing refers to the use of computers to explore emotion

within cognitive architectures [33]. There are many different models of

affect, and theories of emotion can be typified as belonging in one of

several types, for example physiological [34], evolutionary [35], expres-

sio [36], appraisal [37] or goal based [38]. The affect model (extended
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from that in a-CRIBB) distributes affect values across the entire archi-

tecture rather than have a centralised emotion module.

Rather than use a centralised model of affect, CAMAL uses a dis-

tributed model of affect. We do not associate emotional tags to these

processes, such as fear of goal failure or happiness of association suc-

cess, or indeed embody emotions in the architecture for reasons out-

lined elsewhere [32]. In short, work on emotion is a morass of defini-

tions and competing theories. We suggest that we should not further

this confused framework with further models of emotion for artificial

systems. The thesis is that overall the theory of emotion is too disor-

ganized to be of much use in the design of synthetic intelligence and

that more pointedly, emotion is not really a requirement for synthetic

intelligence. Obvious exceptions are intelligent interface systems that

require emotional recognition [39] and deep language understanding

systems [40]. It is suggested that a direction given by the less seman-

tically overloaded term affect is a more appropriate.

This model of affect means that various elements within the architecture

have an associated magnitude that can fluctuate according to success

or failure associated with that element as mapped onto other processes

and eventually actions in the environment (see Table 1). The underlying

mechanism is the same affective range (real-number valued minus to

plus 1), but used and modified in different parts of the architecture ac-

cording to need. For example, each belief has a confidence value which

reflects the reliability of that belief. Furthermore each goal has an im-

portance value that determines the level of relevance of that goal to the

agent at that time. Also the association value indicates the likelihood of

success of a specific plan given a specific belief-desire combination. All

these values fluctuate and are often highly dependent on other systems

within the architecture.

Associations are a construct that consist of a belief, a desire, an

intention, and an association value (insistence) [8]. The associations

provide an indication of the past success of a specific set of plans

given the agent’s current beliefs and desires. This allows the agent to

consistently determine the most appropriate set of plans based on its

beliefs and desires; and to modify them where they fail. Associations

take the general form:

assocation( BeliefSet, Goal, BehaviourSpecification, Insistence)

Associations can be pre-defined (typically a small number related to

high priority tasks for specific environment configurations), or formed

when the architecture is initialised, or dynamically created when exist-

ing associations fail. Meta-level operators define which of these modes

(or combinations) is to be preferred. Where meta-level functioning is

minimised (for example in the first implementations of robo-CAMAL),

the architecture is simply configured to run in a set configuration, and

user intervention is required if an alternative mode is required (through

changing what in effect becomes a architecture spanning global pa-

rameter).

The associations work in the following way. From a large list of asso-

ciations the agent extracts only those that have a belief-desire combi-

nation that correspond to the agent’s current belief and desire set. Of

the remaining associations the one with the highest association value is

chosen. If multiple associations have identical insistence values, then

the association with the most important goal is chosen. If multiple as-

sociations still remain, belief preference is used then list order to resolve

the conflict set. The resulting association represents the set of plans

that are the most likely to achieve the given goal. The association value

is modified depending on the outcome of the agent’s actions. If it fails to

achieve its goal, the value is reduced. If the plans succeed in achieving

the goal then the value is increased. Goals too have an affect value (im-

portance), which depending upon the architecture’s mode of operation,

remains static over an experiment or can be varied. When in dynamic

goal importance mode, goal importance is decreased where no avail-

able association (i.e. plan) proves to be successful, and temporarily

reduced when achieved.

The use of motivation is pervasive throughout the architecture [7, 8].

The most important aspect here is the use of a motivational blackboard,

through which the deliberative systems are coordinated. A blackboard

system [41] uses three components. The first is the blackboard, which

is a global structure and holds all the information relevant to current

and past motivators (whether adopted or not) such as the agent’s be-

liefs, goals, association, feedback etc. This structure is accessible to

the whole deliberative agent. The second component consists of var-

ious knowledge sources which access the blackboard. These extract

the relevant information, manipulate it in some way, and then post the

result back to the blackboard. This could be a belief or goal update

mechanism for example. The final element is a control component; in

this instance a motivational construct and its management. The con-

struct and management act as a top-level scheduler for the architec-

ture, causing perceptual update, behaviour feedback, belief revision,

goal update etc. To be called in turn. This high level reasoning cycle

can fork into alternative processing cycles according to the effect each

step has.

4. robo-CAMAL: A Cognitive robot

The cognitive architecture developed here (as robo-CAMAL) is a com-

bination of the deliberative components described in the previous sec-

tion and an asynchronous reactive sub-architecture, implemented on a

mobile robot (left in Figure 2) and a desktop computer [11]. Perceptual

data (from sonar and omni-directional camera) and control commands

are passed between the robot and the computer via a radio modem and

a USB cable. This section will highlight some of the main components

of the architecture, highlighting aspects that differ from the generic CA-

MAL architecture.

4.1. robo-CAMAL Architecture

robo-CAMAL is a reactive-deliberative hybrid architecture used to con-

trol a mobile robot. It makes use of simplified CAMAL architecture with

reactive sub-architectures tailored to the robot and its sensors, and no

meta-deliberative layer. A schematic of the architecture can be seen in

Figure 3.

The deliberative component works as a blackboard system. A

motivational blackboard contains information related to current and

past motivations (and their parts). The reasoning module acts as a

co-ordinating control component. The various update modules (for

example Belief Revision, and Goal Selection as discussed in section

3.2), and the affect model related to motivational states, are the

knowledge sources. Once instantiated (i.e. domain model loaded or

indeed updated), the run-time control cycle is, at its simplest, attend

to feedback on blackboard, then call (in order) belief revision, goal

update, association update, motivator update and motivator activation.

Motivator activation calls on the reactive processing (or some other

module, e.g. association generation). This relatively simple high level

reasoning cycle allows the different knowledge sources to access and

update the motivational blackboard, and where appropriate re-enter

the processing cycle earlier in the chain. At the reactive level sensor

data is passed to the perception module. The perceptual module uses

a set of pre-defined rules to map the sensor data and reactive-goal

feedback to deliberative messages (in effect a list of new belief

statements). This perceptual message is posted to the motivational

blackboard. The reasoning module then allows the various knowledge

sources access to the blackboard in a specific order. First the belief
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Table 1. Affect metrics used in Motivator Constructs and constituents.

Affect metric Aspect Process and dimension category Affect magnitude

Belief Indicator Motivator Truth values for Semantic Content and Motivator Attitude; with following

preference: Perception ≫ Deduction ≫ Assumption

[0, 1]

Commitment Motivator Motivator Acceptance (ignored to first priority) [0, 1]

Dynamic State Motivator Motivator Process (uninstantiated to complete) [0, 1]

Importance Goal Goal Importance (low to high) [0, 1]

Insistence Association BDI Association Strength (low to high) [0, 1]

Intensity Motivator Motivator Strength (low to high) [0, 1]

Urgency Motivator Urgency (low to high) or time cost function [0, 1]

Decay Motivator Motivator Decay (low to high) or time cost function [0, 1]

Reinforcer Affect Goal and Association Feedback (negative to positive) [-1, 1]

Figure 3. The robo-CAMAL architecture.

update uses the new information to modify its belief set. The goal

update then uses the updated belief set to determine if the current

goal has been achieved, and what the new goal is. The association

update then uses the new belief and goal set to determine the relevant

action or intention. The BDI schema is implemented through the use of

associations. An association is a coupling of a belief-desire-intention

triplet, together with an affect value. This affect value details the

likelihood that the intention (behaviour or reactive sub-architecture)

of a given association will achieve a goal given a specific belief. For

example, an association with the form

association(found(ball), hit(ball), moveTowards(ball), 0.75))
is more likely to hit the ball than the association

association(found(ball), hit(ball), moveAwayFrom(ball), 0.25)).

Associations are chosen based on the agent’s current beliefs and de-

sires. The agent’s intention is then chosen based on the remaining

association’s insistence values as described above for CAMAL.

If an agent is to control its motivations, it must be able to set its own

goals. If an agent is to choose its own goals, then it must understand

the context of those goals in relation to its environment. In essence

this means that a situated and embodied agent’s motives must be

grounded in its environment. This problem can be viewed as part of the

wider grounding problem on how to integrate an agent with its environ-

ment [42]. One way of grounding motivation in an agent is through the

use of reactive systems. For example, a motor powered by a photosen-

sitive plate may be motivated to seek light. There is an argument that
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evidence of motivation within reactive systems lies with the observer

and is not objective [43]. However, if this argument is left to one side

then the systems motivation is embodied in the control architecture of

the sensing and acting mechanisms [44].

If an agent’s motivation is based on internal representations, the is-

sue of grounding is no longer as straight forward as for a reactive sys-

tem. These representations, and therefore the relevant motives, must

be connected to the appropriate events and activities in the agent’s en-

vironment [42]. In essence an agent’s motivation must be grounded

to its environment through its actions. The use of associations that

include reactive behaviours as their intention ensure this. Savage sug-

gests that, motivational grounding is derived from the interaction of an

agent with the appropriate aspects of its environment [42]. The feed-

back from the reactive subsystems, as described above, ensures this.

This section has discussed how motivation can be integrated with the

agent’s environment using a reactive system, or an interactive process

in the case of symbolic motivational states. It has not, however, pro-

vided a way of determining whether a motivation is a simple reactive be-

haviour, or a symbolic representation. The indices of motivation models

look to provide a way of making such a distinction [42, 45].

This model provides three features that may distinguish between re-

active and deliberative motivations. The first is individuation which de-

scribes an agent’s ability to achieve the relevant goal using a number of

different strategies. That is, the agent’s ability to achieve a goal using

an alternative method if its preferred response is blocked.

The second characteristic is the formation of expectancies relating to its

goal object. This relates to cognitive representations reflecting aspects

of the goal object such as how it will react under certain conditions.

The third characteristic relates to the presence of an affective response

towards the goal object. For example, an agent should an affect value

associated with an object that changes depending on the agents’ inter-

action with that object. The Perceptual Feedback-BDI-Reactive cycle

in robo-CAMAL does just that, with belief, goal, intention, association,

and motivational affective values varying over time.

4.2. Reactive component

A reactive robot is one where the perceptual input is directly connected

to the motor output [46, 47]. There can be various different definitions

of what constitutes a reactive component. For example the system may

have no changeable internal state so that the current input determines

the current output. In our broad research, we term these reflexes [7, 8].

In this case the output is always the same given the same input. The

definition of a reactive system taken here is that the systems output is

determined not only by its input, but also by its internal state. This is

akin to a finite state machine. The system’s output and new state is

based on its input and its current state.

The reactive component consists of a number of several different reac-

tive behaviours. These behaviours are modelled using software written

on the desktop computer, and the robot circuit board, as opposed to

being hard-wired into the robot. The lowest level consists of simple

micro-behaviours that turn the robot left, or move it forward etc. These

micro-behaviours are programmed directly on the robot. The micro-

behaviours are combined to generate task specific macro-behaviours

e.g. find or hit a specific object, or avoid objects etc.

The micro-behaviours can be grouped in specific ways to produce mul-

tiple macro-behaviours capable of (potentially) achieving specific goals

such as hit(ball), track(redrobot), find(blackrobot) or avoid(objects). For

example, one reactive behaviour uses sonar to avoid objects on the

right, where as a second uses the vision system to achieve the same

goal; a third instantiation, uses both sonar and the vision system. Fur-

thermore, the micro-behaviours can be combined using four different

arbitration methods: Priority Method where micro-behaviour activation

preference is stated through design; Aggregate Method where the ag-

gregated micro-behaviour is selected; Winner Method where weights

are used to determine the preferred single micro-behaviour, the weights

can be changed at run-time; and Behaviour Suppression, where micro-

behaviours when activated deselect other micro-behaviours. This pro-

vides twelve different methods of performing any specific task based

behaviour (the four arbitration methods, plus the three possible percep-

tual modes (sonar, vision, sonar and vision).

The specific behaviours that make up a task dependent behaviour

group are determined prior to runtime, and defined in the Domain

Model. The specific behaviour grouping, combination method, and

sensor mode, is chosen at runtime by the deliberative component.

4.3. The Domain Model

robo-CAMAL operates within a structured, dynamic environment con-

sisting of various objects (walls, maze, balls and other robots (both

static and dynamic)). Its actions are also confined by what its phys-

ical body can perceive and do. It is therefore vital that information

about the agent’s environment and its physical body be available to

the agent. This encoding is achieved with the use of a domain model.

Together with the three aspects described below, the domain model

includes variables that define values used in updating goal and asso-

ciation value, and other parameters that define thresholds for the vari-

ous components of the architecture. In a fuller implementation of robo-

CAMAL, a meta-deliberative layer could control these parameters and

hence refine and optimise the various modules to suit the current task

and environments. Indeed, this has been investigated using CAMAL

with simulated environments [48].

The domain model first defines the type of objects to be found within

the agent’s environment. There is also an abstract belief schema that

details the structure and constituents of all possible beliefs the agent

can have about its environment. The domain model therefore defines

constraints on the possible beliefs that can be generated by the agent.

It also defines the relationships between possible beliefs, for example

synonyms and antonyms. For example, for many experiments, the do-

main model specifies a number for found objects that causes the belief

environment(cluttered) to become true, and the default belief environ-

ment(sparse) to become false (see Figure 4 for first experiment). Such

beliefs act as constraints on the belief revision system, and reflect tasks

and environments. These belief definitions and relationships incorpo-

rate the situated nature of the agent into the more abstract BDI schema

used in the architecture.

The domain model also defines the goals the agent can have. These

goals are designed to reflect the possible objects and beliefs defined

by the model. They are also constrained by the possible actions the

robot can perform. The domain model provides a list of all the possible

actions the agent can undertake. In relation to robo-CAMAL, this refers

to the macro-behaviours. These two elements incorporate some of the

embodied nature of the agent into the architecture.

Finally the domain model provides the object perceptual profiles, i.e. the

information required to recognise an object. This too incorporates both

the situated and embodied nature of the agent into the architecture.

It is situated in that it provides some of the physical attributes of the

environments objects. It is embodied in that it provides information on

how the agent’s sensors should process the perceptual data.

The use of the domain model provides a number of key advantages.

The first is that the model allows the situated and embodied nature

of the agent to be separated from the deliberative component. This

means that, as is the case with robo-CAMAL, the deliberative compo-

nent can be generic and not task domain and environment specific. The

second advantage is that the model makes it easy to pinpoint when and

where within the architecture the anchoring of symbols occurs. The
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Figure 4. Association generation process for the find(redrobot) experiment.

domain model ensures that the generic architecture can be tuned to

robot or agent capabilities, environments and tasks within those envi-

ronments. A small change in task or environment, with the same robot

(for example moving from find(ball) and avoid(robot) to avoid(ball) and

find(robot) ), involves a small change to the domain model and not to the

robot architecture. This enables a number of small task-centric domain

models to be built independently, and then merged to form more gen-

eral purpose domain models. As the domain model includes goal im-

portance and intention insistence values, an architecture that included

task optimisation (via adaptation or learning) could optimise a given

domain model for specific tasks and environments. This can be saved

and used in subsequent trials with the robot architecture.

4.4. Learning in robo-CAMAL

robo-CAMAL makes use of associations in order to learn about the ef-

fect of its actions on its environment. Machine learning involves building

systems that can use example data or past experience to optimise their

performance [24]. There are many possible methods from supervised

learning, where the system is provided with controlled training data, to

unsupervised learning, where the system is given no labelled data and

learns by its own means.

Standard BDI schemas [28, 49] do not provide mechanisms for learn-

ing. Given that robo-CAMAL uses a variant on the BDI schema, to

model the reasoning of a five-year old child, the research into develop-

mental robotics [5] seems apt, but beyond the current project. Phung

et al. use an Inductive Logic learning paradigm with a BDI agent [50],

while Subagdja et al. use meta-level operators to learn plans that fit into

a BDI schema [10], following on from Subagdja and Sonenberg who

found standard Q-learning with a BDI schema not to be a productive

mechanism [51].

The CAMAL architecture can build new associations on initialisation

or through a goal failure mechanism. At its simplest, this mechanism

generates all possible belief-goal-intention combinations; each given

a default association value. Whether using a given set of associations

(defined in the selected Domain Model), or using a generated set, robo-

CAMAL can adapt these associations through the modification of the

affect value. Here a simple learning algorithm, based on reinforcement

learning with an immediate reward, is utilised. Reinforcement learning

involves an agent performing an action within its environment. It then

receives a reward or penalty based on the result of that action. By

trying several different actions and using the feedback provided, the

agent attempts to learn how to maximise the total reward [25].

The method with which robo-CAMAL learns is a simplified Q learning

approach. The association value can be written as A(s; g; a), where s

is the state, g is the goal, and a is the action. Given a constant goal g,

the algorithm for determining the association values is as follows.

robo-CAMAL learning algorithm
For each s,a pair initialise the table entry A(s; g; a)
Observe the current state s
Repeat
Select an action a and execute
Observe new state s’
Use s’ to determine if r is positive or negative
Use r to update the table entry for A(s; g; a)
s← s’

There are however some important differences between the robo-

CAMAL and Q learning algorithms. The first is that the reward function

is known to the agent. This means the agent can calculate its reward

based on the observed new state. The second important difference is

that robo-CAMAL is opportunistic. During the training phase, the learn-

ing attitude keeps the goal constant when looking for new association

mappings. As the goal is constant, the action chosen is the relevant

action-state pair with the highest association value. This means if the

agent finds an action that provides a positive reward, it continues to

execute that action. This is because only the immediate reward is con-

sidered. In the robo-CAMAL learning algorithm, the association update

equation is the same as the Q update equation with γ equal to 0.

There are several different ways of initialising robo-CAMAL to achieve

different levels of supervision when learning. The maximum level of

supervision involves pre-defining the associations for a specific goal.

For each macro-behaviour there are twelve possible architectures. For

example the following set of four associations:

association(environment(cluttered), avoid(collisions), architec-
ture(vision, priority, avoid), 0.5 )
association(environment(cluttered), avoid(collisions), architec-
ture(vision, aggregate, avoid), 0.5 )
association(environment(cluttered), avoid(collisions), architec-
ture(vision, winner, avoid), 0.5 )
association(environment(cluttered), avoid(collisions), architec-
ture(vision, suppression, avoid), 0.5 )

define the four reactive sub-architectures for avoid(collisions), with dif-

fering arbitration methods. Another eight exist for the sonar only and

vision+sonar variations. Given all the associations are pre-defined and

the goal is constant, the agent only has to learn which architecture is

the most successful. This is in essence telling robo-CAMAL which set

of alternative reactive sub-architectures should achieve its goal, and

asking it to determine the best.

A relaxation in the level of supervision is to allow robo-CAMAL to gener-

ate its own associations, but control the environment. In this scenario

the agent has no indication of what effect each action will have on its

environment. However, as the environment contains the correct object

with which it can achieve its goal, it should learn the most appropri-

ate action. This method provides robo-CAMAL with training data in

order to learn the best policy. The minimum level of supervision allows

robo-CAMAL to generate its own associations in an uncontrolled envi-

ronment.
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5. Experiments

A considerable range of experiments with the robot have been per-

formed [11]. Here those most relevant to motivation and the issues

described in the paper are highlighted.

5.1. Association Creation

Associations can be pre-defined prior to run time. However, this

has the effect of controlling which actions are to be used for each

belief-goal combination. For example, the association:

association(found(blueball), hit(blueball), architec-
ture(vision+sonar, priority, hit), 0.8 )
links the goal hit(blueball) to the specific architecture architec-

ture(vision+sonar, priority, hit), with an affect intensity of 0.8.

If the associations are not pre-defined then robo-CAMAL has a set of

possible actions with no indication of their purpose (although they are

named to be meaningful to the human user). In this case robo-CAMAL

needs to generate associations. It then needs to test the new associ-

ations to determine which is the most appropriate for each situation.

New associations are created as follows. First, all the agent’s goals

are placed in a list. Each goal is paired with each belief the agent has

at that time. Each belief-goal pair is combined with every possible

reactive sub-architecture. Each new association has its association

value set to 0.5. This means that for each belief-goal pair 48 new

associations are created. For example if the agent has the goal

hit(ball), the two beliefs environment(sparse) and found(ball), the

associations created are:

association(environment(sparse), hit(blueball), architec-
ture(1.48), 0.5)
association(found(blueball), hit(blueball), architecture(1.48),
0.5)
giving a total of 96 new associations.

The following experiment gives a practical example of association cre-

ation. The system was set up as follows. For this specific experi-

ment, all the micro-behaviours were deactivated; in effect, the reactive

component of robo-CAMAL was reduced to nothing more than a vi-

sion system. The deliberative component was initialised with the goal

find(redrobot), and the belief environment(sparse). The reactive cycle

number (defining how many clock cycles the reactive sub-system is to

run for) was set to 20. The vision system was initialised to detect an

object corresponding to the object profile produced by the redrobot. A

stationary redrobot was placed in front of robo-CAMAL within its lower

proximity threshold (i.e. the redrobot was within a distance detectable

to the vision system).

Once the experiment was started, the reactive component provided

feedback that the redrobot had been found. After one minute the re-

drobot was replaced by the blackrobot. At this point robo-CAMAL cre-

ated associations involving the beliefs found(blackrobot) and environ-

ment(cluttered). After a minute the blackrobot was replaced with the

redrobot.

Figure 4 shows several associations with the same goal and inten-

tion. Each line represents an alternative belief basis. Initially associa-

tions with the beliefs environment(sparse), environment(dynamic), and

found(redrobot) are created. The belief environment(dynamic) comes

from the domain model assumption that if a robot is present, then

the environment is dynamic. Initially the association with the belief

found(redrobot) increases as it achieves its goal. Once the redrobot is

removed then the association fails and its association value is reduced.

Once the blackrobot is introduced then new associations involving the

beliefs found(blackrobot) and environment(cluttered) are created. The

belief environment(cluttered) is generated due to the domain model as-

sumption that more than two objects means a cluttered environment.

This appears in the figure as the association values that jump from 0 to

0.5 (it is shown as 0 as it was not created initially as the belief basis is

antonym to the default belief environment(sparse)). The gap between

the reduction of the found(redrobot) association and the creation of the

new association is due to the finite time required to swap the two robots.

As the reactive cycle number was set at a low value, the time taken to

change the robots over is significant. Once the redrobot was reintro-

duced the association with the belief environment(dynamic) increases.

This experiment appears to show that robo-CAMAL is successfully

learning the appropriate behaviour to achieve its goal. However no

hard conclusions can be drawn from this as the experimental set up

was so contrived. These results are given to demonstrate association

generation in a limited but changing environment where the perceptual

input and therefore the belief set could be controlled.

5.2. Adaptation Using Goals and Associations

One important requirement for any agent is that it has the ability to adapt

to a changing environment. There are several ways in which an agent

can adapt, evolutionary adaptation, physiological adaptation, sensory

adaptation and adaptation by learning [14].

Evolutionary adaptation occurs when agents adapt to their environment

over many generations via natural selection. Physiological adaptation

refers to the physiological changes that occur in response to changes in

the environment. For example, sweating is a response to an increase

in temperature in the environment. Sensory adaptation is when the

perceptual systems adjust to the strength of the stimulus that they are

sensitive to; for example, when the pupil dilates due to a change in

light intensity. Adaptation by learning is a very general adaptation. It

can refer to many kinds of things such as learning the quickest way to

a specific location, or how best to avoid a predator. The way in which

robo-CAMAL adapts is through the use of associations.

As described, each association contains four elements, a belief, a goal,

an action, and a measure of the likelihood of success of the action given

the belief and goal. For robo-CAMAL to adapt, it needs to choose the

appropriate association. That is, the association that corresponds to its

current environment and internal state. This is done using a two stage

process.

The first stage (training phase) involves the agent learning which asso-

ciations are apt for a given belief-goal combination. For example the

association:

association(found(blueball), hit(blueball), avoid(blueball), value)
will tend to fail to achieve its goal, while the association (for the same

belief-goal pair)

association(found(blueball), hit(blueball), hit(blueball), value)
should achieve its goal most of the time. It is the job of the training

phase to determine the relevant associations.

In the second stage of adaptation after the training phase, robo-CAMAL

has multiple goals in a variable environment. The task then becomes

to choose the appropriate association with which to achieve one of

its goals. This choice is based on robo-CAMAL’s internal state, and

its environment (or more specifically its beliefs about its environment).

In order for robo-CAMAL to choose an association, it needs to rank

associations. This ranking is calculated in terms of the agent’s belief,

goal, and association values. The value of each associations rank is

calculated using Equation 1. Here aν is the association’s insistence

value, gν is the association’s goal importance value, ba is the age of

the association’s belief.

Rank =
√aνgν

1

ba + 1
(1)
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Figure 5 shows how the association rank value varies with each of the

three affect values aν, gν , and ba. For each line on Figure 5, two of the

terms in Equation 1 were kept constant, whilst the stated parameter

was varied. It is clear from Figure 5 that the association rank value

increases as aν and gν increase. It is also clear that the association rank

decreases as the belief gets older. This means that for each association

the higher its goal importance, the more recent its belief was formed,

and the more likely the action is to achieve its goal, then the higher its

rank value.

Figure 5. Effect on association rank value by major contributing factors.

Over time, the association value varies according to Equations 2 and 3.

Here vi is the current association insistence value, and νi+1 is the new

association insistence value. If the agent achieves its goal, the relevant

association insistence value is increased using Equation 2. If the agent

fails to achieve its goal the relevant association value is decreased using

Equation 3. While numbers are given in these equations, the numbers

are taken from variables defined in the domain model.

νi+1 = νi + ((0.95− νi) · 0.1) (2)

νi+1 = νi − (νi − 0.15) · 0.1) (3)

The default initial goal importance value is 0.5 (or some other number

defined using a variable in the domain model). It is possible to specify

other values through configuring the domain model appropriately prior

to initialisation. At each time step the importance value is increased by

0.02, up to a maximum value of 0.95 (again variables in the domain

model are used to define these values). The only occasion in which

the goal importance value is not increased is if the agent has failed to

achieve that goal, or if the agent attempted to achieve the goal in the

previous deliberative cycle. If a goal is achieved its importance value is

reset to 0.5 (the default goal value). If a goal consecutively fails X times,

where X is determined by the domain model threshold goal threat max,

its importance is then set to 0.1. The goal importance variation can be

seen in Figure 6.

Figure 6 shows a goal with its importance value set at 0.1. Its value

increases over time. Just before cycle 30 the goal is achieved, and its

importance value is set to 0.5. The importance value then increases

again, until the goal consecutively fails X times. At this point (cycle 45)

the importance value is reduced to 0.1; it subsequently rises.

The goal importance function has several effects. The first effect to

notice is the goal failure strategy. If a goal fails once its value is not

Figure 6. Goal importance value fluctuation over an experiment.

automatically reduced. The reasoning behind this design decision is

that the failure may be due to something simple beyond the agent’s

control. For example, if the goal is hit(blueball), the agent may simply

miss, or a second robot may get in the way. However if robo-CAMAL

consecutively fails on a number of occasions, then it is likely that there is

something more substantial preventing it from achieving that goal. For

example the blueball may no longer be present or have been moved

by further robots in the environment. If this is the case then the goal

importance is greatly reduced to prevent its selection.

The goal’s success has two effects on the goal importance depending

on its previous value. If the goal importance value was initially low due

to a previous failure, its value is increased to 0.5. This reflects that

the goal is now achievable. If the goal importance value was initially

high, the value is reduced to 0.5. This reflects that the goal has been

achieved and is no longer as important. This prevents goals with a high

importance value being selected repeatedly.

The increase in the importance value over time reflects the variable

nature of the environment. A goal that is unachievable at time t may

become achievable at time t+x. For example, if there is no blueball in

the environment, the goal hit(blueball) will fail. Its goal importance value

will be reduced to 0.1. If a blueball is then introduced to the environ-

ment, the goal then becomes achievable. Unless the importance value

increases then the goal hit(blueball) will not be selected.

The time the belief was formed also affects the association’s rank value,

as the older the belief, the lower the association’s rank. This is to re-

flect the fact that in dynamic environments older beliefs may not be as

reliable or accurate as more recent beliefs. Belief revision is described

in earlier sections and again the domain model has a role in defining

maximum length of time a perception based belief can exist, and other

reasons for updating or negating a belief.

These experiments have shown that agent adaptation within robo-

CAMAL can be divided into two components. The first is a training

phase. First robo-CAMAL uses the method described to learn the most

appropriate associations for each goal. The most successful associa-

tions can then be retained by the agent. Once the training phase is

over, the agent’s environment becomes variable, and it is given multi-

ple goals. At this point robo-CAMAL uses its current beliefs, and the

various affect values, to choose the most relevant association. The

changing beliefs and affect values should mirror changes in the agent’s

environment. The modification of goal importance values over time en-

sures that the robot systematically tries various tasks as represented

by the goals in its domain model.
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5.3. Association Learning

This experiment was designed to test robo-CAMAL’s ability to learn the

correct action to achieve a specific goal. To do this robo-CAMAL needs

to be able to generate a list of associations, and select the correct as-

sociation to achieve that goal.

For this experiment no reactive behaviours were disallowed but robo-

CAMAL was instantiated with a single object based goal, and with the

correct initial set of beliefs. No associations were pre-defined. robo-

CAMAL was run in one of a number of possible environments for five

minutes. The experiment was repeated three times for each environ-

ment. The experiment was run for every object based goal (i.e. find,

track, and hit), with every possible object as the focus of that goal.

Given three possible goals, three possible objects, with three experi-

ments in six environments, the total number of experiments was 162.

Each experiment produced a number of associations. The value of

each association was recorded at every deliberative processing cycle.

Abridged results (for the redrobot experiments) are presented here.

Figure 7 shows eight key associations (those that attain an insistence

value greater than 0.5) for the hit(redrobot) experiment. Initially robo-

CAMAL has no associations. Given the goal hit(redrobot), a set of pre-

defined beliefs, and a list of the possible actions, robo-CAMAL pro-

duced 144 different associations for this experiment; some of these

associations have default or lower values, and are never chosen. Eight

associations are shown, with two highlighting what happens to initially

promising but unsuccessful combinations (these trail off after point a).

Only five associations achieve an insistence value significantly greater

than the default value (i.e. above 0.75), and once beyond point a in

Figure 7 (at around 50 cycles), only four different associations are se-

lected.

Initially robo-CAMAL tries various associations in order to hit the

redrobot, all of which fail. However, at point a, the associa-

tion(environment(dynamic), hit(redrobot), architecture(sonar, priority,

hit)) succeeds. This can be seen in Figure 7 as the line with the in-

creasing association value. After some time robo-CAMAL fails to hit

the redrobot. This can be seen by the fall in association value at point

b. At this point as the association value is high, the only reason the

association is not chosen must be because the redrobot cannot be

sensed and the relevant belief is no longer present. An alternative as-

sociation is used to find the redrobot, association(environment(sparse),

hit(redrobot), architecture(sonar, priority, find)), both at this point and

again 50 cycles later. This association subsequently fades. An alterna-

tive find behaviour (architecture(vision, priority, find)) is chosen at point

c, but this too subsequently fades, as the redrobot is subsequently

never lost by the robot’s perceptual system.

If the redrobot has not been found within 25 deliberative processing

cycles, then all beliefs regarding the redrobot are removed. With no

object beliefs present, robo-CAMAL will deduce that the environment

is static and sparse. Between point c and d, the predominant associ-

ation in this experiment (architecture(sonar, priority, hit)) contains to be

selected, except where the robot is sensed but not close enough to be

hit, in which case the adaptive BDI schema sees a tracking behaviour

chosen (architecture(vision, priority, track)). For the remainder of the ex-

periment, beyond point d, the robot is close enough for a hit behaviour

to succeed. However beyond point e, an alternative perceptual system

works better at times (architecture(vision, winner, hit)). This is repre-

sented in Figure 7 as the increase in association value from point e to

f. Beyond point f, it can be seen that the two main associations closely

mirror each other, and have almost have identical shapes. This occurs

because robo-CAMAL is switching between the two associations, due

to the way the Belief revision model works. Initially the association with

the belief environment(sparse) succeeds. The belief is considered true

so is left unmodified. However, as the belief found(redrobot) is held, the

belief environment(dynamic) is deduced. This belief is updated with the

current time value. This means that the environment(dynamic) belief is

more recent than the environment(sparse) belief.

One of the factors affecting the choice of associations is the age of

the belief (as shown in Equation 1). In this case, as the environ-

ment(dynamic) belief is more recent, the association containing this be-

lief is therefore chosen. This cycle repeats for the environment(sparse)

belief, thereby causing the chosen association to swap every delibera-

tive processing cycle. If the experiment were left to continue, no doubt

further associations would rise to the surface, as the goal (hit(redrobot)),

like many others in our experimentation, requires a series of actions

(and goals) to be performed. Figure 7 shows three hit, three track and

two find associations; but others exist in the 144 possible associations.

robo-CAMAL does not use a Hierarchical Task Network [52], but re-

quires a rational design of any task specific Domain Model. In this case,

the goal hit(redrobot), requires robo-CAMAL to have first found the re-

drobot, then to have used the track behaviours to be close enough to

the goal object to collide with it.

To assess the effectiveness of robo-CAMAL’s learning ability two crite-

ria were set for each association to meet. The first is the association

insistence value. If this value goes above a specific threshold, then the

association is recorded. The thresholds chosen were 0.65 and 0.75.

These values were chosen as the association value is considered to

be the likelihood of success of that association. For example, an as-

sociation with a value of 1 should have a 100% success rate, where

as a value of 0 would always fail. The association values of 0.65 and

0.75 therefore represent likelihood values of 65% and 75%. These are

considered reasonable likelihood values to consider an association as

being an accurate reflection of a specific belief-goal-action mapping.

The second criteria relates to the amount of time the association

spends above the value threshold. Five time thresholds were chosen.

These were one deliberative processing cycle, 30 seconds, 1 minute,

1 minute 30 seconds and 2 minutes 30 seconds. The number of pro-

cessing cycles spent above the association threshold divided by the

total number of deliberative processing cycles gives a percentage of

the time the association spent above its threshold. This can easily be

converted into a real time value as each experiment ran for five minutes.

If an association persisted longer than the persistence threshold it was

recorded.

Table 2 shows the number of correct and incorrect associations found

during the learning experiment. It also shows the ratio of correct to

incorrect associations as shown in Equation 4.

ratio =
correct associations
incorect associations (4)

Any ratio value above 1 indicates that robo-CAMAL has successfully

found more correct associations than incorrect ones. The higher this

ratio, the more accurate the learning mechanism.

The results show that overall robo-CAMAL correctly identifies the ap-

propriate association to achieve its goal more often than not. However,

if the shortest time constraint is chosen, robo-CAMAL’s performance

is only slightly better than random. As the ratio for this constraint is

only just above 1, robo-CAMAL is identifying the correct association

only slightly more than 50% of the time. If an association is required

to persist for more than 30 seconds, then the accuracy of the learn-

ing mechanism increases almost three fold. It is clear from the results

that the longer the association is required to persist, the greater robo-

CAMAL’s learning accuracy.

This increased accuracy comes at a price. It is also clear that the longer

the association is required to persist, the fewer the number of associa-

tions to be found. This can be seen in Table 3, which shows the average

125



PALADYN Journal of Behavioral Robotics

Figure 7. Variation in association insistence in the hit(redrobot) learning experiment.

Table 2. Total number of correct and incorrect associations found.

Time above threshold Associations above value threshold

0.65 0.75

correct incorrect ratio correct incorrect ratio

One processing cycle 210 159 1.32 181 106 1.71

30 sec 135 36 3.75 114 22 5.18

1 min 106 22 4.81 98 18 5.44

1 min 30 sec 91 16 5.69 81 8 10.13

2 min 30 sec 68 3 22.6 52 0 N/A

number of associations found in a ten minute period. The total time of

the experiment was 810 minutes. This means the total number of ac-

curate associations found divided by 81 gives the average number of

associations found over a 10 minute period.

It is clear that increasing the time an association is required to persist

for increases the time it takes for robo-CAMAL to learn the correct as-

sociations. For example, even though an association persistence of 2

minutes and 30 seconds provides a very accurate learning threshold,

it takes robo-CAMAL over 10 minutes to learn a new association. This

behaviour is expected. The longer an association is required to persist,

the less time is available to try alternative associations. From Tables 2

and 3 it can be seen that increasing the association threshold value

has the same effect on robo-CAMAL’s learning accuracy and speed,

as increasing the association’s persistence threshold.

Table 3. Total number of correct associations found in 10 minutes.

Time above threshold Correct associations found per 10 min

Value threshold 0.65 Value threshold 0.75

One cycle 2.59 2.23

30 sec 1.67 1.40

1 min 1.31 1.21

1 min 30 sec 1.12 1.00

2 min 30 sec 0.84 0.64

6. Discussion

The experiments presented the first use of the CAMAL architecture

with an embodied agent. Although not all elements of that architec-

ture are incorporated into robo-CAMAL, the results offer promise. The

links to other architectures, for example CogAff [4], are obvious as the

work on motivation in CAMAL arose from an earlier CogAff project [6].

CAMAL is different in many ways, and most noticeably in using the a-

CRIBB BDI reasoning schema. CogAff is now also being used to con-

trol robots [53]. While we have yet to directly compare robo-CAMAL

with these architectures using standard benchmarks, this is an issue

that future work will address. However such considerations do raise

some of the problems raised by Hawes et al. [53], and Hanks et al. [54]

earlier, in that while single task comparisons allow direct comparison,

the nature of research and implementations at different institutes will

necessarily invoke differences.

Belavkin in his analysis of emotion considers valence and arousal to be
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useful in designing a cognitive model [55]. While the metrics he uses in

his ACT-R related system are based on probability and entropy, there

are similarities in the use of these two concepts. CAMAL uses affec-

tive valence to select and modify goals, associations and motivations.

Arousal relates to goals, and in CAMAL high goal importance relates to

elevated arousal, and the achievement of goals leads to the strength-

ening of the valences linking goals, belief basis and intended behaviour.

CAMAL however, is not a rule based system adapted to use affect, or

in the case of Belavkin, ACT-R adapted to use emotion. ACT-R [56]

and SOAR [57] are rational models of cognition adapted to incorporate

emotion (or affect). Indeed a central tenet of CAMAL, and indeed Co-

gAff, is that motivation is the core of the cognitive model, and cannot

be a (simple) bolt-on mechanism.

What these, and further experiments, see [11], demonstrate is that mo-

tivation in robo-CAMAL is grounded and deliberative. The only possible

doubt is robo-CAMAL’s formation of expectancies. It could be argued

that as the agent requires these expectancies to be pre-defined via the

domain model, its motivation is not fully deliberative. However, due to

the way in which robo-CAMAL adheres to the individuation and affec-

tive response criteria, it is clear that its behaviour is far more deliberative

than reactive.

Of course, other architectures have addressed the research issues pre-

sented in this paper. Most pertinent to the overall aims of this research,

is the mobile robotics work of Stoytchev and Arkin [17] in that their ar-

chitecture combines three components: deliberative planning, reactive

control, and motivational drives. They identify that the mapping of high-

level deliberative commands onto a reactive controller solves some of

the problems associated with purely reactive control, but is equally dif-

ficult to solve. The approach taken in robo-CAMAL (and other CAMAL

variants) offers a solution, at least in the limited experiments performed

to date. The BDI schema used with the association mappings offers a

generic solution that can be tailored to specific environments and tasks,

through adaptation and learning of the domain model. The motivational

model used in CAMAL is developed from a goal based model of emo-

tion and works at both the deliberative and reactive level. The Arkin

research uses a physiological model with behavioural triggers at the

reactive level. Both map onto motivational variables and provide valid

motivational and indeed complimentary models; in other research we

have used low level models in fungus eater experiments in conjunction

deliberative motivation management [31, 48]. Both approaches fit the

criteria for motivation model s as defined by Epstein [45]. However,

the Arkin model has problems in resolving conflicts between the inter-

nal motivations and goals of the robot and the goals that people set

for the robot; the conflict resolution and predicate management across

the CAMAL BDI schema suffers no such problem. We argue that the

approach taken in CAMAL, and CogAff, provide for more flexible ap-

proaches where the architecture needs to reconfigure and optimise its

tasks to goals that are achievable in the environment within which the

robot finds itself. In the CAMAL architectures the distributed model of

motivation (and affect) includes the confidence the agent has in belies,

the importance and threat values of goals, the insistence values of the

associations and the persistence of motivations.

The robo-CAMAL implementation described here uses a naive ver-

sion of reinforcement learning to adapt association (as shown in the

third set of experiments). Once associations have been generated (or

pre-defined), it can optimise the association insistence value over time

to produce near-optimal configurations of the reactive-subsystems for

specific belief-goal combinations. The affect model is also used to man-

age goals throughout run-time. Konidaris and Barto [58] make the point

that a motivational system is central to agent autonomy. Like Stoytchev

and Arkin [17], they use a low level (quantitative) drive system which is

used to provide metrics for a reinforcement learning system in a simu-

lated agent in Spier’s domain [59]. In should be noted that Spier’s work

is heavily related to that of McFarland [14]. Our work draws on McFar-

land at the theoretical and experimental level in the CAMAL research

and related studies, e.g. [31, 48]. While their work has a more rigor-

ous learning mechanism, a direct comparison is not valid as Konidaris

and Barto use a simulated agent. However, a direct comparison with

Konidaris and Barto [58] using Spier’s domain, should be possible us-

ing the full CAMAL architecture but is left for future work.

Rodriguez et al. report on the use of a motivational system for a robot

that combines reinforcement learning and a genetic algorithm [60].

They show promising results for a robot standard wall following prob-

lem, but no quantitative comparison with the current work is possible

as metrics for this problem are not supplied. The find(redrobot) exper-

iment is qualitatively similar in that it involves finding and tracking an

object in a robot environment. However, the motivational system used

by Rodriguez et al. is not well developed, and we suggest the motiva-

tional system and BDI schema presented in this paper is more widely

adaptable to tasks and environments, even if the learning mechanism

is not, as yet, fully developed. Other benchmark comparisons, such as

the Keepaway Task used by Whiteson et al. [61] in their experiments

with different learning mechanisms for action selection, are possible.

The comparisons of Whiteson et al. are interesting in that they show

that different learning mechanisms offer differing levels of performance

across different task categories. A deeper design and implementation

of CAMAL may capture these task defined optimality issues using the

meta-deliberative Norm constructs which define operational constraints

on the currently extant architecture.

7. Conclusion

The robo-CAMAL architecture was designed from the reductionalist

viewpoint, and conceptualised using the theory of mind as a control

system. This means that the robo-CAMAL architecture can be decom-

posed into separate functional components, and was designed to con-

trol the actions of a mobile robot. The architecture makes use of a

number of different subsystems that have been developed over many

related projects.

At a more general level, robo-CAMAL makes use of a hybrid, reactive-

deliberative architecture. It uses this set up in order to make use of a

reactive system’s ability to respond and act quickly in a rapidly changing

environment. It can also use the deliberative system’s ability to reason

about events within its environment, and solve problems.

The robo-CAMAL architecture controls and directs the actions of a mo-

bile robot through the use of a BDI schema, a motivational blackboard,

and motivational control states. This research has addressed the argu-

ment that to be grounded, motivation must be an interactive process

between the agent’s actions and its environment [42]. In regards to this

argument it is clear that the interactive nature of robo-CAMAL’s moti-

vation that it is grounded in its environment. In addition, based on the

indices of motivation model [45], the motivational control states used

by robo-CAMAL are predominantly deliberative in nature.

The learning experiments demonstrate that robo-CAMAL has the ability

to anchor events and object to pre-defined symbols. It uses the domain

model to recognise an object such as a blueball, and an event such as

hit(blueball). While the learning mechanism is currently naive, current

and future research will have to address whether the learning process

of all associations for all tasks, for more complex architectures and sets

of behaviours, is scalable? Current research is addressing this through

formalising affect and learning model using Bayesian Reasoning con-

cepts - it is an open question. Again further experimentation with the

full CAMAL architecture in synthetic worlds and with robo-CAMAL may

provide stronger evidence to substantiate the qualitative comparisons
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made here.

The agent’s performance can be improved in two main ways. The first

involves a more sophisticated domain and perceptual model, to enable

(perceptual) learning about new objects in its environment. This, how-

ever, will raise new issues relating to symbol grounding and the gener-

ation of ”artificial” symbols. Following on from a long-standing analysis

of the work of Barsalou [62, 63], new research using robo-CAMAL is

looking to neural learning mechanisms. This, in turn, will require mo-

tivation to be mapped to new interpretations of control states, possi-

bly at a meta-cognitive level as in the research performed by Venkata-

muni [48]. CAMAL will then enabled to adapt to unfamiliar and less

structured environments by swapping attitudes, embodied as norms

at a meta-cognitive layer above any of the BDI or reasoning schema

in Figure 3. The second improvement involves the addition of a meta-

cognitive layer to manage the agent’s goals and attitudes, as well as a

variable domain model, for example changing the agent’s attitude from

a free roam to a learning mode.

In conclusion, robo-CAMAL has demonstrated an ability to anchor sym-

bols to perceptual data with the use of a domain model. This anchoring

mechanism performs very well in a controlled environment, but currently

struggles in a more unstructured environment. This failure is partly due

to a lack of sophistication in the domain model, and the relatively shal-

low learning model. This highlights just how important the anchoring

process is to a deliberative agent if it is to function in its environment.

Current work on the robotic embodiment of the CAMAL architecture

looks to deepen and improve the link between the deliberative and re-

active architecture through extending the BDI constructs with Bayesian

reasoning; and to address the issues related to perceptual learning us-

ing mechanisms similar to those proposed by Barsalou [62, 63].
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